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Abstract 

We study the efficiency of a new neural net filter and deconvolution method for 

estimating jet energies and spectra in high background reactions such as nuclear 

collisions at RHIC and LHC. The optimal network is shown to be surprisingly close 

but not identical to a linear high pass filter. A suitably constrained deconvolution 

method is shown to uncover accurately the underlying jet distribution in spite of the 

broad network response. Finally, we show that possible changes of the jet spectrum 

in nuclear collisions can be analyzed_quantitatively in terms-of an effective energy 

loss with the proposed method. 
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1 Introduction 

Jet analysis has been proposed as one of the novel tools to probe dense matter pro­

duced in high energy AA reactions because of their sensitivity to the energy loss 

mechanisms and infrared correlation scales[l, 2]. However, identifying jets and es­

timating their total energy in AA reactions poses a practical challenge because of 

the large background of low transverse energy hadrons produced along with the rare 

jets., Conventional methods of jet analysis developed for pp collisions[3, 4] begin to 

fail in pA collisions[5] due to the enhanced nuclear background and can be expected 

to fail completely for future applications to nuclear collisions at RHIC and LHC[6]. 

The question addressed in this paper is whether the powerful pattern recognition 

techniques recently developed in the field of artificial neural networks[8] could help 

overcome this problem. We show below that neurocomputing techniques do in fact 

look promising for the present application. 
In particular, we study the efficiency of Feed Forward Networks (FFN) for appli­

cation to jet analysis. We show that a high pass linear neural filter can be trained 

(using Monte Carlo event generators[2] or ideally pp data) to provide a nearly bias 

free estimator of the jet energy distribution even in the presence of a very high level of 

low transverse momentum "noise". In addition, we show that knowledge of the neural 

response function allows us to deconvolute the filtered jet distribution and recover the 

underlying "primordial" jet distribution to a surprising high degree of accuracy. In 

addition, in the case of most physical interest, where the jet fragmentation function 

becomes significantly modified by the dense nuclear medium, the method proposed 

leads to a quantitative estimate of the average energy loss. 

To put this problem into perspective, we recall that perturbative Quantum Chro­

modynamics (pQCD) predicts that in collisions of high energy hadrons or nuclei, 

occasional high momentum transfer parton scattering processes lead to a calcula­

ble primordial distribution, J(E, 7]0, ¢>o), of quarks and gluons with transverse energy 

E ~ 2 GeV, pseudorapidity, 7]0 = -10gtanOo/2, and azimuthal angle ¢>o. Those par­

tons fragment into a jet of secondary hadrons with highly correlated momenta which 

we denote by, (ea, 7]a, ¢>a). Here ea is the transverse energy, 7]a the pseudorapidity, and 

¢>a the azimuthal angle of hadron a fragmenting from the jet parton. The problem of 

jet analysis is to identify only those hadrons out of the total multiplicity which are 

fragments from the jet and reject hadrons from background processes due to a variety 

of other dynamical mechanisms (pedestal effect, beam jets, multiple mini-jets). The 

ob jective then is to reconstruct the kinematics of the primary jets and the primordial 

distribution, J(E, 7]0, ¢>o). 
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Conventional methods for jet identification utilize the fact that most jet fragments 

are collimated into an angular cone[3] 

(1) 

Therefore, the jet energy, as determined for example by a segmented calorimeter, is 

approximately given by 

ER = Lea = Lea ()(R2 - (</>a - </>0)2 - (17a - 170)2) (2) 
aER a 

However, this is a biased estimator of the initial parton energy, E, because the back­

ground processes contribute to the yield of hadrons with ea .:s Ec '" 2 GeV Ic in the 

jet cone. Also, the jet hadronization mechanism can produce hadrons outside the an­

gular cone R. Therefore, the measured output distribution, O(ER ), can be expected 

to differ significantly from the primordial input distribution, J(E). This distortion of 

the primordial spectrum of course becomes more severe as the low frequency (i.e., low 

ea ) noise increases. For reactions such as e+ e- and pp the background noise is limited 

to a few particles per unit pseudorapidity. In this case ER is in fact an excellent 

estimator for ER .z: 10 GeV. However, in Au + Au collisions[2, 6] at RHIC energies, 

for example, the nonperturbative background is at least 400 times greater than in pp, 

and estimates with event simulators[2] indicate that the signal to noise ratio in (2) is 

on the order of unity for jets in the energy range 10 .:s E .:s 40 Ge V. 

