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Nuclear Solid Crust on Rotating Strange Quark 
Stars 

N. K. Glendenning and F. Weber 

ABSTRACT 

We calculate in general relativity the thickness, mass and moment of in­
ertia of the nuclear solid crust that can exist on the surface of a rotating 
strange quark star suspended out of contact with the quark core by an 
electric dipole layer on the core surface and the centrifugal force. Aside 
from the interesting properties of such stars, a particular question of great 
import to the viability of the strange matter hypothesis is whether strange 
stars can undergo the observed phenomena of pulsar glitches. We find that 
the nuclear crust can have a moment of inertia sufficiently large that a 
fractional change can account for the magnitude of pulsar glitches, even 
giant glitches. However, before testing a detailed model of the coupling of 
the crust and quark core, not an easy problem, we are not able to draw 
the definite conclusion that strange stars can account for all phenomena 
associated with glitching such as the healing-time and recurrence rate. 
The problem of understanding quakes on compact stars is, afterall, akin 
to predicting earthquakes. We study the particular sequence of stars, both 
rotating and stationary, that have the maximum possible crust density, 
the neutron drip density. The sequence has a minimum mass of about 
0.015M0 or about 15 Jupiter masses. Stars near this limit have crusts of 
thickness lO's to lOO's of kilometers and are small and dark and so could 
be hiding places of baryonic matter. 
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Nuclear Solid Crust on Rotating Strange Quark 
Stars 

N. K. Glendenning and F. Weber 

1 Introduction 

The hypothesis (Bodmer 1971; Witten 1984) that strange quark matter may be the 
absolute ground state of the strong interaction is very difficult either to prove or 
disprove. On theoretical scale arguments it is as plausible a ground state as the 
confined state of hadrons (Witten 1984; Farhi and Jaffe 1984; Glendenning 1990). It 
is understood that even if it is the ground state, little or no such matter would have 
survived the high temperature era of the universe because of evaporation to hadrons 

· and the universe would have evolved essentially independent of which is the true 
ground state (Alcock and Farhi 1985; Applegate and Hogan 1985; Madsen, Heiselberg, 
and llissager 1986; Madsen and Olesen 1991; Madsen 1991). An up-to-date account 
of recent developments can be found in Refs. Glendenning (1990), and Madsen and 
Haensel (1991 ). If the hypothesis is t,rue, then a separate class of compact stars could 
exist, which are called strange stars. They form a distinct and disconnected branch of 
compact stars and are not a part of the continuum of equilibrium configurations that 
include white dwarfs and neutron stars. In principle both strange and neutron stars 
could exist. However if strange stars exist, the galaxy is likely to be contaminated 
by strange quark nuggets which would convert all neutron stars that they come into 
contact with to strange stars (Glendenning 1990; Madsen and Olesen 1991; Caldwell 
and Friedman 1991). 

At the present time there appears to be only one crucial astrophysical test of the 
strange-quark-matter hypothesis, and that is whether strange-quark stars can give 
rise to the observed phenomena of pulsar glitches. Glitches are sudden relatively 
small changes in the period of a pulsar, which otherwise increases very slowly with 
time due to the loss of rotational energy through radiation. They occur in various 
pulsars at intervals of days to months or years, and in some pulsars are small (Crab), 
and in others large (Vela) and infrequent (b:..0./0."' 10-8 - 10-6 respectively). 

Glitches have been attributed variously to several causes related to the assumed 
structure of neutron stars. One such is the crust quake in which an oblate soli.d crust 
in its present shape slowly comes out of equilibrium with the forces acting on it as 
the period of rotation changes, and fractures when the built up stress exceeds the 
sheer strength of the crust material (Ruderman 1969, Baym and Pines 1971). The 
period and rate of change of period slowly heal to the trend preceding the glitch as 
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the coupling between crust and core re-establishes their co-rotation. The existence 
of glitches may have a decisive impact on the question of whether strange matter 
is the ground state. The reason is that provided the cores of the most massive of 
neutron stars have densities exceeding that required to convert hadrons to quark 
matter (of which strange matter is the lower state) and that such stars of sufficient 
mass can be made in natural processes, then almost certainly all other neutron stars 
have also been converted to strange stars (Glendenning 1990; Madsen and Olesen 
1991; Caldwell and Friedman 1991) either as a result of being bathed themselves by 
a flux of strange nuggets estimated to be as high as 0.1/(cm2 s) (Glendenning 1990) 
produced in strange star collisions in the galaxy or formed in a supernova from a 
progenitor that already contains strange seeds, either acquired after formation of the 
progenitor star or as a result of the gaseous material out of which the progenitor 
star was formed already containing seeds of strange matter produced in the same 
way either within our galaxy or in the neighboring cluster of galaxies (Caldwell and 
Friedman 1991 ). In any case the nugget will grow to consume the entire neutron star 
(Olinto 1987). Therefore since under the above proviso, neutron stars have already 
been converted, strange stars must be capable of producing pulsar glitches else the 
hypothesis of strange matter fails. Indeed the claim has been made that it does fail 
on this account (Alpar 1987), but for many researchers the case is unconvincing since 
the properties of quark matter are not sufficiently well known (Alcock and Olinto 
1988, Madsen and Haensel 1991) Of course a bag model of quark matter is a gas and 
cannot support stress, but this is likely to be a poor description of quark matter at its 
lower range in density where asymptotic freedom is not necessarily established. We 
do not deal in this paper with the properties of strange matter itself but rather focus 
on the crust of hadronic matter that a strange star can support. Because the strange 
quark mass is greater than that of the up and down quarks, a strange star will possess 
a dipole layer on its surface due to the electrons it must contain for charge neutrality 
(Alcock, Farhi, and Olinto 1986). This electric diple layer (and the centrifugal force) 
can suspend a nuclear crust on the surface of a rotating strange quark matter star 
out of contact with the quark core. Here we study the thickness, mass and moment of 
inertia of the crust as a function of mass and rotational frequency of the star, since it 
is a possible site of the buildup of stress whose occasional release could be responsible 
for glitching or at least micro-glitching in hypothetical strange pulsars. Still another 
motivation concerns the cooling rate of strange stars, which is significantly altered by 
the presence of a crust (Pizzochero 1991). 

