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Abstract 
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1. Introduction. 
In the present paper we find the one-loop effective action for a four dimensional 

bosonic theory with scalars, gauge vectors, and gravitons, when the gauge kinetic energy 
term involves couplings to scalars. The Lagrangian we consider is 

c = 2
1
K.j9R + ~.;gg~IIV~¢>iVIlq)Zij(¢» - y'9V(¢» 

k k ~~ 
-4x(¢».;gg~O/gll(JTr F~IIFO/(J - "4Y(¢»-2-Tr FJ.lIIFO/(J. (1) 

Our notation is thatUof reference [1], and is outlinedbriefiy in the appendix. Here x(¢» 
and Y ( ¢» are gauge invariant real scalar functions of the scalar fields ¢>i (i = 1 ... N) 
and, in the case that (1) is part of a supergravity Lagrangian, are the real and imag
inary parts, respectively, of a single holomorphic function. We take the normalization 
k-1 = (1/ NG)TrK, where K is the Casimir operator of the gauge group SO(N) in the 
representation on which the matrices FJ.l1I are valued, and N G is the number of gauge 
degrees offreedom. Also, K = 1/';87rGN. 

Although not the most general such Lagrangian, equation (1) is of the form found in 
effective four dimensional supergravity models from superstrings [2]. In [1] we found all 
the leading one-loop corrections for x( ¢» and y( ¢» constant.2 Here we find additional 
logarithmically divergent and quadratically divergent corrections which will be important 
in understanding the physical content of string inspired supergravity. 

In Section 2 we will give the background field expansion for the last two terms in 
(1), and in Section 3 we incorporate this with the results of [1] to give the complete 
divergent correction. Section 4 closes with a summary. Throughout, we follow closely the 
methodology developed in references [1,3,4], including the double subtraction scheme [3] 
to regulate divergences. 

2. Background field expansion. 
We expand the last two terms of (1) to second order in the quantum fields (~i, A~, h~lI) 

about a background configuration (~i, A~, 1]~II). In this section 1]~1I is general. The (non
abelian) field strength is given in curved space-time by 

(2) 

Here V J.l is the general coordinate transformation covariant derivative, which is just the 
ordinary space-time derivative a~ on Lorentz scalars, and on Lorentz vectors is just 

V J.lAIl = (S~aJ.l - ')'~II)ATl 

21n [1] we included the noncanonical normalization of the gaugino kinetic energy terms, so that the 
terms calculated here and the parity-odd fermion loop corrections reported in [8] are the only modifica
tions to [1] needed for the complete leading bosonic corrections to N = 1 Supergravity for flat background 
space-time. 
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(3) 

A straightforward covariant Taylor expansion gives 

[ 
1A. 1A.A. 1 

y = y 1 + ~4>'D~iY + 2y4>'4>J D~iDJ,iy + ... , (4) 

for the expansion of y(4)) about a background y(~), and 

-x = x [1 - 2~iD~i In e + 2~iJJ (D~i In eDJ,i In e - ~D~iDJ,i In e) + ... J ' (5) 

for the expansion of x(4)) about a background x(~) == e2/e2(~). D~i is the covariant 

derivative with respect to the background field ~i [1]. Notice 

"(6) 

so that we can make the gauge kinetic energy canonical by working with rescaled gauge 
fields: 

(7) 

where 
(8) 

That is, xFj.w FOt{3 = :Fj.w :FOt{3' Interestingly, the combination \7 IJ. + [\7 IJ.' In e] functions' as 
a covariant derivative for rescalings of e (or x) and AIJ. by a function of the background 
scalars: 

(9) 

However, the. gauge kinetic energy term changes by an overall factor 92 under these 
transformations, so it is not a symmetry of the Lagrangian. 

Working with the rescaled fields, the gauge covariant derivative on the scalars is 

VIJ.4>i = (c5;\7IJ.+eA~i)4>i, 

which by virtue of [\7 IJ.' e] = e[\7 IJ.' In e] satisfies 

[VIJ.' Vv]4>i = e:FlJ.v4>i. 

