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AN ANALYSIS OF DIRECT ION-MOLECULE REACTIONS
Bruce H. Mahan
Department of Chemistry, and Inorganic Materials Research
Division of the Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720
One of the major goals of the study of molecular
collision phenomena is to learn how to analyze or anticipate.
the dynamics”of an elementary’reaction without engaging in
extensive numerical calculations. This is of particular
importance in ion-molecule chemistry, where often the reaction
dynamics are affected by more than one potential énergy surface.
The dccurate calculation of these surfaceé, and their. use to
investigate the exact classical collision dynamics, while
highly edifying, can be quite expensive and time consuming.
It is of interest, therefore, to explore the efficacy with
which simple models for the reaction process can be used to
understand and predlct the energy and angular dlstrlbutlons
of products, isotope effects, and total reaction cross
sections. | |
It has proved convenient to describe the dynamic mechanism
of an elementary bimolecular chemical reaction as involving
either a short-1lived, direct iﬁteraction of collision partners,
or a long-lived collision complex. In the former case, the
collision partners are close (within approximately an
equilibrium bond distance) fof a time compafable to a
Vibrational.period, But less than a full rotational period.

In the latter case, the partners are close and strongly



interacting for several rotational periods;-'The dividing
line between the two classifications can be hazy, and it 1is
also unrealistic to believe that a reaction can proceed

exclusively via a long-lived collision complex. Examples of

ion-molecule reactions which’fall_in each extreme classifi-
cation are now inown (for reviews and referehces to the
original literatﬁre, see Dubrin and Henchmén, 1972 aq@_Mahan,
1974). Examples of intermediate behavior have also appeared
(Chiang, Gisiason, Mahan, and Werher,v197l, and Mahan and
Sloane, 1973). | -

For reactions which proceed through a long-lived collision
complex, the interaction between all atoms may' be strong
enough so that the accessible phase space of the cbmplex is
explored fairly uniformly. In these cases, we can hope that
the statisfical or phase space theories of chemical reaction
can reproduce and predict such things as the relative yields
of products, isotope effects, and energy partitioning. The
effectiveness of the present forms of statistical theory 1is
still an open question,.however.

For reactions which proceed by a direct interaétion
mechanism, there is also a relatively simple model available:
the classical trajeétory calculation with Monte Cario
sampling of a properly weighted set of initial conditions.

As mentioned above, this approach can be expensive, and can
produce more information than can be readily -assimilated.
In this paper we shall use a simple sequential impulse model

to analyze the dynamics of direct ion-molecule reactions.



The experimental studies which ha?e prompted‘this analysis
have been largely concerned with exoergic or'thermoneutral
hydrogen atom transfer reactions. To illustrate the.nature_
of these findings we shall summarize some of the recent
results obtained for the O+(H2,H)OH+ reactioh (Gillen,

Mahan, and Winn, 1973 abc).
Direct Hydrogen Atom Transfer Processes

Figure 1 shows the velocity vector distribution of OH+
- from the O+(H2,H)OH+ reaction as measured in ion beam
.scattefing experiments. This distribution has features which
.are quite characteristic of the results obtained for a number
of exoergic hydrogen atom transfer reactions. The results
are displayed by plotting contours of constant intensity in

a polar coordinate system which has an origin‘which moves at
the velocity of the center-of-mass of the collisipn partners.
Thus the radial coordinate gives the speed of’ OH® relative
to the centroid of the Of-H2 system. Small vaiues of the
radial coordinate correspond to small values of the final
relative translational energy of the productg, and therefore,
by energy conservation, to large product internal excitation.
The large lébeled circles give the locations of two values

of Q, the translational exoergicity. By energy conservation,

Q can be written as

M 1D T L. Y (1

Here u ‘is the reduced mass and g 1is the relative speed of



the products (primed) and reactants (unprimed), AEg

i; the
internal energy change for the reaction, and U 1is the
intérnal excitation energy of the products.

