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Abstract 

This thesis is an investigation of methods for processing multidimensional signals 

acquired using modern tomography systems that have an anisotropic or spatially 

variant response function. The main result of this research is the discovery of a new 

method to obtain better estimators of an unknown spatial intensity distribution by 

incorporating detailed knowledge about the tomograph system response function and 

statistical properties of the acquired signal into a mathematical model. In this model, 

data acquisition is represented by a linear transformation, FOk , of functions, b, on a 

continuous domain object space to functions, POk, on a discrete domain observation 

space as described by 

POk = F Ok · b = k dy k dx !ok (x, y) b( x, y). 

This data acquisition model and the singular value decomposition, 

FOk = UOkS· V T
, 

of this model into the left singular vectors, U Ok, right singular functions, V, and the 

singular value operator, S, form a common, unifying structure for the three i3.reas of 



this work: identification, estimation, and optimization. For system identification, the 

model is easily adapted to represent tomography systems that are spatially invari­

ant, spatially variant with symmetry, or spatially variant without symmetry. Least 

squares, normal maximum likelihood, and Poisson maximum likelihood estimators 

and the corresponding covariance have been formulated to compensate for all three 

types of spatial responses. While bias is reduced by these estimators, undesirable 

statistical and systematic fluctuations can result due to pixelization effects. To re­

duce these fluctuations new estimators such as the filtered singular value least squares 

estimator 

with diagonal filter matrix, D, were developed. These new estimators use an or­

thonormal pixel basis decomposition of the unknown spatial distribution to eliminate 

systematic error and minimize statistical errors that occur using square or polar pixel 

bases. Characterizing the effects which sampling density has on reconstructed image 

resolution and noise using singular value analysis has led to a method to optimize 

sampling strategies to obtain better estimates of the unknown spatial distribution 

given bounds for noise and resolution. Symmetries in the data acquisition process 

lead to very efficient implementations of the new inverse problem algorithms. 
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Chapter 1 

Introduction 

1.1 Statement of thesis 

My thesis is that by incorporating detailed knowledge about the tomograph system 

response function and statistical properties of the acquired signal into a mathemati-

cal model, better estimators of an unknown spatial intensity distribution will result. 

These estimators, which are based on a generalized orthonormal pixel basis decom-

position that is fundamental to the tomograph, will have reduced local bias, will 

minimize systematic error due to pixelization, and will simplify error propagation 

when used as input to quantitative models of physiologically important processes 
<, 

such as the in vivo density of neuroreceptors. 

1 
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1.2 Motivation 

Many emission tomography systems have an anisotropic or spatially variant response 

function; i.e., resolution varies throughout the field of view. Traditionally, estima­

tion (reconstruction) algorithms have not included knowledge about the processes 

that cause spatially variant resolution. When images reconstructed with a spatially 

invariant algorithm are used as input to a physiological model, significant bias can 

be introduced into the parameters of the physiological model. Consider the images 

shown in figure 1.2 which were reconstructed from data taken with a positron emis­

sion tomograph (PET). The upper image was reconstructed using a backprojection 

of filtered projections [1] algorithm that does not account for spatial variance and 

the lower image was reconstructed using a new separable algorithm [2] that includes 

spatial variance in the system response function. Qualitatively the lower image is a 

better representation of the 37-point phantom, shown in figure 1.1, which it depicts 

and will introduce less bias in the physiological model. 

1.3 Previous work 

For continuous space noiseless measurements of line integrals from parallel projec­

tions, an inverse Radon transform [3] [4] [5] can be used to perform reconstruction. 

An inverse of the attenuated or exponential Radon transform can be used for single 

photon emission computed tomography (SPECT) with known attenuation and con­

tinuous space parallel line integral projections [6] [7]. The reconstruction approach 

proposed by 0 [8] includes a continuous space model for detector response in addition 

~, 
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f4'---------20cm --------, 

Figure 1.1: Schematic diagram of a phantom with 37 line sources in a 20 cm diameter 
cylinder of lucite. 

to known attenuation. 

Most physically realizable tomography systems however acquire discrete projection 

data. Approximations using a sampled Radon transform can be applied [9] [10] [11]. 

The filtered backprojection and backprojection of filtered projections algorithms are 

the most commonly used methods for reconstructing discrete parallel line integral 

projection data [12] [13]. Efficient implementations of these algorithms [14] using 

fast Fourier transforms [15] has led to their widespread use. Marr [16] developed 

a reconstruction method using orthogonal polynomials that results in what he calls 

pixels that are natural to the system. In his case; the system is modeled by line 

integrals on a circular domain. 

For systems that do not acquire line integral projections, more complex techniques 
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Figure 1.2: Images reconstructed from data taken with a positron emission tomograph 
with spatially variant system response function . Upper) backprojection of filtered 
projections reconstruction. Lower) new separable spatially variant reconstruction. 

... 
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have been developed which include direct and optimization techniques [17]. The di­

rect reconstruction methods are usually implemented as linear matrix algorithms; 

e.g., the pseudo-inverse [18], and the statistical properties of the resulting images are 

straightforward. Conversely, the optimization or series expansion methods are gen­

erally implemented as iterative algorithms; e.g., iterative least squares [19] algebraic 

reconstruction techniques [20], and maximum likelihood estimation [21] [22]. The 

statistical properties of images reconstructed using optimization techniques are often 

difficult to characterize [2]. Both techniques ab initio discretize the object space into 

square or sometimes polar pixels [23] [24]. Substantial systematic errors or artifacts 

in the reconstructed images can result from pixelization [25] [26]. 

Buonocore, et al, [27] also worked on a natural pixel decomposition that uses each 

projection ray as a pixel. Buonocore's definition for a pixel eliminates systematic 

errors due to pixelization; however, it usually leads to pixels that are not spatially 

orthogonal. This can be an undesirable property especially for interpreting covariance 

between estimates of the intensity at two different pixels that may spatially overlap. 

Several researchers have used regularization techniques to de-emphasize recon­

struction artifacts due to pixelization and ill-posedness of the tomographic inverse 

problem. The method of sieves by Snyder and Miller [28] [29] is one example. The 

sieve or blurring function modifies the expectation maximization (EM) [30] maximum 

likelihood approach of Shepp and Vardi [21] by constraining the estimate to~a set of 

images where the likelihood is bounded. The choice of blurring function is object 

dependent and is found by trial and error. Evaluating the statistical properties of 
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their estimators is . extremely difficult even in an asymptotic sense. The computa­

tion acceleration scheme of Lewitt and Muehllehner [31] can also be classified as a 

regularization technique. 

Incorporation of prior information about the spatial properties of the distribution 

to be reconstructed has received attention by several researchers [32]. In their maxi­

mum a posteriori (MAP) algorithm, Levitan and Herman used a normal (Gaussian) 

prior [33] to reduce "irregular high amplitude patterns." Their MAP EM algorithm 

is a special form of penalized EM algorithm. Leahy et al have used Markov random 

fields as a prior in their MAP algorithm which includes depth dependent resolution 

in SPECT [34]. The Markov property ensures that values at nearby pixels do not 

differ too much from each other. This tends to smooth the reconstructed image and 

may add significant bias. 

An extensive bibliography on tomographic reconstruction was presented by Ran­

gayyan et al [35]. 

" 
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.Chapter 2 

Theoretical Framework 

2.1 Data acquisition 

Projection formation can be described by the discrete-continuous model [36], [37], 

[32] 

POk FOk ' b 

k dy k dx fok ( x, y) b( x, y) 

(2.1 ) 

(2.2) 

where POk is the measured projection at angle index () and bin position k. FOk is a 

second order tensor functional operating on the two dimensional object distribution 

b. The operation of equation 2.1 represents the integration of the product of the 

impulse response 10k (x, y) and the object distribution b( x, y) over the imaging field 

as depicted in figure 2.1. The symbol· indicates integration over the imaging field. 

The impulse response function is the spatial response of a projection at angle () and 

7 
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bin k to a point source moved to every position within the sampling domain. There 

are e different angles and K projection bins at each angle. 

To simplify notation l , the projection formation equation is written in vector form 

p = F·b (2.3) 

by combining the () and k indices into one index. Specifically[38], 

(2.4) 

P E RSK
, and (2.5) 

F (2.6) 

Because the model is based on the fact that the detection process is defined on a 

discrete domain and the original distribution is defined on a continuous domain, the 

model is easily adapted to include a variety of physical effects found in many imaging 

modalities. For positron emission tomography (PET), FOk can include radioactive 

decay, positron range, non-collinearity of photons, sampling geometry, attenuation, 

inter-crystal scatter, crystal penetration, and detection efficiency [2]. 

The singular value decomposition of the tomograph system response function is 

F = US·VT. (2.7) 

U is an orthogonal matrix containing the left singular vectors of F and is defined by 

the eigenvalue decomposition of the projection normal matrix, 

1 Lower case bold symbols denote vectors, lower case script symbols denote functions or scalars, 
upper case bold symbols denote matrices, and upper case script symbols denote operators. 
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b(x,y) ---. 

x 

~F(x,y) 
ek 

Figure 2.1: Schematic of projection formation. 

9 
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A F·FT (2.8) 

(2.9) 

An element AOlklOk is the projection at angle ()' and bin k' of the backprojection at 

angle () and bin k of a unit projection value, POk = 1. A schematic of this operation 

is shown in figure 2.2. As shown in section A.l, the projection normal matrix is 

symmetric and positive semidefinite. V are the right singular functions of F and are 

defined by the relationship 

FTF (2.10) 

A proof of equation 2.7 is given in appendix A.1. 

For the real Hilbert space operator F, the corresponding adjoint operator denoted 

by the symbol FT is defined by equating the inner product in the range space of F 

with the inner product in the domain space of F as follows 

(2.11) 

which is the sum in the projection space and the integral in the object space 

8-11\-1 

L L POk l dy l dx !Ok(X,y) b(x,y) 
0=0 k=O R R 

8-11\-1 l dy l dx L L FJ;.(x,y) POk b(x,y). 
R R 0=0 k=O 

(2.12) 
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Figure 2.2: Schematic of projection normal matrix. 
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After exchanging the order of summation and integration, 

9-1 [(-1 

I: I: POk ~ dy ~ dx jOk(X, y) b(x, y) 
0=0 k=O R R 

9-1 [(-1 E {; POk k dy k dx FL(x,y) b(x,y). 

(2.13) 

Equation 2.13 must hold for an arbitrary object, b, and an arbitrary projection, p, 

except for a space of measure zero. Therefore, the adjoint of F is almost everywhere 

FL(x,y) (2.14) 

which is just the impulse response function. F can be interpreted as a column vector 

of integral functions and FT as a rows vector of functions; hence, the use of the 

symbol T. The adjoint operation for a real matrix is the transpose of the matrix. 

The functional S operates similarly to F in that it maps continuous domain func-

tions to discrete domain samples. Thus, V performs an infinite dimensional rotation 

on the continuous domain object space, S selects and scales a finite number of the 

rotated functions, and U performs a finite dimensional rotation into the discrete 

domain projection measurement space as shown in equations 2.15-2.17. 

... 
U (2.15) 

S (2.16) 

V (2.17) 
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A geometric interpretation is given in figure 2.3. In the next chapter, this singu-

lar value decomposition will be used to define pixels and formulate reconstruction 

algorithms. To my knowledge, this work is the first time that a singular value decom-

position has been formulated for a system that maps continuous domain functions to 

discrete domain samples. 

s u 

Figure 2.3: Singular value decomposition of the projection operator. The operator 
VT performs an infinite dimensional rotation on the continuous domain object space, 
S selects selects and scales a finite number of the rotated functions, and U performs 
a finite dimensional rotation into the discrete domain projection measurement space. 

As a simple example, consider the spatial sampling system of figure 2.4 that has 

three projection angles and two projection bins at each angle. The angles are equally 

spaced between zero and 7r radians. The impulse response functions are defined. by 

{ ~ if k -1 ~ -x sin (e~) + ycos (B~) < k and x 2 + y2 ~ 1(· 
2.18) 

otherwise 
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and are shown in figure 2.4. The projection normal matrix and the singular value 

decomposition of the projection normal matrix are 

" 

A p.pT 

3 0 2 1 1 2 

0 3 1 2 2 1 

7r 2 1 3 0 2 1 
(2.19) 

6 1 2 0 3 1 2 

1 2 2 1 3 0 

2 1 1 2 0 3 

US. STUT 

1 1 1 1 1 1 
1 

VB 
1 -1 -1 -1 1 1 1 

v'4 
1 1 -1 -1 0 -2 1 

..ji2 

1 -1 1 1 0 -2 1 

76 
1 0 -2 1 -1 1 1 

74 
1 0 2 -1 -1 1 1 

Ji2 
2-
611" 

..i.. 
611" 

..i.. 
611" 

...l. 
611" 

0 

0 

1 
1 1 1 1 1 1 VB 

1 1 -1 1 -1 0 0 .. 
v'4 

1 1 -1 -1 1 -2 2 ..ji2 (2.20) 
1 1 -1 -1 1 1 -1 "-

VB 
1 1 1 0 0 -1 -1 

v'4 
1 1 1 -2 -2 1 1 

Ji2 

where the left singular vectors, U, are given as the product of a matrix and the inverse 



15 . 

y 

x x 

x 

Figure 2.4: Schematic of spatial sampling functions for a simple parallel beam tomo­
graphic system with three equally spaced projection angles and two projection bins 
at each angle. 
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of the norm of that matrix. There are four non-zero singular values for this example 

parallel beam sampling system meaning that of the six measurements only four are 

linearly independent. For parallel beam sampling on a circular domain using uniform 

impulse response functions with e angles and K bins at each angle, there will be at 

most e(K - 1) + 1 singular values that are non-zero. This new result is proved by 

considering all the impulse response functions at two different angles. Recall, that the 

impulse response function, 10k (x, y), is the spatial response of a particular detector 

at angle () and bin k to a point source moved to every position, (x, y), within the 

sampling domain. By subtracting all but one of the impulse response functions at 

one angle from all of the impulse response functions at the other angle, the resulting 

difference is equal to the impulse response function that was not included in the 

difference; e.g., for the system of figure 2.4, 

100{-,') + 101{-,') - 110(-'·) - 111(', .). (2.21 ) 

For one angle paired with the other e - 1 angles paired this will be true; thus, at 

least e - 1 of the impulse response functions are linearly dependent. Since there are 

eK measurements, there will be at most eK - (8 ~ 1) = eu< - 1) + 1 linearly 

independent impulse response functions each corresponding to a non-zero singular 

value. 