Beyond the specific properties of strange stars, several of which are exotic, their 
existence or non-existence carries information of a fundamental nature as to the true 
ground state of the strong interaction that no other experiment or fact has yet revealed 
(Witten 1984; Glendenning 1990; Madsen and Haensel 1991; Alcock 1991) so they 
are veJ,"y interesting objects to study in their many facets. 
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2 Description of the Crust 

Because the strange quark mass is larger than that of the up and down quarks, 
equilibrium dense strange matter will contain an approximately equal mixture of all 
three, with a slight deficit of strange quarks. Since the Coulomb interaction is so 
much stronger than the gravitational, a star must be charge neutral to very high 
precision ("' I0-37 net charge per baryon). The net positive quark charge therefore 
must be balanced by electrons. As was discussed by Alcock, Fahri, and Olinto (1986), 
the electrons, because they are bound by the Coulomb force, extend several hundred 
fermis beyond the boundary of the strange star which itself has a surface thickness 
of the order of the strong interaction range, "' 1 fm since this is the force that binds 
strange stars. The electric field at the surface is estimated to be "' 1017 V /em and 
outwardly directed. It can therefore suspend a crust of charged material, which itself 
is overall neutral but in which the charges of opposite sign are displaced (as in the 
core). The crust is gravitationally bound to the core. By hypothesis, strange matter 
is absolutely stable, so neutrons will be dissolved into quark matter as they gravitate 
into the core. Therefore the maximum density of the crust is strictly limited by 
neutron drip. This density is about 4.3 x 1011g/cm3

• Because this lies below the 
central density of the least massive stable neutron star by about three orders of 
magnitude, we anticipate that the minimum mass of strange stars with a crust of 
maximum density equal to the drip density will be less than the minimum mass of 
neutron stars. 

We shall be interested in the nuclear crust of a strange star that has reached the 
final state of stellar evolution, namely cold catalyzed matter appropriate to the range 
of pressures found in the crust, no matter how the strange star acquired the crust, 
whether by accretion from the interstellar medium onto an initially, and possibly 
primordial bare strange star, or whether during its creation in a supernova, the crust 
in this case being debris from the progenitor star. 

Because we are not interested in the star structure on the scale of the thickness 
of the gap between core and crust, of the order of several hundred fermis (Alcock, 
Farhi, and Olinto 1986), the somewhat complicated situation just described can be 
very simply represented by the choice of equation of state. It should consist of two 
parts. (1) At densities below neutron drip it should be represented by the low density 
equation of state of charge neutral nuclear matter. The most significant aspect of 
this density domain is that it consists of a Coulomb lattice of heavy ions immersed 
in an electron gas. The heavy ions become ever more neutron rich as the neutron 
drip density is approached from below. The equation of state at sub-nuclear density 
down to very low density has been calculated by Baym, Pethick, and Sutherland 
(1971 ), hereafter referred to as BPS. Details of the structure of matter at densities 
below neutron drip can be found in this reference. To describe a strange star with the 
maximum possible crust density at its inner edge, we take the low density equation 
of state for pressures below Pdrip· (2) At pressures above the neutron drip pressure 
in nuclear matter the equation of state corresponds to strange quark matter. We use 
the simplest form of the bag model equation of state for strange matter because as 
far as the relationship of energy density and pressure is concerned, it is accurate to 
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Figure 1: Equation of state of a strange star surrounded by a nuclear crust with inner 
density below neutron drip. The symbols Pdrip and fdrip refer to drip pressure and 
drip energy density. The quark matter equation of state is calculated for B 114 =145 
MeV (solid line) and 160 MeV (dashed). 

within 4% of the more complicated form involving quark masses (Alcock, Far hi, and 
Olinto 1986). It is P = (t:- 4B)/3. The edge of the strange star, if bare, occurs at 
P = 0, or equivalently, f = 4B. In the presence of a crust, the quark core will be 
slightly squeezed, and the pressure at the edge of the core will be small but positive 
and equal to Pdrip· Correspondingly, the energy density at the edge of the core will be 
slightly larger than 4B. The equation of state is illustrated in Fig. 1 and represented 
by 

P( ) _ { Paps( t:) if P < Pdrip 
t: - ~ ( t: - 4 B) if P ~ P drip . 