The gauge transformations are: 

4> -+ U 4>, 

AIJ. -+ U AIJ.U-1 + ;(\7 IJ.U)U-~, 
e 

(10) 

(11) 

(12) 

We now write the entire Lagrangian (1) in terms of the gauge fields A. The last term 
in (1) is a total divergence when y( 4» is just a constant, in which case we could neglect it 
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for our purposes .. However, more generally, it will contribute to the one-loop Lagrangian. 
It is convenient to write it using the Chern-Simons term. In terms of the unsealed gauge 
fields 

~collva,8Tr Fllv Fa,8 = collva,8"V IlTr [Av "VaA,8 + ~eAvAaA,8] . (13) 

Integrating by parts, and using (7) and (8) and the antisymmetry of d.lva,8 to simplify the 
results, and dropping total divergences, we find for the last two terms in (1) 

(14) 

The expansion of the space-time metric 91lv about its background 7JIlV is 

91lv - 7JIlV + hllv , 
91lv _ 7JIlV - 7JIlU 7Jvp hup + 7JIlU 7Jvp

7J ,8-y htT,8h-yp + ... , (15) 

where 7JIlV is the inverse of 7J/.IV' From now on, all Lorentz indices on background quantities 
are lowered and raised with the background space-time metric and its inverse, respectively. 
Also, we denote by V /.I the background covariant derivative found from "V Il by replacing 
the space-time metric and its derivatives with the appropriate background quantities. 

We now expand the gauge fields about a background .A/.I" Then, 

where 

:F/.IV = :F/.IV + 1\.,t - VvA/.I + e[A/.I' Av] 

+[V 1.1' In e]Av - [V v, In e]A/.I' 

VIlAv - V /.IAv + e[A/.I' A v], 

(16) 

:Fllv - (V/.I + [VIl,lneDAv - (Vv + [Vv,lneDAIl + e[AIl' Av]. (17) 

Notice that there are no terms with h/.lv dependence in the expansion of the field strength 
about its background. This is because :F/.IV is anti symmetric in J.l and v, whereas '~v is 
symmetric in the'se indices, so that such terms cancel. Terms in the Lagrangian quadratic 
in A yield the gauge kinetic energy operator. To find this we need only work with the 
background space-time metric 7J/.IV, and the corresponding background connection 1'~v' 
Use of the relations 

and the gauge choice 

"Va V9 = "Va9/.1v = "Va91lV = 0, 

V a.fii = Va7J/.Iv = Va7J IlV = 0, 

,.. e - - ,. 
F(A) = _(1)1l + ["V/.I,lneDAIl = 0, 

e 

3 

(18) 

(19) 



simplifies Hie analysis. Note that this gauge choice is just VJ.I AJ.I = 0 in terms of the 
unsealed quantum gauge fields. 

Dropping total divergences, terms in the Lagrangian quadratic in A reveal themselves 
to be 

where 

and 

(~ -1)J.l1I - (nJ.lIIV jja + 2e.rJ.lII) + a TJ.l1I + WJ.l1I ab -., Q .r ab ab ab , 

WJ.l1I -ab -

and the background Ricci tensor rJ.lII is found from rJ.lIIAJ.I = -[VJ.I' VII]AJ.I to be 

J.l1I _ {J 
r - r J.I{3I1' 

where the background Riemann tensor satisfies r:a{JAO" = IV {J, Va]AJ.I. 

(20) 

(21) 

(22) 

(23) 

In (6 -1 )~r the covariant derivative VJ.I and the field strength j:J.l1I are represented as 
matrices in the adjoint representation of the gauged group. That is, 

AJ.I - A:Ta, 

VIIAJ.I - ((VllhaA:) Tb, 

[.1'J.lII' Ap] - ((.1'J.l1I haA:) Tb, (24) 

where the Ta are the generators of the gauged group satisfying TrTan. aabj k. 

Before determining the terms involving the other quantum fields (4i, hJ.lII) we use the 
Faddeev-Popov procedure to determine the correct gauge field measure for our path 
integral. The procedure remains unchanged from the canonical case. To gauge fix with 
(20) we add the ghost term 

(25) 

to the Lagrangian and integrate over the Faddeev-Popov complex ghost fields () in the 
path integral. Furthermore, writing a(F(A)) = fda' exp(icl F(A)) we can implement 
this a-function in the path integral by adding to the Lagrangian the term +i(eje)a'(VJ.I + 
[VJ.I, Ine])AJ.I involving the auxiliary fields a'. However, it is more convenient to work with 
the rescaled field a = (eje)a' = a'j-J'f, for which the appropriate auxiliary field term is 
(in component form) 