Figure 1 shows a typical Au+Au event with two 30 GeV jets at RHIC as predicted 

with HIJING[2]. Plotted are the transverse energies, ea , of all produced hadrons with 

ea > Ec with Ec = 0.2 and 2 Ge V I c respectively as a function of their azimuthal 

angle, </>a. It is obvious from Figure 1 that most of the background particles have 

low ea and can be filtered out by setting Ec '" 2 - 3 GeV Ic. Therefore, instead of 

adding the energies of all particles within a jet angular cone as in eq.(2) it will pay to 

filter out first the low frequency noise. This is only possible with a detector such as 

a TPC since the momenta of all charged particles can be determined simultaneously. 

Detection of neutral particles requires in addition a highly segmented neutral energy 

calorimeter in conjunction with a TPC. 

While the simple filter above discards most of the background particles, it of 

course also discard valid jet fragments with ea < Ec. This leads to an inevitable loss 

of information that would bias downward the estimator (2). The aim of this work is to 

develop a more robust estimator of the jet energy that can adaptively compensate for 

the loss of information caused by filtering out the low frequency noise. Our starting 

2 



'-, 

200 AGeV Au + Au - 30 GeV jets +X (1711 < 1.5) 

16 
Pt > 0.2GeV 

12 

-> 
(j) 8 C) 
'-" 

kI 
4 

0 
Pt > 2.0GeV 

12 

-> 
(j) 8 C) 

'-" 

kI 
4 

-11" 

Figure 1: GeVA HIJING Monte Carlo[2] simulation of a VS = 200 AGeV central 
Au(197) + Au(197) collision producing two jets with E = 30 GeV together with 
the associated soft and multi mini-jet background. The pulse heights represent 
the· transverse energy, E, of individual particles as a function of their azimuthal 
angle ¢ for 1711 < 1.5. In the upper graph, all produced particles with E > 0.2 
GeV are plotted. In the lower graph, only those that survive a high pass filter 
with E> 2 GeV are plotted. 

point, borrowed from the field of neurocomputation, is that FFN provide a powerful 

adaptive tool for approximating arbitrary Rn _ Rm mappings[7]. 

An N layer FFN maps an input data array X = (Xl'···' xn) into an output array 
S = (811 ... , 8 m ) via 

(3) 

The rectangular ni x ni+l connection matrices Wi together with response function(s) 

F(Y) = (f1(YI),···, fk(Yk)) define the mapping. The fi are typically parameterized 

in terms of a sigmoid type functions, but linear functions are sometimes sufficient for. 

the task. The number of layers (connectivity matrices) and the block structure and 

dimensionality of the connectivity matrices define the architecture of the network. 

FFN are especially useful because they can be "taught", in principle, an arbitrarily 

complex mapping though a variety of simple learning algorithms[8]. They are of 
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practical interest because they can, in principle, also be implemented in hardware via 

fast, parallel, analog VLSI technology[9]. This last feature of FFN is of special interest 

for high energy and nuclear physics due to the growing need for faster triggering and 

rapid information processing to cope with the ever increasing rate and volume of 

data produced by modern detectors. The adaptivity and speed of FFN has been 

emphasized recently in several other applications to high energy physics problems[10, 

11, 12, 13]. 

2 Neural Network Jet Filters 

We concentrate in this paper on a specific aspect of this problem, namely whether the 

information loss due to filtering the data can be efficiently compensated for using a 

FFN. In principle, the input to the network is the array of transverse energies within 

an angular cone R. The momenta and energies of produced particles are presumed to 

be determined by a first stage tracking algorithm (see a recent discussion of adaptive 

tracking methods in ET[14]). In our numerical simulations, however, we restrict the 

study to a distribution of isolated quark jets as our aim here is to illustrate the power 

of the method rather than deal with.all the complications of nuclear reactions at once. 