(1) 

Two different representative values for the bag constant for which 3-flavor strange­
matter is stable have been chosen, B 114 =145 MeV and 160 MeV. These values may 
serve to study the impact of the bag constant on the hadronic crust of strange stars. 
For massless strange quarks these bag constants correspond to an equilibrium energy 
per baryon number of strange quark matter of about 830 MeV and 915 MeV, respec­
tively. For strange quarks of 100 MeV mass, they correspond to about 855 MeV and 
930 MeV, respectively (Farhi and Jaffe 1984). In other words these choices represent 
strongly(......, 100 MeV) and weakly bound strange matter and in all cases correspond 
to strange quark matter being absolutely bound with respect to 56Fe. 

Pressure in a star is a continuous and monotonically decreasing function of the 
Schwarzschild radial coordinate, but naturally there is a discontinuity in the energy 
density between strange quark matter and hadronic matter at the neutron drip pres­
sure of hadronic matter. The energy discontinuity between hadronic matter at the 
drip pressure and strange quark matter at the same pressure is ( cf. Fig. 1) 

.6.t: = (3Pdrip + 4B) - t:drip , (2) 
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Figure 2: Energy density as a 
function of radial distance from 
the star's center for gravitational 
masses MIM0 =0.020 (solid line), 
0.20 (dashed), 1.00 (dash-dotted), 
and 1.50 (dotted). The bag constant 
is B 114 = 145 MeV. 
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Figure 3: Pressure as a function of 
radial distance from the star's cen­
ter for different gravitational masses 
(the labeling is the same as in Fig. 
2). The bag constant is B 114 = 145 
MeV. 

where fdrip is the energy density of nuclear matter at the neutron drip point. The 
energy density of the star will suffer this discontinuity (across the several hundred 
fermi gap described above) at the radius where the pressure of the star falls from 
its central value to Pdrip· The energy density and pressure profiles of several non­
rotating sample stars are shown in Figs. 2 - 5 for gravitational masses in the range 
0.020 ~ M I M0 ~ 1.50. The ends of this range correspond respectively to a very light 
star close to the lower mass limit and one closer to the upper mass limit. The sharp 
fall in the energy profile marks the boundary between the quark core and the nuclear 
crust. 

By the hypothesis that strange matter is the absolute ground state, stable objects 
of strange matter from microscopic nuggets to stars could exist. However the 'nuclear 
crust, suspended out of contact with the core by the electric dipole layer, is attached 
to the star by the gravitational interaction. For a given inner density of the crust, 
the maximum of which is t~e drip density, the crust will be thinner the more massive 
the strange quark core, and thicker the less massive it is. This can be understood 
as a consequence of the way the core radius scales with mass; for masses too small 
for gravity to play an important role, the relationship is M = ( 411" 13) R3

f.o where 
f.o = 4B is the equilibrium density of strange matter. This relation is only somewhat 
modified near the most massive star in the sequence which gravity terminates. So 
since R oc M 113

, the (Newtonian) gravitational force acting on unit mass at the 
surface of the core is M I R 2 oc .Afll3 • The nuclear crust becomes gravitationally 
unstable (d M ld f.c ~ 0) at some minimum mass that depends on the inner density 
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Figure 4: Same as Fig. 2, but for 
B 114 =160 MeV. 

0.0 2.5 5.0 7.5 10.0 
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Figure 5: Same as Fig. 3, but for 
B 114 =160 MeV. 

12.5 

of the crust. When this density is the neutron drip density we find a minimum mass 
star of"""' 0.015M~, to be compared to 0.1M0 for neutron stars (Baym, Pethick, and 
Sutherland 1971). So the thickening of the crust illustrated in Figs. 2 and 4 for the 
M / M 0 = 0.02 case, which is close to the lower mass limit for an inner crust density 
equal to the neutron drip density, illustrate the profiles very close to the lower end 
point of stable strange stars with nuclear crusts. 

A comparison of these figures for different bag constants B can be facilitated by 
noting the scaling laws that apply to strange stars (Witten 1984; Wang and Wang 
1990). For a central energy density that is some fixed multiple of B, the mass and 
radius of bare strange stars corresponding to different assumptions about the bag 
constant scale as 

M oc 1/VB, Roc 1/VB. (3) 

The maxtmum mass strange star for given B corresponds to a central density of 
19.2B. 

