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Abstract 

This paper is about thermal field theory in a background gravitational field (in space
time which is asymptotically l'dinkowskian). We use the analytically continued imaginary
time formalism in one-loop order, and restrict ourselves to high temperatures. An all
orders, hut implicit. expression is given for the partition function. 

1. Introduction 

There has been quite a lot of work on hot quantum field theory in the presence of a 
gnwitational field [1.2]. l\Iuch of this work has been concerned with the region 

T~w,lki,m (1) 

where Tis the temperature, and w and k are a typical frequency and a typical wave-number 
of the gravitiational field. and m is the mass of the thermal particles. (Since thermal masses 
are normally O(eT), where e is a coupling constant, there is such a region.) Vve assume 
that we may set m = 0. vVe believe that this is a justified approximation except near 
exceptional values of the graviton momenta, like P = 0. In the region (1), the partition 
function, Z is proportional to T 4 , and is a non-local functional of the metric [2,3]. We 
also assume that the chemical potential is negligible. In previous work [2,3], Z has been 
expanded in powers of the deviation of the metric gl', from the Minkowki metric TJI',. For 
instance, writing 

g~'" = ~(TJ~'" + ,;tf>~'"), (2) 

the terms of order ,;2 are well known [2), and the terms of order ~>:3 have been studied [3). 
We are concerned to find an all-orders expression for the partition functional Z(g ), albeit 
in an implicit integral representation. 

\Vc work at zero chemical potential and neglect all masses. In order to have an abso
lutely clear meaning to thermal equilibrium, we assume that the space is asymptotically 
~-Iinkowskian, 

g~'" ~TJ~'", (3) 

and we choose the time-axis in the asymptotic Minkowski space to he the one defining the 
thermal equilibrium. We work to one-loop order in the thermal fields (which may be of 
spin 0, ~ or 1). We use the analytically continued imaginary-time formalism (in which the 
condition T ~ w makes sense), which is known to be closely connected to the real-time 
formalism [4]. 

The method we use is an extension of that in [5], in which the background field 
was a gauge field instead of gravity. First, using an idea of Barton's [6], we relate the 
partition function to a momentum integral of the forward-scattering amplitude for the 
thermal particle in the gravitational field. In the high-temperature limit we require the 
high-energy limit for the scattering amplitude. Then the relation is 

Z(g) ~a J dl1h(g; Q)/Q2
, (4) 

where JL is the forward-scattering amplitude (spin-summed) for a high-energy particle of 
momentum Q, and the angular integration is over the direction of Q (the right-hand side 
of (4) is independent of IQI). In d space-time dimensions, 

a = (2rr )1 -dTdf( d)(( d) (5) 

(with an extra factor (1- 21-d) for fermions). 
The next step (Section 2) is to show that J L has the following five properties:-

( a) It is invariant under coordinate transformations which preserve (3). 
(b) Under Lorentz transformations in the asymptotic ~Iinkowski space, it is a covariant 

function of the null-vector Q~', where Q0 = IQI. 
(c) It has dimension (mass)2-d. 

(d) It is a homogeneous function of Q of degree 2. 
(e) The only nonlocalities in the perturbation expansion of h are line-integrals in the 

direction of Q; so that in momentum space the only denominators are of the form 
(k.Q)-b (ban integer), where k is a linear combination ef external graviton momenta. 

Then, in Section 2, we argue that these properties are sufficient to determine J L 

uniquely in terms of the 0(,;) contribution (which is very simple and well-known). 
Finally, in Section 3, we display a form, (31), for h which satisfies the abovenve prop

erties and which has the correct 0(,;) term; and which therefore, by the above arguments, 
must be the correct unique expression for J L. 

In Appendix B, we remark on the vVeyl in variance of J L, and on the trace identities 
which express this in...,ariance. 