(26) 
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Returning to the Lagrangian (14), we see that only the first term contributes to terms 
that contain hJ.£v, whereas both terms contribute to terms containing ~ and/or A. Some 
algebra reveals 

where 

£(h2
) - -::Lih {3 (2,.kFCX{3,J.£v) h 2 01 J.£V' 

£(~2) ::iiA' A· - - </>'v··¢r 2 '3' 
£(h, ~) - -.,fo~iYfV hJ.£v, 
C(h, A) - +vqh . Kcx{3,t Aa cx{3 a t' 
C(~, A) - +.,fo~i [(SV)ai + (ZV)ai] A:, 

F cx{3,J.£V _ -! Pcx{3,J.£VTr f:. sFrS + 2pcx{3,'YJ.£Tr f:. j:vS + ~ Tr j:cxJ.£ j:{3v 
4 'Y '""(S 4,. , 

Vij - k (D 4>i In eD 4>J In e - ~ D ¢i D 4>J In e )Tr f:J.£vj:J.£v 

yfV -

K CX!3,f -a 

( SV)ia -

( ZV)ia -

D -·D - 'Y- ,&J.£vcx{3 k tP' t/JJ ~ --
+ 4x 2.,fo Tr :FJ.£v:Fcx{3, 

2k,.( D ¢i In e) [pCX{3,su 7Js€ + 41,. 7J'Ycx
7J
t!37J'Yu] Tr j:tUj:'Ys, ' 

-4,. [pcx{3,su 7J '""(€ + 41,.7J'YCX
7J

f {37Jsu] [(i>uj:-ye:)a - [Vu,lne](j:-yc)a], 

2(D4>i In e)[V J.£' In e](j:J.£V)a, 

_ - v b - DJ>;fj €J.£va{3 - b-
2(D¢i In, e)(:FJ.£ ) (VJ.£)ab - i 2.jq (:Fa{3) (VJ.£)ab, 

and finally 

Here j:J.£v = (j:J.£v )aTa, and so on. 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

The above results may be combined with previously developed techniques [5,6,7] to 
determine the one-loop corrections in a curved space-time background. Here we will give 
the results only for a flat background metric. 

The full expansion of (1), in the case of a flat space-time background, to second 
order in the quantum fields and with all the quantum gauges fixed, can be deduced from 
reference [1]. The new pieces due to nonconstant x and y, described by eqs. (29), (30), 
(32), (33), and the e-dependent term in (31), are terms that mix the different quantum 
fields so we generally expect them to yield at most log-divergent corrections (in four 
dimensions). With the the exception of (33), this is true. The ZV term of (33) yields a 
quadratically divergent correction due to the appearance of the derivative. There will also 
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be additional quadratically divergent corrections from the mass like terms of (22). We 
find all these in the section below. 

3. Leading one-loop corrections. 
Fot the remainder of this paper we take the background space-time to be flat ("'~v 

is the Minkowski metric). In ref. [1] the fields (4), A, h) were considered as part of one 
"multiplet" of bosonic fields, ~. For a Lagrangian given by 

(35) 

where Z is the metric for ~ represented by a block diagonal matrix (when ~ is thought of 
as a column), d~ is the derivative, M is the mass matrix, the leading regulated one-loop 
corrections are [3] 

Creg = - 64
1
1C'2Tr [(M4 + ~~M2 + ~G~VG~v)ln(2Jl~/Jl2) + 4M2Jl2 In2] . (36) 

Here G~v = [d~, dv], and a specific [3] double subtraction scheme was used to obtain the 
results: Jl is the regulating scale and Jlo is a characteristic low energy scale. The presence of 
the term (33) makes the use of this relation difficult, since this term cannot be interpreted 
as an off-diagonal mass term. Additionally, we must worry about the derivative term in 
(22). Nevertheless, we may still use the general result due to the following observation. 

For the derivative term in (22) we employ the following trick. Eq. (21) can be written 
as 

(~-1)~: = (TJOtTYx + 2ej'~V)ab + fJabT~v + n~:, 
where the hatted "covariant" derivative is 

and 
n~v (T TOt)~V 1 c (~Vap -a - a~ -aV-) 
Hab = - Ot ab = - 2i2 Dab'" Y PY - Y Y, 

(37) 

(38) 

(39) 

where we dropped a 'DOt TQ term because of antisymmetry (eq. (37) is sandwiched between 
quantum gauge fields). 