Figure 2.5 shows images of the impulse response functions, lok(x,y), for a paral­

lel beam sampling of a circular domain using sixteen projection angles and sixteen 

projection bins at each angle. Images across a row corresponq to different projection 
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bins at a fixed projection angle and each row of images corresponds to a different 

projection angle for a total of 256 images. The impulse response functions have been 

discretized for display purposes only; in fact, these functions have a continuous do­

main on the unit circle. A plot of the singular values of the system is shown in 

figure 2.6. The singular values were obtained by performing the singular value de­

composition of the projection normal matrix as in equation 2.8. It is interesting to 

note that the singular value changes by greater than two orders of magnitude between 

projection index 240 and projection index 241 which agrees with the theoretical re­

sult of 241 non-zero singular values for sixteen angles and sixteen bins (the projection 

index starts at zero). The details of this plot with be discussed further in chapter 3 

and chapter 4. Figure 2.7 shows images of the left singular vectors, U. Each singular 

vector is represented by an image in sinogram format; pixels across a row correspond 

to different projection bins at a fixed projection angle and each row corresponds to a 

different projection angle for an image size of sixteen by sixteen. The singular vector 

images have been ordered from left to right and top to bottom to correspond with 

the standard non-decreasing order of singular values; the image at the top left corre­

sponds to the largest singular value and the image at the bottom right corresponds 

to the smallest singular value. Each left singular vector image has been scaled to give 

the largest contrast within the image; therefore, information about relative intensity 

between images has been lost. 
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Figure 2.5: Images of spatial sampling functions for a parallel beam tomographic 
system with sixteen equally spaced projection angles and sixteen projection bins at 
each angle. 
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Figure 2.6: Singular value plot for a parallel beam tomographic system with sixteen 
equally spaced projection angles and sixteen projection bins at each angle. 
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Figure 2.7: Images of left singular vectors for a parallel beam tomographic system 
»,ith sixteen equally spaced projection angles and sixteen projection bins at each 
angle. 
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2.1.1 Separable product operators 

Separation of the tomograph system response into product operators has significant 

computational advantages when solving the tomographic inverse problem. There are 

two classes of physical effects that can be represented by a product decomposition 

of the tomograph response function [39]. The first of these, denoted by the operator 

H, can be interpreted as a modification of the object distribution before an ideal 

experiment; e.g., radioactive decay and the positron range effect. The second class of 

effects, denoted by the matrix G, can be interpreted as modifying the dataset from an 

ideal experiment; e.g., attenuation in PET, intercrystal scatter, crystal penetration, 

and instrumental effects such as detection efficiency and dead-time. For these two 

classes of physical effects the non-ideal data acquisition process is represented by 

p - GFo·H·b (2.22) . 

where Fo represents line integral parallel projection. 

2.1.2 Rotational invariance 

When the elements of the projection normal matrix are a function of only the dif­

ference /::).() = ()' - () modulo e as shown in equation 2.23, the system is rotationally 

invariant. If it is not a function of the difference between k and k' modulo ]{, then 

the system is radially variant. The system is spatially variant if it is rotationally or 

radially variant. 
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A[(8-8')modejk'Ok (2.23) 

A[~Omodejk'Ok (2.24) 

k dy k dx ![~Omodejk(X,y) !Ok(X,y) (2.25) 

When the system is rotationally invariant, the projection normal matrix can be writ-

ten in block circulant form. The block circulant structure is 

Ao Al A2 Ae-2 Ae-I 

Ae-I Ao Al A e- 3 Ae-2 

Ae-2 Ae-I Ao Ae-4 Ae - 3 
(2.26) A 

A2 A3 A4 Ao Al 

Al A2 A3 Ae-I Ao 

There are e x e blocks each of size K x K. 

Let !k(X, y) denote the impulse response of a rotationally invariant, radially variant 

system, then equation 2.1 can be rewritten as 

P8k k dy k dx!k [ x cos (B ~) + y sin (B ~) , 
J~, 

-x sin (B~) + y cos (B~)] b(x, y). (2.27) 

The block circulant projection normal matrix has elements given by 
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,., 

(2.28) 

(2.29) 

By using the rotational invariance properties of this matrix, computationally fast 

and efficient algorithms can be implemented for the procedures described in chapters 3 

and 4. One such fast algorithm is described in chapter 5. 

For the simple system of figure 2.4 the projection normal matrix can be written 

in block circulant form by reversing the direction. of the projection axis for projection 

angle 8 = 1. With this change, 

3 0 1 2 1 2 

0 3 2 1 2 1 

7r 1 2 3 0 1 2 
A (2.30) 

6 2 1 0 3 2 1 

1 2 1 2 3 0 

2 1 2 1 0 3 

There are three blocks each of size two by two. 
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2.2 Organization of models 

The data acquisition model presented in section 2.1 and the novel singular value 

decomposition of that model form a common, unifying structure for the rest of the 

material in this work. In chapter 3, it will be used for identification of the tomo­

graph system response function and estimation of the unknown spatial distribution. 

Chapter 4 will discuss optimization of the system response function to obtain better 

estimates of the unknown spatial distribution using this formalism. 

2.2.1 Identification 

The first task is to identify the important phenomena in the data acquisition process 

for a particular imaging modality. The response of the tomograph is found using a 

combination of deterministic and stochastic simulations and measured point response 

data. For positron emission tomography, the effects modeled include radioactive 

decay, positron range, sampling geometry, attenuation, inter-crystal scatter, crystal 

penetration, and detection efficiency. 

2.2.2 Estimation 

An estimator for the unknown spatial distribution is formulated using the known re­

sponse function and the statistical characteristics of the acquired data. Several of the 

above phenomena lead to position dependent resolution and reconstruction algorithms 

based on the spatially variant model have reduced bias when compared to spatially 
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invariant methods. Least squares, normal maximum likelihood, and Poisson maxi­

mum likelihood estimators and the corresponding covariance have been formulated to 

compensate for a spatially variant response. While bias 'is reduced by these estima­

tors, undesirable statistical and systematic fluctuations can result due to pixelization 

effects. To study the effects of basis selection, each of the three estimators has been 

implemented using three different pixel bases; square pixels, projection ray natural 

pixels, and new orthonormal basis determined from the singular value decomposition 

of the tomograph response function. 

2.2.3 Optimization 

The data acquisition system may be optimized so better estimates of the unknown 

spatial distribution will result. The criterion used is to minimize the norm of the 

covariance matrix while keeping the estimator unbiased. 
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Chapter 3 

EstilTIation and Identification 

3.1 Pixel Basis Representation 

The goal of tomography is to reconstruct the unknown distribution, b, from one real-

ization, l!., of the projection measurement process p. Reconstructing the true contin-

uous space distribution, b, from sampled projections is probably impossible without 

. prior information about the distribution. Instead, a discretized representation, Cmn, 

is estimated from the measurements where Bmn (x, y) defines a generalized pixel. 

(3.1) 
mn 

In vector form the pixelization is 

(3.2) . 

26 
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A set of generalized pixer" coefficients can be found by minimizing the square of 

the L2 norm [38] of the difference between the continuous space object, b, and the 

generalized pixel representation of the object, BT c, over all possible generalized pixel 

coefficients, c; i.e., 

(3.3) 

Following the derivation of section 3.2, the generalized pixel coefficients are given by 

(3.4) 

The operator + is the Moore-Penrose pseudo-inverse and satisfies the following rela­

tions [40J [41] [18]. 

MM+M 

M+MM+ 

MM+ 

M+M 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The explicit representation of the object by the generalized pixel basis of equation 3.1 

has not appeared previously in the tomography literature. 

The basis set used to describe the pixels influences the types of artifacts that 

appear in the reconstructed image. In this work, three bases are evaluated. The 
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first, B1, is the traditional square pixel or Heavyside basis. The second basis set, 

B2, consists of the set of functions that comprise the tomograph system response 

functional and was proposed by Buonocore [27]. The third, B3, is original to this 

work and is composed of the right singular functions V, defined by equation 2.7, that 

have been selected by 5 and normalized by the L2 norm. 

B1 Heavyside (3.9) 

B2 F (3.10) 

B3 [ (5 . 5T ) + ] ~ 5 . VT (3.11) 

Note that the basis set B3 can be calculated from linear combinations of the basis 

set B2 as follows 

1 

B3 = [(5. 5 T )+r U T B2. (3.12) 

This result can be proved by replacing the definition definition of the natural pixel 

basis from equation 3.10 in equation 3.12; whereby, 

(3.13) 

and after substituting the singular value decomposition of the tomograph system 

response function from equation 2.7, 

B3 
1 

[ (5 . 5T ) + ] "2 UTU 5 . VT . (3.14) 
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Removing the identity UTU yields 

B3 (3.15) 

which is equivalent to equation 3.11. 

3.1.1 Example 

Figures 3.1-3.3 show, respectively, a possible set of basis functions for square pixels, 

Buonocore's natural pixels, and orthonormal natural pixels using the sampling defined 

by the impulse response functions of figure 2.4, 

Consider the wedge shaped object of figure 3.4 which is defined as 

{ 

1 if I; I < ~ and x 2: 0 and x 2 + y2 ::; 1, 
b(x,y) = 

o otherwise. 

The pixel coefficients using the square pixel basis of figure 3.1 are 

c 

(3.16) 

(3.17) 

and were found by solving equation 3.4. In Buonocore's natural pixel basis of fig-

ure 3.2, the pixel coefficients are 

c :2 [ 4 4 13 -5 13-5] T (3.18) 
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Figure 3.1: Square pixel or Heavyside basis for a simple parallel beam tomographic 
system with three equally spaced projection angles and two projection bins at each 
angle. 
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Figure 3.2: Buonocore's natural pixel basis for a simple parallel beam tomographic 
system with three equally spaced projection angles and two projection bins at each 
angle. 
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Figure 3.3: New orthonormal pixel basis for a simple parallel beam tomographic 
system with three equally spaced projection angles and two projection bins at each 
angle. 



!~ 

y 

1t 

6 

1t 

6 

x 

Figure 3.4: Wedge shaped phantom object. 

and for the orthonormal natural pixel basis shown in figure 3.3 

C -- ..ft47r[1 1 100 O]T 7s -72 
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(3.19) 

Figure 3.5 shows, respectively, the continuous space representation of the wedge 

shaped object using square pixels, Buonocore's natural pixels, and orthonormal nat-

ural pixels with the sampling defined by the impulse response functions of figure 2.4. 

3.1.2 Reprojection 

When an object is pixelized by bases such as B1 or polar pixels [24] the projections of 

the pixelized object; i.e., F· BT c, will not, in general, yield the same set of projections 

as the original object. This results in a systematic error in the estimates of unknown 

spatial distribution when algorithms that require backprojection and/or reprojection 
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Figure 3.5: Representation of a wedge shaped object using top) square pixels, middle) 
Buonocore's natural pixels, and bottom) orthonormal natural pixels. 
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are used. Eliminating this systematic error is especially important in iterative alga-

rithms [1] [42] [43]. When the wedge shaped object shown in figure 3.4 is sampled by 

the system of figure 2.4 gives projections 

Projecting the square pixelized version of the wedge yields 

p = ~ [1 1 ~ 1 ~ l]T 
6226666 

(3.20) 

(3.21 ) 

Projection of a pixelized object using Buonocore's natural pixel basis, B2, is 

p _ F·B2T c. (3.22) 

Substituting the definition of Buonocore's natural pixel basis from equation 3.11 gives 

p (3.23) 

and after substituting equation 3.11 into equation 3.4, 

(3.24) 

Using the properties of the pseudo-inverse in equations 3.6-3.7, 
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p F·b (3.25) 

which from equation 2.3 yields 

p = p. (3.26) 

Thus, the projections, p, of the Buonocore pixelized object are identical to the pro-

jections, p, of the original object. For the wedge example, 

p = ~ [1 1 1 0 1 O]T 
6 2 2 

(3.27) 

Likewise, for the orthonormal natural pixel basis, B3, projection of the discretized 

object is 

p = F·B3T c (3.28) 

which after replacement with equation 3.11 becomes 

1 

P = F· V . sT [( S . ST) + r c. (3.29) 

Substituting for c the result. of combining equation 3.11 and equation 3.4, 

p (3.30) 
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Replacing F with the right hand side of equation 2.3 gives 

" 
- T T ( T)+ T P = US·V ·V·S S·S S·V·b (3.31 ) 

and since the operation of the adjoint of the right singular functions on the right 

singular functions is the identity operator, 

- T ( T)+ T P = US· S S . S S . V . b. (3.32) 

The properties of the pseudo-inverse in equations 3.6-3.8 can be used to show 

p US·VT ·b. (3.33) 

Upon substitution of equation 2.7, 

p F·b (3.34) 

which from equation 2.3 yields 

p = p. (3.35) 

The projection of the wedge example using the orthonormal natural pixel basis, B3, 

IS 
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(3.36) 

All systematic reprojection errors .due to pixelization are eliminated using a basis like 

B2 or B3 as shown in table 3.1 for the wedge phantom. While this is true in particular 

for B2 and B3, any basis that spans the subspace of functions defined by 5 . V T 

will also have this property. A geometric interpretation of the error associated with 

computing projections of pixelized object is shown in figure 3.6. Many of these basis 

may represent the original object distribution, b, better than B2 or B3. However, no 

information about the coefficients for the functions that are outside the space S· V T is 

available from the projection measurements. By using apriori information about the 

continuous space distribution of b, the formulation of Bayesian estimators that use 

basis functions not in 5 . VT is an exciting area for future research. Thus, the basis 

subset contained in 5 . VT is from a channel model for F and the subset contained in 

V T - 5 . V T is from a process model for b. 

