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ABSTRACT 

A velocity s~lecte.d Tl beam has been crossed by an electron - _ .• 

bombarded Hg beam which contains a small percentage of the 

Hg *(6 3P) metastable levels (an approximate 5:1 ratio of 3P ~: · 
3P .ol· By means of an interference filter - photomultiplier 

combination beneath the collision zone~ the cross section for 

collisional produ~tion of th~ 5350A (7
2s112 -6~~312.> Tl fluorescenc-e 

has been determined to increase monotonically with decreasing 

relative collis~on sp~ed, g,, appro~ately as g- 8 Jor s = 2. O;tO. 5. 

* . . -
Correspondence should be addressed to RRH at this address; 

L. C. -H. L. and C •. M. S. are not affiliated with ISU or the.Ames 
· Laboratory - USAEG. 
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Implications ofthese results for the sensitized fluorescence 

phenomenom in vapor mixtures. of .metallic elements are briefly 

discussed. 
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The pioneering work of Cario and Franck
1 

demonstrated the 

sensiti.aed fluorescence of Tl vapor b; Hg*( 3P1)~ Similar studies 
, 

on this and related systems over the following 50 years have · 

demonstrated relatively large cross sections at thermal collision 

energies for non-resonant excitation transfer between a variety 

. 2 . 
. of metal atoms. Typically, these· experiments consist of irra-

diating a cell containing a vapor mixture of atoms A and B by 
. . * 

· a resonance line of A and observing fluorescence from B . 

Quantitative interpretation of these experiments has been hampered, 

however, by uncertainties regarding the roles of resonance line 

broadening, radiation imprisonment, metastable states, and even 

weakly bound diatomi~ mol~eules.. 3 
·The cross~d beam techniq-qe 

would appear ideally suited to circumventing these difficulties,_ 

and this paper reports a crossed beam determination of the energy 

. * 3 . • * 
dependence of the cross section for Hg { P 0, 2 ) + Tl .. Hg + Tl • 

........ . · 

APPARATUS AND EXPERTIMENTAL PROCEDURE 

The apparatus and data analysis procedures are described in 

detail in Ref. 4. Atornic beams of Tl and Hg, prepared in con-

ventional stainless steel dual-chamber source ovens, intersect. 

... 

-... .. 
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at 90°. Between source and beam intersection region (BIR), the 

Hg beam traverses an electron bombardment region where ~ 

O. 01"/o (rough estimate) is excited to the long-lived Hg*(
3

P 0, 2} 

metastable lev~ls, and the Tl beam traverses a slotted-disk. 

velocity selector (6 v/v = 0. _22 FWHM). Upon exiting the BIR, 

the Tl flux for the nominal velocity selector sett~ng, F Tl(v 
0

), 

and the metastable Hg * flux, F Hg *• are measured (in arbitrary 

units), respectiv-=;ly, by surface ionization on a heated tungsten 

filament and Auger electron ejection from a continuously-deposited 

K surface. 

The BIR is enclosed within a light-tight cylinder, equipped. 

with beam entrance and exit slits, which houses a spherical·· 

·.mirror above and a set of quartz lenses below the BIR. These 

serve to focus any photons emitted from a photon collection 

sphere (PCS, ..... o. 5 em. radius, centered on BIR) within ..... ± 25° 

of a normal to the beams plane onto an interference filter chosen 

to isolate some particular atomic line; S\1, the number of photons 

per second transmitted by the filter, are subsequently counted 

by means of an EMI-9558-QB photomultiplier tube. In order to 

._ determine the true atomic fluorescence rate, SF, it is necessary 

to correctS for two sources of backgound photons. Square-
. \1.··~ ·-·.: . ·~ . 

wave modulation (typically at"' 40 Hz) of the. electron beam and 

thus the Hg *< 3P O, 2 ) discriminates against the DC photon back- .. 

ground, which is largely due to the hot surface ionization filament. 

Periodic beam-flag interruption of the Tl beam permits correction 

,.;, 

,. _.' 