The mass-radius relationship for strange stars with a nuclear crust is shown in 
Fig. 6, and since the crust is bound by the gravitational interaction, the relationship 
is qualitatively similar to the one for neutron stars, the radius being largest for the 
lightest and smallest for the heaviest in the sequence. Just as for neutron stars the 
relationship is not necessarily monotonic at intermediate masses. The radius of the 
strange quark core is also shown, and it follows the inevitable behavior of objects that 
are self-bound, namely the one mentioned above, Roc M 113 , which is only somewhat 
modified near the mass where gravity terminates the stable sequence. 
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Figure 6: Radius as a function of mass of strange star with crust, and radius of the 
strange star core for inner crust density equal to the neutron drip, for non-rotating 
stars. Bag constant is B 114 =160 MeV. The solid dots refer to the limiting-mass model 
of the sequence. 

3 Properties of Rotating Strange Stars with Crust 

3.1 Outline of the calculational procedure 

We present in the following the properties of sequences of rotating strange star mod­
els possessing a nuclear crust which is suspended out of contact with the strange 
quark core by the electric dipole layer on the quark core surface. These models are 
constructed in the framework of Einstein's theory of general relativity by solving 
Hartle's perturbative stellar structure equations. Hartle's method was reexamined in 
Refs. (Weber and Glendenning 1991, 1992) where it was found that it is a practical 
tool for constructing models of neutron stars down to rotational periods in the half­
millisecond range, when the appropriate self-consistent condition is imposed so as to 
identify the Kepler frequencies (balance between gravity and centrifuge). We refer to 
these references for more details. 

We shall assume that the crust and core rotate with the same angular velocity 
n. Since both are composed of charged particles, protons, electrons and heavy ions 
in the case of the crust, quarks and electrons in the case of the core, we assume that 
they are coupled by the magnetic field of the pulsar. 

No simple stability criteria are known for rotating star configurations in general 
relativity. An absolute upper limit on rotation is set by the Kepler freqency above 
which mass shedding would occur. This is the frequency at which the maximum pos­
sible nuclear crust mass can be supported by a strange star because the centrifugal 
force acting on the crust is at its maximum. Therefore, we construct entire sequences 
of models of strange stars that are rotating at their Kepler frequencies, n = nK, at 
nK/2 and ·o. The general relativistic value of nK includes the important dragging 
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Figure 7: Gravitational masses of strange stars with hadronic crust as a function of 
central density (in units of normal nuclear matter density, t:o ~ 140 MeV /fm3

) of 
non-rotating sequences (0 = 0) and sequences rotating at their Kepler frequencies 
(0 =OK)· The solid dots refer to the limiting-mass model of each sequence. 

effect of local inertial frames and of course the rotational deformation of the star and 
its mass increment due to the centrifugal decompression. For the maximum mass star 
of a sequence, all three effects reduce the value of OK considerably from the New­
tonian Kepler frequency of a test particle circulating the corresponding non-rotating 
star, by about the factor 0.61 - 0.71 (Weber and Glendenning 1992), in agreement 
with an empirical formula deduced from numerical integration of Einstein's equations 
(Friedman, lpser, and Parker 1989; Haensel and Zdunick 1989). The construction 
of rotating star models is considerably more complicated than is the case for the 
non-rotating Oppenheimer-Volkoff stars (e.g. Friedman, lpser, and Parker 1986; But­
terworth 1976; Butterworth and Ipser 1976). 

3.2 Hadronic crust mass 

The crust mass is of the order 10-5 M 0 and so has little effect on the total gravita­
tional mass of all but very light strange stars. These are however quite interesting 
because the stable strange quark core permits stable configurations of strange stars 
with crusts that are less than l/6'th of the mass of the lightest neutron star models, 
the least massive of which is ""0.1M0 for the BPS equation of state. At some critical 
strange core mass, no crust is stable and the mass as a function of central density has 
a minimum. For more massive strange stars and for both bag constants we show the 
sequences corresponding to static stars and to stars rotating at their Kepler frequen­
cies, OK, in Figure 7. For the more massive stars, for which the Kepler frequency is 
greater, the mass that can be supported by a star of the same central density as a 
non-rotating one is larger for the rotating star by about 10%. 

Next we turn our interest to the mass of the hadronic crust that can be supported 
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by rotating strange stars by constructing sequences of models that rotate at their 
Kepler frequencies nl(, at OK/2, and at zero-frequency. Figures 8 and 9 exhibit the 
crust mass as a function of total mass with frequency fixed at one of these values. 
As already noted, the gravitational force per unit mass at the surface of the core is 
ex Ml/3 so that the light cores have small attraction and therefore have thick and 
massive crusts. At the opposite extreme, near the upper termination of the sequence, 
the crust is thin and therefore light. In between the behavior is not monotonic because 
of the dependance of the star and core radii on mass as shown in Fig. 6. 

'f 
0 ... 

8.o1 o.06 0.10 o.6o 1.oo 

M/M0 

Figure 8: Mass of hadronic crust on 
a strange star as a function of to­
tal star mass for several rotation fre­
quencies. Crust has maximum den­
sity equal to neutron drip. The solid 
dots refer to the limiting-mass model 
of each sequence. The bag constant 
is B 114 = 145 MeV. 