3.2 Least Squares 

In this section, a least squares estimator (LSE) is formulated to estimate the mean in­

tensity of the generalized pixels, c, used to described the unknown spatial distribution 

from one measured projection dataset, 'l!: While the resulting LSE formula is quite 

general, specific application to image reconstruction using square pixels, Buonocore's 

natural pixels, and the new orthonormal natural pixels is shown. The least squares 

estimator for the mean intensity of the generalized pixel image is found by minimizing 

.. 
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Basis Object Estimate Projection Estimate 

Squared Error Squared Error 

Ilb- BTcll: Jlp- F· BTc! 

B1 4 11"2 

3 324 

B2 7 0 6 

B3 7 0 6 

Table 3.1: Errors due to pixelization for a wedge shaped phantom sampled with a 
parallel beam tomographic system with three equally spaced projection angles and 
two projection bins at each angle. 

s u 

Figure 3.6: Simplified geometric representation of the systematic error that results 
from computing model projections from pixelized versions of an object. Pixel bases 
that include the subspace S . V T eliminate systematic pixelization error. 
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the square of the L2 norm of the difference between the projection vector, p, and the 

estimated projection, P . BT c, over all possible image vectors, c; i.e., 

(3.37) 

After substituting the definition of the L2 norm, 

c = arg mJn { (p - P . BT C ) T (p - P . BT c) } . (3.38) 

Finding the gradient vector with respect to unknown parameters, c, and equating it 

with the zero vector, yields a Sf{ x 8f{ system of simultaneous linear equations. 

(3.39) 

Upon rearrangement, the equations in normal form are 

B.pTp.BTc = B.pTp. (3.40) 

The solution for this system using the second property, equation 3.7, and the third 

property, equation 3.8, of the pseudo-inverse is 

c (3.41) 

Substitution of the singular value decomposition of the projection formation operator, 

equation 2.7, yields 

'. 
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(3.42) 

By equation 3.7, the minimum L2 norm least squares estimator (LSE) for the mean 

value of the intensity of the generalized pixel image is 

(3.43) 

Using the measured projection vector, l!., as a single sample estimate of the mean 

projection vector gives 

c (3.44) 

The fluctuations of the generalized pixel least squares estimator due to random 

variations in the measurements can typically be characterized in terms of the co-

variance between pixel estimates. The covariance matrix for the generalized pixel 

estimator is defined by 

(3.45) 

Substitution of equation 3.43 yields 

E c - E [{ (S . VT . BT) + U T P - E (S . VT . BT) + UT P } (3.46) 

{ (S . VT . BT) + U T P - E (S . VT . BT) + UT P } TJ. 



Applying the relationship for the transpose of a product yields 

E [{ (S . VT . BT) + U T P - E (S . VT . BT) + UT P } 

{pTU (B . V . ST) + - EpTU (B . V . ST) + }] . 

The reconstruction filter can be brought outside the expectation so 

Again using the relationship for transpose, 

The term inside the expectation is the covariance of the projections; i.e., 

Ep = E [(p - Ep) (p - Epf] , 

42 

(3.47) 

(3.50) 

therefore, the covariance matrix for the generalized pixel least square estimator is 
\ 

(3.51) 

The estimator for the mean of the intensity of the object in continuous space 

is found by applying the adjoint of the basis operator, B, to the generalized pixel 

.. 
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estimator of the intensity mean. For the continuous space object, the least squares 

estimator for the mean of the intensity is 

(3.52) 

(3.53) 

When using the Heavyside basis, the generalized pixel least squares estimator for 

the mean of the intensity, the covariance for that estimator, and the continuous space 

least squares estimator for the mean of the intensity become 

c 

E-c 

b 

(S . VT . BIT) + UTE 

(S. V T . BIT)+ UTEpU (BI. V· ST)+ 

BIT (S. VT . BIT)+ UTE 

and for Buonocore's natural pixel basis 

c 

Ec 

b -

U ( S . ST) + U T l!. 

U (S. ST)+ UTEpU (S. ST)+ U T 

V . ST (S . ST) + UTE. 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

Finally, the estimators and covariance for the orthonormal natural pixel basis are 

c (3.60) 
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E-c [ (S . ST) + ] ~ U T EpU [ (S . ST) + ] ~ (3.61) 

V . ST (S . ST) + UT'l!: (3.62) 

Note that the least squares estimator for the mean of the continuous space distribu-

tion, b, using both Buonocore's natural pixel basis and the orthonormal natural pixel 

basis are the same. 

3.2.1 Singular Value Filtering 
1 

Small singular values in the singular value filter, [( S . ST) +] 2, of equation 3.60 can 

lea~ to large statistical errors in the reconstructed image, h. By applying a diagonal 

weighting matrix, D, to the filter, the mean square error of the object estimates may 

be decreased [32]. The resulting estimates and covariance are 

1 

C D [ (S . ST) + ] 2 U T E (3.63) 

Ei; D [( S . ST) + ] ~ U T EpU [ ( S . ST) + ] ~ D (3.64) 

b V . ST D (S . ST) + U T E. (3.65) 

Determining the weighting values is the subject of ongoing research. Since basis 

vectors are assumed to be arranged so the singular values are in non-increasing order, 

one possibility is to truncate the number of singular values used in the singular value 

filter so only the J largest singular values will be included. A weighting matrix with 

elements 
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{

I if j' = j and j < J, 
Djlj = 

o otherwise 
(3.66) 

will select only the J largest singular values. Since the basis is orthonormal, the 

resulting object estimate is the sum of the estimates of each pixel that was multiplied 

by one; i.e., 

b (3.67) 
j=O 

J-1 

LV. SJ (s . ST) + UTE' (3.68) 
j=O 

3.2.2 Noiseless Example 

Returning the example of figure 3.4, the estimated pixel coefficients using the square 

pixel basis of figure 3.1 are found from equation 3.54 to be 

_l 1 
12 -12 

(3.69) 

In Buonocore's natural pixel basis of figure 3.2, the pixel coefficients are found from 

equation 3.57 to be 

c = 7
1
2 [ 4 4 13 -5 13 -5] T (3.70) 

and for the orthonormal natural pixel basis shown in figure 3.3 the solution of equa-

tion 3.60 is 
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__ .fi
4

7r 
[ 1 ]T 

C Ts -~ 0 0 0 (3.71) 

Figure 3.7 shows, respectively, the continuous space reconstruction of the wedge 

shaped object using square pixels, Buonocore's natural pixels, and orthonormal nat-

ural pixels with the sampling defined by the impulse response functions of figure 2.4. 

The object and projection estimate squared errors when using the least squares es-

timator are shown in table 3.2. In all three basis there is zero projection estimate 

error for the wedge object. However, the natural pixel and orthonormal natural pixel 

estimates have smaller object error than the square pixel estimates. 

Basis Object Estimate Projection Estimate 

Squared Error Squared Error 

lIb - BTcll: IIp - F· BTc"~ 
Bl 17 0 12 

B2 7 0 6 

B3 7 0 6 

Table 3.2: Least squares reconstruction errors for a wedge shaped phantom sam­
pled without noise by a parallel beam tomographic system with three equally spaced 
projection angles and two projection bins at each angle. 

3.2.3 Noisy Example 

The previous example computations were done using a known value for the projec-

tions, i.e., no noise. To test the LSE in the presence of noise, a noisy projection 



47 

Figure 3.7: Least squares reconstruction of a wedge shaped object using top) square 
pixels, middle) Buonocore's natural pixels, and bottom) orthonormal natural pixels. 
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dataset, 

p [0.8579 0.2920 1.4252 0.0000 0.4829 0.0000] T (3.72) 

will be used. This projection dataset was created by sampling an independent multi-

variate normal (Gaussian) distribution with mean and variance equal to the noiseless 

projections of equation 3.20. The estimated pixel coefficients and the covariance of 

those estimates using the square pixel basis of figure 3.1 are 

(3.73) 

(3.74) 

In Buonocore's natural pixel basis of figure 3.2, the pixel coefficient estimates and 

covarIance are 

( 

c [0.1534 0.0629 0.5383 -0.3220 0.1336 0.0827 ]T (3.75) 
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0.1810 -0.1771 -0.1428 0.1468 0.1556 -0.1517 

-0.1771 0.1810 0.1556 -0.1517 -0.1428 0.1468 

-0.1428 0.1556 0.1899 -0.1771 -0.1384 0.1512 
E· c (3.76) 

0.1468 -0.1517 -0.1771 0.1722 0.1512 -0.1561 

0.1556 -0.1428 -0.1384 0.1512 0.1899 -0.1771 

-0.1517 0.1468 0.1512 -0.1561 -0.1771 0.1722 

and for the orthonormal natural pixel basis shown in figure 3.3 

c [ 0.5751 0.6879 -0.3641 -0.2124 0.0000 0.0000 ] T (3.77) 

0.0556 0.0340 -0.0589 0.0000 0.0000 0.0000 

0.0340 0.1250 0.0000 0.0000 0.0000 0.0000 

-0.0589 0.0000 0.1250 0.0000 0.0000 0.0000 
E· c (3.78) 

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Figure 3.8 shows, respectively, the continuous space reconstruction of the wedge 

shaped object using square pixels, Buonocore's natural pixels, and orthonormal nat-

ural pixels with the sampling defined by the impulse response functions of figure 2.4. 
,.-

Table 3.3 shows the mean and observed object squared error and the the observed 

projection squared error for these reconstructions. The natural pixel and orthonor-

mal natural pixel estimates have better observed squared error than the square pixel 

estimates. The square pixel estimator has better mean squared error characteristics 

than the unfiltered estimators based on natural pixels or orthonormal natural pixels 



50 

for the wedge shaped object. 

Basis Mean Object Observed Object Observed Projection 

Squared Error Squared Error Squared Error 

E lib - BTcll~ IIEb - BTcll~ IIEp -F . BTcll~ 
Bl 1.1775 3.2636 0.3001 

B2 1.3571 2.6294 0.2348 

B3 1.3571 2.6294 0.2348 

Table 3.3: Least squares reconstruction errors for a wedge shaped phantom sam­
pled with noise by a parallel beam tomographic system with three equally spaced 
projection angles and two projection bins at each angle. 

Table 3.4 shows the effects of using the diagonal weighting matrix defined in 

equation 3.66 with the value J varied from one to four for the example of figure 3.4. 

The projection estimate error decreases with the inclusion of each orthonormal natural 

pixel basis function; however, adding the image corresponding to the third basis 

vector, J = 4, increases the mean object squared error. The increase in mean object 

squared error is due to noise being added to the reconstructed image while no new 

information about the object is being added since the wedge phantom only has non-

zero projections onto the first three orthonormal natural basis vectors as shown in 

equation 3.19. 

.. 
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Figure 3.8: Least squares reconstruction of a wedge shaped object using top) square 
pixels, middle) Buonocore's natural pixels, and bottom) orthonormal natural pixels. 
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Truncation Index Mean Object Observed Object Observed Projection 

Squared Error Squared Error Squared Error 

J E lib - BTcll~ //Eb - BTcll~ IIEp - F . BTcll~ 
1 1.4762 1.9655 1.5270 

2 1.3839 2.8223 0.5360 

3 0.8571 2.4571 0.2584 

4 1.3571 2.6294 0.2348 

Table 3.4: Effects of truncating the number of singular values included in the singular 
value filter on orthonormal natural pixel least squares reconstruction errors for a 
wedge shaped phantom sampled with noise by a parallel beam tomographic system 
with three equally spaced projection angles and two projection bins at each angle. 

3.3 N orlllal Maxilllulll Likelihood 

The least squares estimator in the previous section did not use any information about 

the variance of the measurements. In this section, it is assumed that the projection 

measurements are samples from multi-normal random variables with known variance. 