-. '. '~- ~. : 
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for a second component of the photon background which is pro

portional to FHg* and is presumably Hg*(
3

P 1) fluorescence at 

2537A, produced by inelastic collisions of Hg *(3P
2

) with ambient 

background gas, which partially penetrates the interference filter 

shield. 

RESULTS 

. 0 2 
Figure 1 shows a Tl energy level diagram. ·The 5350A(7 s

112
-

·. 62P
312

) Tl fluorescence line was chosen for quantitative study 

. because (1) the F Hg * dependent photon background rendered study 

of shorter wavelength lines more difficult and ( 2) ambiguities due 

"to a possible anisotropic photon angular distribution were eliminated 

by selection of a transition originating from a J = 1/2 level .. Figure 

2 summarizes the results of a."lalyzing the collected data as 

. I' . . . .· '· . . ·. . ..... 

Q (g) = S v v'if/f''{* /F *F (v )g . l'el . · F o ;~lfg Hg Tl o · (1) 

, 
where Q rei is the apparent cross section in arbitrary units for 

·excitation of 5350A Tl fluorescence in collision of a ground state 
. . . $·' 2 ·, 2 112 · .. 
Tl with a metastable Hg. atom, g = (v 

0
. + v Hg* ) is the 

. ~ - . 

. asymptotic relative collision speed, and vHg* is the most probable 

* .... Hg speede Since the excitation efficiency of the electron gun is 

considerably less than unity corresponding to an excitat1on prob

ability invers~ly p;oportion~l'to speed, an assum.ed thermal Hg 

'· . d d" t· 'b ti lt · ' ~ (kT I )1/ 2 . In · t spee 1s r1 u on resu s m v Hg ... = H mH • 1n er-
. . .. g g . 

prettng the data 4 b, we have adopted a procedure wherein an 

assumed functional form of the true inelastic .collision cross section,. 

Q(g), is convoluted over the Hg * and Tl speed distributions 5 to . 

. . ~ 



. ~(· 

.. _ 

0. ""u~ .• _· • rJ , '}. ~J . i ~& .:;;. 0 
-4-

~. ·> ·o 
j "" 

predict a value for SF; this is thei:t treated according to Eq." {1) 

to yielded a predicted Q · 1{g) for comparison with the experimental . re 

Q 'rel{g). In practice, however, this deconvolution procedure is 

hardly worthwhile because the computed Qrel{g) typically diff~rs 

insignificantly from the assumed form of Q(g). 

The following experimental checks were performed in order 

to in-sure that the data of Fig.· 2 do indeed represent the cross 

* 3 0 section for Hg. ~ }~O; z) + Tl production of 5350A Tl fluorescence. 

(1)" .. The bandpass window of the interference filter is tern-

-perature sensitive. Thus, it proved necessary to 

circulate room temperature water through the filter 

mount in order to prevent its cooling as a result of the 

-extensive liquid ~itrogen shielding employe~ in the 

vacuum chamber.- ._ Auxil~ar7 ~:_q>~riments ~stablished 

that SF dropped to zero if this water circulation 
. . . . . . . 

· system was disconnected. • Thus, the interference 
0 ... -

filter did successfully isolate the 5350A Tl fluorescence 

line. 

. --4 
(2.} At a suffi-ciently low Tl source pressure ( ..... 5 x 10 torr), 

the measured Tl speed distribution fo.llowed the Ma:xWell

Boltzman equation." This provided an absolut~ velocity 

&ele-ctor calibration and also insured against a background 

pressure attenuation of the Tl beam, an implicit assumption 

in Eq. (1). 

- (3) As a function of electron gun energy, F Hg* exhibits a 

threshold at -3V and a peak at 5, 3V; a second peak 
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appears at -IIV. Only this higher :pe3:k persists 

if the K Auger electron ejection surface is replaced -

by an Hg surface. This agrees with observations 

of other workers 
4 

and indicates that an electron 

gun setting of 5. 3 V, where the fluorescence data 

of Fig. 2, was collected, corresponds to excitation 

* 3 of the relatively low energy Hg (6 PO, 2) metastable 

levels. An auxiliary experiment established that 
0 . 4 

5350A fluorescence (at g = 4. 5 x 10 em/sec) 

dropped rapidly as the electron energy was raised 

to 8V, demonstrating that it was produced by Tl 

* . colliding with these Hg levels. The electron gun 

is operated at the space charge limit so that it is 

. * 3 . . * 3 not poss1ble to resolve Hg (6 P 
0

) and Hg (6 P 2) 

production. Using data in the literature on 

electron excitation of Hg, we estimate an approxi

mately statistical 5:1 ratio of 
3

P 2:
3

P 
0 

at 5. 3 V •. 