For reactions in which the products are an atom and a
molecule in their ground electronic states, Q- is bounded by

the situations in which U 1is zero or to D, the dissociation

energy of the molecule:
o o '
-AE -D < Q < -AE . (2)

The lower 1limit can be violated (apparently) if either product
is in an excited electronic state, and the simplest:way to

take this into account is to recognize that for such processes,
AEg has a different value (Gillen, Mahan, and.Winn, 1973a).

For the O+(H2,H)OH+ reaction,
-4.5 < Q < +0.43 eV,

and the Q <circles in Fig. 1 correspond closely to these
limits. In effect, these circles define a ”stabiiity zone'"'
for OH' in its ground electronic state.

The angular coordinate 6 in Fig. 1 measures the direction
of the OH' product relative to the direction of the 0"
projectile. Thus for a direct inferaction'process, it is a
qualitative (and eventually qﬁantitative)-fepreéentation of
the force exerted between collision partners.' Product OH'
found in the small angle (6 < 45°) region in Fig. 1 was

formed in a way such that the net integrated force between

products was small during the collision. By analogy with



elasticvscattering of structureless partiéles, this implies
formation of the prbducts in the smail angie regionbié by
érazing collisions. In a similar manner, we conclude that
in the formation éf products at large scaftering angles,
1argé forces are involved, and these are associated with nearly
head-on collisions between reactants. By using the impulsé
model of direct reactions, we hope to delineate what is meant
by grazing and head-on collisions more cleariy.

Figure 1 shows thét there 1s a stroﬁg maximum in the
intensity of o' at the spectator stripping Vélocity: a

scattering angle of zero degrees and a speed relative to the

centroid consistent with the general expression

N S ®

which appliesbto the reaction A(BC,C)AB. In Eq. (3) the

letters represent the masses of the atoms, and u and uo'

are respectively the product and projectile speeds relative

to the centroid. Appearance of OH" at the spectator

stripping velocity implies that the reaction occurred with

no net integrated force on the freed hydrogen atom. With one
exception, all exoergic hydrogen transfer reactions so far
investigated have displayed a very prominent intenéity maximum

at or very near the spectator étrippingbvelocity. The |
exceptioﬁ is apparently the ground state reactibn, Kr+(H2,H)KrH+,
which may also be unique in having a potentiai.energy barrier

between reactants and products (Henglein, 1972). Unfortunately,

the strﬁpping peak is frequently so.prominent that reactions



have often been rather carelessly described as 'stripping
processes“, and the large angle scattering ignored or dismissed
as unimportant. Without question, the idea that atom B can

' bé transferred to A with no force being exerted on C is quite
remarkable. It is therefore of considerable interest to
determine in detail how this can occur, and how important it

is to the overall chemical reaction cross section.

The ekperimen;al determinations of the final relative
energy distributions of reaction products have béen somewhat
limited by the low velbcity resolution employed so far.
However, in most of the cases investigated, it is qualitatively
clear that in the intermediate to high range of initial
" relative energies (>3 eV), the products in the small angle
region are somewhat more excited internally than the'pfqducts
scattered through large angles. In this energy regime, much
or most of the internal excitation of the producté is supplied
by the initial translational energy of the ieactants. In the
nearly head-on colliéions_which lead to large aﬁgle scattering,
the large forces that occur provide the mechanism for disposing
of some of this‘incipient product excitatidn as relative
translational energy. There is less possibility for this
disposal in the grazing collisions which produce the very
small angle'scattering. A more quanfitative expfession of
these ideas is possible in terms of the sequential impulse
model, as we shall see.