2. The forward-scattering amplitude and its properties 

The derivation of the general relationship between Z and the forward-scattering am
plitude J [6) is exactly the same as in [5). When we consider the high-temperature limit, 
there are new complications. In order to get the leading term (5 ), we must in general keep 
several high IQI terms in J. We call the necessary asymptotic terms h. If we expand in 
powers of K: (using (2)), in the term O(,;n) we must keep terms which are homogeneous in 
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Q of degree p where p = 2, 3, ... 2n. The term with p = 2, which we call 'leading' is the one 
which actually gives (5 ). We will show that the other terms, which we call 'super-leading' 
cancel in the complete set of graphs. 

Let us consider the first two values of n. For n = 1 (the one-graviton term) we have 

simply 

J~1 ) = w~>Q,.Q. J ddx¢>"", (7) 

where </> is defined in (2) and w is a numerical weight factor depending on the spin and 
other quantum numbers of the thermal particles (see [51). 

For n = 2, a simple calculation gives 

2J~2 ) = wt>2 (2rr)-d J ddxddyddke-ik.(x-y)C,.vofJ(k)<f>""(x)<f>"iJ(y), 

where 

k2Q,,Q.Q,Qa 
2CI'"'"'i3 = (Q.k)2 

QI'Q"Q 0 kp + Q,,QvkaQ/3 + Q1,kvQoQ/) + k,,Q.QoQ/J 
Q.k 

To obtain this, one needs to expand the Feynman denominator: 

1 1 k2 

k2 + 2Q.k = 2Q.k - (2Q.k)2 + ... 

In this case there is a 'super-leading' term 

Q,.QvQaQ,J 
Q.k 

which cancels between the two graphs in Fig.l. 

(8) 

(9) 

(10) 

{11) 

Note that (9) is in some ways more complicated than a previous form (see eq (2.33) 
of [3]), but this did not satisfy properties (a) and (b) above. Eq (9) is what is obtained 
using the relation to the forward-scattering amplitude. Of course the two forms give the 
same Z after the angular integration is done in {4). 

As a first, simple example, let us show that {9) is uniquely determined by (7), given 
the five properties (a) to(~) of Section 1. Using properties (b) to {e) it is fairly easy to 
see that C in (8) must have the tensor structure 

A.Q,.QvQoQ/3 + B(Q,.QvQok/3 + ... ) 

+C(QI'QvTfoiJ + QoQiJTJ,.v) + D(Q,.QoTfv/3 + ... ), (12) 

where ... denotes the obvious terms to symmetrize and A, B, C and D are dimensionless 
invariant functions of k2 and Q.k. (In fact, C and D are constants.) As an example of 
the reasoning which leads to (12), the tensor structure Q,.Qvkok/J is impossible because 
no coefficient satisfying (d) and (e) can make it dimensionless. 
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Now we use property (a), invariance under coordinate transformations. Then there is 
a Ward identity connecting (8) to (7). This (see (3.2) and (3.3) of [31) is 

2k''CI'A<>/J- k>.Cvl'oiJTJI'" = -Q>.(koQ/3 + kiJQo)· 

With the use of the trace identity in (B4), this may be rewritten 

2k"C,.>.oiJ = -Q>.(koQ/3 + kpQo)- k!I.QoQp. {13) 

Inserting (12), the lefthand side of {13) yields 

2(Bk.Q + D)Q>.(Qokp + Qpko) 

+2Ck.QQ>.1JoiJ + 2Dk.Q(Qa7]/)!l. + QpTJa>.) + 2(Ak.Q + Bk2 )Q>.QaQp. (14) 

There are 5 independent tensors in {14), so the Ward identity suffices to determine the 
4 coefficients in (12). In fact, since the Minkowski metric tensor does not appear on the 
right of the identity, C = D = 0. So the first term in (14) fixes B, and then the last gives 
A. The result is (9). 

A particular consequence of this argument is that (12) can contain no 'super-leading' 
term. This is because the Ward identity connects terms of the same degree in Q, and (7) 
is of degree 2. In general, the same arguments which lead to the uniqueness of J L show 
that it contains no 'super-leading ' terms. 

\Ve now sketch how the same type of argument can be used to show how the n:3 term 
in his determined by the Ward identity in terms of (9). We define 

3 

6Ji3 ) = wn: 3 (2rr)-2
d J fi ddx;ddk;od(kt + k2 + kJ)C,.va,Jpu(k;) 

0 

X e-i(k1x1 +k,.z:,+ka.z:a) ciJ""( Xt )<f>"'J( x 2 ),PP" ( XJ ). 