0 
:::!1 
'f 
0 ... 

oL-~~~--~~~~~ 
0.01 0.05 0.10 0.60 1.00 

M /M0 

Figure 9: Same as Fig. 8, but for 
B 114 = 160 MeV. 

It should be noted that the crust mass is smaller for larger bag constants as can 
be seen by comparing Figs. 8 and 9. Again this can be understood in terms of the 
gravitational force at the surface of the core, ex }.1113

, while the mass itself s~ales as 
Eq. (3). 

Figure 10 displays the dependence of the nuclear crust mass on Kepler period of 
stars in two sequences with different bag constants. The shortest period stars are 
the maximum limiting-mass models (because of their relatively small radii and the 
strong gravitational attraction). These are found to have periods in the range of 
0.5 ~ PK/msec ~ 0.6 depending on the bag equation of state. The largest crust 
masses occur for star masses '""'0.7 M0 and they lie in the range '""' 1 - 5 x 10-s M0 . 

It is striking that the crust mass depends only rather weakly on the Kepler period 
for most of the lighter stars. 

The impact of rotation on Mcrust for star frequencies 0 ~ 0 < OK is shown in 
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Figure 10: Mass of hadronic crust as a function of Kepler period, PK (= 2tr/nK)· 
The most massive strange star models are those labeled mass-limit, the lightest ones 
shown have masses of M = 0.030 M0 (for B 114 = 145 MeV) and M = 0.023 M0 
(B 114 = 160 MeV). 

Figs. 11 and 12 for a representative sample of star masses, M. Again, as in Fig. 10, 
the larger B 114 the smaller Mcru.st· Along the curves of these figures the star's mass is 
kept constant and therefore the crust mass is now a monotonically increasing function 
of the star's rotational frequency n. The constant mass curves also emphasize the 
dependence of Mcru.st(n) on M. 

3.3 Crust thickness 

The crust thickness as a function of strange star mass, is shown in Figs. 13 and 14 for 
bag constants of B 114 =145 MeV and 160 MeV. As expected the cru~t thickness at the 
star's equator is larger than at its pole due to the centrifugal force. Of course the crust 
is thickest for the lighter stars because of the smaller gravitational force. The crust 
thickness of a non-rotating strange star is exhibited for the purpose of comparison. It 
is interesting that even the polar thickness increases with rotational frequency when 
comparing stars of the same mass. This is because (1) the centrifugal force opposes 
gravity, so that a rotating star of the same mass as a non-rotating one is relatively 
decompressed, (2) the lower density rotating star also has its mass redistributed, 
becoming oblate, (3) the gravitational force of the mass in the sphere of polar radius, 
Rp, acting on unit mass at Rp is less than at the surface of a non-rotating star, 

(4) 

where f< and f are average densities for the decompressed and non-rotating stars 
respectively, ( 4) the remainder of the mass contained in the oblate star outside the 
sphere of polar radius is at greater distance to the pole compared to the same mass 
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Figure 11: Hadronic crust mass as 
a function of rotational frequency n 
(in units of the Kepler frequency) for 
different star masses. The bag con­
stant is B 114 = 145 MeV. 
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Figure 12: Same as Fig. 11, but for 
a B 114 = 160 MeV. 

distributed over the spherical non-rotating star and so experiences a smaller gravita­
tional attraction. So in brief, the nuclear crust on a rotating strange star experiences 
a smaller gravitational attraction to the core, even at the pole and so is thicker ev­
erywhere when compared to a non-rotating star of the same core mass (essentially 
the total mass). 
- The two Figs. 15 and 16 display the crust thickness at the equator and the pole 
of strange stars of constant masses as a function of rotational frequency. One sees 
that t is a monotonically increasing function of n. The impact of rotation on t is the 
smaller the more massive the strange star model of a sequence. The nuclear crust 
thickness on very light strange stars can be many kilometers thick (Fig. 6), but for 
the range of masses shown in Figs. 15, 16 it is less than 1 km at the Kepler frequency. 

3.4 Moment of inertia 

3.4.1 Expression for the moment of inertia in general relativity 

The following line element is introduced for the calculation of the expression of the 
moment of inertia, I, (cf. Hartle (1967); Hartle and Thorne (1968)) (G = c = 1) 

ds2 - 9a/3 dxa dx 13 

-e2v(r,n)dt2 + e2>.(r,n)dr2 + e2J.~(r,n) d()2 + e2tP(r,n) (d<P- w(r, n) dt)2' (5) 

where the coordinates will be referred to in the order xa = t,r,O, <P (a= 0, 1,2,3). In 
this line element, w is the angular velocity of the star's fluid in a local inertial frame 
and depends on the radial coordinate r. It is related to the star's rotational frequency 
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n, which is a constant throughout the fluid for uniform rotation. \:Ve recall that it is 
the difference between these frequencies, w = n - w, with which the fluid inside the 
star moves (dragging effect of local inertial frames, Hartle ( 196 7)). 