The likelihood for the measurements is given by 

L (c) Pr {pic} 

(2n)_6t IEpl-~ 

exp [ - ~ (p - F . BT C ) T Ep 1 (p - F . BT c) ] . 

(3.79) 

(3.80) 

The normal maximum likelihood estimator (NMLE) can be found by maximizing this 

expression or alternatively the log-likehood, 

.. 
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1 (e) _ log {L (e)} (3.81) 

.. 8I< 1 I I -Tlog (271") - "2 log Ep 

-~ (p_F.BTe)T Ei/ (p-F.BTe) , (3.82) 

since the natural logarithm is a monotonically increasing function. Derivati'on of the 

NMLE follows. 

e _ arg max 1 (e) 
c 

(3.83) 

{ 8I< 1 I I arg mgx --2- log (271") - "2 log Ep 

-~ (p - F . BT e) T Ei/ (p - F . BT e) } (3.84) 

As was done for the least squares estimator, the gradient vector with respect to 

unknown parameters, e, is computed and equated with the zero vector, yielding a 

8K x 8I< system of simultaneous linear equations 

(3.85) 

In normal form, the system is 

(3.86) 

Applying the pseudoinverse of the the normal matrix yields 
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c (3.87) 

which is equivalent to 

(3.88) 

The estimator shown in equation 3.88 is commonly called a weighted least squares 

estimator because it is equivalent to the least squares method with the model and 

measurements preweighted by the inverse of the concomitant standard deviation. 

The covariance for the normal maximum likelihood estimator is 

For the Heavyside basis, the estimators and the covariance become 

c 

b 

and for the natural pixel basis 

c 

(E~~ p. BIT) + E~~E 

(Bl . pT Ei/ p. BIT)+ 

BIT (5. VT . BIT)+ UTE 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 
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Ec - U [S. STUTEi/us. sTruT (3.94) 

b V· ST [s. STUT Ei/us· STt S· STUT Ei/p: (3.95) 

The normal maximum likelihood estimators and covariance for the orthonormal nat-

ural pixel basis are 

c (3.96) 

(3.97) 

b 

(3.98) 

When the syste~ is non-singular, the matrix S . ST is invertible and the natural 

pixel estimator and orthonormal natural pixel estimator will not depend on the co-

variance of the projections. The same is true when the projection data acquisition 

process is homoscedastic; i.e., the covariance matrix is a constant times the identity 

matrix. In these cases, the least squares solution and the normal maximum likelihood 

solutions are equivalent. But, most importantly, the estimators can be precomputed 

and applied to multiple projection datasets for time-series analysis of dynamic pro-

cesses. Singularities in the system response will be considered further in chapter 4. 

3.4 Poisson Maximum Likelihood 

In emission tomography, the expected number of photons counted in a sampling time 

interval may not be large enough to justify approximating the measurement process. 
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as multi-normal. When the count rate is low, a more realistic model is to assume 

the measurements are samples from a multi-variate Poisson random distribution. The 

measurements are assumed to be statistically independent and the resulting likelihood 

function is 

exp (-FOk · BT c) (FOk . BT C)P6k 

L(c) = II , 
Ok POk· 

(3.99) 

As in section 3.3, the Poisson maximum likelihood estimator (PMLE) can be found 

by maximizing this expression or alternatively the log-likehood, 

1 (c) = L [FOk . BT C - log POk + POk log (FOk . BT c) ] 
Ok . 

over all possible image vectors, C; i.e., 

(3.100) 

c arg max 1 (c) (3.101 ) 
c 

argmgx {~ [FOk . BT c -logpok+ POk log (FOk . BT c)] } . (3.102) 

Computing the gradient vector with respect to the unknown parameters, c, and equat-

ing it with the zero vector results in a set of 8I< non-linear equations 

(3.103) 

There are no known closed form solutions for the Poisson maximum likelihood es-

timator (PMLE) of equation 3.103. Instead, an iterative solution is used. A technique 
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by Dempster [30] known as expectation maximizatiolf (EM) was first applied to to-

mography by Shepp and Vardi [21]. Their algorithm has been extended to generalized 

pixels as 

A (HI) _ A (t) 1 '" B . pT POk 
C - C T ~ Ok (t) • 

EOk B· POk Ok POk ' BTc 
(3.104) 

The iteration step is denoted by t. Under appropriate conditions [44], the covariance 

matrix for the generalized pixel estimates is approximated by 

~ [E -8
2
[(c) j+ 

8Cm,'n,8Cm,n 
(B. pTQ-1p. BT)+ 

where Q is a diagonal matrix given in tensor form by 

(3.105) 

(3.106) 

(3.107) 

For the Heavyside basis, the Poisson maximum likelihood estimators and the 

covariance become 

A(t) 1 L B1 . pT POk 
c EOk B1 . Pj;. Ok Okpok.B1Tc(t) 

E· c (B1. pTQ-1p. B1T)+ 

and for the natural pixel basis 

(3.108) 

(3.109) 

(3.110) 
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C(t+l) c(t) 1 I: US. STUT POk 
LOk US· STUrk Ok Ok U OkS· STUT C(t) 

" (3.111) 

E· c - U (S. STUTQ-1US· ST)+ U T (3.112) 

QO'k'Ok UOkS· STUTc 8o'o8k'k. (3.113) 

The Poisson maximum likelihood estimators and covariance for the orthonormal nat-

ural pixel basis are 

(3.114) 

(3.115) 

1 

U Ok (S. ST)2 C 8()'o8k'k. (3.116) 

3.5 Separable Inversion 

In section 2.1.1, a separable model for projection formation was proposed. Estima-

tors for the unknown spatial distribution for systems that are separable have special 

properties that lead to computationally fast and efficient implementations. Substi-

tuting the model of equation 2.22 into the generalized pixel least squares estimator 

in equation 3.43 yields 

c (3.117) 
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When the basis set chosen to represent the object has the property that BT B is 

the product of delta functions, e.g., the basis is composed of unique point samples, 

the least squares estimator becomes 

(3.118) 

If the matrix B . H . BT which is a pixelized version of the object blurring operator, 

H, is invertible, then 

(3.119) 

Haber's [45] spatially invariant method to correct for positron range blurring in PET 

with no projection blurring, i.e., G is an identity matrix, is an example of this least 

squares technique even though it was not expressed formally as equation 3.119. 

Additionally, if the projection blurring matrix, G, is invertible, an estimate for 

the mean of the generalized pixel representation of the object distribution is 

A ( T) -1 ( T T) + T-l C = B . H . B B . Fo Fo . B B . Fo G '!!. (3.120) 

and the covariance of those estimates is 

( T) -1 ( T T) + T 1 B·H·B B·FoFo·B B·FoG- Ep 

( I)T T( T T)+[( T)-I]T G- Fo . B B . Fo Fo . B B . H . B (3.121) 
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This suboptimal estimator has many desirable computation properties. The matrix 

G-l can be precomputed and is sometimes rotationally invariant. G-l is applied to a 

projection dataset which is then processed by a discretized Radon inversion algorithm 

such as filtered backprojection to forman image. The resulting image is then filtered 

by the inverse of the pixelized version of H. 

3.6 Simulation studies 

A series of simulations was performed on a cylindrical phantom, shown in figure 3.9. 

The phantom has non-zero constant intensity inside a circle with diameter -12 and is 

zero outside that circle. The cylindrical phantom studies were performed to compute 

regional bias and squared error between the estimate of the mean of the intensity 

and the true mean of the intensity. In these studies, a noiseless set of projections 

was created using the parallel beam tomograph model described in figure 2.5. The 

simulated projections for the cylindrical phantom were then scaled to a fixed image 

intensity. Two noisy sets of projections were created using either a n~rmal or Poisson 

pseudo-random number generator with the mean and variance set to the value of the 

noiseless projections [46]. These three sets of projections were then reconstructed 

using the least squares estimator of section 3.2 using square pixels, natural pixels, 

and orthonormal natural pixels which are shown in figure 3.10. The continuous space 

representation of the cylindrical phantom using orthonormal natural pixels is shown 

in figure 3.11. The simulation and reconstructions for the noisy projections were 

repeated for 16 sample paths of the pseudo-random number generator. The results 
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presented are averages of all samples. 

The continuous space representation of the square pixel truncated least squares 

estimate, equation 3.56 and equation 3.66, for the mean of the intensity of the cylin­

drical phantom as the truncation index or equivalently the number of generalized 

pixels reconstructed is varied is shown in figure 3.12. Figure 3.13 shows the contin­

uous space representation of the truncated least squares estimate, equation 3.68, for. 

the mean of the intensity of the cylindrical phantom using orthonormal natural pixels 

as the truncation index is varied. The images in both figure 3.12 and figure 3.13 were 

reconstructed using the are averages of 16 reconstructions of projection data with 

variance parameter equal to 16. The images are ordered from left to right and top to 

bottom to correspond with the standard non~decreasing order of singular values; the 

image at the top left corresponds to the largest singular value and the image at the 

bottom right corresponds to the smallest singular value. Each image has been scaled 

to give the largest contrast within the image; therefore, information about relative 

intensity between images has been lost. 

Figure 3.14 shows the observed bias, 

(3.122) 

for the reconstructed images of figure 3.12 and figure 3.13. Since the original projec­

tion model has little spatial variance, the normalized bias is small for both pixeliza­

tions. However, the normalized bias for the orthonormal natural pixel least squares 

estimate is about an order of magnitude smaller than the square pixel estimate. For 
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Figure 3.9: Cylindrical phantom used for simulations. 
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Figure 3.10: New orthonormal pixel basis for a parallel beam tomographic system with 
16 equally spaced projection angles and 16 projection bins at each angle. The pixels 
have been arranged to correspond to a non-increasing ordering of the the singular 
values from left to right and top to bottom. 
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Figure 3.11: Representation of a cylindrical phantom using the orthonormal natural 
pixels shown in figure 3.10 as more pixels are used to represent the object. 
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Figure 3. 12: Square pixel least squares reconstruction from noisy projections of cylin­
drical object . The number of generalized pixels used in the reconstruction increases 
left to right and top to bottom. 
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Figure 3.13: Orthonormal natural pixel least squares reconstruction from noisy pro­
jections of cylindrical object . The number of generalized pixels used in the recon­
struction increases left to right and top to bottom. 
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tomography systems that have more spatial variance, the observed bias is generally 

more pronounced . 

The effects of using the diagonal singular value filter matrix defined by equa­

tion 3.66 on the projection sum of squared errors, 

(3.123) 

are shown in figure 3.15 and on the object integral of squared errors, 

(3.124) 

are shown in figure 3.16. The solid line corresponds to a noiseless simulation; the 

other three curves are for simulations that used a projection dataset sampled from a 

multivariate normal distribution with variance parameter, as defined in equation 4.8, 

equal to 1 (dotted line), 4 (long dashed line), and 16 (short dashed line). In this 

context, the variance parameter is equivalent to a signal to noise ratio for the projec­

tion measurements. Each curve was normalized by the total expected object intensity 

squared to compare simulations with different object intensities. 

The projection error decreases with the inclusion of each orthonormal pixel basis 

function independent of noise level. However, for square pixels, the projection error 

will increase with the inclusion of more generalized pixel basis functions with the 

most rapid iIlcrease at high noise levels, i.e., small variance parameter. For the noise­

less simulation, the projection error for square pixels does not become zero because 

there is systematic error in the representation of the cylindrical object in the square 



0.002 

0.001 

Ul 

'" iIi 

" Q) 

.!::! 0 n; 
E 
0 

Z 

-0.001 

-0.002 

0.002 

0.001 

Ul 

'" iIi 

" Q) 

.!::! 
n; 0 

E 
0 z 

-0.001 

-0.002 

2 

Observed Object Bias 
(normalized by total object intensity) 

hlsh4.1000.1000.16.norm.bias 

Distance from Center (pixels) 

Observed Object Bias 
(normalized by total object intensity) 

olsrS.0250.0250.16.norm.bias 

3 

Distance from Center (pixels) 

68 

7 8 

Figure 3.14: Observed bias of least squares estimate of cylindrical object versus dis­
tance from center using upper) square pixels and lower) orthonormal natural pixels. 
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Figure 3.15: Sum of squared differences between the projection of the least squares 
estimate and the projection of cylindrical object versus number of generalized pixels 
reconstructed as the expected intensity is varied using upper) square pixels and lower) 
orthonormal natural pixels. 
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Figure 3.16: Integral of squared differences between the least squares estimate and 
cylindrical object versus number of generalized pixels reconstructed as the expected 
intensity is varied using upper) square pixels and lower) orthonormal natural pixels. 
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pixel basis. For display purposes only, a lower limit of 10-10 was imposed on the 

projection sum of squared errors for orthonormal natural pixels in figure 3.16. The 

projection sum of squared errors was 10-28 when 256 orthonormal natural pixels were 

reconstructed; i.e., there is very little systematic reprojection error using orthonormal 

natural pixels. 

