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A Coarsening Model for Coherent Precipitates
by |

Mark Thomas McCormack

Abstract

" The morphological evolution of coherent inclusions in elastic media is studied in
two-dimensions. The inclusions are sit'nple. dilations with isotropic surface energy in a
system with homogeneous elastic constants of negative anisotropy. The equilibrium sizes
at which a circular inclusion transforms to a rectangle or square, and at which a square
splits into a doublet or quartet of separated inclusions are computed _analytically. A finite-
element model is then constructed to simulate the evolution of an arbitrary distribution of
inclusions along the minimum-energy path. In the model, ihe circle evolves into a square,
which splits into a doublet by hollowing from its center, or, if this is fbrbidden, by
drawing in a perturbation on its surface. The sizes at which shapes spontaneously
transform are compared to the equilibrium values. Finally, the simulation is used to study
the evolution of a random distribution .of inclusions. The first mctastable. state assumed by
the distribution depends on the elastic interaction, surface energy and areal fraction of the
inclusion phaée through a single dimensionless parameter that groups these three effects.
The results are compared to prior theoretical and experimental work on Coarsening patterns

in three dimensions.
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1. Introduction

ILA. Coherent Precipitates Display Different Coarsening Behavior

Descﬁpﬁons of microstructural stability are often based upon the ‘equilibrium and
stability of fluid syster_ns. For example, the microstructures of multi-phase fluids are
alwnys unstable if the totnl interfacial free energy is not a minimum. This instability is
evident in the common observation that a high density of small precipitates always tends to
coarsen, or ripen, into a lower density of larger particles with a srnaller total inte’rfaciai area.
Such precipitate coarsening processes also take place in multi-phase solids, Wher_e they |

- often produce an undesirable degradation of properties, €.g., a loss of mechanical strength. '

The difference between droplets of a precipitate phase in fluids and precipitates in
- multi-phase solids can be categorized according to the coherency of the precipitate/matrix
interface. Coherency refers to the continuity of the crystal lattice across the interface.
Incoherent precipitates lack eny Such continuity, and therefore only hydrostatic stresses
may be transmitted across the boundary. Since hydi'o‘static stresses are essentially
pressures, incoherent precipitates can be expected to behave much in the same manner as
minority phase droplets in fluid phase sy'stems. Coherent precipitates, on the other hand,
maintain full lattice continuity across the interface.. This lattice continuity allows both shear
and hydrostatic stresses to be transmitted across the particle boundary. Coherent
precipitates in solids can therefore interact ela.stically with one another in a distinctly

different manner than that which can be described in fluid systems.



For a distribution of precipitates in a fluid, the droplets are usually observed to

coarsen as spheres with a mean droplet size increasing monotonically with time. In
comparison, the coarsening of a distribution of coherent precipitates in a solid differs

qualitatively from that observed when the precipitates are incoherent and have no elastic

interaction with one another. A widely studied example is the coarsening of the cubic y '

- precipitates in Ni-based alloys. When the precipitates are densely distributed, they interact

and align with one another to create stable patterns that coarsen very slowly. When they

are widely' separated, they evolve from spheres to cubes to plates as they grow, and

sometimes split spontaneously into parallel platés or octets of small cubes [1-8]. Such
peculiar coarsening behavior is usually attributed to the effects of elastic strains generated in

the coherent accommodation of the misfitting ¥ phase.
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LB Scope of Thesis

Since precipitate coarsening can strongly influence the mechanical properties of

niaterials, it is important that all aspects of coarsening be understood in order to reliably
N

predict and control its extent. In this regard, it has been common modeling practice to

assume the coarsening medium is a two«phase fluid. As reviewed by Voorhees [9],

studying the coarsening of droplets in this manner is valuable in identifying the

shortcomings encountered when extending the classic Lifshitz-Sloyzov-Wagner [10-12]

analysis to systems containing finite fractions of the precipitate phase. Fluid phase
descriptions, while sufficient to describe the coarsening behavior in many alloy systems,
are incapable of predicting all the coarsening phenomena observed in solids containing a

coherent precipitate phase. It is thus necessary to incorporate elastic effects into coarsening

models in order to better understand the unusual coarsening behavior of coherent

precipitates.

A coinpletc'thebry of coarsening for coherent precipitates must consider both the
elastic interactions tﬁat determine the relative elastic energy of the precipit_ate configuration
and the diffusibnal procesées that govem the rate at which the configuration evolves. .Both
the thermodynamic and kinetic elements of the theory are difficult to formulate. The elastic |
interaction that determines precipitate shape and alignment is due to the lattice mismatch
between the precipitate and matrix phases, and is str‘ohgly affected by eiastic anisotropy.
Thc‘kinetics of the diffusional processes that govern growth are affected not only by the

sizes and shapes of the particles, but also by the elastic fields in the matrix. -

A number of investigations have studied aspects of the theory of coherent precipi-

~ tate coarsening [13-41]. In particular, prior work by several authors has addressed the

energetics of coherent precipitates in anisotropic media, exploiting techniques that permit an



A

exact calculation of the elastic energy of a homogeneous, anisotropic system that contains -

an arbitrary distribution of inclusions. The results of that work show that elastic amsotropy
leads to the alignment of distributions of cubic or tetragonal precipitates [36-39], that a
precipitate of cubic phase with an isotropic surface tension systematically evolves from a

spherical to a cubic to a platelet shape as it grows in a homogeneous matrix [40], and that a

coherent cube of cubic-phase material becomes sequentially metastable with respect to

splitting into a parallel pair of platelets and an octet of small cubes as its size increases [41].
The results.include most of the important morphological changes' that have been observed

in y precipitates.

The present work was undertaken in order to bridge the models that were employed

in this previous work. In the computer simulation studies of precipitate alignment by Wen,

* et al. [36-39], the precipitate particles were assumed discrete and separate, and were con-
strained to remain so. Hence this work only suggests the coarsening patterns of a distribu-

" tion of precipitates. In the studies of particle shapes by Khachaturyan, et al. [40-41] the

preferred shapes were identified by comparing the elastic energies of a pre-selected set of

‘candidate shapes. This method risks missing other shapes that may be preferred during
coarsening, and calculates the equilibrium transitiohs, while actual transitions are more
likely driyen by morphological instabilities. In the present work we study thé elastic en-
ergy of distributions of dilational inclusidns in cubic matl'ix; and follow the evolution of

shape and distribution as the energy decreases along. the path of steepest descent.