·~ . ' 

-:. 
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(4) Using estimated detection efficiencies, the absolute 

values of SF, F Tl (v 
0

), and F Hg * would correspond 

, 0 2 . 4 
to Q 1~ 4A at g = 5 x 10 em/ sec. This estimate, re . 

which should be reliable to within a factor of ten, 

precludes the possibility that the observed fluores-

cence could have been produced by some minorbeam 

constituent (e. g., Tlz or Tl*(6 2P 312)). 

0 

(5) The observed 5350A fluorescence might arise by 

collisional production of Tl*(7
2s

112
) and/or some 

higher Tl* level which would have a probability)< 

of populating Tl*(7 2s
112

) via photon emissi?n· Table I 

presents some J) values obtained from Tl oscill~tor 

strength calCulations. 6 Although an attempt at a 
. • 2 .. 

quantitative study of the 2918/2921A( 7 D5 / 2, 3 / 2 ... 

62 7 P
312

) fluorescence lines proved unsuccessful , 

the magnitude of the observed fluorescence 

indicated tha~ 8 Q' 
1
(2918/292tA)/Q' 

1 re . . re 
0 2 . . 

(5350A) ~ 0.05. Sincefl (7 DS/2.) ~.o.l andd'f.< O. 01 
2 .. 2 . ·. 2 . 0 

for 7 n
312

, 6 n
512

, and 6 n312, the observed 5350A 

flUorescence must he due to collisional production of . 

9 . ·. 2 2 
some S or P level. Of these, the 7 s

112
, 7 P

112
, 

-· 
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and or 7 P 3 12 are more likely to be produced by 

Hg * (6 
3

P 
0

) whereas the higher levels would b~ due to 

Hg * (6 
3

P 2 ); in view of the entries in Table I andthe 

likelihood that the beam is. richer in. Hg * (6 
3

P 2 ), the 
0 

· 5350A Tl fluorescence is probably about equally sensitive 

* .. 
to participation of either metastable Hg level. Indeed, . 

Fig. 1 suggests 

* 3 * 2 . Hg (6 Pz) + Tl- Hg + Tl (9 s 112) 
. 0 

as a prime candidate for the possible origin of the 5350A 

fluorescence because the energy defect is only - 0. lleV. 

Again a quantitative study of the 2826A (9
2s

112 
-6 

2
P

312
) 

fluorescence line proved impossible, but the me gnitude 

of the observed fluorescence indicated that
8 Q~rel(2826A)/: 

(5350A) ~ 0. 5.· Since~ (9
2s112) = 0. 2, coll~sional. 

production of this level certainly doesn't dominate the 

observed 5350A fluorescence. 

(6) Implicit- in Eq. (1) is the assumption that all Tl fluores-

cence originates in the LCS. This is certainly an excellent 

assumption in view of the size of the. LCS and Tl speeds 

because all pertinent 
2s and 

2
P Tllevels hav:e radiative 

lifetimes shorter than 0. 2 11s.ec. 

DISCUSSION 

Despite the uncertainties regarding the relative contributions 

* 3 .. * 3 . 
of Hg (6 P 

0
) and Hg (6 P 2) as well as the identity of the collisionally 

* . produced Tl levels, the results obtained here provide some insight 
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into the nature of the excitation transfer process in this system 

and, by extrapolation, in the general sensitized fluorescence . 

phenomenom in mixtures of metallic vapors, or at least in that 

subset which are initiated by metastable electronic states. 