The most general form allowed for the 3-graviton function by properties (b) to (e) is 

(15) 

C,.voj}pu = AQ,,QvQaQiJQpQu + B~QvQaQiJQpQu + (J.l +-+ v) + B?,Q,.QvQ,JQpQu + ··· 1 

+C!vQoQpQpQu + ··· + D~~QvQiJQpQu + ··· 
E(TJ,.vTfoiJQpQ.,.+ ... )+E'(TJ,.vTfopQ;JQ.,.+ ... )+E"(TJ,.aTfv;JQpQ.,.+ ... )+E'"(TJ,.aTfvpQiJQ.,.+ ... ) 

+F~ 2 TJaiJQvQpQu + ··· + G~2 17vaQiJQrQu + ··· + H!TJouQvQj)Qp + ••• 

+f17],.vQoQf]QpQu + ··· + E 12 7],.oQvQ;JQpQu + ···· {16) 

Here E, E', E", E 111 are constants, .4~ [i and [{ii are scalar functions of Q and the ex
ternal momenta, B~, F;i, G~, H~ are vector functions of Q and the external momenta 

not proportional to Q,., and C~"' D~" are tensor functions containing neither Q,. nor 
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and hence by symmetry all the Bi. Finally we are left with the maximum number of Q's. 
The term containing Q 0 QpQpQ,.Q>. arises only from the A and B 1 terms on the rightof 
( 17) (and not from the right side), and implies that 

J,;2 /,;2,/,;3 0 0 

A = 1
_. + ( cychc permutations). (22) 

Thus Ji3l is given by (15), (16), (19), (20), (21) and (22). Of course. it could 
alternatively be found by starting from its definition in terms of a forward scattering 
amplitude, and making expansions like (10) (but now to one more term) to find the high
energy limit. The point of deriving it from the Ward identities is to demonstrate that 
these are sufficient to fix it uniquely. 

We believe that this type of argument would work for the higher terms, though it 
would be very long to write out in detail. The basic point is that any tensor allowed by 
puoperties (b) to (e) must contain at least two Q vectors, and so will contribute at least one 
term to the \Vard identity in which a Q in the tensor is contracted with k, the remainder 
of the tensor being intact. Thus all the coeficients will be determined. If the terms are 
considered in order of increasing numbers of Q vectors, then each term will fix one further 
type of coefficient. 

It is interesting that none of the terms (9), (19), (20), (21), (22) depends explicitly on 
the ~Iinkowski metric '7 or on the dimension d of space-time. vVe have not found a simple 
explanation of this fact. 

3. The Partition Function 

We have argued that there is a unique functional h( Q, g) with the properties (a) to 
(e) of Section 1. and with the correct one-graviton component (7). We now display such 
a functional. In order to do so, we must start with some definitions. Given a space-time 
point x, we define a null-geodesic, y(O,x) through it (where 0 is a parameter along the 
geodesic) to have the properties 

y"(O,x) = x~', 
dyl' 
do -+ Q~' as 0 -+ -oo. (23) 

(Note this is possible since we are assuming (3).) We further define y to satisfy the geodesic 
equation in the form 

d2y1' I' dy"' dyiJ 
d02 +fap(Y)dodo=O, (24) 

which fixes the parameter 0 up to a constant scale factor, which in turn is fixed in terms 
of Q by (23). 

The choice -oo (rather than +oo) in (23) is arbitrary. Strictly speaking, one should 
start by confining oneself to metrics such that 

d!jl' 
-·- -+ Q~' as 0 -+ +oo 
dO 
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Q,. The .... denote the addition of as many terms as are necessary to symmetrize under 
J.L +-> v, a +-> ;3, p +-> 0', and under the permutations of 

(J.Lv,1) (a,B,2) (p0',3) 

The important point about (16) is that there are at least two vectors Q in each term, 
otherwise condtions (b) to (e) cannot be satisfied. 