For computational simplicity the calculations that are presentéd here are done in two
dimensions. Both the analytic and experimental demonstrations of such important phe-
~ nomena as the spontaneous splitting of éubic precipitates refer to three-dimensional parti-
- cles. To establish contact between the two-dimensional case tréated here and three-dimen-
sional behavior, we must first calculate the equilibrium shai)es of two-dimensional precipi-

* tates as a function of size.

Ly
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We then develop a computer simulation model that treats a two-dimensional elastic
solid as a periodic distribution of square, elementary particles that have a long-range elastic
interaction with one another, supplemented by a near-neighbor interaction that simulates
surface energy. A configuration of precipitate paiticles is introduced by imposing a given
transformation strain on a selected set of these elementary particles. The configurational
energy ( elastic plus surface energy) is then computed, together with the change in energy
that would be acéomplished by small reconfigurations of the precipitate distribution. In this.
way we test the elastic stability of the disuibuﬁon, and identify the sequence of morpholog-
ical changes that occurs as an unstable configuration evolves along the path 6f steepest de-
scent in the energy. Two basic problems are investi gatedf the change of an initially circular
particle during growth and the evolution of an initially random distribution of small interact-

ing inclusions.

The model developéd here is limited in three ways to facilitate computation. First,
as in prior work [36-41], we assume a linear elastic medium with homogeneous elastic
constants. - The assumption of elastic homc;geneity ailows use of the methods of
Khachaturyan and Shatalov [42] to compute the elastic energy of an arbitrary distributioﬁ of
elastic inclusions. Second, we assume that the systerﬁ is two-dimensional and periodic.
Third, we focus on the kinematics of coarsening and calculate the sequence of states
assumed as the system evolves toward équilibrium along thé paih of steepest descent in the
elastic energy. Other investigators [28-33] have made pfogress toward a kinetic analysis of
the coarsening of elastic inclusions, but at considerable cost in combutational effort. As we

shall see, many of the interesting features of the process are clearly revealed in the simpler,

kinematic treatment, including the splitting of monolithic inclusions and the geometric

alignment of discrete particles.



II. Background

Incorporating elastic effects into coarsening models is a formidable task that

_ requires a significant amount of idealization. In order to appreciate these difficulties, it is
important to first understand the results developed from various fluid droplet analyses.
Coarsening models have historically concentrated on dynamic models which are concerned

* with the fafe at which coarsening events take place. Energetic models, on the other hand,
are principally concérned with what coarsening events aré possible. While these two
modeling premises are different, it is important that they both be pursued so that the
' ‘ramiﬁéations of idealization in different models can be recognized and contribute to the

understanding of all coarsening phenomena.
I1. A Dynamic Coarsening Models

. Most dynamic coarsenixig models are based upon one of two approaches, the
Lifshitz-Slyozov-Wagner [10-12] mean-field analysis or the Weins-Cahn [43] microscopic

formulation.
II. A. i Lifshitz-Slyozov-Wagner (LS W) Coarsening

The foundations of coarsening theory were established independently by Lifshitz
and Slyoiov_ [2,4], and Wagner [3]. They required a very idealized system to satisfy three

equations during the coarsening process:



a) a_lgl_c_qmmm - the diffusi\(c ﬂlix at an individual precipitate's surface is
equated to the precipitate's growth rate;

b) a continuity equation - tﬁe distribution of precipitate sizes is continuous in time;

c) a mass conservation equation - the solutions to Both the kinetic énd continuity

equations must conserve the total solute concentration.

The idealizéd system considered in the LSW analysis assumes that:
i) both the precipitate and matrix phases are isotropic fluids;

ii) precipitates are spherical in shape;

iii) precipitate positions are ﬁ);ed in space;

iv) thefe exists a sufficient number of precipitates for the distribution of precipitate
radii to be represented as a continuous function;

v) processes such as nucleation and precipitate coalescence are neglected;

vi) the composition at the surface of a pfecipitate is determined by the radius of lt.he
precipitate;

vii) the total volume of the system is infinite.



The results of their analysis show that after a sufficient amount of time, coarsening
will proceed in a steady staté manner such that the precipitate size distribution (referenced to
the mean precipitate size) is stationary in ﬁme_. This asymptotic distribution is independent
of the initial distribution at the start of coarsenihg. The mean precipitate radius in this
coarsening regime, a, increases monotonically: a = kt1/3, with the growth factor, k, being a
constant. It is important to recognize the consequences of assumption (vii), wheréin the
total volume is regarded as iﬂﬁnite. In a finite volume the process is, of 'course, éomplete

after a finite time, when the precipitates have coarsened into a_sihgle mass.



1L A.ii Modified LSW Analyses

‘The LSW analysis provides a remarkably successful description for the majority of
coarsening observations, especially when one considers the restrictive set of assumptions:
that it employs. Real systems, however, tend to exhibit broader and more symmetric
‘steady-statc size distributions than those predicted by LSW. In addition, while the mean
precipitate size is usually observed o coarsen at the predicted t!/3 rate, the growth factof, K,
is rarely found to be that predicted by LSW. In order to account for these discrepancies,
critiques of the LSW analysis point out that assumption (vi) represents the situation in
which a precipitate's coarsening rate is independent of its Surroundings. This means a
particle whose nearest neighbors are larger than itself will coarsen at exactly the same rate
as if it were surrounded by precipitates that were of a smaller radius. This is only true in

the limit of zero volume fraction, where precipitates are infinitely separated. Several

investigations have been made to incorporate volume fraction effects into the LSW

formalism.

Ardell [44] ‘presentéd the first finite volume fraction modification to the LSW
analysis. Assuming thata randbm spétial arrangement of different sized precipitates can be
related through a mean free diffusion path which is a function of volume fraction, Ardell
expressed the kinetic ethation as a function of volume fraction and repeated the LSW
analysis. The result showed that as volume fraction increases, the predicted growth vrate

factor increases and the theoretical size distribution broadens. The coarsening rate was

» found proportional to t13 at all volume fractions, and the modifications include the LSW

results in the zero volume fraction limit.
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- Davies, Nash and’ Stevens (DNS) modified the LSW analysis by rélaxing
assumption (v) as a function of volume fraction by altering the continuity equation to
include the effect of direct contact, or welding, between growing precipitates [45].- Davies,
et al. showed that the effect of such précipitatc encounters is to incrcése the growth factor'
of the LSW analysis by a factor of appfoxiinately three, and to alter the shape of the steady-
state distribution so that it broadens and becomes increasingly symmetric with increasing
~ volume fractions. 'The t!2 coarsening dependence is unaffected by encounters and the

results reduce to those of LSW at zero volume fraction.