2.1 Network Architecture 

We consider a network architecture as illustrated in Figure 2. The first layer of 

our FFN is just a simple threshold high pass filter which only passes the transverse 

energies of particles with ea > Ec. The output of this first layer is then sorted with 

transverse energies in decreasing order. This is the only nonlinear operation that we 

consider here. The sort- is performed to allow the subsequent layer to utilize possible 

correlations among leading hadrons. We denote the sorted vector of filtered transverse 
energies by 

(4) 

We refer to ej as the transverse energy of the ph rank hadron in an event where k 
hadrons pass the filter. The first rank hadron is the one with the largest energy in_ 

the jet cone, etc .. The zeroth component, e~ = 1 GeV is added for later notational 

convenience. Note that R and Ec are parameters of the network. 

In the next layer, we introduce a linear "neuron" for every k with a connection 

weight vector ';k = {w~, wf,·· ., wZ}. Neuron k only responds if k hadrons pass the 
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filter threshold and its output is used as the estimator of the jet energy, 
k 

-+ -+ k k 
E' = w k 

• ek = L: Wi ei . 
i=O 

(5) 

Note that since e~ = 1 GeV, the component w~ acts as an external bias which has the 

physical interpretation as the missing energy in GeV caused by the high pass filter. 

Structure of the Feed Forward Network 

-0----: --~® 
-0~~---I--
input 

-
-

threshold sort sum 

Figure 2: Illustration of the neural filter network. The first layer filters out 
particles with energy eo > Ec. The second layer sorts remaining transverse 

. . k {k k k}' h kId k k E energIes mto vector e = eo, eI , ... , ek WIt eo = an el > e2 > ... > c' 

The third layer estimates the jet en~rgy via E' = wi. .ek using weights wf trained 
on sample data. 

The problem then is to determine the weights given the threshold Ec and jet cone 

R such that Ek becomes an unbiased estimator of the jet energy. In principle, Ec and 
R should also be considered as variational parameters to optimize the performance 

of the net. However, these are fixed in our analysis for numerical simplicity. 

2.2- Network Parameters' 

Suppose that Pk ( ek , E) is the probability that a jet of known energy E fragments into 

k hadrons above threshold with ek . The performance of neuron k for estimating the 

jet energy can be measured via an error function: 

2 j -+ -+2 -+ k k Xk(E) - ! . (E - wk. ek) Pk(ek, E)de1 '" dek 

HL: WfCi~(E)wj - 2E L: wf A7(E) + E2 Pk(E)) (6) 
ij 
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where Af(E) =< ef > is the mean energy of the ith rank hadron produced from a jet 

of energy E when only the leading k particles pass the filter, Ct(E) =< efej > is the 

covariance of the ith and jth rank hadrons, and Pk(E) = JPk(ek,E)de~ ... deZ is the 

probability that only the first k rank hadrons survive the high pass filter cut. Note 

that Pk, Af, and Ci~ are determined by the jet fragmentation function, Pk (ek , E), 
which depends implicitly also on Ee and R. 

Averaging over the primordial pQCD spectrum I(E) of jets, a global error function 

for neuron k can be constructed as 

< x% >= J X%(E)I(E)dE = !(~ wfTi1wJ - 2 ~ wf Fik + Qk) . (7) 
'3 ' 

In contrast to pk, Af, and ct, the Qk, F/, and Ti~ are dependent on the form of the 

QCD jet spectrum I (E). 
We determine the neural weights, ;;k so as to minimize the global error function. 

Since < X% > is a positive definite quadratic form, it has one global minimum, and 

therefore the simplest learning dynamics can be used to train the network. That 

minimum can be easily found via the gradient decent equations 

dw~ __ I -

dt - (8) 

or simply solving the linear equation TW = F numerically. 