We employ a similar trick for the term (33). Consider the simple multiplet consisting 
of two bosonic fields A and ¢: 

(40) 

We define a "covariant" derivative which on ~ has the matrix form 

D~ = (~ -~~), (41) 
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so that D~~T~ = a~~T~. From this it is straightforward to verify 

- ~Aa a~ A - ~A.a a~A. - 2A.C~(a A) = _~~T[D DJ.L + m2]~ 2 J.L 21f' J.L If' If' J.L 2 J.L , (42) 

up to total divergences, and where 

(43) 

Since we drop total divergences, we can calculate the one loop corrections from (39) 
in a similar vein to (35). More generally the partial derivative is replaced by a reparame
terization and gauge covariant derivative, we have many fields A~ and ¢i, and the gauge 
kinetic term (20) is different from that of scalars. This means that the derivative, as well 
as the "connection" C~, carry indices themselves. 

To include the mixing terms due to both (22) and (33) and use the compact result of 
(36) we define a derivative d~ which includes the C~ and the T ~ terms. This derivative is 
block diagonal except for the terms induced by C w The block diagonal parts without the 
T ~ term, as outlined in [1], are the appropriate background gauge and reparameterization" ~ 
covariant derivatives on the scalars, vectors, and spin two fields. By inspection we have 
(dsJp! = (1\)p!, (d~)j" = -(CI')j", (d~)~ = -'Tl{38(C~lib, and (d~); is the fully background 
covariant derivative on the scalars: (d~); = a~8; + r~ka~Jk, where r~k = Zilrljk is the 
scalar connection defined in Eq.(56) of the Appendix. Also, -2~i'Tlav(CJ.L)bi(v~)abA~ = 
~i(zV)"iA~. We immediately obtain from (33) , 

D - va{3 
(C )vb j,iY f~ (- )b ( -)( - v)b ~ i = +i-4- :Fa{3 - Dj,i In e:F~ . (44) 

We may now write down the full expansion of (1) in the form of (35), neglecting 
auxiliary and ghost terms for the moment. From the results of [1], after all gauge fixing, 
we have for the metric 

ZAtT,~V = pAtT,~V, Z"b = -'71 ~"b Z Z (1) 
~v '/~VU, ij = ij If' • (45) 

The mass terms, including the modifications from CJ.L and -r:~ dependent terms, are 

(ZM2)At1,~V -
(ZM2)~~ -
(ZM2

)ij -
(ZM2)fV -
(ZM2)~i - -S" (D CV)" ,,- sa -e J.li - v J.li - SJ.li = J.Li' 

(ZM2):,AtT - _Ka,AtT _ Qa,AtT 
~ 1" 

(46) 
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We have collected the undefined expressions X, U, V, R, Y, S, if, and Q from [1] in the 
appendix. The derivative on CIJ is given just below. 

The only contributions to GIJV of (36) are: 

(47) 

where [CIJ , Cv]~~ = (CIJ)ja(Cv)pjc7J"(p - p,+-+ v, and the action of the fully covariant deriva

tive DIJ is defined by (DvCIJ)~k = [dv,CIJ]~k = (i>v)p~(CIJ)~b - (CIJ)ja(dv)i and so on. a:v 
and Gtv are seen to be 

(G:v):8p + [VIJ' iv]p: - [Vv, TIJ]p! + [TIJ' Tv]p!, 
-k -I' -. . - - k 

VIJ<P Vv<P R'jlk + e(FlJv)j + er'kj(FlJv<p) , 

e(FlJv)b , (48) 

where Rand r are given in the appendix, eq. (60). 

The ghost contributions are given in [1]. Combined with those from (36) they yield 
the quadratic corrections 

(1) p,2 1n 2 
£quad = - 161r2 Tr [H - 2Ugh + X + N] , 

and the logarithmic corrections 

£(1) _ _ In(2p,gj p,2) Tr [H2 _ 2U2 + X 2 + N2 + 2y2 _ 2(K + Q)2 
log - 641r2 gh 

- 2S2 + ~(82 X - 282 
Ugh + ~ H + ~ N) 

+~(GtvG~v + 2G:vG~v + 2[CIJ , Cv]2 + 4(DIJCv)(DIJCV) 