Brailsford and Wynblatt™ (BW) develop a different kinetic equation that assumes
’ th;: growth réte of a precipitate of one size class isa fuﬁcﬁon of both the entire particle siz e
distribution and the prevailing concentration gradient around the particle t46]. Employing
methods simila: to LSW for the continuity of th_ue size distribution, the results show. the
‘ grbwth rate to be less sensitive to volume fraction than Ardell's theory, but more sensitive
- than found in the DNS enéounter fheory. The broadening of the steady-state size
distribution is less than that found by Ardell and less than that found by DNS. These
results also reduce to those of LSW at zero volume ﬁaction. The predictions of DNS and

BW provide the most reasonable agreement with most experimental data.
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IL A.i Statistical Methods

Since the phenomenological approach used in the LSW analysis is unsatisfying to
many researchers, there has recently been great interest in u,sing various statistical
approaches to overcome the zero volume fraction assumption of the LSW theory. These
statistical methods begin with a system of growth equations for precipitates that are similar
in fbrm to those first pfoposed by Weins and Cahn [43]. These coupled equations describe
. the radial growth of eéch precipitate and take into account the long-range interaction of the

other precipitates which arise from the steady-state solution of the local concentration field.
This entire system of equations is necessary in order to satisfy solute conservation. When
emission or absorption of solute from growing or diésolving precipitates is modeled by.
placing pbint sources or sinks at the center of immobile sphérical precipitates, the model is
called a monopole approximation.' When points along a precipitate's surface can serve as
poles of different strength, it is called a multipole model. The strength ofa poie is related
to its curvature and growth rate. Solving the éntire éystem of coupled equations becomes
computétionally difficult with even a relatively small number ‘6f polés. The goal of
statistical analyses is to calculate statistically averaged pole strengths as a function of

volume fraction.

* As reviewed by Voorhees [9]' and Gunton [47] , all early monopole models were
based upon the equations of Weins and Cahn, but employed different statistical averaging
schemes and arrived at different quantitative results. More recent studies [30-31,48-51]
have modified the equations of Weins and Cahn in order to investigate spatial correlations

within the statistical analyses and to reveal various other inadequacies of the earlier
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monopole studies. Experimental data is, however, insufficient to support the claims of any

of these models. -

Multipole analyses [50-51] permit the study of mobile nonspherical precipitates,
but these studiés are computationally enormous, even when statistical averaging is
- employed. While these ‘studies have proved successful in displaying motion and
morphological changes of initially spherical precipitates upon coarsening, it is currently

impractical to’ study a system's coarsening behavior using such models.
IIL A. iv Geometrically General Model

Recently, DeHoff (52) has criticized previous coarsening theory and asserted that
any coarsening theory that reduces to the mean field LSW result in the Sparse sphere
distribution limit (as all the previously dicﬁssed models do) is inherently flawed. In
DeHoff's model, communicating neighbor surface elements and local diffusion length
\scales are incorpoated into interparticle interactions. The geometrically general kinematic
equations derived frém these considerations yieid results that sharply contrast LSW
beﬁavior in thg low volume fraction limit. At present, there has been no subsequent work

to substantiate DeHoff's claims.
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I1. A. v Dynamic Coarsening Models that Incorporate Elastic Effects.

~ Elastic effects have been introduced into dynamic coarsening models at both the -
many-body and two-body descriptive levels. Enomoto and Kawasaki [30—31] have, at
~ present, provided the only many-body model incorporating an elastic energy interaction
field. They consider a distribution of immobile elastically interacting sphereé and couple an
glaStic contribution to the system of growth equations put forth by Weins and Cahn [43].
“The elastic interaction field is that derived by Eshelby [1,53] : it assumes both an isotropic
media and spherical inclusions. The inclusions are characterized by their dilational misfit
and different elastic constants. . Their analysis predicts that when the shear modulus of the
precipitates is greater than that in the matrix phase, an inverse coarsening process occurs
whereby smaller precipitates grow at the expehse of the larger ones. This process slows
the coarsening kinetics in their model at intermediate precipitate sizes, as has been observed
in Ni-Al systems [5]. In contrast, when the precipitate phase has a rélativcly smaller shear
modulus, they predict the coarsening kiné_tics to increase from the classic LSW t1/3>
dependence to a t1/2 growth law. In addition, their steady-state precipitate size distributions
display volume fraction dependencies simiiar to those experimentally observed in
precipitates with higher relative shear moduli, such as Ni-Al, and those with lower relative
shear moduli, such as Al-Zn [54]. However, neither monotonic growth of smaller
precipitates at the expense of larger ones, nor the crossover to the higher t'/2 growth law,
has been éxpen'mentally observed. The statistical méchanics methodology of Enomoto ahd
Kawasaki is quite complicated: revealing aspects concerning the foundations and
Justifications of their perturbative expansion techniqlie are discussed by Gunton [47],

Voorhees [9] , Beenakker [48], Marder [49] and Kawasaki [50'51]'.
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Johnson, Voorhees and coworkers [22,24,27-29] are principally responsible _for
the p.relsent understanding of elastic effects in the dynamics of coarsening at the local level.
They have investigated the two-body problem with coupled elastic and diffusion fields for
dilational ﬂﬁsﬁning spherical inclusions, and have examined the influence of elastic
isotropy and anisotropy upon precipitate oﬁeniations, spacings, and sizes on growth rates -
during coarsening. Their ahalysis peinﬁtted inclusions to be mobile, and it was found that
a precipitate's center of masé can translate during coarsening. The two-body model
predicté the samé inverse coarsening as Enomoto and Kawasaki although, in contrast to

| Enomoto And Kawasaki, the inverse coarsening predicted in thé isotropic case occurs for
inclusions with relatively lower shear moduli at certain precipitate sizes and spacings [28].
In ‘additi'on_, the two-body simulation predicts inverse coarsening events in elastically
anisotropic media regérdless of any inhomogeneities between the elastic constants of the
precipitate and matrix [29]. Since arbitrary geometries are difficult to employ in this two-
body analysis, the model does not enable the predictidn of either elastically induced shapc
changes, or the inverse coarsening process whereby large precipitates subdivide into a

" number of smaller ones.