A propensity rule which is often cited states that the energy 

transfer efficiency increases with decreasing energy defect. The 
- . . . . * 2 .. 
smallest energy defect in Fig. 1 occurs for the Tl (9 P 112) level, 

. * 3 only 0. 04 eV abo~e the Hg (6 P 2) level. ·However~ it has proven 

impossible to fit any Q(g) function having a 0. 04 eV threshold to 

the data of Fig.· 2 since the calculated Q 1 (g) curve always shows 
· re 

a peak at- 0.· 05eV;' Since no break is apparent in Q' 1(g) in the re 

vicinity o£ O. OSeV, the dominant inelastic process must produce 
~ ~ 

Tl .... levels lower in energy than the reactant Hg .... level despite 
··: ... 

energy defects in excess of 0. leV. 

A pertu~bation treatment of the inelastic process. based on 

_the asymptotic energy defect for this system would predict
2

b a 

Q(g) which increased with increasing g over the range in g 
. 

studied here. The contrasting behavior of the data of Fig. 2 

emphasizes that any treatment of the inelastic process must 

incorpor.ate a smaller energy defect between molecular electronic 

states formed at some point in the collision. 10 

The data of Fig. 2 are well fit by a cross section of the 
-s . , .. 

form Q(g)ag for s = 2. 0±0~ 5. Although of the same qualitative 

monotonic behavior, this is a steeper energy dependence than 

has been reported at low energies for some other inelastic electronic 

·processes involving metal atoms. 11 Inelastic collisions of this type 

.. 
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have often been discussed, at least semi-quantitatively, in a 

Landau- Zener picture of reactant and product diabatic potential 

functions, V 11(R) and V 22(R), which intersect at some Rx. .In 

this picture, the inelastic eros s section becomes 
12 

z . 
Q_(g) = 47TRx ( 1 - V 11(Rx)/E] G(A.). . (2) 

In the usual experimental situation, E >> V 11(Rx) and the energy 

dependence of Q is embodied in G(A.). For the present low energy 

study; however, t}le energy dependence of Q appears to be domina

ted by the first term
13

• the cross section for reactant penetration 

to Rx. The solid curve in Fig. Z shows a fit of Eq. (2) obtained 

for G(A.) assumed constant and V11(Rx) = -0. 6eV. This emphasizes 

that the data imply a strong attraction between reactants at separa- .· 

14 
tions larger than the region of strong mixing of electronic states. 
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Table I. Probability of 5350A fluorescence from a Tllevel (~ ). 

Tl Level 
2 . 2 ; 2 

7 s112 8 s 112 . 9 s112 . 

~ 1. 0 o. 2 o. 2 

2 
7 Pl/2 

lO 

7
2
P3/2 

1. 0 

2 
8 pl/2 

2 
8 P3/2 

0.4 0.6 

2 
7 D5/2 

o. 1 

I -N 
I 

0 

c . 

c -~ 
0 

J:;, 

{\;-

c 

_, 
tv 

~ 
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FIGURE CAPTIONS 

Fig. 1. Thallium energy level diagram. (Levels corresponding to 

excitation of an inner 6 s electron are not germane to this 

experiment and are not listed. ) All energies are given 

in electron volts. Energy above the ground state is given 

for Tl levels below 4 eV; for higher levels, the energy 

quoted is ~he energy defect (i.e., the energy separation. 

of the Tl level from the nearest metastable Hg level). 

* 3 . Energies of the Hg (6 P) metastable levels are shown as 

the t-VQ'O lower dashed lines; the Tl ionization limit is shown· 

as the upper dashed line. Diagonal lines indicate prominent 

emission lines (in A) reported in studies of Hg * (3p 1) 

sensitized fluorescence of Tl. 

Fig. 2. Data points show measured cross section for excitation 

of 5350A(7
2s112 _. 6

2
P 312) Tl fluorescence in collisions 

of Tl(6 
2

P 1; 2) with Hg *(6 
3

P 0; 2>. Data from separate experi

mental runs shown as different symbols; error bars represent 

standard deviations estimated by error propagation analysis. 

Solid curve shows a fit to the data for Q ~ constant [ 1 - ·2 v
11 

2 : : 
(Rx)/llg 1 with V11(Rx) = -0.6 eV. 
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