The metric functions in the line element of Eq. (5) have the form 

e2v(r,O) 

e2.P(r,O) 

e21-1(r,O) 

e24>(r)[1 + 2 (h0 (r,S1) + h2(r,f2) P2(cosO))], 

r 2 sin20[1 + 2 (v2(r,S1)- h2(r,S1)) P2(cosO)], 
r 2[1 + 2 (v2(r,S1)- h2(r,S1)) P2(cos0)], 

( 
2 mo(r, D)+ m2(r, D) P2(cos B)) ( 2 m(r)) -t 

1+- 1--...;......:.. 
r 1 - 2 m( r) / r r 

(6) 
(7) 

(8) 

(9) 

The quantity <P(r) in Eq. (6) denotes the metric function of a spherically symmetric 
object and m(r) the mass within r for the corresponding spherical star, and P2 is the · 
Legendre polynomial of order 2. The perturbation functions m0 , m2, h0 , h2 , and v2 , 

which vanish for a spherical star, are to be calculated from Einstein's field equations 
and are given as solutions of Hartle's stellar structure equations (Hartle 1967; Hartle 
and Thorne 1968) which are here implemented with the self-consistency condition as 
discussed by Weber and Glendenning (1991), Weber and Glendenning (1992), and 
Weber, Glendenning, and \Veigel (1991). 

We are interested in the moment of inertia of azimuthally symmetric, uniformly 
rotating, relativistic stars in equilibrium. Such rotating bodies are symmetric about 
the axis of rotation and therefore will not radiate gravitational waves. Under these 
restrictions, the expression for the moment of inertia is given by (Hartle 1973) 

I(n,n) = ~ h drdBd¢>~ yCg. (10) 

In the ~hove equation, n denotes an axially symmetric region in the interior of a 
body where all matter is rotating with the same angular velocity n. The quantities 
9 and T refer to the determinant of the metric tensor [9 :=det(9a,e)] and the energy 
momentum density tensor [T = T(t:, P(t:))]. For the metric of Eq. (5) one finds 

J- 9(r, D) = e.X(r,O) el-l(r,O) ev(r,O) e.P(r,O) • (11) 

From the expression for the energy momentum density tensor, given by 

(12) 

one readily obtains 

(13) 

The quantity U
0 = (u0 ,0,0,u3

) denotes the fluid's 4-velocity. The condition of uni­
form rotation, which is assumed throughout this work, is expressed by u3 = S1u0 

(Hartle 1967). From the normalization condition u 0 u 0 = -1 one obtains 

[ 
2] -1/2 

- 9oo - 2 903 n - 933 n 
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[ e2v(r,ll) - w(r, !1)2 e2,P(r,ll) ] -l/2 

~ e-~(r) { 1 - [h0 (r, !1) + h2(r, !1) P2( cos 0)] 

+ ~ e-2~(r) r 2 sin2(0) w(r,f2) 2}. 

The covariant component u3 is given by 

01 0 + 3 
93a U = 930 U 933 U 

w(r,f2) e2t/l(r,n) u0 • 

(14) 

(15) 

(16) 

By means of Eq. (16), the velocity u3 in Eq. (13) can be eliminated in favor of the 
metric functions (and therefore the perturbation functions, which are the solutions of 
Hartle's stellar structure equations) of Eqs. (6) - (9). One arrives at 

- (t + P) w(r,f2) e2.P(r,n) (u0 )
2 

- ( t + P) w(r, !1) e2.P(r,n) ( e2v(r,n) - w(r, !1)2 e2.P(r,n) rl (17) 

~ - ( t + P) w(r, !1) e2.P(r,n) 

x (e-~(r){1- [h0 (r,f2) + h2(r,f2)P2(cos0)] + ~e-2~(r) r 2 

(18) 

Using the expressions derived for .J=9 and 7;0 of Eqs. (11) and (17), one finds 
from Eq. (10) for the moment of inertia 

1
tr/2 1R(B) e.\(r,ll) e"'(r,ll) ev(r,ll)e.P(r,ll) [t + P( t)] w(r, !1) 

I = 4 1r d{} dr ) , 
0 0 e2v(r,n -21/l(r,ll) - w(r, !1)2 n (19) 

This expression is valid through quadrupole deformation of the star due to rotation 
and is the one we use to e\"aluate the moment of inertia of rapidly rotating, axially 
symmetric, relativistic stars. 

If the rotational deformation were ignored (i.e. spherical star) it would become 

I _81r lRd 4 t+P(t) w(r,f2) -~(r) 
sph- r r e 

3 o .j1- 2 m(r) 1 r n 
(20) 

This last well known expression evaluated with w/!1 -t 1 is appropriate for a slowly 
rotating star for which frame dragging and rotational deformation are negligible. As 
we shall see later that it is fairly accurate up to f2 ~ f2K /2. 