The average of the object integral of squared errors decreases and then increases 

for both pixelizations in the noisy simulations as more generalized pixels are included 

in the reconstruction. The increase in object squared error is due to statistical noise 

being added to the reconstructed image while no new information about the object 

is being added. An additional systematic error is present in the square pixel recon­

struction and since this error is not stochastic, it will also be present in noiseless 

simulations. When using square pixels, the object error decreases and then begins to 

increase rapidly as the truncation index is increased in the noiseless simulation. By 

using orthonormal natural pixels, the systematic error due to the mathematical model 

is eliminated as evidenced by the non-increasing object integral of squared errors for 

the noiseless simulation. With noise present, reconstructions using either pixeliza­

tion undergo a rapid increase in object integral of squared error beyond a particular 

truncation index that corresponds to fixed resolution. A detailed discussion of the 

dramatic increase in the object error and its relationship to statistical fluctuations in 

the measured projection data is in chapter 4 . 

When datasets sampled from a Poisson distribution were used, similar results 

were observed. Typically, the number of generalized pixels needed to observed a 

rapid increase in object error is somewhat less and the projection sum of squared 



72 

errors is almost always greater. 

3.7 Experimental studies 

An example of the identification procedure used for a positron tomograph follows. 

Attenuation in the tissue due to photon absorption was measured by performing a 

transmission experiment. In this experiment, a positron emitter is orbited around 

the object and a set of projections was measured with the position of the source 

known [47]. A projection dataset was acquired without the object present, e.g, in air, 

to compute detector efficiency. A reconstruction of the attenuation coefficients was 

performed as described by Huesman et at [12]. It was assumed that attenuation of 

photons within the object varies slowly such that attenuation can be considered con­

stant across a projection ray and therefore a line integral approximation was justified. 

Also, the statistical quality of these measurements was assumed to be such that the 

fluctuations of F do not need to be considered during emission reconstruction. 

Crystal penetration was studied under the assumption of separability as described 

in section 2.1.1 [2]. Stochastic and deterministic simulations were used to determine 

the projection blurring matrix G of equation 2.22. A lower triangular circulant block 

form for G was obtained by arranging the elements of the projection vector, p, accord­

ing to the distance from the center of the tomograph and by ordering the elements 

within each block according to angle. G was inverted using a fast algorithm that 

uses both the lower triangular and the circulant block properties. This inverse was 

applied to an attenuation and detector efficiency corrected emission dataset of the 37 
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point hot spot phantom, shown in figure 1.1, acquired using the Donner 600-Crystal 

Positron Tomograph [47]. The resulting projection dataset was reconstructed using 

the backprojection of filtered projections algorithm and the reconstructed image is 

shown in the lower part of figure 1.2. Points that are on the outer edge are clearly 

improved over those shown in the upper image of figure 1.2 which have not been 

corrected for crystal penetration. 

Also visible on the penetration compensated image are artifacts due to the correc­

tion procedure. These artifacts arise from the fact that in the stochastic simulation of 

the projection blurring matrix, G, the elements of G are computed as average transi­

tion probabilities between two projection bins and the measured projections of a point 

source will have different transition probabilities than the average. The method ap­

pears to amplify statistical noise a great deal in order to gain a modest improvement 

in radial resolution. Further work to characterize the statistical correlations between 

pixel estimates is under way. 



Chapter 4 

Optimization 

The generalized pixel estimators in chapter 3 were derived for a tomograph with 

known system response, F. It was shown that the fluctuations of these estimators 

due to random variations in the measurements can be characterized in terms of the 

covariance between estimates. In this chapter, a technique to characterize the effects 

angular and lateral sampling density have on reconstructed image resolution and 

noise is developed and used to examine an example system. These results lead to a 

method to optimize sampling strategies given bounds for noise and resolution. The 

optimization procedure uses a criterion that is a function of the covariance matrix. 

4.1 Covariance 

The least squares, normal maximum likelihood, and Poisson maximum likelihood gen­

eralized pixel estimators for the mean of the unknown distribution, b, have asymp­

totically a covariance matrix 

74 
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(4.1 ) 

if the measurements are assumed to be independent and homoscedastic with variance 

p. 

To bound the statistical error associated with the reconstruction process, the L2 

norm of the covariance matrix is computed using induced norms. To compute the 

induced norm, a unit vector c is multiplied by the covariance matrix and the norm of 

the resulting vector is calculated. The length of the unit vector is scaled up or down 

and the largest scale factor is the induced norm. Symbolically, the operations are 

(4.2) 

Substitution of equation 4.1 into the definition of induced norm yields 

(4.3) 

which for the orthonormal natural pixel basis, B3 of equation 3.11 is 

IIEell, = IIml~' P {[ (S. STf l~ s.vT· FTF· V· ST [(S. STrn + c (4.4) 
2 

After simplifying the terms of the pseudo-inverse by substituting the singular value 

decompositi~n of the projection formation operator, 
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(4.5) 

The induced norm of a diagonal matrix is equal to the maximum of the absolute value 

of the matrix elements; therefore, 

(4.6) 

and since the maximum of a reciprocal is the reciprocal of the minimum 

(4.7) 

From the induced norm, it can be seen that the bound on the noise amplification 

during reconstruction is inversely proportional to the square of the smallest singular 

value of the projection formation operator. Thus, it is necessary to find the square 

of the singular values of F to compute the error bound. This differs from the deter-

ministic error propagation approach where the noise amplification is the ratio of the 

largest singular value to the smallest singular value; i.e., the condition number [14] 

[18]. 

4.2 Simulation studies 

A parallel beam tomographic system with equally spaced p~ojection angles and lateral 

projection bins similar to the one in figure 2.5 was simulated to examine the effects 
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of angular and lateral sampling density on reconstruction. The number of angles 

sampled, S, was varied from 1 to 80 while keeping the number of lateral sampling 

bins, f{, fixed at 16 in one set of simulations. A family of plots of the norm of the 

covariance matrix versus the number of generalized pixels reconstructed or equiva­

lently the truncation index, J, is shown in figure 4.1. Recall that the truncation index 

defined in equation 3.66 is the index of the smallest singular value included in the 

reconstruction; thus, according to equation 4.7, the norm of the covariance matrix 

will be equal to the inverse of the singular value of the projection normal matrix at 

the truncation index. To compare the simulations with a different number of angular 

samples, the variance parameter, p, was varied such that all the simulations are noise 

equivalent; i.e., 

Tr ( Ep) = Sf{ P = constant. (4.8) 

Therefore, p is inversely proportional to the total number of projection measurements, 

Sf{, and the covariance norm plots have been divided by the value of Sf{ used in 

the simulation. 

When the number of projection angles is 16 or greater the moving average of the 

norm of the covariance matrix increases almost linearly with a slope of approximately 

0.6 on a log-log plot as the truncation index increases until there is a more rapid 

increase at truncation index 150. In other simulations, not shown here, that had 8 

and 24 lateral sampling bins, a similar increase in the moving average of the norm of 

the covariance matrix with approximate slope 0.6 and then a rapid increase is observed 
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Figure 4.1: Norm of covariance matrix versus number of generalized pixels recon­
structed for a set of parallel beam tomographic systems with e = { 1, 2, 4, 6, 8, 10, 
12, 14, 16, 18, 20, 24, 28, 32, 40, 48, 56, 64, 80 } equally spaced projection angles 
and J{ = 16 projection bins at each angle. 
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when the number of projection angles is greater than or equal to the number of lateral 

projection bins. Note that norm of the covariance matrix changes most significantly 

-over only a three order of magnitude range implying that numerical error from the 

robust technique used to compute the singular values should be negligible. 

There is a correspondence between the point where the moving average of the 

norm begins to rapidly increase and the total number of projections measurements. 

The analysis used to obtain equation 2.21 where the number of linearly independent 

projection measurements was found to be 8(f{ - 1) + 1 was based upon the zeroth 

spatial moment of the mean of the object distribution. By considering the higher order 

spatial moments of the mean of the object distribution using a technique similar to 

that proposed by Ein-Gal et al [48], there will be e - 1 degrees of freedom lost for the 

zeroth moment when each angle is paired with one angle, e - 2 degrees of freedom 

are lost for the first moment when each angle is mated with two angles, and so on up 

to the f{ - 1 moment. Thus, there are approximately 

](-1 

ef{ - L (e - k - 1) (4.9) 
k=O 

measurements that are independent in the zero through f{ -1 moments. This analysis 

relies upon continuous lateral sampling and is therefore only a lower bound on the 

number of independent measurements for discrete lateral sampling. 

The important feature of figure 4.1 is for reconstruction spatial resolutions coarser 

than a well defined resolution threshold, increasing the number of angles sampled will 

decrease the noise in images reconstructed from data acquired by a system that has 
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more angular samples than the number of lateral samples. For resolutions finer than 

that resolution threshold, very little improvement in resolution is obtained without 

a large increase image noise. For f{ = 16, the lower bound from equation 4.9 is 136 

generalized pixels and the number observed from simulations is 150 generalized pixels. 

Huesman [49] was one of the first to realize the implications of finite angular and 

lateral sampling on statistical reconstruction noise. He performed a detailed study 

of these effects using a projection model based on parallel line integrals sampling a 

circular grid of square pixels. His analysis suggests the number of. projection angles 

should be 1.5 D / d and the number of lateral samples should be 2.0 D / d to maintain an 

appropriate bound on reconstruction noise amplification. D is the linear dimension 

of the reconstruction region and d is the linear dimension of the cells into which 

the reconstruction region is subdivided (resolution length); therefore, the number of 

square pixels should be ;2 0f{. For f{ = 16, Huesman would predict 67 square pixels. 

This bound is much more conservative than the bound from the moment analysis or 

the bound from the simulations of figure 4.1. It is possible that while trying to study 

only statistical errors, Huesman was also experiencing significant deterministic errors 

due to line integral model sampling of square pixels and the numerical instability 

of the matrix inversion technique being used. These deterministic errors may have 

influenced his choice for the angular and lateral sampling bounds. 

Figure 4.2 shows a family of plots of the norm of the covariance matrix versus the 

truncation index, J, for a set of simulations where the number of lateral sampling 

bins was varied from 1 to 80 while keeping the number of angles sampled fixed at 16. 

'!\Then the number of laterally sampled bins is less than or equal to the number of 

.... 
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angles sampled, a sharp increase in the moving average of the norm of the covariance 

matrix is again observed above the index predicted by equation 4.9; e.g., for ]{ = 8, 

moment analysis yields 36 generalized pixels and the value from simulation is 38 

generalized pixels. When the number of laterally sampled bins is greater than the 

number of angles sampled, there is a less abrupt change in the slope of the covariance 

norm movmg average. 

By increasing the number of lateral projection bins, resolution and reconstructed 

image noise are always improved. However, for any angular and lateral sampling 

density, there is a resolution threshold beyond which improvements in resolution are 

only achieved with a large increase in image noise. Furthermore, the number of 

generalized pixels corresponding to that resolution threshold are far fewer than the 

total number of projection measurements. 

To elaborate the utility of this method to optimize sampling, consider a parallel 

beam tomographic system with equally spaced angular and lateral sampling that has 

the number of angular samples constrained to be e = 16. The desired resolution for 

a reconstructed image is 100 pixels. From figure 4.2, the number of lateral sampling 

bins should be ]{ = 14 to obtain a reasonable bound on reconstructed image noise. 
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Figure 4.2: Norm of covariance matrix versus number of generalized pixels recon­
structed for a set of parallel beam tomographic systems with e = 16 equally spaced 
projection angles and f{ = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 40, 48, 
56, 64, 80 } projection bins at each angle. 



Chapter 5 

Implementation of Algorithms 

5.1 Orthonormal Least Squares 

The continuous space representation of the truncated minimum L2 norm least squares 

estimator for the mean value of the orthonormal natural pixel image is from equa-

tion 3.68 

J-l 

b = LV. 5J (5 . 5T) + UTE· (5.1 ) 
j=O 

This image is converted to a square pixel representation by performing the operations 

of equation 3.4 using the Heavyside basis operator, Bl, of equation 3.9. The resulting 

square pixel representation is 

c 
J-l 

'" T ( T)+ T ~ B1 . V . 5 j 5· 5 U E (5.2) 
j=O 
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and after substituting equation 3.12 into equation 5.2, 

(5.3) 

In general, the computation of the projection normal matrix requires 0(02 f{2) 

integral evaluationsl 2. An fl(83 f{3) singular value or eigenvalue decomposition rou-

tine is used to compute U and S . ST. After the singular value decomposition of 

the projection normal matrix is known, evaluation of equation 5.3 uses 0(02 f{2) 

operations. 

For a rotationally invariant system, described in section 2.1.2, the evaluation of the 

projection normal matrix requires only 0(0]{2) integral evaluations and its singular 

value decomposition requires fl(0f{3) operations using the block circulant singular 

value decomposition algorithm described in section 5.2. The rotationally invariant 

1 Let n, no E Nand f. E fl, f. > O. Also, f, g : N --+ R. Then, define 
[51] 

l. Upper bound 

O(f(n)) - {g(n) : g(n) :S f.f(n) 'V n > no} 

2. Lower bound 

O(f(n)) - {g(n) : g(n) ~ f.f(n) 'V n > no} 

3. Combined bound 

0(f(n)) - O(f(n)) n O(f(n)) 

4. Asymptotic 

n-oo g n 
fen) ..... g(n) {::} lim f((n)) = 1 

2Using the symbol 0 for the number of projection angles measured and the combined bound 
functIon 0(·) is somewhat confusing but parenthesis distinguish between the two uses. 
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orthonormal least squares estimator is computationally tractable on current com-

puter systems. The separable estimators discussed in section 3.5 also have similar 

computational properties. 