In the regime of high initiai translational energy, the

total reaction cross section is greatly influenced by the
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problem of stabilizing the product molecule against dissociation.
This can be illustrated most clearly for the‘product formed at
the spectator stripping velocity. The Q-value for this product

is

o Qg T A+B E | _ (4)
where E is the laboratory energy of the projectile ion A.
If E 1is made large eﬁough, QSS will become more negative
than the lower 1limit given by Eq. (2), and the molecular
product in its ground electronic state will be unstable. In
the early wprk.Which demonstrated the importance of'spéctator

stripping in the reactions of Ar+, N:+,'and co’ with I

2 2
it was anticipated (Henglein, 1966) that the intensity peak
at smalllangles would be lost entirely when E reached the

critical value

A+B
B

E. = (

. ) (AES+D) o (5)

at which the internal energy of the stripped molecular product

exceeds its dissociation energy. However, it was observed

that for these systems, the forward scattered peak'is not lost
at high initial relative energies, but instead decreases in
intensity and moves to speeds greater than the spectator
stripping value. That is, some of the forward scattered
molecules are stabiiiied«by recoil which:can'evidentiy occur
in graziﬁg collision in fhése systems. |

One reactibn has been found that displays the loss of
forWard_scattered.products'at initial énergies above the

critical value for spectator stripping. Figure 2 shows the



velocity vector distribution of oH" froﬁ the O+(H2,H)OH+
reaction at an initial relative energy of 11.1 eV. At this
energy, the spectator stripping velocity (indicated by 2 small
cross) lies in the zoﬁe where OH' in-its electronic g}ound
state 1is unstable. _Indeed, the intensity peak so evident at
lower inifial relative energies (cf. Fig. 1) has been lost.
Thus, the potential energy surface for the 'O+(H2,H)OH+
reaction lacks the features which allow stabilization by
product recoil in the small angle region. It would be

" valuable to know what thesé,criticél features are, and in
addition, to be able to understand the occurfence of the
intensity peaks located at approximafely 45° in Fig. 2.

We shall find that the sequential impulse model illuminates

this problem considerably.
The Sequential Impulse Model

A number of simple models for the atom transfer process
have been proposed, and at least partially tested against
molecular beam scattefing data (Bates, Cook, and Smith, 1964;
Light and Horrocks, 1964; Suplinskas, 1968; Kuntz, 1970;
Chang and Light, 1970; Hierl, Herman, and Wolfgang, 1970;
George and Suplinskas, 1971; Grice and Hardin, 1971; Marron,
1973)." Even allowing for the necessity of using extremely
simple approximations to potential energy surfaces and
mechanical behavior, most of these models are lackiﬁg in
generality or rigor, and some have not been particularly

illuminating. The sequential impulse model proposed by Bates,



Cook, and Smith (1964) is conceptually simple, and has the
capacity for considerable refinement. In brief,bthe reaction
A(BC,C)AB 1is viewed as an event invwhich A hits B
impulsively and elastically, B then hits .C in a like
manner, and A then combines with B 1f their energy of
relative motion is less than the aissociation energy of the
product molecule. Suplinskas (1968) and George and Suplinskas
(1971) have elaborated the model, and have shown that ‘it cén
reproduce the major features of the Ar+—D2 ‘reactive
sCattering. Gillen, Mahan, and Winn (1973c) found that a
version of the model_in which the atoms interact via hard
sphere potentials is consistent with the distributions of the
products of-£hé'reactioh of 0" with 'DZ and HD 1in the
regime of high relative energies. These two sets of appli—
cations involved calculation of the final product velocities
from sampled initial conditions using large digital computers.
However, to better discern and analyze the nature of the
collisions which give products at various scattering.angles
. and speeds, it would be valuable if the product distributions
could be expressed analytically and evaluated with a small
calculator. This proves to be possible, and the results will
be reported in detail elsewhere. In what folloWs we shall
demonstrate that a number of conclusions can be drawn from
the model merely by using velocity Vector'diagrams.