Table 1: Optimal Weights 
k Wo WI W2 W3 W4 W5 W6 w7 Ws 

2 2.23 1.03 1.02 
3 2.67 1.01 1.02 0.96 
4 3.00 1.01 1.00 1.00 0.93 
5 3.35 0.99 1.01 0.99 0.99 0.90 
6 3.74 0.98 0.99 0.97 0.97 0.96 0.92 
7 4.43 0.96 0.97 0.92 0.94 1.08 0.92 0.85 
8 5.82 0.94 0.85 1.04 0.98 0.87 1.03 0.82 0.64 

To test the network, the jet spectrum I(E) was calculated via lowest order pQCD 

as in [1]. The integration over the fragmentation function was performed via Monte 

Carlo assuming all jets were back to back, 'rio = 0 quark-antiquark pairs for simplicity. 

The two jet fragmentation scheme of LUND JETSET6.3[15] was used to generate the 

hadronic fragments. The transverse energy threshold was fixed to be Ee = 2 GeV. 

6 
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We emphasize that this is not meant to be a realistic simulation of nuclear collisions 

but only a simple model to illustrate the adaptive performance of FFN in this type 

of application. Table 1 lists the weights which were found to minimize the network 

global error on the above training data. 

The most striking result is that the weights wf for i ~ 1 turned out to be close 

to 1. This is largely due to sum rule for fragmentation, La ea = E, which requires 

that the weights approach unity as the threshold Ee ~ o. For Ee small compared to 

the typical jet energies, one can show that the deviation of the optimal weights from 

unity is in fact controlled by the correlation between the energies of the leading and 

filtered hadrons via 

k ((efe~) - (ef)(e~)) (Ee) 
wi ~ 1 + 0 ((ef)2) _ (ef)2 I'V 1 + 0 E ' (9) 

heree~ = La ejB(Ee - ej) is the energy lost by the filter. Since'by definition e~ = 1 

GeV, the optimal values of w~ is close to the average missing energy in GeV units. 
There is k dependence of the missing energy as the optimal weights of the leading 

rank 1 and 2 hadrons is generally slightly less than unit and more missing energy 

must be made up by w~. 

2.3 Network Response 

The response of the network of course has a finite range. Let R(E', E) be the proba­

bility that the response is E' to an input jet of energy E. This response distribution 
IS 

R(E',E) = l: / 8(';k. ek _ E')Pk(ek,E)de~ ... de~ . 
k 

(10) 

The response using the optimal weights discussed above is shown for E = 10,20,30,40 
GeV jets in Figure 3. The bias of the network, 

8(E) = / (E' - E)R(E', E)dE' , (11) 

measures the average shift. of the estimated jet energy. The dispersion, 
1 

(1(E) = (/ (E' - E)2 R(E', E)dE') 2" , (12) 

measures the rms fluctuation around the average response. To see that the optimal 

weights lead to an unbiased estimator of the total energy note that 

""/ ...... ... k k 8(E) = L..J (wk. ek - E)Pk( ek, E)de1 ••• dek 
k 

k 

- l:(l: wfAf(E) - Epk(E)) (13) 
k i=O 
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The global bias is thus 
k 

< 8 >= J 8(E)J(E)dE = L:(L: wf Fik - Qk) 
k i=O 

For the optimal weights 

dw~ L: k k k - = - To·w. + Fo = 0 dt . J J 
J 

(14) 

(15) 

Because e~ = 1, T~ = Ff ' F~ = Qk, the above equation implies that Ef=o wf Fl­
Qk = o. Consequently, < 8 >= 0, i.e., the optimal network weights guarantee the 

bias averaged over the spectrum vanishes. 
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Figure 3: The response distributions for initial jet energy equal to 10,20,30,40 
are shown separately. The total response probability, i.e., the percentage of 
events that fragment with at least two hadrons with ea > Ec = 2.0 GeV, is 
0.53, 0.94, 0.97,0.98 with mean 9.48, 18.7, 28.9, and 38.9 GeV and rms width 
1.43, 2.27, 2.26, and 2.23 GeV for the four cases respectively. The curves are 
normalized relative to the input pQCD spectrum J(t) (solid). Also shown is the 
integrated output response spectrum O(t) (dotted). In the simulation, the bin 
size is 1 GeV. 