3.4.2 Results for the moment of inertia 

The moment of inertia of the hadronic crust, !crust, that can be carried by a strange 
star as a function of star mass for a sample of rotational frequencies, f2 = f!K, f!K/2, 
and 0 are shown in Figs. 17 and 18 as a function of M. Because of the relatively 
small crust mass of the limiting-mass models of each sequence (see Figs. 8, 9), the 
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Figure 18: Same as Fig. 17, but for 
B 114 = 160 MeV. 

ratio Icrusd !total is smallest for them (solid dots in Figs. 17 and 18). The less massive 
the strange star the larger its radius (Fig. 6) therefore the larger both !crust as well as 
!total, the dependence on M being such that their ratio !crust/ !total is a monotonically 
decreasing function of M. We find that there is only a slight difference between !crust 

for n = 0 and n = OK/2. This confirms that Eq. (20) is a good approximation for 
stars rotating below n.<f2, while for n > OK/2 the full expression of Eq. (19) would 
need to be used except for very light stars. 

Absolute values of the crust's moment of inertia as a function of gravitational star 
mass and of crust mass are shown in Figs. 19, 20 and Figs. 21 and 22, respectively, 
for three rotational frequencies. They are qualitatively similar to the behavior of the 
crust mass exhibited in Figs. 8 and 9. The discussion of these previous figures applies 
to the present case as well and will therefore not be repeated. The corresponding 
masses related to the curves of these two figures can be inferred from Figs. 8 and 9. 

The following two Figs. 23 and 24 show the absolute values of the moment of 
inertia of the nuclear crust as a function of the star's moment of inertia for three 
different rotational frequencies. 

4 Discussion and Summary 

Strange quark matter stars, if they exist, have the remarkable property of possessing 
a very strong electric dipole field on their surfaces (Alcock, Farhi, and Olinto 1986) 
which can support a nuclear crust out of contact with the quark core and with an 
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inner density as high as the neutron drip density. This is higher than the central 
density of white dwarfs. In the course of time bare strange stars are likely to accrete 
nuclei, perhaps in proportion to the cosmic abundances in _the interstellar medium, 
developing ever thicker crusts. While most of this material swept up by a strange 
star will consist of the lightest elements, in the presence of the gravitational field 
of the core such material will undergo thermonuclear burning. For a core of a solar 
mass and radius of a few kilometers, the gravitational field is enormous compared to 
that found in normal stars that may be more massive but are also much much larger. 
The burning processes may therefore resemble those considered in the evolution of 
ordinary stars as they burn from hydrogen through to iron cores except for at least 
two major differences. As already remarked, the highest possible inner density of the 
crust is the neutron drip density, much higher than the density ever found in ordinary 
stars and even several orders of magnitude higher than that of white dwarfs. So the 
burning proceeds even further to exceedingly neutron rich nuclei. Second, the time­
scale for burning may be very fast by comparison, except it is likely to be limited by 
the accretion rate. There are obviously many interesting aspects of such a scenario 
to be investigated. They a~e not the subject of the paper, but are mentioned so as to 
round out the discussion and suggest areas of study. 

Our paper has focussed very specifically on a particular class of strange stars, those 
for which the crust has the maximum possible density, the neutron drip density, higher 
than which neutrons would simply gravitate into the core and be converted to quark 
matter. Matter at the densities of the crust is a Coulomb lattice of iron and nickel 
nuclei all the way from the inner edge to the surface of the star. The sequence of 
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stars has a minimum mass, including core and crust, which is "' 0.015 - 0.018M0 
or about 15 - 18 Jupiter masses, and a maximum mass which is "' 1.6 - 2M0 for 
non-rotating stars, and ,..... 1.8 - 2.2M0 for those that are rotating at the Kepler 
frequency, depending on the bag constant. In each case above, the larger of the pair 
of numbers refers to the lower value of the bag constant and therefore to more deeply 
bound strange quark matter. The above quoted minimum mass is smaller than that 
of neutron star sequences, about 0.1M0 (Baym, Pethick, and Sutherland 1971 ). Of 
course there are other sequences with a lower density crust for which the minimum 
mass star of the sequence may be even lower. We have not investigated these but 
conjecture that down to some minimum inner crust density they too will have a 
minimum mass below which a strange star with crust is not gravitationally stable. 
For crusts with densities in the white dwarf domain and strange quark cores of low 
mass, the stability will be essentially that of white dwarfs. All such stable low-mass 
objects may be of considerable importance since they may be difficult to detect and 
therefore may effectively hide baryonic matter. A gravitational lensing method of 
detection like that proposed for brown dwarfs may be feasible (Alcock et al. 1992). 
In fact, these objects, which have larger masses but smaller radii than jupiters, may 
nonetheless be indistinguishable from them by gravitational lensing detection. 

We have computed a number of properties of the nuclear solid crust that can be 
supported out of contact with a strange star as a function of mass of the star and 
of its rotational frequency. Roughly speaking the mass and moment of inertia of the 
crust increases by about a factor two to three between zero frequency and the Kepler 
frequency. Between the same frequencies they vary by factors of about 5 and 15 
respectively through the sequence of stars from lightest to most massive. 