First,rlet us review some fundaméntallfeatures of elastic
collisions which are eséential to the development and under-

standing of the sequential impulse model. Consider atom A



moving with an initial laboratory Velqcity Yl toward atom B,
which is initially stationary in the laboratory. The initial
relative velocity g 1s equal to Yl’ and the velocity of the
center-of-mass of the A-B system is Yl A/ (A+B). Regardless

of the nature of the two body collision, the center-of-mass
velocity is unchanged. Since the collision is assumed to be
elastic, the final and initial relative velocity vectors have’
the same magnitude, but different direction. The final relative
velocity vector is obtained by rotating the initial vector
about the fiked centef;of-mass velocity. The fesult, as 1is
shown in Fig. 3, is that the final laboratory velocity Yi

of particlé A is a vector which terminates on a sphere of
radius VllB/(A+B) centered at the centroid velocity.
Similarly, Y;, the final laboratory velocity of B, lies on

a concentric sphere of radius V1 A/(A+B).‘

The scattering angle X1 measured in the center-of-mass
system of A and B, is also shown in Fig. 3. From the geometry,
it is clear that the bisector of Y; passes through the
centroid velocify, and bisects the angle Xq - As a result,

we can write

v A . X3
vV, = 2 1TE V1 51n(7r) (6)

|
for the magnitude of VZ‘ This relation and the construction
used to find it will be particularly useful later.

The vector relations just discussed'giVe‘the possible

values of the particle velocities after an elastic collision.

The distribution of intensity is also important, and is expressed

10



11

most compactly by the classical differential scattering cross

section I(x), where for a monotonic potential

b : o
I(x) = —37 - (7)
X sinx|a§| : v

-Here b 1is the aiming error or impact parameter. To evaluate

I(x), the relation between b and x must be found from the
intermolecular potential function. For hard spheres, the

result 1s particularly simple:

(8) .

2
I(x) =Q4—

~where d is the mutual collision diameter. Thus for this

model, the scattered intensity is indepéndent of x. For
more realistic potentials, I(x) 1is large at small angles
and drops rapidly as x increases. In the. range of angles
from 60-180°, I(x) decreasesbrather slowly, and in the large
angle region, is pretty well represented by a constant term
characteristic of hard sphere scattering. .The.hard Sphere
differential cross section is therefore a good first approxi-
mation to the intensity distribution, partiéuiarly for high
energies and large scatfering angles.

There is another feature of high energy éollisions that

is of importance. Such collisions, particularly those that

'-produce large angle scattering, are impulsive. That is, the

time during which a'large force is exerted between a pair of
atoms is -small compared to the natural frequencies for nuclear
motion in molecules. For example, if atoms repell each other

according to the potential
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where L is a range parameter, then the force is greater than
10% of its maximum value for a period of 31, where 1 1is a

characteristic collision time defined by
T = 2L/g.

During this time, the relative velocity changes from approxi-

mately 90% 'of its initial value to 90% of its final value.

For typical values of L and energies in the electron-volt

range, T is of the order of 2 x 10713 sec,v This 1is shorter

than the vibrational period, and much shorter than the rotational

period of  H2.4 Thus for the case of a high energy atom A

‘hitting a diatomic molecule BC, it often may bé quite

reasonable to describe the process as an elastic'collision

between A and B, followed by an independent elastic collision

between B and C. The initial condition for the second

condition is, of course, the final state of the first collision.
The primary object of a model for the reaction process

is to calculate the intensity of scattered product AB as a

function of the scattering angle 6 and speed‘relative to

the center-of-mass of the ABC system. Evaluating the

intensity as a function of Y;, the final velocity in the

laboratory system of the free atom C, is completely equivalent

to this, since by momentum conservation, each value of Y;

corresponds to a definite value of ©§ .and the final relative

speed. Finding the magnitude of Y" is a simple matter if

one knows X1 and Xy the scattering angles for the A-B and



B-C collisions in their individual center-of-mass coordinate
systems. As indicated above, the magnitude of the laboratory

velocity of atom B after the A-B collision is

v, = 2 A

. X1
2 A+ Sin().