5.1.1 Implementation 

The C programming language [50] function call 

1 

orthols (e,F· B1T,B1· FT,svd(A), (s. ST)~J ,integration-factor) 

will compute the estimator of equation 5.3. The source code for a sequential imple-

mentation is given in section B.1 and a block diagram of the algorithm is shown in 

figure 5.1. The first argument is a vector of square pixel image amplitudes that will 

be computed by the function. The second and third arguments are, respectively, the 

projector and backprojector functions which are compatible with the RECLBL [12] 

reconstruction software. The fourth argument is a routine that will return the singu-

lar value decomposition of the projection normal matrix, A; an example C language 

routine is given in section B.2. The fifth argument is the minimum singular value to 

be used in the reconstruction and the last argument is an integration factor as defined 

by RECLBL. 



86 
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c 

c 

Figure 5.1: Block diagram of orthonormal natural pixel least squares estimation al­
gorithm. 
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5.2 Block Circulant Singular Value Decomposi­

tion 

A special class of matrices have the block circulant structure shown in equation 5.4. 

There are M x M blocks each of dimension m x n. This form of matrix arises quite 

frequently when a function is invariant under rotation. As an example for the rest of 

this section, the case where M = m = n = 64 shall be used because it is representative 

of typical SPEeT reconstructions. 

Ao Al A2 .. AM-2 A M- I 

AM-I Ao Al AM-3 AM-2 

A M- 2 
A 

A M- I Ao AM-4 A M- 3 
(5.4) 

A2 A3 A4 Ao Al 

Al A2 A3 AM-I Ao 

A 0( mnM log M) fast Fourier transform (FFT) technique [15] [52] and an 

n(M min(m, n)mn) singular value decomposition (SVD) algorithm are used to com-

pute the factorization [53] 

A (FM 0 Im)t D (FM0In) (5.5) 

- (FM 0 Im)t U DSD Vb (FM 0 In) (5.6) 

USDVt (5.7) 

USVt (5.8) 
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where FM is a normalized M x M discrete Fourier operator matrix, 1m is an m x m 

identity matrix, and In is an n x n identity matrix. U and V are unitary matrices 

whose columns are respectively the left and right singular vectors of A.3 S is a 

generalized diagonal matrix containing the singular values of A. The operator t 

is conjugate transpose and 0 is the outer product op.eration. A proof is given in 

section A.2. 

5.2.1 Implementation 

The C language function call 

zbcsvdc (A, M, m, n, 5, U D, V D, compute_uv, status) 

IS used to compute the singular value decomposition of A that is shown in equa-

tion 5.6. The source code for a sequential implementation is given in section B.3. 

Each of the mn discrete Fourier transforms of equation 5.6 can be computed 

independently; i.e., each sum does not need the result or input of another sum. The 

SVD of the blocks of D also do not have input/output dependencies with other blocks 

and can be computed without explicit synchronization. Therefore, parallel processing 

implementations of the block circulant singular value decomposition algorithm are 

possible. 

Two parallel versions of the BCSVD algorithm were implemented and tested on 

a Cray-2 supercomputer using macrotasks [53]. The 0(J\llog M) grain size of FFT 

3The matrix A of equation 5.4 is more general than the one defined by equation 2.26 because 
the matrix in equation 5.4 has rectangular blocks and complex elements. Also, the symbols U, V, 
and S have different meanings than in equation 2.7. 
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tasks is extremely small. For the example, it takes about 0.45 ms [54] [55]. This is 

comparable to the 0.31 ms necessary to synchronize with a server process and is much 

smaller than the 2.63 ms necessary to create a new process. It is thus advantageous 

to increase the grain size of FFT tasks by computing m FFTs per task. The resulting 

granularity of 8(mM log M) is about 29 ms. The task granularity of an SVD process 

is n(min(m,n)mn) which is 428 ms for the example problem. 

A prescheduled algorithm was implemented by creating one process for each of 

the n FFT tasks and another processes for each of the A1 SVD tasks. The parent 

task starts k processes with either an FFT or an SVD task. All of the k processes run 

to completion before another k processes are started. This method is very easy to 

implement because all synchronization is implicit in the fork and join like paradigm 

[56]: 

To overcome the process creation overhead, a self-scheduling algorithm was con­

structed [57]. This method is more complex than the prescheduled algorithm but has 

a smaller time overhead. It requires explicit synchronization between server processes 

and a task manager. k server processes are created and each waits for a start signal 

after initial setup of local state information. After receiving the start signal from the 

task manager, a server checks what part of the matrix it is to work on next. When 

finished the server sends a ready signal to the hibernating manager. The manager 

then reassigns each of the server processes until the task queue is empty. 
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5.2.2 Results 

Figure 5.2 shows the computation time for different sizes of input matrices. The 
... 

speedup of the algorithm, shown in figure 5.3, increases as the size of M, m, and n 

are increased. The prescheduled algorithm is faster for very small matrix sizes because 

the self-scheduled algorithm server processes have a larger startup overhead than a 

process started by the prescheduled algorithm. The self-scheduled algorithm is faster 

for medium sized problems that have small grain sizes but the prescheduled algorithm 

again approaches the speedup of self-scheduling as the problem size increases. 

The efficiency, shown in figure 5.4, does not approach unity as quickly as expected. 

This might be attributed to the timesharing scheduling algorithm used by the CTSS 

operating system and not to synchronization overhead because the overhead, shown 

in table 5.1, is less than 1.0% for M, m, and n larger than 64 [58] [59]. It was not 

possible to verify this conjecture by using the machine without other users present. 

M=m=n prescheduled self-scheduled 
overhead (ms) % overhead overhead (ms) % overhead 

4 25.7 29.9 
8 46.8 42.77 32.3 5.09 

16 80.2 10.89 37.3 1.29 
32 155.7 2.66 47.2 0.32 
64 306.8 0.61 67.1 0.07 

Table 5.1: Synchronization overhead versus problem size. 

The process creation time was found to be 2.63 ms. Task synchronization in the 

self-scheduling algorithm was 0.31 ms. A typical procedure call was measured to take 

4.7 J.ls. Self-scheduling has less time overhead than prescheduling but is still 66 times 
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Figure 5.2: Computation time versus problem size with four tasks and four processors 
available to service tasks. 



4 

3 

1 

Multitasking speedup versus Matrix size 
Prescheduling algorithm dotted line 

Self-scheduling algorithm short dashed line 

I' 
j' 

/ 

I 
I : 

j, I ...-
/' I.: 

, I ... 
'- .'. / 

/ 
I .'- .. 

/ ..... 

I-~'--:'-~-:-:-:----:'-~-_/"---' 
/ 

....... 

;..' 
1:' 

.I 
.:7 

.... ' ..... / 
.... I 

.... / 
.... I 

.: I 

:' I 
:' I 

,l./ 
;... 

o+------------+------------+-----------~----------~ 

o 20 40 60 80 

Matrix size, M=m=n 

92 

Figure 5.3: Speedup versus problem size with four tasks and four processors available 
to service tasks. 
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Figure 5.4: Efficiency versus problem size with four tasks and four processors available 
to service tasks, 
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more expensive than a procedure invocation. 

Data memory usage and overhead is shown in table 5.2. Very little memory is 

necessary for the synchronization of tasks. Each of the processes needs some local 
.. 

working storage for computing FFTs and SVDs. Code memory usage and overhead 

is shown in table 5.3. The code space sharing was small due to a problem in the 

Fortran compiler that made code replication necessary. 

M=m=n sequential prescheduled self-scheduled 
usage (kB) usage (kB) % overhead usage (kB) % overhead 

8 112 409 265.2 475 324.1 
16 240 533 130.4 604 151.7 
32 1648 1946 18.1 1948 18.2 
64 12400 12698 2.4 12888 3.9 

Table 5.2: Data memory usage and overhead versus problem size with four tasks. 

k sequential prescheduled self-sched uled 
usage (kB) usage (kB) % overhead usage (kB) % overhead 

1 404 450 11.4 447 10.6 
2 404 489 21.0 492 21.8 
3 404 530 31.1 537 32.9 
4 404 570 41.1 582 44.1 

Table 5.3: Code memory usage and overhead versus number of active tasks. 

Dynamic memory allocation costs are basically independent of the block size be-

ing allocated for small blocks. The cost depends almost entirely on the number of 

blocks being allocated. Each block takes approximately 0.68 ms to allocate. The 

server processes of the self-scheduling algorithm avoid this overhead by reusing their 

local storage during each activation. The prescheduling algorithm originally allocated 
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local storage blocks within each child process. This was deemed to be unsatisfactory 

and another parameter with working storage was passed to each child to avoid the 

overhead of dynamic memory allocation. 

The BCSVD algorithm provides orders of magnitude speedup by utilizing the 

circulant structure of matrices. A further speedup waS obtained using macrotasking. 

This does not reduce central processing unit charges because time on all processors is 

billed to the job [59]. However, a substantial savings in memory charges is achieved 

because the program memory residency time is reduced by the multiprocessor speedup 

[60] [61]. For typical problems M, m, and n are approximately 256. This requires 

approximately 800 megabytes of memory which can be quite costly to use. 

Self-scheduling is useful when the task granularity is small. As the task granularity 

increases, prescheduling overhead becomes less important. Prescheduling is much 

easier to implement and debug. There are no explicit synchronizations to consider 

since the operating system handles the process allocation and scheduling. The parent 

only has to wait for the operating system to signal that the child has finished. Self­

scheduling needs explicit synchronization with the server tasks and is therefore more 

difficult to implement and debug. 

The Fortran compiler does not allocate local variables on the stack properly. It 

puts some local variables into static storage. Thus, code sharing is not possible for 

the Fortran subroutines. Each process must have a separate copy of the code and 

local data space. This was done by creating copies of the subroutines and giving 

each copy a unique name space by appending the process number to the name of the 

subroutine and all of its descendants. 



Chapter 6 

Summary and' Conclusion 

The work for my dissertation has focused on novel configuration space models (CSM) 

for processing multidimensional signals acquired using modern tomography systems 

that have an anisotropic or spatially variant response function. A motivation for the 

project is accurate estimation of radiotracer distributions from emission tomograph 

data. Accurate estimates are necessary for use in quantitative models of physiologi­

cally important processes such as the in vivo density of neuroreceptors. My research 

of algorithms and architectures for reconstructing tomographic data has three distinct 

parts: identification, estimation, and optimization. 

An identification procedure is performed where the response function of the tomo­

graph is found using a combination of deterministic and stochastic simulations and 

measured point response data. Because the model assumes the detection process has 

a discrete domain and the original distribution has a continuous domain, the model 

is easily adapted to include a variety of physical effects found in positron tomography 

96 
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(PET), single photon emission computed tomography (SPECT), and nuclear mag­

netic resonance imaging (NMRI). For PET, the response function model can include 

radioactive decay, positron range, non-collinearity of photons, sampling geometry, at­

tenuation, inter-crystal scatter, crystal penetration, and detection efficiency. Several 

of these phenomena lead to position dependent resolution. 

An estimator for the unknown spatial distribution is formulated using the known 

response function and the statistical characteristics of the acquired data. Generalized 

pixel least squares, normal maximum likelihood, and Poisson maximum likelihood 

estimators and the corresponding covariance have been formulated to compensate for 

a spatially variant response. Reconstruction algorithms based on the spatially variant 

model have reduced bias when compared to spatially invariant methods. While bias 

is reduced by these estimators, undesirable statistical and systematic fluctuations due 

to pixelization effects can result. To reduce these fluctuations, an algorithm that uses 

a orthonormal pixel basis decomposition of the unknown spatial distribution was de­

veloped. The pixel basis functions are chosen from the right singular functions of the 

system response operator and therefore are fundamental to a particular tomography 

system. With this pixel basis, systematic error is zero and statistical error can be re­

duced by filtering the singular values of the impulse response function as evidenced by 

analytical calculations and simulation studies. Additionally, these simulation studies 

suggest the existence of a resolution threshold beyond which improvements in resolu­

tion are achieved only with a large increase in image noise. The convergence rate and 

the computation time for each iteration of iterative algorithms can also be adjusted 

by weighting the singular values without adding systematic error which is in contrast 
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to square and polar pixel multigrid approaches. However, some estimator bias will 

usually result for this suboptimal estimator. Computation burden is sometimes re­

duced when using the orthonormal natural pixel basis because symmetries in the data 

acquisition process are preserved. For some systems, further computational efficiency 

can be achieved using suboptimal separable estimators. 

The third part of the work is to optimize the system so better estimates of the 

unknown spatial distribution will result. The criterion used is to minimize the norm 

of the covariance matrix while keeping the estimator unbiased. This is typically done 

by simulating a change in one of the parameters used to identify the system response 

function and evaluating the criterion; closed form solutions are not usually possible. 

In the orthonormal pixel basis described previously, the norm is readily computed 

from the singular values of the projection normal matrix. For emission tomogra­

phy, the system parameters that are most easily changed are the angular and lateral 

sampling density. The important result for parallel sampling with equally spaced 

angles and bins is that for spatial resolutions coarser than a well defined resolution 

threshold, increasing the number of angles sampled will decrease the noise in images 

reconstructed from data acquired by a system that has more angular samples than 

the number of lateral samples. For resolutions finer than the resolution threshold, 

very little improvement in resolution is obtained without a large increase image noise. 