\
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ILB Energetic Coarsening Models
I1. B.i Energetic Monte Carlo Methods

Monte Carlo methods have recently been utilized to simulate elastic effects in the |
coarsening of coherent précipitates. Gayda and Srolovitz [32] used a -ﬁnite element
~ formulation in order to consider short range elastic interactions between misfitting elements
| and used a Monte Carlo scheme to rearrange particles as to‘miniinizc their total energy. Lee
[33] considered tetragonally misfitting elementary particles that interact at long range in an
elastically isotropic medium, and used Monte Carlo methods to examine the dynamics of
coarsening in his system. Monte Carlo simulations, such as these, have the distinct
~advantages: the method not only directly models a physical evolution process, but it also
yields a rate for the process. Nevertheless, the method also carries interprétive difficulties.
It requirés one to treat an elastic particle as if it had a great deal of mobility in the matrix. In
addition, treating elastic particles in the same manner as mobile atoms usually yields time
: snapshéts of the process that are blurred from the random -nature»of the simulation. For
example, grid regions of condensed particles often appear sﬁrrounded by a diffuse vapor of
elastic particles. This is to be expected from Monte Carlo techniques, as they are

essentially averaging techniques.
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IL B.1ii, Energetically Deterministic Methods

An alternative approach to simulating the elastic effects in the coarsening of
coherent precipitates is more deterministic than the Monte Carlo method. This approach is

to lower the total energy by the method of steepest energetic descent. In using this method,

one stipulates the existence of some underlying physical process that will lower a system's -

energy as much as possiblé when given the opportunity. This allows one to study the
kinematic path of mbrphological change rather than the dynamics, or rate, of coarsening in
strongly elastic affc'ctcd systems. The kihematics are studied by exploring the sequence of
configuration states leading to local energy minima. While it is very difficult to leave local
energy minima, or ﬁxctastable states, at a constant tcmpefature when using Monte Carlo
methods, there are inany means available to perturb a system out of a metastable state when
using more deterministic methods. This kinematic information can then be used to better
understand microstructural evolution by showing how the elastic driving force affects the

morphology and distribution of precipitates during coarsening.

&
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I0.  Analytic Model

IIILA The elastic energy

1

The elastic contribution to the free energy of a distribution of coherent inclusions

can be written in the form [42]
AFel = AFO + AF¢ . @)

where AFO is a sélf-cnergy which depends only on the volume of the inclusion phase, and
AF¢ is a configurational energy that depends on its spatial configuration. The configuration
of the inclusion phase is described by the function, 6(r), which is equal to unity when the

position vector, 1, falls within the inclusion phase, and is zero otherwise. Assuming linear

" elasticity, and using the method of Fourier transforms to evaluate the elastic field of the in-

clusion phase, the configurational energy is given by the integral

&k

2LB @WeOPSS @



18

where n = k/Ikl is a unit vector in the direction of the wave vector k, 8(k) is the Fourier

transform of the shape function, 0(r),

8(k) = Jv 8@kt | | 3)

and B'(n) is the elastic relaxation function, whose v»alu'e depends on the elastic constants of
“the medium and on the stress-free strain, €9, of the inclusion with respect to the matrix.
. The integration is taken to exclude the origin, k = 0, since the contribution from the origin

is included in the self-energy term.

In the case we shall study here the system has cubic symmetry and the inclusion

differs from the matrix by a simple volume expansion or contraction. Then €° = €40, and

B'(n) is well approximated by the algebraic expression [41]

_ 2A[52A£(2) 2l7B A2 o
B =" o8 o + g aeermr@l @

where 11, €12, and ca4 are the cubic elastic constants, 8 = cq; + 2¢y2 is the bulk modulus, A

and A = ¢y - €12 - 2c44 is the elastic anisotropy factor. The geometric functions, y;(n) and

Yo (n) are the cubic harmonics:

&
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+1. )

Y2(n) = n; nn, : (6)

To re-cast equation (2) into the two-dimensional form that is needed for the present

work, we assume that the transformation strain is areal,
e° = go0, : )

where 8, is the unit vector in two dimensions, (82)ij = Oix0jx + OiyOjy, and the system is in

plane strain in the (xy)-plane, which is perpendicular to.one of the cubic axes. Then

4[32A£(2) ' .
B =-lzeranh® ®

1

where %= ni n- . The position vector, 1, and the wave vector, k, reduce to two-dimen-

2
Yy
sional vectors in the plane, and the Fourier integral (3) is an integral over the plane. Using

equation (8) in equation (2), the configurational energy is
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)l

1 '
AFc=§jk B'(n) 10(k)| 203

= 4E*AL0()] o
where ' S . -

' 2
B2Ae,

| E*'= (10)

2¢11(2c11-4)

is a material constant and convenient measure of elastic interaction energy [41], Ap is the

cross-sectional area of the inclusion phase in the plane, and

1 . d%k .
Tp[6(r)] =A—pL MRS oy
is a dimensionless function whose value depends only on the configuration of the inclusion ' e

- phase in the plane. Note thatif A <0, E*is positive; minimizing Ip also minimizes the

energy. We limit this discussion to this case.



21

IILB The surface energy

The total configurational energy of the inclusion distribution is the sum of its elastic
and interfacial energies. Thé surface energy of the distribution, per unit length perpendicu-

lar to the plane, can be conveniently written
AFs=0 VAl V)

where o is the surface tension (assumed isotropic), and Lp = L[0(r)] is the dimensionless,
or normalized, line length of the inclusion. The function Lp[G(r)] depends only on the

~

shape of the inclusion phase in the plane: it is independent of size.

- Adding eqﬁations (9) and (12), the total configurational energy. can be written, in

dimensionless form,

AFC + AFS o

Lpl6(r)]

, "=» Ip+2Llp=Tp+To*Lp | C3)
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where

o A . ,
fo=pw - (14)

is an effective length that measures the relative contribution of the surface and elastic ef-
fects,D = \/A_p isa .length that measures the size of the inclusion phase, and ro* = ro/D. Ii
follows that the relative energy of a particular cbnﬁguration of the inclusion is determined
by its shape and by its size relative to the dimensionlesé characteristic length, ro, that fixes

the ratio between the interfacial and elastic contributions to the energy.
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IV. Equilibrium Shapes in Two Dimensions

In previoﬁs work [41] it was shown that a homogeneous, dilational inclusion in a
cubic matrix with negative elastic anisotropy should undergo a monotonic shape
transformation from a sphere to a cube to a doublet of parallel plates, to an octet of small
cubes, and, finally, to a thin plate as its effective size, D = V13, increases with respect to a
cﬁaracteristic length ro. The corresponding two-dimensional sequencé would be from a
circle to a square to a doublet of parallel rectangles to a quartet of small squares, and finally

to a thin rectangular plate.