Now we simply regard V2 as the initial velocity for the B-C

collision, and apply the analogous formula to get

V3 =

Having found the laboratory velocity of atom C after
a particular sequence'of impulses, we must ask whether or not
this constitutes a reactive collision. ' Our criterion for
réaction is the simplest possible: the value of V; must
lie in the’stability zone which corresponds to the internal
energy of AB being less than its dissociation energy. This
is an important approximation, since it allows us to disregard
details of the trajectories such as fhe possibiiity of

additional collisions between C and B or A. However, it is

probably a gdod approximation, since for high energy collisions,

the size of the cross section is governed largely by product
stability considerations. Moreover, hard sphere trajectory
calculations (Gillen, Mahan, and Winn, 1973b) have demonstrated
the relative unimportahce of additional impulses and other
details of the trajectories, and also the effectiveness of

this reaction criterion in reproducing experimental data.
However, the approximation does restrict application of the

model to reactions where the potential energy surface has very

X X
4(ghp) (o) sin(=H) sin(=H). (9)

13



simple properties: thermoneutral or nearly so, and no
substantial wells or barriers.

Equation (9) suggests that a variety of impulse sequences

"

can contribute to the product intensity at V The angle X1

N
may be large or small, as long as X5 has the appropriate

L)

small or large value consistent with the selected value of VS'
However, there are limits to the range of xlvand X values

that can be involved, and these limits are connected with the

1
3’
To see how this limitation comes about, consider Fig. 4.

direction of V a pfoperty which we have not yet used.

Here we treat only those Valués of vYé which lie in the plane
defined by the vectors vy and Y;. As indicated earlier, the
poséible values of Y; lie on a circle of fadius V1 A/ (A+B)
centered on v, at this distance from the origin of the
laboratory coordinate system. The locus of all B-C center-
of-mass velocities in this plane plays a very.important role.
It can Be found by multiplying all possible Yé vectors by

the factor B/(B+C), and.plottiﬁg the points. The result is

a circle of radius
R = (}"i\‘g) (‘B'+"'C) Vl (10)

centered on V1 at a distance R ffom the laboratory origin.
Let us call this the centroid circle.

Now consider an arbitrary centroid velocity for the B-C
system just before (and after) fheir collision. These centroids
must be on the centroid circle, and must aléo lie on the

T

perpendicular bisector of YS’ As Fig. 4 shows, there are just

14



two centroids which satisfy both these conditions for any given:

' vectorﬁ' One of these corresponds to a iarge X5 (and

~3
small x;), the other to the values of x; and Xé being inter-

changed. These two angles are the extreme values of X1 and

X that are consistent with ; selected y;.

“The origin of the intermediate values of x; and x,
becomes obvious if we recognize that Yé ~need not lie in the
plane of V, and Y;. Thus the centroid cifclé is really part .
of a centroid sphere of radius R, and the perpendicular
bisector of Y; is a plane. The intersection of thisvbisecting
plﬁne with the centroid sphere is a circle - the 'magic circle'" -
pg%pendicularvto the '~1-Y; plane. As one movés along the
maﬁic circle, all the X1~ X7 pairs that can contribute to
sc%ttering ét Y; are encountered. Thus the.product intensity
ati,yg. can be found by summing the properly weighted contri-
butions of.ail allowed X{-X, scattering pairs.

For the present purposes, the details of this weighted
summation are not needed, but it i; useful to note thét the
distribution over the various X717 X pairs is near}y uniform.
The departure from uniformity comes about because thé angle
o between Y; and the BC -internuclear axis is distributed
with a weighting factor of sinoa. Consequently, the BC axis
is more likely to lie perpendicular to Y; than parallel.

As a result, impact parameters for the B-C collisidn have
a relatively high probability of being near their'maximum

allowed value of r the BC equilibrium bond distance.

0,
Thus smaller values of X7 are more probable than larger



values, in contrast to the usual situatioﬂ for hard sphere
scatteriné. However, while this can affect the details of
the product velocity distribution, it is not important in
determining the gross features of the distributions with
which we are concerned here. ’

A number of qualitative conclusions can be drawn directly

(A}

from Fig. 4. First, there will be certain V3 vectors for

which the pefpendicular bisector does not intersect the
centroid sphere. Even though these valﬁes of yg might be
consistent with the total energy and momentum conservation
laws, they can not be produced by -a sequence of two elastic
impulses. For example, events in which Y; is directed at
180° in the laboratory coordinate system can not occur.
Thus, there can be no backward recoil of particle C, and no
correspondihg forward recoil of the AB product.