Now consider the Ward identity obtained by relating (15) to (8) (again simplified by 
using (B5)): 

2ki'C,_.>.o{Jp<T(k, !.:', k") = [-k,C>.pp,.(k")- (a +-+,B)+ k~Capp,.(k")] + [k', a, ,B +-+ k", p, 0']. 
(17) 

We claim that there are enough independent tensors in this identity to fix (16) uniquely. 
For example, the contribution to the lefthand side of (17) from the Ci terms in (16) is 

2!.: 1'C~>.Q,QpQPQ" + 2k.QC'!,pQ>.QpQ(r + 2k.QC~,.Q,QpQ>.. (18) 

First we show that all the terms in (16) containing the Minkowski metric '7 are zero. 
This is because there are no such terms on the right of the identity (there are none in (9)). 
In using the identity, it is convenient to consider terms with least number of Q vectors 
first, and then go to terms with increasing numbers of Q's. Thus the term in the identity 
proportional to Tfa/JTfp,.Q>. gives E = 0, TfafJTfp>.Q,. gives E' = 0, 7],,.7]ppQ>. gives E" = 0. 
TJa>.T]ppQ,. gives E

111 = 0. Then the term containing T/a{JQpQ~ gives Fl 2 = 0 and hence 
by symmetry all F;i = 0, TfpaQpQ>. gives G!2 = 0 and hence all G~ = 0. Next, the 
term containing Tf,.c.QpQp gives Hl = 0 and hence all H~ = 0. Last, the term containg 
7J,pQpQ,.Q>. gives ! 2 = 0 and hence all [i = 0, and the term with T/apQpQ,.Q>. gives 
I\23 = 0 and hence all [{ii = 0. 

All that remain now are the A; B, C, D terms in (16). Again we begin with the terms 
with the fewest Q's, ie the C and D terms. There is only one term on the left of the Ward 
identity containing Q,QpQ>. and no other Q vector, the one displayed in (16). Comparing 
with the right of (17) and using (9) ,this gives 

c3 _ ktpk2,. + k2pkt,. 
ptT- 4Q.kJQ.k2 ' (19) 

and hence by symmetry all the Ci. (The other terms in (18), containing more Q vectors, 
will now be known when we come to consider the terms with more Q's in the identity.) 
The terms containing QaQpQ>. and no other Q determine 

D23 ktpk3,. k1,.k2p 
/J<T = 4kt.Qk3.Q + 4kt.Qk2.Q' (20) 

and hence all the Dii. Next we go to terms containing one more Q. Terms containing 
QpQpQ,.Q>. arise from B 2 and D 12 in the left of (17), and imply 

kt.k3k2a 
B2 = Q 

"' 4kt.Qk2.Qk3. 
krk3a 

4(kt.Q)2kJ.Q 

5 

kikta 
(21) 4(k3.QFkt.Q' 



also. Such would be the case if the fourier transform of the metric had support in a certain 
region R of k-space (see eq (10) of [i]). Then, in general, there would be several analytic 
continuations out of R. The choice in (23) corresponds to one such analytic continuation. 

Having defined the geodesic y, we define Y(x) by 

y~'(x,B)- Q~'B _, Y~' as (} _, -oo. (25) 

The relation between x, y and Y is displayed schematically in Fig. 2. 
The above equations may be solved iteratively, starting with the flat-space form 

y~' = Q1'8+x~', Y~' =x~'. (26) 

The first iteration then gives 

P' = x~' + [
0

00 

d(} [
8

00 

dB'r~iJ(?(}' + x)QaQiJ + .... (27) 

We may also invert the relation to get x(Y), which we can likewise find iteratively. The 
first iteration gives 

:rl' = P -looo d(} l~ dB'r~a(Y- QB')QaQJJ + ... (28) 

Note that. under an infintesimal co-ordinate transformation 

.r~' -> x~' + c"(x), (29) 

which has the property 
c.~' -t 0 (30) 

at infinity (so that (3) is preserved), Y is invariant. Also, Y transforms as a 4-vector in 
the asymptotic l'vlinkowski space, so that its index may be raised and lowered with the 
:'v!inkowski metric T/· 

\Vith these definitions, the form of J L which we propose is 

J d ox~' 
h = 2w d y ayaQI'Qa. (31) 

To see that this is invariant under co-ordinate transformations, note that under (29) 

8] =? JddYOe~'[x(Y)]Q Qa = 0 
L ~w ~=nr..-.. IJ ' (32) 

using (30). 
The other properties, (b) to (e) of Section 1, are almost obvious from (31) and (24). 