To compare the energies of the various two-dimensional figures we need to evaluate
the geometric functions, I and Lp. For a circle, 0(k) is isotropic. Hence I, the value of

Ip4 for a circle, is just the average value of Y(n) = ny?ny? over the unit sphere:
Ic = (nx?ny?) = ( (cos26) (sin20) ) = 0.125 (15)

For a square of edge length D = 2a, the shape function, 0(k) is

B(k) = Bk = a2 | SHEE | S| a9

\
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where the variables (h,k) are determined by the identities kxa 21th and kya = 2mk. The

- geometric mtegral Isis .

~ Qa)? ” h2+k2)2 Bs(k)I2 dhdk = 0.1103 | o

Similar reasoning yields geometric integrals for rectangles of edge lengths, b and ¢ = Ap/b.
The values are plotted as a function the long edge length, b (measuréd in units of VAp), in
Fig. 1. ‘ | ' |

A doublet inclusion is formed by the decomposition of a square of edge length (2a)
into paréllel rectangles, with dimensions 2a x a, that are séparated by the distance, u. The
energy is minimized if the separation is in the [010] direction. The shape function, 84(k) = -

“0g(h,k), is

Oa(h k) = a2 [ SRS oo 148 (8)

where €4 = u/a. A quartet inclusion contains squares of edge length, a, that are ‘s‘eparated

by the distance u in the <100> directions. The shape functionis
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Bq(h.k) = 4a? [Sif;t(t’f@}[m;fﬁk)]cos[nh(l+§q)]cos[nk(1;§)] (19)

The integrals I and Iq are functions of the dimensionless separation, §. The function AF°
is plotted as a function of separation in Fig. 2. The elastic energy is minimum at the
separation §q = 1.20 for doublets and &g = 0.54 for quartets. The values of the geometric

integrals at these separations are
Ta€q = 1.20) = 0.0882 A (20)
Io(Eq = 0.54) =0.0863 | e

The functions, Ly, for the circle, square, rectangles, doublet and quartet are easily

found by dividing the perimeter by D = \/Ap. The total configurational energies are, then,
Af(circle) = 0.1250 + 2ro*V 7 22)
Af(square) = 0.1103 + dro* | 3)

Af(doublet) = 0.0882+ 6ro* @
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Af(quartet) = 0.0863+ 8ro* - (25)
M(mcmngle) =Ip(b) + 2(b + p'l)ro* | - (26)
where the values of Ip(b) are given 1n figure 1.

Comparing these values, the circle has minimum energy when D < 7.7ro? the
square is preferred when 7.71, < D < 22.61,, the doublet is preférrcd when 22.6rp <D <
2631y, and the qhartet is preferred for larger values of D. The results resemble those
calculated for the three-dimensional transition from sphere to cube to oétet [41], with the
difference that the octet is a likely conﬁguraﬁon in three dimensions, while the doublet to

quartet trarisition is only favored in two dimensions when the particle size is very large. If

the square to doublet transition is somehow suppressed, then the square to quartet

transition is preferred when the size, D, exceeds 41.7rq. -

However, the similarity between the two- and three-dimensional cases that is

suggested by equations (22)-(26) is somewhat deceptive. The reason is that the rectangular

plate has a relatively low surface energy in two dimensions, and is preferred energetically at
sizcs cVen_ smaller than that at which the circle transforms to a square. The rectangle that
forms initially, at D = 6.8r,, has edge lengths, b and c, such that its aspect ratio, k = b/c,

is 2.25. As D increases further, the equilibrium rectangle monotonically increases in aspect

~—
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ratio, steadily decreasing its elastic energy. To construct a two-dimensional simulation of
the three-dimensional morphological sequence it is useful to suppress the natural tendency
toward rectangular shapes in two-dimensions. This happens naturally in the finite element

model described below.
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V. Finite Element Model

To calculate the i'clative energies of distributions of inclusions we use a lumped-
node finite element method in which the configuration is taken to be periodic in the plane,
and each planar feﬁod is divided into a grid of square cells with edges of given length, d,
that are identified by the cell center positions, {R}. Eaéh cell is either empty or filled by
the inclusion phase; its occupancy is denoted by the value of the distribution function,‘
{(R), which has the value 1if R is filled and is zero if R is empty.. The inclusion shape

function, 6(r), is, then,

00 = IERI® | @7)

where n(r - R) = 1 if the position, 1, lies in the cell centered at R and is otherwise zero.

The two-dimensional Fourier transform of 0(r) is

o) = [, ¢ i =1 LR T @8)
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| V.A The elastic energy

Substituting equation (28) into equation (11), the conﬁguratidﬁal integral can be

written

b= 2y TORRNRIR) 29)

where

_ike[R-R'] 2k

o7 (30)

®(R-R") = 2J'ky;(n)m(k)|2'e

-

is the dimensionless elastic interaction between cells located at R and R. It follows that

the configurational part of the elastic energy is a simple sufaerposition of two-body

interactions between separated cells.

In order to calculate the two-body interaction function, ®(R - R'), we assume that
the distribution is periodic with period, L, along the two grid axes. Then, k =K +x,

where K is a wave vector of the reciprocal lattice,
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K = 2¥hye; + hoes) 31)

with hj integer, and x is a wave vector in the first Brillouin zone,

k=Tmer+me) @)

where n;j are integers in the domain - L/2d <nj<L/2d . The function o(R- R') can be re-

expressed in the form

oRR) = 23 Ty @) mE+ o e TRR] (33)
‘ K «x

where N is the number of cells within the periodic boundary. For a square of edge length, -
d, | -

sin2(kyd) sin?(kod) _ sin2(x;d)  sin2(xod)
(kid)?  (kad)2 T~ [(Ky+i)d]? [(Ko+xo)d]?

(k)2 =

(34)

With these results, the configurational contribution to the dimensionless elastic energy is -
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Aﬁ:lp[{C(R)}]=§}1\—pRERfo(R'-R')§(R)c(R') B | (35)

where the function Ip[{{(R)}] depends on the configuration, {{(R)}, only.