The optimal weights also minimize the'dispersion. Substituting (10) into (12), 

(72(E) = L: J(;;k. ek _ E)2Pk(e1,E)de~_ ... deZ = L:2XZ(E) (16) 
k k 

The global square dispersion is then given by 

< (72 >= J (72 (E)J(E)dE = L: 2 < XZ > 
k 

8 
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Since the optimal weights minimize all < x~ >, the global < a2 > is also minimized. 
The output spectrum O(E') of the network is a convolution of the response dis­

tribution R(E', E) with the primordial input spectrum I(E): 

O(E') = J R(E', E)I(E)dE . (18) 

Binning the input and output spectra into a histogram, we can express this convolu­

tion in matrix form as 
(19) 

Because the response distribution of the linear neuron has a finite dispersion, each 

point in the input spectrum (corresponding to jets of a given energy) will spread to 

nearby bins according the response distribution of the neuron at the point. There 

leads to an inevitable deformation of the input spectrum as seen in Figure 3. Note 

that the network is designed to respond only to jets with at least two leading hadrons 

passing through the filter. Therefore, the integrated output spectrum is also less 

than the integrated input one. In the next section we discuss a method to correct 

this systematic distortion of the primordial spectrum. 

3 Deconvolution 

Having established the parameters of the network, we turn next to the method of de­

convolution for jet distribution analysis. The physics goal is to recover the primordial 

distribution from the distorted measured one. Naively, we would try to invert (19) 

by 1= R-10. However, in general R is not symmetric and has zero eigenvectors not 

orthogonal to the others. Therefore, its inverse is ill-defined. 

3.1 The Objective Function 

The best we can do is to determine I such as to maximize the likelihood that 0 

is observed given knowledge of the response R. Assuming high enough statistics is 

obtained experimentally that the central limit theorem applies in each bin, the best 

fit is obtained by minimizing an objective function such as the X2 

X2 = t '2JOk - Nk)2jaz , (20) 
k 

where Nk = Li RkJi is the expected number of counts in bin k and ak ~ VNk is 

the expected variance of the number of counts in that bin. In the limit N k -~ 1, 
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required for the applicability of (20), a good estimate for the variance is obtained by 

approximating uz ::::: Ok ~ 1. Minimizing (20) with respect to I, we find that 1 must 

satisfy the following linear equation: T I = F, where 

Tij = L RkjRk;fuz ::::: L RkjRk;fOk , (21) 
k k 

and 

Fi = L RkiOk/UZ ::::: L Rki . (22) 
k k 

The error made in the above approximation on the ~ight hand side decreases as 0;1/2. 

3.2 Singular Value Decomposition 

What has been gained relative to (19) is that T is symmetric and thus has a complete 

set of real orthonormal eigenvectors. Unfortunately, there is no guarantee that all 

eigenvalues are non-vanishing, and in many practical cases in fact det T = o. Hence, 

T-l still does not exist in general. However, we can define its pseudo-inverse[16]' 

'1'-1 such that '1'-1T = 1 - Po, where Po is the projector onto the subspace of zero 

eigenmodes. In that case we can "solve" for 1 as 

- -1 1= T F + 10 , (23) 

where 10 = Pol is an arbitrary vector in the zero subspace. Since 10 does not alter the 

value of X2
, however, we can discard it for convenience and approximate the optimal 

input spectrum by 

(24) 

Note that if det T #- 0, (24) does reduce to I = R-10 as expected. Numerically, 

'1'i jl is obtained by the standard singular value decomposition method[16] in which 

the inverse of near zero eigenvalues is set to zero. We emphasize that the above 

deconvolution procedure is not an on-line process but is to be performed once at the 

end of the experiment. 

Propagation of the error during deconvolution is inevitable. Given (24) the de­

convolution error is found to be 

(25) 

This error increases as the jet energy increase because the number of counts decreases 

rapidly with energy. At some point this error exceeds the systematic error before the 

10 



deconvolution. Beyond that point deconvolution is pointless and we have to live with 

the small distortions due to the network response. 