-4(DIJCv)(DVCIJ) + 2G:v[CIJ, CV] + 2Gtv[CIJ, CV] 

(49) 

+2(VIJ i v )(VlJiV) - 2(VIJ i v )(VVilJ) + [ilJ' T v]2)] . (50) 

A few words of caution. The Tr stands for a full contraction of all indices on the matrices 
using when necessary the metrics Zjj, POt{3,IJV, 8ab , 7JIJV and their inverses. Thus, for example, 
Tr N = +N:~8ab7JIJV, whereas Tr G:vG~v = (G:Jab(G~v)cd8ac8bd. The traces of terms 
involving only CIJ (and derivatives) is over a matrix with scalar indices only (see for 
example the diagonal terms in (47)), e.g. 

(51) 
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As in [1], a similar convention is used for the traces over the sqares of other matrices 
(S, K + Q, Y) that are off-diagonal with respect to spin. The trace over terms involving 
only i ~ terms (and derivatives) is over the indices given in the first line of (48). The 
total derivative terms involving X, H, and N arise from the second term in (36). The 
non-diagonal contributions from d~ cancel under the trace. In addition, we have not kept 
terms that vanish because TrG:v = 0 (over gauge indices). Ugh is defined in (59). 

Finally, we come to the auxiliary field contribution. As in [1], by a field redefinition, 
(26) can be rewritten in a form purely quadratic in the auxiliary fields, 

This contains derivatives in the denominator, so that a formula like (36) is not appli
cable. To find the divergent corrections we may expand (52) in decreasing powers of the 
(covariant) derivatives, keeping only order 8;4 terms. We find: 

(1)~b + Oab[a~, In e])(~~ )~Cv(1)~d - Ocd[aV, In e]) = 
1)~b(~A)~~1)~d + [a~, In e]Oab(~A)~~1)~d - 1)~b(~A)~~Ocd[aV, In e] 

+ 1)~b( ~A )~~, (Z M2 )b:i( ~4> )ii (Z M2 )~:,i (~A)~::1)~d , 

+1)~b(~A)~~,(ZM2)b:.x0'(~h).x0'IPT(ZM2)~:'PT(~A)~::1)~d + .. ~, (53) 

where ~;t, ~A\ ~hl are the appropriate block diagonal parts of ~~l. 

To calculate the leading corrections we follow refs. [1,3,4]. In this section, for technical 
reasons, we do not rewrite (21) by introducing a new derivative as in (37), i.e. the gauge 
covariant derivative is 1)~ and not V~. The gauge field "mass" term is then given by a 
matrix N'+ W, where N' is N without the n terms (see eq. (46)) and W is defined in 
(22). 

We use the following substitution rule [1,3]: 

F -+ F - i(d~lF)a:l - ~(d~l dM F)a:1a:2 + ... , 
d~ -+ i(p~ + GV/Ja;), 

G~v ~G/Jv - ~(d~lG~v)8:1 - ~(d/Jld/J2G/JV)a:la:2 + ... , (54) 

for a matrix valued function F and a covariant derivative d. In the expansion of the 
logarithm of (53), viz., In(1 + f) = f - !f2 + ... , derivatives with respect to p that appear 
to the far right may be dropped, as may, after integration by parts derivative to the far 
left. We retain terms of O(pO), O(p-2), and O(p-4) in the expansion of the In, and since 
the sum of O(p-l ) terms cancel we dropped all O(p-3) terms in the intermediate equation 
that follows. Using [G/Jvp-2pv,a:] = OabG~t = 0 and the anti symmetry of crO)t in its 
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three indices, the components of eq. (53) reduce to 

[all, In e](~A)~~'D~b -t -i(allln e)0:PJlP-2 + i(allln e)p-2 [-N~II + 1]JlIIX2]: p-2p" 

-(all In e)p-2(dOtN~II)ba;p-2plI + ~(aOta,6 all In e) 0: a; a:PJlP-2 

-(aOtapIn e)0:a;ppp-2 

-2(all ln e)p-2 [(T Ot )pOtP-2 N']:: p-2p" 

'D~c(~A)~:[a", In e] -t -iPJlP-2( all In e)o: + ipllp-2 [1]1l1IX2 - N~II]: p-2( a" In e) 