Given equations (33) and (35), the problem of computing the configurational con-
tribution to the elastic enérgy of an arbitrary distribution of inclusions is reduced to the
problem of determining the dimensionless two-body interaction, ®(R-R'). While this sum
is not simple to calculate, the calculation need 6nly be done once for an array of given size.
The two-body potential is independent of the -valﬁes of the 'elasﬁc constants and the magni_;
tude of the transformation strain. Mbreover, the simple real-space form of equation (35)
makes it relatively easy to update thé elastfc energy for incremental changes in the inclusion

configuration, and hence, to follow the change in elastic energy as the distribution evolves.
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'V.B  The surface energy

To compute the total énergy of a configuration of inclusions it is necessary to calcu-
late the net surface energy. A particular cell of tﬁe inclusion phase contributes to the sur-
- face energy only if it 1i¢svat the surface, that is, only if it borders emptsr ce_lls. To maximize
contact with the analytic results presented above, we would like to adjust the interfacial
interaction so that the surfac¢ tension is isotropic. This is difficult to do for a body that is v
made up of square éells since all boundaries except those in {10} orientations are neces-
sarily jagged, and since the cell-cell interaction is coarse-grained with respebt to the inter-
face. Asa compromise, we chose the surface interaction so that a particle in the interface.
in.teracts only with iis nearest neighbors in the (10) and (1 %) directions, aﬁd selected the in-
teracﬁons,- o10 and 011, $O that the intérfacial ;ténsions of the {10} and {11} interfaces
would be the same. Accounting for the different contributions to the interfacial area from

the {10} and {11} faces of a squaie cell, this is accomplished when

Q

ﬂ:% ~3.121 (36)

11

Q

in which case the tension of the { 10} and {11} interfaces is

010+011 10

R DTS
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The interfacial tension for an intermediate direction is slightly larger that this number, but is

nearly isotropic.

With this approximation the total interfacial energy of the configuration can be
expressed in terms of the occupation of the site, R, and the number of empty immediate

neighbors, n1o(R) and n;;(R), that contribute surface interactions to it:

AFs === 2 {R) [2V2 -DngoR) + 2-V2)n11(R)]

= oVApLp[{CR)}] (38)
where the function, Lp[{{(R)}] depends on the configuration, {{(R)}, only:

Lol{{®R)) ——\F—_Z (R) [297 -Dngo(R) + 2-VDnn R)] (39)

The total configurational contribution to the free energy is, then, given by an equation iden-

 tical to equation (13):

L
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_ AFC+AFs

] B
Af——4§jAp—= .Ip[{C(R)]] +§°Lp[{§(R)}] (40)

where Ip and L are the discrete sums over the configuration defined in equations (35) and

(39), respectively.
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VI Shape Transitions in Computer Simulation

VLA Procedure

The computer simulation experirhents reported here were primarily intended to
identify morphological instabilities in the inclusion phase and examine the metastable
equilibrium cénﬁgurations to which the unstable shape might evolve. A shape is unstable
with respect to reconfiguration when there is an infinitesimal redisuibuﬁbn of the inclusion
phase that lowers the free energy. In the present case, the elementai'y (infinitesimal)
redistribution is a change in the location of a single cell of the inclusion phase, and the ,

shape is unstable when there is a change in location that decreases the configurational

energy.

| A morphological instability initiates an evolution that can only ténninate in a config-
uration that is at least metastable. ‘Both the rate and path of evolution depend on the specific
mechanisms that are available, inéludjng diffusion and nucleation of new particles. The
general solution of diffusional coafsenihg would require an elaborate compvutational effort
that is beyond the scoﬁe of this work. The present investigation is limited io a kinematic
study of evolution along the "minimum energy path", the path along which the system
would evolve if each elementary step were chosen to minimize the instantaneous value of
the free energy. The evolution ceases when the configuration reaches a metastable state in

which it is impossible to decrease the free energy by relocating a‘single cell.
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In the computer simulation thé.inclusion phase fills a subset of square cells in a
periodic array. The diménsionless elastic interaction function, ®(R-R"), is a property of
the array only, and is éalculated from equation (33). The physical parameter that governs
the configurational energy of the inclusion distribution is the dimensionless length, ry*,

which determines the configurational energy écc'ording to equation (40).

It is unnecessary to compute the configurational energy for every configuration; we

require only the confi gufational part of the dimensionless chemical potential
¢(R) = '
LR -F® @

. which gives the change in energy on inserting a particle at position, R. The maxitﬁum of
HE(R) among the filled cells determines the inclusion site, R, whose removalv would be
fnost favorable. Then the minimum value of p¢(R) amohg the unfilled sites (calculated af-
ter emptying R;) determines th¢ site, Rj', where fhe material at Ri can be most favorably

repositioned. The associated change in dimensionless energy is .
Af = p°R) - p°R) . )

and the configuration is unstable if p°(Ry’) < uc(R;), metastable if uc(R;j’) > HE(R}).
Since p¢(R) is linear in the distribution, {{(R)}, the pertinent values of u¢(R) can be car-

ried in the computer in a table that is easily updated as the system evolves.
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We have used this procedure to conduct two types of simulations. The first, which
is the principle focus of this paper, studies the evolution of an initially circular inclusion.
Given an approximate sphere of elementary célls, we decrease ro* (increase D) until the
configuration becomes unstable, then follow its evolution along the minimum energy path
until it finds a new cbnﬁgmaﬁon. Each time a new, metastable configuration is reached we
decrement ro* to destabilize it again, thus following the evolution of shape during
coarsening. In the second type of simulation ‘wev model the evolution of an initial
distribution of small inclusions by setting the value of ro* (that is, we set the ratio of sur-
face aﬁd elastic effects along with the areal fraction of inclusion phase) and let the dis-
tribution évolve along the minimum energy pa,th. until a metastable state is reached. In this

way we study the character of the first metastable state as a function of ro*. The results of

these simulations are described in turn.
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VLB Evolution of an initially circular inclusion.

To describe the results of the simulation experiments that studied the evolution of a
circular configuration it is consistent to take rq as fixed, so that D increases. Since the area
fraction of inclusion cells within a period of the simulation remains constant as D increases,

the periodic array coarsens at constant volume fraction of inclusion phase.
VI.B.i Circle to square

The evolution from circle to square is illustrated in Fig. 3. In the simulation
shown, 1257 particles were placed in a 100x100 airay in a nearly circular configuration :
with radius of about 20 grid cells (Fig. 3a). The most circular conﬁguratidn is always
unshble.- 'fhé minimum cnefgy path converts it into the near-circular figure shown in Fig.
3b, which is flattened to have only (11) and (10) faces. This behavior is a consequence of

the surface tension, which is not quite isotropic and favors (11) and (10) faces.