Shown in Figure 4 is the optimal neural filtered jet distribution (dotted) compared 

the input QeD distribution (solid line). We see that below 20 GeV, the neural filter 

significantly underestimates the QeD distribution, but that the distortions become 

small above that energy. The normalization of the QeD counts is adjusted to that 

expected at RHle after a year of running. The filter noise is assumed to be the 

square root of the number of counts. The square symbols indicate the result of 

deconvoluting the filter response. We see that for E .:s 20 GeV, the deconvolution 

method accurately corrects for the distortions caused by the neural filter. Above that 

energy the deconvolution method begins to fail as error propagation overcomes the 

accuracy of the method. 
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Deconvolution via Singular Value Decomposition 

QCD jets 
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Figure 4: Comparison of the input QCD jet distribution (solid) to the convoluted 
network response distribution (dotted) and the deconvoluted network response 
(boxes) based on the singular value method. Note that the errors (long-dashed) 
propagating through the deconvolution begin to exceed the systematic bias of 
the network response (long dotted) beyond E ~ 20 GeV. 

3.3 Constrained Optimization Method 

The deconvolution points in Figure 4 obtained using the singular value decomposition 

method obviously have a spurious large oscillating component. This is because the 

optimization procedure has over-fit the noise introduced into the response curve by 

the finite number of counts in each bin. To overcome this problem, we note that there 
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are extra prior knowledge about the jet spectrum which has not been used yet: the 

QeD spectrum always has a positive curvature (second derivative). To utilize that 

information we add a penalty term (cost function) to the X2 of the form 

(26) 

Instead of Equation (20), we then minimize 

Err = X2 + C (27) 

The C term acts to penalize negative curvature and thus smooths out the de.convo­

lution. The error of the resulting solution I can then be estimated by the covariance 

matrix H- 1 , where H is the Hessian 

(28) 

The error bar of a solution I is estimated by the covariance matrix A-I evaluated at 

I. Note that unlike T matrix, matrix A is invertible here. 
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Decovolution via Constrained Optimization 

QCD jets 
filter response 
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deconvolution 

deconvolution error 
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Figure 5: Comparison of the input QeD jet distribution (solid) to the convo­
luted network response distribution (dotted) and the final deconvolution (boxes) 
using the constrained optimization method. The constraint punishes negative 
curvature. The statistical errors of the deconvolution are 1% to 7%, and the 
deconvoluted network response is within 10% of the desired input. 

Minimization of Err can be conveniently done by gradient decent. The corre­

sponding constrained deconvolution result is shown in Figure 5. The statistical errors 
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.. 

of the deconvolution are 1 % to 7%, and the deconvoluted network response is within 

10% of the desired input. We see that the constraint term accurately corrects for the 

distortions caused by the neural filter. It removes most of the oscillations in the sin­

gular value decomposition method and reduces the error bars in energy range above 

20 GeV. It works remarkably well in the whole range from 4 GeV to 40 GeV. To 

reduce the computation time, one can start with the values calculated by the singular 

value decomposition method and then perform gradient decent to minimize Err. 

4 Discussion 

The results above demonstrate that the neural filter deconvolution algorithm proposed 

here can uncover the primordial jet spectrum in spite of the the loss of information 

in the transverse energy < 2 GeV region. However, it is also important to investigate 

the robustness of the algorithm to changes in the jet distribution and fragmentation 

function. Recall that jet analysis was originally proposed as a probe of the parton 

energy loss in dense matter in nuclear collisions and that new physics would manifest 

itself in a characteristic change of the apparent jet distribution[1, 2]. 

4.1 Robustness to Softened Jet Spectrum 

The optimal weights in Table 1 are based on the calculated pQCD spectrum J(E) of 

jets though minimizing equation (6). Since the main interest in performing jet studies 

with nuclear collision is to look for deformations which may arise due to energy loss 

of the jet parton passing through dense matter[1, 2], we tested the response of the 

network to changing J(E) -+ J(E + 4). This simulates a 4 GeV energy shift of jet 

partons independent of their initial energy [2]. The result is shown in the Figure 6. 

It is clear that the constrained deconvolution method reproduces the input spectrum 

well in both cases. 