By increasing the number of lateral projection bins, resolution and reconstructed im­

age noise are always improved. However, for any system configuration, there exists 

. a resolution threshold beyond which improvements in resolution are achieved only 

with a large increase in image noise. Furthermore, the number of generalized pixels 
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corresponding to that resolution threshold are far fewer than the total number of 

projection measurements. In fact from moment and singular value analysis, the num­

ber of generalized pixels is approximately equal to one-half the number of projection 

measurements. 

The identification, estimation, and optimization methods described above all re­

quire the solution of large systems of linear and non-linear equations. For example, 

the Donner 600-Crystal Positron Tomograph takes 120,200 projection measurements 

and the resulting linear system is 120,200 x 120,200. The computational complex­

ity of the CSM has led to the use of a distributed computing environment in which 

workstations are used to analyze results from our identification, estimation, and opti­

mization algorithms running on supercomputers. Several of the algorithms have been 

implemented using large grain parallel processing and also remote procedure calls. 

The block circulant singular value decomposition (BCSVD) algorithm uses dis­

crete Fourier transforms to rotat~ the blocks of a block circulant matrix into block 

diagonal form. Each block on the diagonal is then factored using a general singu­

lar value decomposition (SVD) algorithm. The BCSVD algorithm provides ·orders of 

magnitude speedup over general SVD algorithms. For a 642 x 642 block circulant ma­

trix, computation time decreased from 12 hours to 23 seconds on a Cray-2. Because 

the BCSVD algorithm is easy to partition, a further speedup can be achieved using 

parallel processing. The orthogonality properties of multidimensional fast Fourier 

transforms (FFT) allows the FFT portion of the algorithm to partition into macro­

tasks. The SVD of the blocks of the block diagonal matrix can be computed indepen­

dently and a macrotask can be .assigned to each SVD. A multiprocessor speedup of 
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3.06 was achieved for prescheduling and for self-scheduling a multiprocessor speedup 

of 3.25 was observed using four processors on a Cray-2. Relative time overhead was 

0.5% for the prescheduled algorithm and 0.07% for the self-scheduled algorithm. Rel­

ative memory overhead was 4% for both cases. Self-scheduling is useful when the 

task granularity is small. As the task granularity increases, prescheduling overhead 

becomes less important. The prescheduled algorithm is satisfactory for most emission 

tomography problems because all the dimensions of the matrices are greater than 64 

and the task granularity will therefore be large when compared to the synchronization 

overhead. 

Multitasking the block circulant singular value decomposition algorithm decreases 

overall computation costs by reducing the time large sections of memory are in use. 

Little or no gain comes from reduced central processing unit charges since processing 

time on all processors is charged to a job. 

The data acquisition model presented in this work provides a mathematical frame­

work to incorporate detailed knowledge about the response function of a tomography 

system and the statistical properties of the signals acquired using that system. Us­

ing this mathematical model, it is easy to represent systems of varying complexity; 

e.g., simple spatially invariant systems, systems with spatially variant response that 

have symmetries, and the most general linear case, a spatially variant system with­

out symmetry. The novel singular value decomposition of the projection formation 

operator used in the data acquisition model is a powerful mathematical description 

of a tomography system and is fundamental to the identification, estimation, and 

• 



Projection formation 

p = F·b 

Projection formation singular value decomposition 

F = US·VT 

Projection normal matrix 

Generalized pixel representation 

b~BTc 

Orthonormal natural pixel basis 
1 

B3 = [( S . ST) + r S . VT 

Generalized pixel least squares estimation 

c (S . V T . BT) + U T 1!. 

~c (S. V T . BT)+ UT~pU (B. V· ST)+ 

b BT (S . V T . BT) + U T 1!. 
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Orthonormal natural pixel filtered singular value least squares estimatiOl~ 
1 

C D [( S . ST) + r U T 1!. 

~c - D [( S . ST) +] ~ U T ~pU [ (S . ST) +] ~ D 

b V . ST D (S . ST) + U T 1!. 
Variance bound 

-p 
//Eci/2 = T mini (S . S )ii 

Block circulant singular value decomposition 

A = (FM0Im)t UDSDVb (FM0In) 

Table 6.1: Summary of major mathematical results. 
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optimization methods developed here. While the results presented for several repre­

sentative tomography systems are not inconsequential, the mathematical techniques, 

which are summarized in table 6.1, used to obtain these results are the primary contri­

bution from this work. These techniques should find the most utility in modeling the 

spatial sampling of each unique tomograph. Extensions of the model to include sam­

pling in three or more spatial dimensions as well as time should be straightforward; 

but, in practice, higher dimensional applications may be limited by computational 

tractability without using special computing technology. 

Because the data acquisition process is represented as a linear map from a con­

tinuous domain object space to a discrete domain observation space, it is a more 

physically realistic model of many systems than approximations using continuous­

continuous maps or discrete-discrete maps. Thus, the validity of many results that 

were obtained using these approximations, e.g., angular and lateral sampling density 

in emission tomography, may need to be reexamined using the new, more robust 

techniques presented in this work. While the verification of old results is worthwhile, 

it is the unanswered questions such as the efficacy of iterative algorithms and stop­

ping rules, the formulation of Bayesian estimators that use basis functions in the null 

space of the projection formation operator, the representation of object functions that 

are convex cones, and the efficiency of algorithm -implementations that provide chal­

lenging new research opportunities for the application of the mathematical methods 

resulting from this thesis. 

• 
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Appendix A 

Singular Value Decomposition 

A.I Projection Formation Singular Value Decom-

position 

The projection normal matrix is symmetric and positive semidefinite because for an 

arbitrary projection vector, p, 

9-11(-1 9-11(-1 

pT Ap 2:: 2:: P8'k' 2:: 2:: A8'k'8kP8k (A.I) 
8'=0 k'=O 8=0 k=O 
9-11(-1 9-11(-1 

- e"f0'foP8'k' ~ ~ k dy k dxfe'k'(X,y) !8k(X,y) P8k (A.2) 

9-11(-1 9-11(-1 k dy k dx 2:: 2:: !8'k'(X,y) P8'k' 2:: 2:: !8k(X,y) P8k (A.3) 
8' =0 k' =0 8=0 k=O 

1. dy 1. dx r.~ % /ok (x, y) Po> r (A .4) 

> O. (A.5) 
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Since A is positive semidefinite, the eigenvalues, S . ST, are non-negative. Let the 

eigenvalues be ordered such that 

(s . ST) > .. , > (S. ST) 
0,0 - r-1,r-1 

> 0 = (S. ST)r,r = ... = (S. ST)0K_1,0K_1 . (A.6) 

Also, let U 1 be the submatrix of orthonormal eigenvectors corresponding to the 

non-zero eigenvalues, (S. ST) , ... (S . ST) , and U 2 be the submatrix of or-
0,0 r-1,r-1 

thonormal eigenvectors corresponding to the zero eigenvalues, 

(s . ST) , ... (S . ST) , such that r,r 0K -1,0/\-1 

U [U1 U 2 ] and (A.7) 

S·ST [ 51 . sf 0 ] (A.S) 
o S2' sf 

[ 51 0 Sf :] (A.9) 

Therefore, 

UiAU1 Sl' sf, (A.lO) 

U;AU') - - o and consequently (A.11) 

UfF O. (A.12) 

Choose VI so 

,. 

'. 
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.. 

· and choose V; such that 

v 

V·VT 

UTF·V 

[V! V;] and 

[ h ovt V,OV,r ] 
8(x' - x)8(y' - y). 

[Ut U 2]T F '['1J V2] 

[ ~n F· [h V,] 

[ 
ui F . V! ui F . V; 1 
Ur F . V! Ur F . V; 

[ 

S1 . ~T . V! S1' ~T . ,;; ] 

O'V! O·V; 

[:' :] 
S. 

Finally, the singular value decomposition of F is 
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(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.2I) 

(A.22) 
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F (A.23) 

A.2 Block Circulant Singular Value Decomposi-

tion 

Let A~~qL be the p, q element of the /{, L block of the matrix A in equation 5.4. Since 

A is block circulant, 

AO,L-](+M 
p,q 

- A~,q 

and it can be decomposed as follows 

A](,L 
p,q 

1 M-l 1 M-l 
'""' _w[(27r '""' tvL 27r 

--~e M--~e M 

VM u=O VM v=O 

1 M-l 1 M-l 
'""' w](,27r '""' -tvL' 27r A[(' L' -- ~ e M-- ~ eM' VM ]('=0 VM £1=0 p,q 

1 M-I 1 M-I -- L e-w/(~ -- L etvL~ 
~ u=O ~ v=O 

1 M-I 1 M-l 
'""' w](,27r '""' _tvL'27r A O L'-]('+M 

--~e M--~e M ' 

VM /('=0 VM £1=0 p,q 

1 M-I 1 M-l 
'""' _tu[(2

7r 
'""' tvL

27r 
--~e M--~e M 

V1Vi u=O ~ v=O 

1 M..,.l 1 2M+]('-1 
'""' tu](,27r '""' -tv(L'+/('-M)27r

A
0 L' -- ~ e M-- ~ eM' 

VM /{'=O VM L'=]('+M p,q 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 
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1 M-l 1 M-l 1 
~ _tUI(27r ~ wL27r 

-- ~ e M-- ~ e M--

VM u=o v7Vi v=o VM 
M-l 1 M-l 
~ t(u_v)I(,27r ~ -wL'27r AOL' 
~ e M 'AI ~ e M p:q 

1('=0 v lVl £'=0 

1 M-l 1 M-l 
~ _tUI(27r ~ wL27r -- ~ e M-- ~ e M 

VM u=o VM v=O 

1 M-l VM8u,v_'_ ~ e-wL'~ AO,L' 

'AI ~ p,q 
V lVl £'=0 

1 M-l 1 M-l 
~ -tUl( 27r ~ wL 27r cu vDu v -- ~ e M-- ~ e MO' , 

v7Vi u=O VM v=o p,q 

1 M-l 1 M-l 
~ _tUJ(27r ~ wL27r cu vDo u-v 

I7I.i ~ e M I7I.i ~ e M 0' p'q • 
vM u=o vM v=o ' 

Thus, in matrix form, the block circulant decomposition of A is 
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(A.30) 

(A.31) 

(A.32) 

(A.33) 



Appendix B 

Software and Documentation 

B.l orthols.c 
/* 
** Header: 
** 
** Name: 
** 
** Purpose: 
** 
** 

~(#) orthols.c 1.5 91/10/29 16:12:21 baker penguin UCB/LBL 

orthols 

The subroutine orthols reconstructs the array image 
using the orthonormal natural pixels least squares method. 

** Input parameters: 
** 
** 
** 
** 
** 
** 
** 

prj 
bck 
fftsvd 
min_sing 
int_fac 

entry point of projector 
entry point of backprojector 
entry point of singular value decomposition routine 
minimum singular value to be used in the solution 
integration factor 

** Output parameters: 
** 
** 
** 
** 

image orthonormal least squares solution 
image[parm.ipar.ndimu] [parm.ipar.ndimu] 

** Dependencies: 
** 
** libreclbl.a 
** cemesg error message routine 
** clgtxt print text banner 
** memst memory management 
** rchek initialization check 
** orthobck 
** orthonormal natural pixels backprojection 
** orthosquare 
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** 
** 
*/ 

orthonormal natural pixels <-> square pixels conversion 

#include <stdio.h> 
#include <errno.h> 
#include <sys/types.h> 
#include "error.h" 

#include "math.h" 
#include "reclbl.h" 

int 
orthols (image, prj, bck, fftsvd, min_sing, int_fac) 

{ 

double 
int 
int 
int 
double 
int 

static char 

static int 

double 
double 
double 
double 

double 
double 

int 
int 
int 

int 

int 

/* 

*image; 
(*prj)(~ ; 
(*bck) 0; 
(*fftsvd)(); 
*min_sing; 
*int_fac; 

SccsIdD = "\0(#) orthols.c 1.5 91/10/29 16:12:21 
baker penguin UCB/LBL"; 

nameD = { 'E', 
'0' 

}; , 
'N', 'D', 
'R', 'T', 

*proj, *proj_pointer; 
* error , *error_pointer; 
*ortho_image, *identity; 
*u; *sst; 

, , , 
'H' , '0', 'L', '5' 

pix_index, proj_index, angle_index; 
nurnber_of_proj, size; 
rnaxfw, length; 

status; 

one = 1, two = 2; 

** Check that setup has been called. 
*/ 
if (setchk() < 0) 

cemesg(&one, name [4] , &one); 

length = 7; 
clgtxt (kname [4] , &length); 

printf("\n\n\n\n PARAMETERS FOR SUBROUTINE ORTHOLS\n\n"); 
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printf(" 
printf("MINSING - %10.3e 

*min_sing); 

DESCRIPTION\n") ; 
MINIMUM SINGULAR VALUE\n", 

printf("INTFAC %7d INTEGRATION FACTOR\n", 
*int_fac); 

/* 
** Check the backprojector and projector to see if they match. 
*/ 
rchek(bck, prj, &one); 

/* 
** Compute maximum storage size needed. 
*/ 
number_of_proj = trgcom.nang * trgcom.kdimu; 
size = number_of_proj * number_of_proj; 