As D is increased the near-circle rémains stable until D = 4r,, at which point it be-
comes unstable With respect to evoluﬁon into a square, as shown in Fig. 3c. The square is
achieved by moving material from the (10) faces of the circle onto its (11) faces, shrinking.
the latter until only (10) faces remain. The transition from circle to square is so nearly
monotonic that the transition occins at very close to the equilibriuni value of D. The transi-

tion point is, in fact, below the équilibrium value for the circle-square transition that was
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calculated from equation (23) (41, vs. 7.71). This reflects the slight anisotropy in the sur-

face tension, which creates a preference for the square.

Note that the true equilibrium shape identified in Section 3, a rectangle with aspect
ratio 2.25, does not appear. This reflects the fact that if the circle were to evolve into a |
rectangle it would pass through intermediate configurations that have higher energy than the -
square. Although the circle becomes metastable with respect to a 'suitabie rectangle before it

is metastable with respect to a square, its first instability leads to the square.



VI.B.ii. Square to doublet

Once a squaré has formed from the circle, it remains stable with respect to sponta-
neous changes in 1ts shape until the 'parﬁéle size reaches the value, D = 27rq, which is sig-
nificantly larger than the value, D = 22.6r,, at which it would transform to a» doublet parti-
cle at equilibrium. Its subsequent behavior depends on the instability mechanisms that are
allowed. The reason lies in the shape of the elastic interaction, which has the consequence

- that the cell with the highest elastic energy in a square inciu_sion is located at its center; es-
sentiélly, the elastic interaction is repulsive along <11>, and tries to drive the inclusion
apart. At the sarﬁe time, the empty site at which an inclusion would have the least elastic
energy is located within the matrix at some distance outside the square in the <10> direc-

‘tion. Since the elastic term dominates the chemical potential atD = 27r§, the most favorable
reconfiguration is thé dissolution of a cell at the center of the square with the nucleation of a

new inclusion particle in the matrix.-

This brocess is illustrated in Fig. 4, which shows the hollowihg of the square ac-
companied by the formation of a thin plate that is separated from the sqﬁare and spreads in
the <10> direction. As D increases the separatéd plate extends and the_'square 'gradually
hollows into a doublet, leading eventually to fhe metastable configuration shown in Fig. 4c,
which is reached at D = 43r,. This d0ublet-p1u§-platc conﬁguratibn is metastable with re-
spect to further decomposition until D > 65r,, at which point the configuratibn splits further

to form a number of thin, separated plates.

Since the nucleation of new inclusion particles in the matrix may be kinetically diffi-

cult, we explored the evolution of a system in which this step is disallowed. The results
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are illustrated in Fig. 5. The precipitate again begins to split by hollowing at its center
when D > 27r,. However, the hollowing is more gradual and is not completed until D =

65ro. At larger sizes the split plates split further to create a stacking of thin, separated
piates’. We note that the separation of the plates in the doublet, €, is below the equilibrium
.value found' in section 3. In this model the separation of the plates in the doublet can only
be accomplished by adsorbing inclusion cells on the outside lateral surfaces of the plates.
. These adsorbed cells have relatively' high energy, and the separation of the plates ceases

" when the driving force for separation falls below the value required to create them.

The mechanism shown in Fig. 5 still initiates through what is eésentiaily a nucle-
ation reaction; the nucleation of matrix phase in the interior of the inclusion. Since this pro-
cess may also be difficult, a further_ simulation was done in which matrix-phase riucleation
was also disellowed; only surfacel perturbations were permitted. In this case the square
‘ shape remains stable to arbitrarily large values of D. To trigger instability it was necessary
to introduce an artificial perturbation of the surface. Fig. 6 illustrates the effect of a notch
caused by the elimination of one cell in the center of the square surface. The square re-
mains stable in the presence of fhis defect until D > 100r,, at which point the square be-
comes unstable and the defect is pulled into the particie center like a migrating void. Once
the particle reaches the center, the square splits just as if the empty cell had n'ueleated in its
center. This result re-emphasizes the striking tendency of square inclusions to split from
the inside out, which is a straightforward consequence of the strong maximum of the elastic

- energy at the inclusion center.
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' VLB.iii Square to quartet

Symmetric quartéts of the type treated in the analytic calculétion wefe neVér formed
by the natural instabilities of the square or doublet. The square splits to a doublet, includ-
ing side plates if they are allowed. The doublet then splits into réctangles. This behavior is
not surpﬁsing, since the rectangle is the energetically preferred figure. However, we were'
able to stimulate the formation of ;i quartet by artificially suppressing splitting of the square
until its size had bec‘.ofne large. When the square is maintained until D > 150r, before being
allowed to spli't'it hollows in the form of a cross, as shown in Fig. 7, and splits into four

‘rectangles that approximate a quartet, with pairs of particles Separated in the [10] and [01]
direcﬁons. However, the quartét is unstable. The interparticle separation inéreéses prefer-
entially along one of the <10> directions to achieve the metastable state shown in Fig.. 7,
which is, effectively, a doublet of split rectangles. At D > 2251, the squére initially splits
into a true quartet of squares, but this is an unstable intermediate ‘conﬁguration that immedi-

ately splits further into a stacking of separated plates.
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VL.C Evolution of a random distribution of inclusions

The computer code is also capable of simulating the evolution of an initially random
distribution of inclusion particles. ' In this case the dirhcnsionless length, 1o*, is a fixed
parameter; ro, is set by the elastic properﬁcs of the medilim, and D is ﬁked by the areal
fraction of the particles. Given ry*, and assuming erlution along the minimum energy -
~ path, an initially random distribution of inclusions evolves to a metastable configuration

that depends on rp*.

Fig. 8 illustrates the metastable configurations that were reached from the same
initial configuration (Fig. 8a) at three values of To*. When the elastic contribution is small,
Io* = 1, thé'system evolves to a configuration like that shown in Fig. 8b, which contains
clusters of particlgs that have square or rectangular shape. Since circles cahnot be made of
small clusters of square cells, the square and recténgular shapes are .t_hc iow-cnefgy
configurations. The cluster pérticles are themselves distributed in a more or less random
way through the matrix; since the elastic contribution is relatively small the particles do not

interact strongly with one another.