The reason for this is that the fragmentation function and the transverse momen­

tum cut off are the same, and the network parameters are most sensitive to those 

two aspects. The network remains near optimal and the response function R(E', E) 
is unaffected by this type of modification. We conclude that any shift of the jet 

spectrum uncovered by the constrained deconvolution method reflects the underline 

physics and is not a spurious distortion caused by filtering out the low frequency 

noise. In the example studied, the method correctly uncovered the assumed 4 Ge V 

energy loss. 
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We note that in real applications, the network should be trained on-line with 

actual pp jet data where the pQCD jet distribution is known to be correct from a 

large body of prior experiments[3, 4]. With those data, the learning dynamics may 

train the network to a different point in weight space to compensate for the actual 

efficiencies of the detector the influence of noise, and physical differences from the 

LUND model. The cutoff parameters, Ec and R, should also be determined so as to 

optimize the overall jet finding efficiency. 
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Figure 6: The robustness of the constrained deconvolution method is tested on 
two input spectra. The solid curve is the original pQCD spectrum, I(E). The 
dashed curve is an energy shifted spectrum, I(E + 4). The same fragmentation 
function and weights are used in both cases. The output deconvolution points 
reproduce the input well in both cases. 

4.2 Modified Fragmentation 

A more challenging problem for the network is to expose it to jets that fragment 

differently than those it was trained on. In the previous section we assumed that 

energy loss in the medium only softens the hard parton spectrum before fragmentation 

but the jet fragmentation function for leading hadrons remains unaffected by the 

nuclear medium. We now test the effect of modifying the fragmentation function 

itself. 

We explore next the possibility that the fragmentation function has modified 

medium effects so as to produce more hadrons along the jet axis with low energy 
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and less at high energy, as shown in Figure 7. To simulate "data" of this type we 

changed the fragmentation parameter a of the fragmentation probability distribution, 

(29) 

in the LUND JETSET6.3[15] code. In Figure 7, the hadron energy distributions for 

a 10 GeV quark jet are shown for the default value a = 0.5 and two others values 

a = 1.0 and 2.5. 
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Figure 7: The hadron fragmentation distributions from a 10 GeV quark jet are 
shown for different fragmentation functions in which the parameter a of LUND 
JETSET6.3 is changed from 0.5 to 1.0 and to 2.5. For larger a, the fragmentation 
becomes softer in the sense that more hadrons are produced at lower energy and 
the high energy hadrons are suppressed. 

The ratio of the constrained deconvoluted network response to the unmodified 

input pQCD spectrum, ICE), is shown in Figure 8. Note that the network parameters 

were optimized for default a = 0.5 fragmentation scheme. This ratio is seen to 

decrease systematically with increasing a. As the relative number of low energy 

particles increases the deconvoluted response is systematically lower than the actual 

primordial input distribution. This systematic shift reflects well the change in the 

underlying fragmentation physics and is again not an artifact of the filer. Therefore, 

deviations from the initial pQCD spectrum after deconvolution can be used to search 

for jet physics in AA that differs from that in pp. 

In Figure 9 we show that this difference can be also be analyzed In terms of 

an average energy shift parameter, similar to that discussed in the previous section. 
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Figure 9: An analysis of the results in Figure (8) in terms of the effective jet 
energy loss, t1E, equating the output and input spectra: leE + t1E) = I(E). 
The results show that a medium modified fragmentation functions can be char­
acterized well by a single energy loss over a wide range of jet energies. 
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Denoting the deconvoluted spectrum by i(E), we can define an effective energy shift, 

~E(E) via 

i(E + ~E(E)) = J(E) . (30) 

The resulting ~E for the a = 1.0 and 2.5 modified fragmentation schemes is shown 

in Figure 9. Note that a constant ~E ::::::: -0.5 and -2.0 GeV characterizes well the 

difference in the physics in these cases over most of the interesting energy range. We 

conclude that ~E deduced in this way provides a convenient and physically suggestive 

measure of the nuclear dependence of jet physics in AA. 