A little reflection shows that this forward recoil could
occur if, just before the A—B impulse, the véctor Yl were
increased in magnitude with the center-of—maSS'veloéity held
fixed. This could occur in a real sfstem if there were an
attractive potential between reactants, and‘fhis ié in fact
the mechanism for forward product recoil proposed in the so-
called modified stripping mpdél (Herman, Kerstetter,vRose,
and Wolfgang, 1967). In addition, one can sée that forward
recoil could occur if, just prior to the ‘B-C‘ collision, the
vector Y; were increased in length, so that this collision
would appear to be super-elastic. This could come about if

there were a repulsive energy release between B and C as

the products separate. This is the basic idea involved in

16
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the so-called direct interaction with prodﬁct repulsion (DIPR)
model for‘feaction dynamics (Kuntz, 1970; Marron, 1973). The

sequential impulse modei thus clarifies thevvalidity of either
reactant attraction or product repulsion aé sources of forward
recoil. |

n

It is evident that V3
Tt

than 180° are accessible only if the magnitude of Vo s

vectors directed at angles other

small enough so that there is an intersection of the bisecting
plane and the centroid sphere. The condition for such an
intersection can be found readily from the analytic geometry
of the vector constrﬁction. The maximum values of V;f lie

on a curve. given by

(VS)max

R = cose + 1 (11)

"

where € is the angle between YS and .Yl' EQuqtidn (11)
represents a cardioid which has a cusp at the origin‘of the
1abor£tory-?elocity coordinate system. There is a corres-
ponding cardioid which gives the maximum values of the
velocity of the AB product in the‘cénter-of-mass sYstem,
and this is illustrated in Fig. 5. The minimum values of the
AB product Ve1oCity'are just those given by the requirement
that the ekcitation energy of the product AB mLSt be less
than its Aissociation energy. Thus the zone in Vélocity
space that ié allowed is bounded from'the inside by the
stability circle, and from the outsidé by the limiting cardioid.
The size of the limiting cardioid is proportional to R,

and'thﬁs scales with Vl' However, the size of the stability
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circle is determined by the magnitude of Qmin’ a fixed number
independent of Vl‘ Thus the size of the kinematically
allowed zone can be represented as a function of initial
relative energy by one cardioid, if the units of the diagram
are changed as the energy changes. However, in this case
there is a different sized stability circle:for each‘initial
relative energy, as indicated in Fig. 5. As the initial
relative energy increases, the diameter of the stability
circle increases, and eventually it intersects the limiting
cardioid at the cusp. This corresponds to reaching the
critical projectile energy above which products formed by
spectator stripping are unstable. As the initial relative
enérgy is increased still further, increasing amounts of the
accessible shall angle scattering region pass into the unstable
zone, and the outline of the product distribution assumes a
crescent-like shape. The experimentally observed distributions
for the O+-H2 and O+-D2 reactions have juét this shape
when the initial relative energy is in the 1;?30 eV range.
Moreover, fhe observed decrease of the total reaction cfoss
section with increasing energy can be in large measure attri-
buted to the concomitant diminution of the si;e of the product
stability zone.

The considerations just outlined provide an explanation
of why the spectator stripping peak and alllsmall angle
scattering is lost at high energy in the O+(H2,H)OH+ reaction,
but is stabilized by forward recoil in the reactions of N2+,

CO+, and Ar with H2 and D,. In the O+-H2 case, the reaction
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is only slightly exoergic (AH = -0.43 eV) and there is no

obvious mechanism for producing large amounts of forward

recoil. 'In contrast, the reactions of N2+, CO+, and Ar’ are
notably mdré exoergic (AH = -1.4 eV). 1If all of this exoergicity
were to be released as product repuision in some of the grazing
collisions, forward recoil and product stabilization could

occur, as 1is obser?ed.