_pJlp-2( dOtN~II)'ba;p-2( a" In e) 
z 

+2PJlP-2((JOtQl3allln e) a; a: - PJlP-2(aOtall In e)a; , 

+2PIlP-2 [-~(dpdu(TOt)~)a;a;POt [ p-2( a" In e) 

-4PIlP-2 [( dp T(3)a;p(3p-2(TCt )pCt]:: p-2( a" In e) 

_2PJlP~2 [N'p-2(TCt )pCt]:: p-2( a" In e), 

'D~b(~A)~clI'D~d -t 1 - PJlP-2X2P-2pJl 

+4PJlP-2X4P-2X4P-2pp + Pllp-2 N~~" p-2PII 
-Pllp-2 N'/Iollp-2X2P-2PII - PIlP-2X2P-2 N'llllp-2plI 

_!p p-2(d d N'/IoII )8/101{}P2p-2p + pPp p-6 N' N,ulI 2 Il /101 Jl2 ,p P " II JlU 

+2p/Iop-2[du TOta;POt]~p-2 N~8p-2p" 

(55) 

where the RHS of the last expression is a matrix with labels ad. For the last two terms 
of (53) we may simply use 'DJl -t ip/Io both in the numerator and in the denominator to 
this order. In these expressions X2 = 2pi'jIlJla~ + GllpGIIIJla~~/ and X4 = p/J.G"Jla~. 

If A is (53) after the substitution rule, then the one-loop corrections are £(1) = 
,~ J (::)4 Tr InA, and the divergent integrals can be regulated as shown in [5]. The result 
of these computations is: 

£(1) = J.L
2

1n 2 T N'/Ioll + In(J.L
2

/2J.L5) Tr [,_! N' N'"Jl + ~P N'/Ioll N'Ct(3 
auz 6411"2 r 1]/1011 . 3211"2 4 JlII 48 JlIIOt,6 . 

+!S2 + !(K + Q)2 _ ~P (dOld(3 N'JlII) _ !N'JlIIGA 
4 4 12 JlIIOl(3 2 JlII 

+~(aPln e)(d" N~II + d" N~Jl) + (112PJlIIOl(3 - ~1]/Io1l1]Ct(3)(aPallln e)N'Ct(3 

+~1]:1]~[(du TOI)N']~] (56) 

+N In(J.L2 /2J.L~) [~p (aJla"ln e) (aOl a(3 In e) + d (T(3)P(TCt)81]p1] a" In e] 
G 3211"2 12 JlIIOl(3 p 8 II Jl Ot,6 
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where 
PIJVOI/3 = 'T/IJV'T/OI/3 + 'T/IJOI'T/V/3 + 'T/1J/3'T/VOI· (57) 

The Tr is over gauge indices and is made explicit below. This result agrees with a previous 
computation [1] when the functions x and Y defined in the first section are constant. We 
note that the precise coefficients of the quadratically divergent terms are renormalization 
prescription dependent. In (56) we chose the coefficient so as to reproduce the standard 
Coleman-Weinberg result in the canonical case x = Y = constant. However, the relative 
coefficients for the different tenns in the expression for N: can be reliably determined 
only when a manifestly supersymmetric and gauge invariant regularization procedure is 
used. Finally, the third to last term in (56) vanishes because t5abN~~b is symmetric in its 
Lorentz indices, whereas i is totally antisymmetric jn all its Lorentz indices. 

4. Conclusion. 

The total leading correction, given by the sum of (49), (50), and (56) can be written 
in a more explicit form: 

£, (1) = ",21n2 [n Zii 2(TT) IJv+X PIJV,OI/3+ 3N,ab~ J.w] -: 1611"2 ii - v oh IJv'T/ 0 IJV,OI/3 4" IJV (Jab'T/ 

_ In(2",U ",2) [Ho oHii _ 2(U ) (U )/W XOI/3XIJV + 2""lJvYOl/3Ziip 
6411"2 I) oh IJV oh + IJV 01/3 J'i i IJV,OI/3 

3 (K + Q)IJV'((K + Q)OI/3,'7P ~ 3sa Sb ~ Zii IJV -"2 a . b IJV,OI/3'T/('7(Jab -"2 lJi viVab TJ 

+ 1 (N' N'vlJ)ab ~ + 1 (N'lJvN'OI/3)ab ~ + 1 (GtP )i (GlJv)i + 1 (GA )a (GlJv)b 2" IJV (Jab 24 PIJVOI/3 (Jab 6" IJV i tP i 3" IJV b A ~ 