4.3 Comparison with Other Filters 

While the bias w~ reveals a systematic variation with k, the approximate constancy 

of all the weights, Wf~l ::::::: 1, indicates that the global minimum in weight space is 

close to the point defining a simple linear high pass filter (LHPF) characterized by 

Wf~l = 1 for k ~ 1. This is a non-trivial result of the optimization procedure. We 

therefore also compare results obtained with the simplest LHPF network where only 

the biases w~ are determined so as to minimize the global error. As a further test of 

the proximity of the global minimum to the LHPF point, we also performed a hybrid 

network analysis in which only the energies of the leading two particles are utilized to 

estimate the jet energy .. In the hybrid net we set Wf~3 = 0, and determine the other 

weights as before. 

The performance of all three networks is compared in Figure 10. Shown are the 

dispersion and bias of network as a function of the initial jet transverse energy, E 

of an isolated jet in units of the filter cutoff momentum, Ec = 2 GeV Ie. We see 

that while the optimal neural filter has the overall best performance, the linear high 

pass filter is only slightly worse. The hybrid two particle filter leads to considerably 

worse performance. We emphasize again that the convergence of the neural network 

to a point in weight space close to that defining a simple LHPF is not trivial and 

illustrates the power of the method. We could continue to guess different hybrid 

weight configurations. However, the learning algorithm explores the error surface 

and converges to the true global minimum in weight space without the necessity of 

guesses. For this particular problem with this particular fragmentation function it 

just so happens that the minimum is not far from the high pass filter point. Training 

the network with real pp data or more sophisticated event generators may lead to a 

different conclusion. 
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Figure 10: The response curves for different filter weight configurations. The 
standard deviation, and the bias of the network are plotted versus the input 
jet energy E in units of the cutoff energy Ec = 2 GeV. Three different network 
configurations are considered: the optimal neural filter, the linear high pass filter 
with Wf~l == 1, and a hybrid leading two particle filter with Wf~3 == o. 

5 Summary 

We have proposed a neural network filtering and deconvolution method for jet anal­

ysis to compensate for the loss of information in reactions where the background 

overwhelms the signal at low transverse energies. The numerical tests discussed here 

suggest that the method may be especially useful for application to nuclear collisions 

at RHIC and LHC energies, where a large number of minijets lead to an enormous 

background below Ec "" 2 - 3 Ge V. We showed that if jet physics is unmodified by the 
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nuclear environment, then the filtering and deconvolution method recovers accurately 

the expected pQCD spectrum. We tested the method also in two different physical 

scenarios where the spectrum of leading hadrons is modified by the nuclear medium. 

In one scenario, the jet is assumed to lose an average energy !:lE before fragment­

ing as usual into the leading hadrons. We found that in this case the constrained 

deconvolution method accurately reproduces the shifted jet spectrum. In the second 

case, medium effects were assumed to lead a softening of the jet fragmentation func­

tion. That scenario also led to a systematic shift from the input pQCD spectrum. 

We then showed however that the shift could also be well described by an average 

energy loss. Our main conclusion is that in spite of the large background expected 

in AA collisions which renders conventional jet analysis techniques useless, adaptive 

neurocomputation techniques can overcome effectively the loss of information at low 

transverse energies and help in the search for new physics. 

In closing, we point out several open problems that need further study in this 

connection. The present numerical study was limited for simplicity to the study of 

an isolated spectrum of quark jets with a threshold cutoff Ee = 2 GeV to illustrate 

of the method. We have not addressed the problem of differentiating between quark 

and gluon fragmentation[10] nor the rejection efficiency of coincidence multi-jet events 

that happen by accident to fragment into the same angular cone R. The first problem 

can be addressed by training on "data" derived from more realistic event generators 

such as HIJING[2]. The second problem involves devising more efficient algorithms for 

calculating the relative rates of rare jets versus coincidental multiple jets. In principle, 

HIJING contains such backgrounds as well, but it is numerically impractical to study 

this at this time. A new method for triggering on coincident events would have to 

be implemented. Finally, the effects finite resolution and detector biases should be 

investigated. The recovery of loss or distortion of information due to the measurement 

process is a separate problem requiring coupling a full event generator such as HIJING 

with a GEANT analysis[6] of detector response and possibly coupled with an adaptive 

tracking algorithm such as ET[14]. 
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