/* 
** Allocate dynamic memory 
*/ 
if «u = (double *) malloc(size * sizeof(double)) 

) == NULL) 
Perror(lIunable to allocate u") ; 

if «sst = (double *) malloc(number_of_proj * sizeof(double)) 
) == NULL) 
Perror(lIunable to allocate sst"); 

if «proj = (double *) malloc(number_of_proj * sizeof(double)) 
) == NULL) 
Perror(lIunable to allocate proj II); 

if «error = (double *) malloc(number_of_proj * sizeof(double)) 
) == NULL) 
Perror(lIunable to allocate error"); 

if «ortho_image = (double *) malloc(number_of_proj * sizeof(double)) 
) == NULL) 
Perror(lIunable to allocate ortho_image"); 

if «identity = (double *) malloc(number_of_proj * sizeof(double)) 
) == NULL) 
Perror(lIunable to allocate identity"); 

/* 
** Get the right singular vectors and singular values of 
** the projection normal matrix. 
*/ 
status = (*fftsvd)(u, sst, prj, bck, int_fac); 

/* 
** Eliminate singular values less than the minimum. 
*/ 
min_sst = MAX(O.O, *min_sing) * *min_sing; 
for (proj_index = 0; proj_index < number_of_proj; proj_index++) 
{ 

} 

/* 

if (sst[proj_index] < min_sst) 
sst[proj_index] = 0.0; 

** Get projection data and errors. 
*/ 
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proj_pointer = proj; 
error_pointer = error; 
for (angle_index = 1; angle_index <= trgcom.nang; angle_index++) 
{ 

} 

1* 

getum(tangle_index, proj_pointer, error_pointer); 
proj_pointer += trgcom.kdimu; 
error_pointer += trgcom.kdirnu; 

** Backproject from projections to orthogonal natural pixels. 
** Normalization is incorporated in the singular value filter. 
*1 
for (pix_index = 0; pix_index < number_of_proj; pix_index++) 

identity[pix_index] = 1.0; 
orthobck(ortho_image, proj, u, identity); 

1* 
** Singular value filter. Singular values smaller than the 
** minimum have already been zeroed. 
*1 
for (pix_index = 0; pix_index < number_of_proj; pix_index++) 
{ 

} 

if (sst[pix_index] > 0.0) 
ortho_image[pix_index] 1= sst [pix_index] ; 

else 
ortho_image[pix_index] = 0.0; 

if (prtcom.tprint[3] == TRUE) 
for (pix_index = 0; pix_index < number_of_proj; pix_index++) 
{ 

if (sst[pix_index] > 0.0) 
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printf("sst[%4d]-+ = %18.10e\n", pix_index, 1.0/sst[pix_index]); 
else 

} 
printf("sst[%4d]-+ = %18.10e\n", pix_index, 0.0); 

1* 
** Convert from orthogonal natural to square pixels. 
** Normalization is incorporated in the singular value filter. 
*1 
orthosquare(ortho_image, image, prj, bck, u, identity, tone); 

1* 
** Free dynamic memory. 
*1 
free(u); 
free(sst); 
free(proj); 
free(error); 
free (ortho_image) ;-

length = -1; 
memst (tmaxfw, tlength); 
printf("\n\n MAXIMUM SIZE OF BLANK COMMON THUS FAR=%7d II maxfw); 
printf("FLOATING POINT WORDS.\n"); 

1* 



} 

** Output trailer. 
*/ . 
length = 11; 
clgtxt (kname [0] , &length); 

/* 
** Return SVD status. 
*/ 
return(status); 

B.2 fftsvd.c 
/* 
** Header: 
** 
** Name: 
** 
** Purpose: 
** 
** 
** 

~(#) fftsvd.c 1.5 91/10/29 16:08:26 baker penguin UCB/LBL 

fftsvd 

Compute the singular value decomposition of the 
projection normal matrix generated using the backprojector 
bck and the projector prj. 

** Input parameters: 
** 
** 
** 
** 
** 

prj 
bck 
int_fac 

entry point of projector 
entry point of backprojector 
integration factor 

** Output parameters: 
** 
** 
** 
** 
** 
** 
** 

u 

sst 

** Dependencies: 
** 

left singular vectors of projection normal matrix 
u [parm. ipar . nang] [parm. ipar . kdimu] 

[parm. i par. nang] [parm. i par . kdimu] 
singular values of projection normal matrix 
sst [parm. ipar . nang] [parm. ipar .kdimu] 

** libreclbl.a 
** setup 
** fftgen 
** liblinpack.a 
** dsvdc 
** 
*/ 

#include <stdio.h> 
#include <errno.h> 
#include "error.h" 

#include "math.h" 
#include "linpack.h" 
#include "reclbl.h" 
#include "ftf.h" 
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int 
fftsvd (u, sst, prj, bck, int_fac) 

{ 

double 
double 
int 
int 
int 

static char 

double 

double 
double 
double 

double 

int 
int 

Template 

int 
int 
int 
int 
int 
int 

int 

int 
int 

1* 

*u; 
*sst; 
(*prj) 0; 
(*bck) 0 ; 
*int_fac; 

Sccs.IdO = "tD(#) fftsvd.c 1.5 91/10/29 16:08:26 

*fft; 

*v; 
*e, *work; 
*angles; 

baker penguin UCB/LBL"; 

phantom_pwid, image_pwid; 

fft_size, f_rows, f_cols; 
ft_rows; 

*template; 

phantom_pixels, image_pixels; 
phantom_dim, image_dim; 
number_of_bins; 
angle_index; 
bin_index; 
offset; 

status; 
one = 1, zero = 0; 

** Compute maximum storage sizes. 

= ptrcom.ndimu; 
= ptrcom.pwid; 

*/ 
image_dim 
image_pwid 
image_pixels = image_dim * image_dim; 

phantom_dim = image_dim * *int_fac; 
phantom_pwid = image_pwid / *int_fac; 
phantom_pixels = phantom_dim * phantom_dim; 

number_of_bins = trgcom.nang * trgcom.kdimu; 

f_rows 
f_cols 
fft_size 

= number_of_bins; 
= phantom_pixels; 
= f_rows * f_rows; 
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** Compute projection usage template. 
*/ 
if «template = (Template *) malloc(trgcom.nang * sizeof(Template)) 

) == NULL) 
Perror("unable to allocate template"); 

if «template[O] .data = (int *) malloc(number_of_bins * sizeof(int)) 
) == NULL) 
Perror(IIunable to allocate template data"); 

offset = 0; 
for (angle_index = 0; angle_index < trgcom.nang; angle_index++) 
{ 

} 

template [angle_index] . data = template [0] .data + offset; 
template [angle_index] . count = trgcom.kdimu; 
for (bin_index = 0; bin_index < trgcom.kdimu; bin_index++) 

template [angle_index] . data [bin_index] = bin_index; 
offset += trgcom.kdimu; 

** Allocate dynamic mem9ry. 
*/ 
if «fft = (double *) malloc(fft_size 

allocate fft"); 
* sizeof(double))) -- NULL) 

Perror(IIunable to 
if «angles = (double 

Perror(IIunable to 

1* 

*) malloc(trgcom.nang * 
allocate angles"); 

** Compute projection normal matrix, F . F-t. 
*/ 
parm.ipar.ndimu = phantom_dim; 
parm.par.pwid = phantom_pwid; 
setup (8tparm. ipar, 8tparm.par, angles); 

fftgen(fft, template, prj, bck); 

parm.ipar.ndimu = image_dim; 
parm.par.pwid = image_pwid; 
setup(8tparm.ipar, 8tparm.par, angles); 

/* 
** Allocate storage for SVD. 
*/ 

sizeof(double))) --

if «e = (double *) malloc(f_rows * sizeof(double))) -- NULL) 
Perror("unable to allocate e"); 

if «work = (double *) malloc(f_rows * sizeof(double))) -- NULL) 
Perror(IIunable to allocate work"); 

/* 
** Compute right singular vectors and singular values. 
*/ 
compute_uv = 01; 
v = fft· 
dsvdc(fft, &f_ro~s, &f_rows, &f_rows, 

sst, e, 
v, &f_rows, 
u, &f_rows, 
work, &compute_uv, &status 

NULL) 
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<1 

~V 

} 

) ; 

/* 
** Free dynamic memory. 
*/ 
free(template[O].data); 
free(template); 
free(fft); 
free(e); 
free(vork); 

/* 
** Return SVD status. 
*/ 
return(status); 

B.3 zbcsvdc.c 
/* 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 

Header: 

Name: 

Purpose: 

Q(#) zbcsvdc.c 1.2 91/11/01 17:39:16 baker penguin UCB/LBL 

zbcsvdc 

Compute the singular value decomposition 
of a complex square block circulant matrix, 

H * 
a = Fusv F , 

vhere F_kl = I x exp(-i kl 2PI/block_count) 
and I = identity(block~m). 

Input parameters: 

block_count 
number of blocks in a column of the BC form 

block_m number of rovs in a block 
block_n number of columns in a block 
a complex BC matrix described by a column of 

block_count blocks consisting of 
block~m x block_n elements, 
i. e., a[block_count] [block_mJ [block_n] 

compute_uv 

if compute_uv = 
00 compute s 
01 compute s, v 
10 compute s, u 
11 compute s, u, v 

Output parameters: 

s singular values of a . 
s[block_count] [MAX (block_m,block_n)] 
Fourier transformed left singular vectors of a 
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*'!' 
** 
** 
** 
** 

v 

status 

u[block_count][block_mJ[block~ 
Fourier trans~orrned right singular 
v [block_count] [block_n] [block_n] 
number o~ invalid singular values 

** Dependencies: 
** 

libfft 
zfftki initialize complex 1D base-n FFT 
zfftkf ~orvard complex 1D base-n FFl' 
zfftkb inverse complex 1D base-n FFT 

liblinpack 

vectors of a 

** 
** 
** 
** 
** 
** 
** 
** 
*/ 

zsvdc complex singular value decomposition 
ztranc complex conjugate transpose 

#include <stdio.h> 
#include <errno.h> 
#include "error.h" 

#include "math.h" 
#include "fft.h" 
#include '.'linpack.h" 

int 
zbcsvdc Ca, block_count, block_m, block_n, s, u, v, compute_uv, status) 

COMPLEX 
int 
int 
int 
COMPLEX 
COMPLEX 
COMPLEX 
int 
int 

{ 
static char 

COMPLEX 
COMPLEX 
COMPLEX 
COMPLEX 
COMPLEX 
COMPLEX 
double 

int 
int 

int 

int 

*a; 
*block_count; 
*block_m; 
*block_n; 
*s; 
*u; 
*v; 
*compute_uv; 
*status; 

SccsldO = "«1(#) zbcsvdc.c 1.2 91/11/01 17:39:16 

*a_pointer; 
*u_pointer; 
*v_pointer; 
*s_pointer; 

baker penguin UCB/LBL"; 

*e, *e_pointer; 
*work; . 
*wsave; 

a_size, block_size; 
compute_u, compute_v, compute_vu; 

internal_status; 

i· , 
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ill 

• 

/* 
** Determine which singular vectors to compute. 
*/ 
compute_u = *compute_uv / 10; 
compute_v = *compute_uv % 1; 
compute_vu = compute_v * 10 + compute_u; 

/* 
** Compute submatrix and total sizes. 
*/ 
block_size = *block_m * *block_n; 
a_size = *block_count * block_size; 

/* 
** Allocate the FFT working storage. 
*/ 
wsave = (double *) malloc«4 * *block_count + 15) * sizeof(double)); 
if (wsave == NULL) 

Perror("unable to allocate FFT working storage"); 

/* 
** Initialize FFT. 
*/ 
zfftki(block_count, kblock_size, wsave); 

/* 
** Transform a to block diagonal form. 
*/ 
a_pointer = a; 
for (i = 0; i < block_size; i++) 
{ 

} 

/* 

zfftkf(block_count, kblock_size, a_pointer, wsave); 
a_pointer++; 

** Allocate storage for SVD routines. 
*/ 
if «work = (COMPLEX *) malloc (MAX (*block_m, *block_n) * sizeof(COMPLEX)) 

) == NULL) 
Perror(lIunable to allocate SVD working storage"); 

if «e = (COMPLEX *) malloc (MAX (*block_m, *block_n) * sizeof(COMPLEX)) 
) == NULL) 
Perror(lIunable to allocate SVD working storage"); 

/* 
** Compute the SVD of each block on the diagonal. 
*/ 
a_pointer = a; 
u_pointer = u; 
v_pointer = v; 
s_pointer = s; 
*status = 0; 
for (i = 0; i < *block_count; i++) 
{ 

. zsvdc(a_pointer, block_n, block_n, block_m, 
s_pointer, e, 
v_pointer, block_n, 
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} 

} 

/* 

u_pointer, block_m, 
·work, &compute_vu, &internal_status); 

if (compute_u == 1) 
ztranc(u_pointer, block_m, block_m, u_pointer); 

if (compute_v == 1) 
ztranc (v_pointer , block_n, block_n, v_pointer); 

a_pointer += block_size; 
u_pointer += block_size; 
v_pointer += block_size; 
s_pointer += MAX(*block_m, *block_n); 
*status += internal_status; 

** Free.up some storage. 
*/ 
freeCwsave); 
freeCwork); 
freeCe); 

return CO) ; 
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