Having delineated the general limits and energy dependence
of_the product velocity vector distribution predicted by the
sequéntiai impulse model, we can now turn to some of the
details of the intensity variations. :From Fig. 4 1t 1s eyident

that YS

perpendicular to Yl will have bisectingipianes which intersect

vectors of small magnitude directed approximately

the centroid sphere to generate magic circles of large radii.
There is, therefore, a relatively large rangé-of X1 X7 pairs
which can prdduce these events. The intensify in the small

|

angle scattering region will thus be large if the initial

relative energy is low enough to place the small angle scattering

"

- region in the stability zone. As V3 increases in magnitude,

the size of the magic circle decreases, and the prodUct
intensity goes down. | | |

In order to see this effect deve}op systematically, in
Fig. 6 we have blotted the X1~ X7 ‘pairs that prodﬁée scattering
at 'various fixed values of the product scattering angle 9.
Thé calculations»apply to the O+(D2,D)OD+ reaction at an
initial felative energy of 20 eV, a situation in which the

very small angle scattering does not lie in a stable region
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of velocity‘space. The solid lines refer to prdducts formed
with the minimum allowed Q value of -5 eV (the correct
value, if the exoergicity is ignored), while the dofted lines
correspond to a Q value of -1 eV.

Figure 6 exposes the reason for the intenéity maximum
observed experimentally near 45° < 6 < 60°. For this region,
the range of X17Xp pairs that can produce stable products
reaches a maximum. At smaller values of ©6, the range of
allowed xl-xz pairs drops abruptly, and the observed product
intensity does also. At values of 8 greater than 90°,
the allowed range of X17X2 pairs again diminishes, and the
expected and observed product intensities diminish.

Notice that thé values of X1 and szvwhich produce
large valués of © are themselves large. This is consistent
with the idea that backscattered products do come from heariy

head-on collisions. In order to have both X1 and x, large,

A must hit B nearly head-on, and B must hit. C in a
like manner. This impiies a nearly collinear ABC conformation
‘at the beginning of the collision. Similarly, we can see
that the values of X1 and xz‘%which contribute to small
values of ©6 are of modest magnitude (~35-90°). Thus it 1is
moderately accurate to associate the region of small 6 with
"grazing' collisions, although in some of the events that
contribute, substantial deflections of A by B or of B
by C do occur. It is probably better to think of 6 < 15°
as the grazing collision region.

Figure 6 also shows that the range of X1 Xy . pairs that

can produce scattering at Q = -1 eV 1s smaller at any value
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of 8 than the corresponding range for Q = -5 eV. Moreovet,
the X1 X, pairs for a given value of 6 iie at slightly
lafger Valués for Q = -1 eV than for Q = -5 ev. Thus,
principally because of a smaller allowed range of X1™ X5 pairs,
the intensity of the lesser internally excited products will
be less than that of the more excited products. In other
words, there is an intrinsic tendency for the internal energy
distribution of the products to be inverted. |
So far we have discussed the detailed events in which A
hits B, and B has a hard sphere collision with C. In
order fdr such events to occur, the angle «a between Y;
and the BC internuclear axis must be less than m/2. For
o > m/2, there will be no B-C collision, and thus no force
on C. If the AB product of these events is stable, it has
the velocity calculated from the spectator stripping model.
Thué, if A, B, and C are treated as hard spheres, spectator
stripping comes largely from events in which A strikes and
combines wifh the second atom it sees as it approaches BC.
Stripping processes are also possible for values of «o
somewhat smaller than w/2 if the mutual hard spheré diameter
of the B-C pair is less than the impact parameter of the
second collision. In the limit'of Vanishing‘hérd sphere
diameter for B and C, all collisions will be spectator stripping
processes. |
Thesevconsiderations help'to make clear why spectator
stripping is so prominent in the product velocity véctor

distributions of ion-molecule reactions. If the potential
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energy surfaces for these reactions have only a weak dependence
on the A%C angle, then trajectories are possible in which the
projectile A strikes and combines with the second atom without
exerting force on the free or spectator atom. Moreover, if
there are stfong attractive forces between A and B, but not
between B and.C, there will be trajectories of the stripping
type even when o 1s significantly iess than 7/2. Note

that if spectator stripping is described as involving grazing
collisions, it is the B-C interaction, and nbt'necessarily the
A-B collision which is of the grazing type.