The denominators ( k.Q)-b come from the line integrals in the Q direction, like those in 
(28). These are the only non-localities. 
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Finally, we must check the one-graviton term in (31). This can be got from the first. 
iteration (28 ): 

w-
1h::::; -2 J ddY l~ d(}f~11(Y- QO)QaQf3Q~' 

::::; -n. jd•+Iylo dBa¢>aar:- QO) QaQilQI' 
-oo XI-' 

::::; n. j ddY [
0

00 

dB ![¢>af3(Y- QB)]QoQ/3 

::::; If. J ddy,pa!l(Y)QaQp, (34) 

in agreement with (7). Note that (31), unlike (32), is not zero, since ::: does not tend to 
zero asymptotically in the Q direction. 

\Ve will now derive an alternative form for J L, equivalent to ( 31 ), which is more useful 
for some purposes. 

First we define 
ox~' ax~ 

Goa(Y) = 9J•~fx(Y)] 0ya 0y:J · (35) 

At first sight, one might regard the transformation x --+ Y as a co-ordinate transformation, 
and Gas the metric in the new system. However. G does not satisfy condition (3), so this 
interpretation should be used with caution. In .\ppendix A, we prove a property of G: 

GopQP = Qo. (36) 

It follows from (36) that 

GoiJQ 0 Q11 = 0. (37) 

The alternative form of (31) is 

h = W J ddY (2:;:Q 0 QI'- GopQaQiJ). (38) 

To see the usefulness of (38), we define 

x 1
' := Y~' + ~~'(Y), g~'~ = 111'~ +hi'~· (39) 

Then (38) gives 

J d - ( a~~· a~v a~l' 0~1' a~v) a iJ 
JL = -w d } hail+ 8Y<> f)Yil 111'~ + 2hl'<> 8YiJ + h~'~ f)yo 8YP Q Q . (40) 

There are two advantages of this form over (31). First. there is a practical advantage. 
In order to calculate h to O(n.2

), we would require Ll to O(n.2 ) in (31), but only to O(n.) 
in (40) (though h 1,~ is required to 0(n.2 ) in (40)). 
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The second advantage is more important. The term which has cancelled in (38) to 
give (40) is 

J ddY fJ6.1' Q Q"' 
fJY"' ~" . (41) 

Terms like this could lead to ambiguities. As it stands, (41) looks as if it requires the 
values of D. at infinity. To 0(,;:) it has a well-defined value, as shown in (34). But to higher 
orders one needs to arrange cancellations between different terms in order to get a sensible 
result. This problem is avoided in ( 40). 

The expression (31) for JL has a simple geometrical interpretation, which we now 
describe. First, introduce light-cone coordinates in the asymptotic Minkowski space: 

Y,\=Y[+uQ,\+vQ~, 

or 
Y = (YT.v,tt), 

where Q' is a ,·ector satisfying Q'2 = 0, Q.Q' = 1 and where Q.YT = Q'.YT = 0. Now 
consider the cun·e given by 

.x(Y) = x(YT,v,u) 

as u varies for fixed yT, v. From the relation between Y and x given in (23) and (25), it 
follows that this cun·e is the null geodesic satisfying 

.r,\(YT, t•. tt) ~ Y-\ as u-+ -oo, 

that is it is asymptotic to the null line which has direction Q and which contains the 
point(YT, v, 0) in the asymptotic Minkowski space. With this notation, (31) gives 

JL = 2wjdd-2YTdv lim [Q.x(YT,v,u)- v]. 
u-oo 

( 41) 

Thus we have an integral, over all null geodesics which asymptotically have direction Q, 
of the difference between the u-coordinates at each end. The finiteness of the limit in ( 41) 
(i.e. the fact that the geodesics have direction Q at both ends) is a consequence of the 
assumption mentioned before (25 ). 