_(N"W)a(GA )b _ ~(alJ{r In e)N'ab t5 _ ~(a2In e)N'abnlJll t5 b IJV a 3 IJV ab 3 I'll ., ab 

+ ~G PIJVOI/3( 8IJa" In e)( aOl a/3In e) + ~(GIJ)ja (Gil )Pic( GIJ )7c( G")lTia'T/-yp'T/OIIT 

-~( GIJ)ja( GvyiC(GV)7c(GlJtia'T/-yp'T/OIu + ~(DIJGV)~k(DIJGII)~b 

-~(DIJGV)~k(DVGIJ)~b + ~(G~v)~[GIJ, GV]~~ + ~(Gtll)i[OIJ, 0 11 ]7 + 2N~vnVIJ] 
3",21n 2 IV, (alJ-a -)/-2 + 3211"2 G Y IJY x 

__ I_IV, In(2",~/ ",2) [5alJ -a -av-a - + (alJ-a -)2 _ 6 2alJ--a2a -] 
2x4 G 6411"2 Y IJY X II

X Y IJx X Y IJY 

+total divergence. (58) 

We have dropped all total divergences since we did not consistently keep them. The 
matrix N' is given by N in (46) without the n term, and we have explicitly evaluated the 
purely i-dependent terms from (50) and (56). 

The result (58), which differs from the canonical calculation of [1] by quite a few 
quadratically and logarithmically divergent terms, is easily modified for a different gauge 
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group and complex scalars. For the case of effective four dimensional supergravity models 
from strings, where x( </J) and y( </J) are respectively the real and imaginary part of a single 
dilaton chiral multiplet, the complete results are given in ref. [8]. 

As mentioned above, while the coefficients of the logarithmically divergent terms are 
prescription independent, those of the quadratically divergent terms are not. A reli
able evaluation of these coefficients requires the introduction of an explicit regularization 
scheme which is consistent with the symmetries of the theory and which can modify [5,9] 
the coefficients of some terms that grow quadratically with the regulator mass J.l. In this 
sense, combining our results with those of [1] and [8], we have identified all the ultraviolet 
divergent terms at one loop in effective bosonic lagrangian of supergravity theories, and 
determined the coefficients of the logarithmically divergent terms, for a flat space-time 
background metric. The generalization to a curved background metric is implicit in the 
combined results of [5], [7], [10] and (for noncanonical gauge kinetic energy) the curvature 
dependent parts of the operators (27)-(34) that we did not explicitly evaluate here. 

Appendix. 
Here we collect some notation and results from ref. [1]. The space-time metric g/J.II has 

the flat limit 'fJ/J.II =diag( -1,1,1,1). Zij is the metric on the scalar manifold; the canonical 
case corresponds for our real scalars to Zij = hij . We also take €0123 = 1. 

The undefined terms in (43) and (47) are 

X >'U,/J.II =. ~'fJ>'UV/J. 4ivII 41 Zij - 'fJ UII V>' ~iV/J. 41 Zij 

+~'fJ>'/J.'fJU"Vp~iVP41 Zij - ~'fJ>,u'fJ/J.IIVp~iVP~j Zij 

-2/\' V( ~)p>'U'/J.II + 2k/\'P>'U,/J.II, 

ytll 
- -Zkm(d/J.)jVII4I + ~Zkm'fJ/J.II(d>')jV>.¢J 

Uij 

Q;u,a 
N 2 

Mab 

(S/J.)i 

Rij 

Vij 

(Ug h)/J.II 

-
-

-
-
-
-

1 N 

+ "2'fJ/JII 8~. V( </J), 

-2/\'V/J~m ZimV/J~n Zjn, 

-4e/\'P>'u ,/JII 'fJ /Jp (Ta ~) i (V II ~)j Zij , 

e2 (Ta¢)j (n¢)i Zij, 

-2[rijk(V/J.~l(Ta~)j + (Ta1)/J.¢)i Ziil, 

1)/J 4Y'1) /J ¢q R;pqj, 

D¢.Dj,i V(~), 

-2/\'V/J~i1)l141 Zij, 

where the background scalar curvature and the scalar connection are 

r mij = ~ [8~.Zmj + 8bZmi - 8¢mZij] , 

12 

(59) 



(60) 

In all of these, Zij is taken at its background. 
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