Spectator stripping resembles both the rainbow and glory
effects in atomic elastic scattering (Bernstein, 1966). Like
rainbow scattering, it appears that there is in thevreactive
situation a range of initial conditions (in this case, the
angle o) which gives product scattered at or very near to
one point in‘velocity space. The fact that this point is at
a scéttering angle of zero degrees is also significant, since
just as in glory scattering, there is an intégration over all
values of the azimuthal angle which is performed by the detector
only when ¢ equals zero degrees. These two factors and the
relatively'low apparatus resolution'employedlso far combine
to give spectator stripping a fame which it perhaps does not
fully deserve. After considering realistic potential.energy
surfaces, it is very difficult to accept the fact that B and
C can separate with a truly zero force between them. In the
future, when product distributions are examined with high
resolution, some or all of the spectator peaks may be found

not at @6 = 0°, but at small but finite scattering angles.



Even now it should be realized that to go from the inténsity
contour maps of Figs. 1 and 2 to actual total reéction Cross
sections, dne must apply a weighting factor of siné, and
_then integrate the intensify over angle and speed. Thus,
product at 8 = 0° is given zero weight, and that near

8 = 90° contributes most heavily to the total reaction cross
section. In other words, most of the chemistry is done by
the type of events described at least approximately by the

sequential impulse model.
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Figure 1.

Figure 2.

Figure 3.

FIGURE CAPTIONS

A contour map of the specific intensity of on*
formed by the O+(H2,H)OH+ reaction at an initial
réiative energy of 5.56 eV. Thevradial coofdinate
is the speed of OH® relative to the center-of-
mass of the entire system. The angular co-
ordinate measures the deflection in the center-
of-mass system, of the OH" from the original‘
direction of "the 0+'projectile. The'spectator

stripping velocity is indicated by a small cross.

"A contour map of the specific intensity of,OH+

formed from collisions ét 11.1 eV initial relative
énergy. Note the absence of an intensity peak at

0° and the appéarance of peaks at +60°. The
spectator stripping velocity, marked by a small
cross, lies inside the Q = -4.5 eV cifcle, where
OH" in its ground state is unstable.

A velocity vector diagram forlthe elastic collision

1

of atom A with atom B. The circles marked Vl and

'-Vé'are, respectively, the loci of all possible

final laboratory velocity vectors for atoms A and
B. The scattering angle in the center-of-mass

system is designated by x. Note that the perpen-

dicular bisector of any Vé vector bisects x and

passes through the A-B centroid velocity.
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Figure 4. A &eloéity vector.diagram for fhe sequeﬁtial
impulse model in the plane of the initial projectile
velocity Vl, aﬁd the final velocity of atom C,'Vg.
The large Q circles indicate a part of the
stability zone for the reaction: the velocity
of atom C must lie in this zone if AB is to be
stable to dissociation.

Figure 5. The cardioid which gives the maximum velocities
of 0D from the O+(D2,D)OD+ reaction according to
the sequential impulse model. The maximum
velocity of oD’ according to overall energy
éonservation is the Q = 0 circle. The three
smaller circles give the minimum velocity of op*
consistent with product stability Ci.e., the
Q = -5 eV 1limit) for the three values'of_the
initial relative energy indicated.

Figure 6. The X1~ X7 pairs that contribute to the iﬁtensity
at various values ofvthe product scattering angle
6 for the reaction O+(D2,D)OD+ at 20 eV initial
relative energy.' The solid lines pertain to

product at Q = -5 eV, the dashed lines to product

at Q = -1 eV.
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