In conclusion, then, the partition function at high temperature is given by ( 4), with 
;my of t.hc forms (31), (40) or (41) inserted for h. 

Appendix A 

Here we prove the relation (36). To this end, we define 

. ., fJyil 
f,(B, Y) = 9o!l(y)y fJY"' 

!) 

(A1) 

where y is regarded as a function of Y and(}, and clot denotes differentiation with respect 
to (} (for fixed Y). Then (36) is the same as 

f,(O, Y) = Q,, (.42) 

and since f,( -oo, Y) = Q,, we need to show that f, is independent of B. 
Differentiating (A1) with respect to(} gives 

f
. - fJg.,iJ fJy!1 . p. <> fJyf3 .. ., . <> 8y{3 
v - fJyP f)yv Y Y + 9<>/1 f)yv Y + 9c.!3Y f)yv · (.43) 

vVe now use the geodesic equation (18) to eliminate ii and (remembering that the geodesic 
y is null) 

a 
fJY" [g.,py"'y!3] = 0 

to eliminate 
8il 
fJY" 

and thus show that ( A3) is indeed zero . 
It is worth remarking that (36) looks a at first sight like a gauge-fixing condition, 

defining a 'light-cone' gauge. However, as remarked after (35), the transformation x-+ Y 
is not a legal transformation preserving the condition ( 3 ). so this interpretation is not 
right. 

Appendix B 

Here we discuss the invariance under the \Veyl transformation 

g~"" -+ e2cr(r) g~"" (B1) 

(where u-+ 0 at infinity) or 

~g~""-+ e(2-d)cr(x)g~"" (B2) 

From the point of view of the high-temperature limit or of the high-energy limit of the 
forward scattering amplitude, we expect invariance under (B2), since the thermal particles 
are effectively massless. Using (2) and (B2), this leads to the identity 

(ry~"" + ,;;qi'") ~h -b</>~"" -0. 

In terms of (i) and the definitions (8) and (15), (B3) gives 

CJ"VC.f](k)ry"'!3 = -QI"Q,, 

CJlV<>dpu(k,/.,',k")TIP" = -CJlV<>d(k)- c,.,.,JI(k'). 
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These trace identities may easily be verified from(!>), (16), (19), (20), (21) and (22). 
We now verify that (31) does have this Weyl invariance. The null geodesic y is invariant 

under (81), but it is reparametrized and so, for an infintesimal vVeyl transformation, 

bY"'= Q<>t, (B6) 

where c is infintesimal. Then (using the formula for the variation of the inverse of a matrix) 

( f)C::.~') f}f:ll' 8bYi1 {)f:lv 
b f)Y<> Q"'QI' =- f)y/1 f)xv ()yo Q"'QI' 

{)f:ll' {3 fJc aD.v Q f}f:ll' {3 0€ Q 

= -QI' f)YflQ fJxv f)yoQ = -QI' f)Yi1Q f)yoQ . (B7) 

On the other hand, the Jacobian of the transformation from Y to Y +bY is, by (86), 

1+~Q"' aya . 

Thus. using (87) and (BS), we see from (31) that bh = 0, as required. 

(B8) 

Finally, we remark upon the fact that the gravitational interaction of a (massless) 
scalar field is \Veyl invariant only of the term /iR<P 2 is included in the Lagrangian., However, 
\Ve have verified that, at least to order n: 3 , this term does not contribute to the leading 
high-temperature limit ( 4 ), ( 5 ). 

We are grateful to G. IV. Gibbons and H. Osborn for advice. JF acknowledges financial 
support from FAPESP (Brasil) and thanks DAMTP for hospitality. 

Figure captions 

Fig. 1. The two forward-scattering graphs contributing to (9). The solid line is the thermal 
particle and the wavy lines represent the external gravitational field. 

Fig. 2. A schematic representation of the quantities defined in Section 3. Y lies on 
the asymptote (in the direction of Q) to the null geodesic y through x. The geodesic is 
parameterized by 0. 
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