Fig. 8c shows the metastable configuration that is derived from the same starting
vpbint when ro* = 0.05. The smaller value of ro* corresponds to a much stronger elastic
contribution, and this is reflected in the configﬁratioh. The particles cluster into elongated
rectangles, Squares and doublets whose shapes and positions are evidently correlated to one
another by the elastic interaction. Fig. 8c resembles the coarsened rixicrostrucn;rcs of Ni-Al

alloys reported by Miyazaki, et al. [6]. Note, however, that the doublet particles that ap-
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pear here resuit from the association of neighboring particles rather than the splitting of

particles of larger size.

Fig. 8d shows the metastable configuration that is obtained in the extreme case ro*
= 0, that is, the elastic interaction is wholly dominant. In this case the particles coarsen

immediately into thin rectangles that align with one another.
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VII. Discussion
VILA Results of the model

The simulations reported above reproduce a number of phehdmena that have been
observed during the coarsening of coherent, cubic precipitates in anisotropic media [1-8].

" These include morphological transitions that are the two-dimensional analogues of the
sphere — cube — doublet or octet, and direct evolution to distributions that contain dodblet

particles.

The results also illustrate the difference between equilibrium and instability criteria
for the éhape transition. A circle evolves continuously into a square; hence the transition
occurs at very nearly the equilibrium particle size. However, a square can only split into a

- doublet by hollowing itself out or by the inward growth of a surface perturbation. Hence
the size at transition is fr;uch larger than the equilibrium value, and depends on the precise
transformation mechanisms that are allowed. This behavior mimics that of three-
dimensional precipitates [41]: spherical precipitates in Ni-Al are converted to cubes at sizes

‘that are close to the equilibrium sizes predicted by the elastic theory, while cubes do not
split until they grow much larger than the predicted equilibrium Size: The discrépancy be- -
tween the equilibrium and actual transition sizes was also noted by Johnson, qurhees, and

coworkers[28-29] who have used rather different models to study coarsening.
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Perhaps the mdst striking feature of the computer simulation is the tendency of the

square particle to split by hollowing its center. Even when the splitting was compelled to
initiate from the particle surface, the incipient split was immediately drawn into the center.
This reflects the fact that the elastic energy is greatest at the center of the Square. A similar

- result holds in three dimensions; the elastic enefgy is greatest at the center of a cube and, if
it could, the cube would split from the inside. Despite the occasional observation of hollow
cross-sections of cubes in Ni-Al [6,8], this probably does not happen in three dimensions.
However, splitting that starts from a perturbation on the surface of a cube experiehces an
elastic driving force that makes it gréw rapidly toward the cenfer, presumably in the form

of tunnels that lead to the hollow cross-sections that have been seen.

» Note, however, that the computer sirﬁulations reveal two independent sources fqr
doublet particle configurations: they can be created by splitting a larger cube, or they can
form through the association of separate particles during coarsening. The driving force is
the same in both cases: thé trend to local particle configurations with reiatively low elastic
energy. Similarly, equilibrium transitions can be suppressed if they require intermediate
configurations of higher energy; the circle transforms to a square rather than an equilibrivm

rectanglé.

Finally, note the role of elastic anisotropy in the morphological behavior of the
simulations. The model assumedbnegative anisotropy ( A < 0), in which case the elastic en-

-

ergy strongly prefers figure with (10) habits and interfaces.
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VILB Limitations of the model

In addition to its two-dimensional character, the model studied here is limited in its
geometry, its treatment of the interfacial tension, and its inability to simulate the kinetics of

coarsening or identify the true kinetic path.

~ The geometricl limitations are the finite size of the elementary cell and the finite pe-
riod of the grid array. The finite cell size (d) is responsible for the appearance of metastable
configurations; it is impossible to simulate a truly infinitesimal reconfiguration. Since the
metastable configurations do not fully satisfy the conditions of equilibrium (i = SAF/SC(R)
is not the same for all R), the metastable configurations identified here are actually "almost
metastable"” configurations that will continue to coarsen at a finite, but slow rate. The finite
c(ell size also int;'oduces a Small corner energy at the junctiBn of (10) or (11) faces. This
energy vanishes as d becomes small, and has very little effect on particles of the size
studied here. The finite array size, L, introduces effects that vary with the areal fraction of

inclusions (D/L)2. Experimental study of the array size effect suggests that it is relatively

unimportant when D/L < 0.5.

The surface energy of the model has the most isotropic form we have been able to
devise, but still is not quite isotropic. Its anisotropy is reﬂectéd in the instability of a circle
with fespect' to the diamond-like configuration shown in Fig. 5, which is bounded by (10)

and .(1 1) surfaces.
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}

Finally, the model does not specifically treat the kinetics of coarsening, and only
approximateé the true kinetic path by the "minimum energy" path. At the present level of
computational capacity it seems nécessary to do this to construct a model that has the mor-
phological complexity of the one used here. Johnson, Voorﬁees and co-workers [28-29]
have published informative studies of coarsening in elastic media, but are forced to treat
more rest’ﬁctcd configurations. Lee [33] has presented a simulation like the one studied
here in which the configuration is made to evolve by using Monte Carlo techniques to move -
the eieméntary cells. That model, which we have also studied, yields interesting results,
but only evolves at a finite rate when the "effective températuré" is so high that the
inclusions become relatively diffuse and their shapes ill-defined. Each of these approaches
has its strengths and limitations; the search for a better understanding of cparscning may‘

profitably exploit them all.
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Figure Captions

Values of the geometric integral, Ip, for rectangles as a
function of the long edge length, b The edge length is
measured in units of «lAp

The dependence of the geometric integrals on the
. dimensionless separanon for the cases of doublets and

quartets.

The sequence (a) - (c) displays the simulated circle — square
transition.

The sequence (a) - (c) displays the simulated square — plate
doublet transition in the case of free nucleation.

The sequence (a) - (c) displays the simulated square — quartet
transition in the case of allowed matrix phase nucleation.

The sequence (a) - (c) displays the effect of surface perturb-
ations upon a square precipitate when nucleation is not .
permitted.

The sequence (a) - (c) displays the square — quartet transition

~ in the case of allowed matrix phase nucleation.

An initial random array (a) evolves to its first metastable state

under the conditions of: (b) high surface to elastic energy ratio,
(c) intermediate surface to elastic energy ratio, and (d) zero
surface contribution.
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Geometric Intégrals vs. Separation’
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