Of interest to the subject of cooling of strange stars, the crust thickness for the 
strange star at the lower mass limit is hundreds of kilometers, decreases very rapidly 
with mass to ,..... 12 km for very light strange stars of mass ,..... 0.02M0 (Fig. 6) and is 
a fraction of a kilometer for the star at the maximum mass. Its mass lies within a 
factor 5 of 10-5 M 0 depending on core mass and rotation frequency, and is about a 
factor two larger for the smaller bag constant. · 

Perhaps of considerable relevance to the question of whether strange stars can 
exhibit glitches in rotation frequency, we find for the moment of inertia that I crust/ I 
varies between 10-3 for the lightest stars and "' 10-5 at the upper mass limit and 
differs by about a factor 2 - 3 depending on the bag constant. If the angular momen­
tum of the pulsar is conserved in the quake then the relative frequency change and 
moment of inertia change are equal, 

~n I~II I~II JI - = - > -- = crust ,..... (lo-s - 10-3)! n Io I - I ' (0 < f < 1)' (21) 

where 10 is the moment of inertia of that part of the star whose frequency is changed 
in the quake. It might be that of the crust only, or some fraction or all of the star, 
depending on how strongly the crust and core are coupled. The factor f in the above 
relation represents the fraction of the crustal moment of inertia that is altered in 
the quake, I~II = f !crust· Since observed glitches have relative frequency changes 
~n;n of 10-9 to 10-6

, a change in the crustal moment of inertia by less than 1/10'th 
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would cause a giant glitch even in the least favorable case. Of course that is not the 
whole story. There remain the questions of whether there can be a sufficient build 
up of stress and also of the recoupling of crust and core which involves the healing of 
the pulsar period. This is probably a very complicated process that does not simply 
involve the recoupling of two homogeneous substances. The variation of the pressure 
through the core can be as large as 5 orders of magnitude ( cf. Fig. 3) over which the 
properties of quark matter may vary considerably. The pressure variation of the crust 
from inner edge to the surface of the star is even greater. 

We note that whereas in the crust quake model of neutron stars, the solid crust 
and an assumed almost purely neutron core are supposed to be weakly coupled by 
the magnetic field, in strange stars all particles (quarks and electrons) carry electric 
charge, so the crust and core or parts thereof should be rather strongly coupled. It is 
also worth noting that glitch phenomena in their magnitude, frequency of occurrence, 
and healing-time, vary greatly from one pulsar to another. Indeed the rate of glitching 
of PSR1737-30 is nearly an order of magnitude greater than ~ny other known pulsar 
(McKenna and Lyne 1990). The possibility of highly individualistic behavior appears 
possible for crust quakes on strange stars because of the variation of the thickness 
and mass of the crust with the mass and frequency of the star, not to mention the 
temperature dependence of the shear modulus, the magnetic coupling between crust 
and core with a possibly varying structural nature of the quark core with depth as 
well as the varying nature of the nuclear crystalline crust with height above the core. 
Of course many of these remarks pertain also to neutron stars. 

The recoupling of crust and strange quark core is likely to have a long time­
scale, not unlike that expected for neutron stars (days to years, Manchester and· 
Taylor 1977). Strange stars with crusts are likely to have a relatively short time-scale 
coupling mechanism in addition, namely the abrasion of part of the inner surface of 
the crust by the core following a quake. Recall that the crust is suspended above 
the core by a few hundred fermis by the strong electric dipole layer on the core. 
If the relative change in the moment of inertia is attributed, for the sake of rough 
order of magnitude estimate, to a change in the radius of the crust, then the relation 
~I/ I = 2~R/ R holds. For the above quoted range of relative frequency glitches, we 
have ~R""" (10-3

- 1) em. So we expect a quake in the crust to cause the crust to 
momentarily come into physical contact with the core, a contact or bouncing that is 
unlikely to be symmetrical, and in any case that will tr~~sfer matter and therefore 
angular momentum to the core. However this abrasion of parts of the inner surface of 
the crust will be a momentary perturbation. The abraded material will be dissolved 
into the quark core. So superimposed on the frequency change caused by the crust 
quake we suggest that there may be a smaller series of glitches associated with this 
transient mechanism. ' 

Alpar (1987) argues against the existence of strange stars because of observed 
pulsar glitches. His arguement is two-fold. One has to do with the assumption that 
strange quark stars have no internal structural differentiation that could give rise to 
pulsar· glitches so that a bare strange star could not glitch. Our opinion on this is 
that we simply do not know enough about quark matter to make such a ruling and 
have alluded to at least some of the other uncertainties above. Secondly, Alpar argues 
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that even a strange star with a nuclear crust cannot glitch. This is based on assuming 
the near equality of !crust/ I and !:l.D.jn with the first ratio "' w-s by computation, 
and the second "' IQ-3 to IQ-2 by observation, yielding an apparent contradiction. 
However, using the same notation as in Eq. (21) we may write, 

!:l.n "' !:l.D./D. l!:l.II = !:l.D./D. J Icrust (10_1 10)! 
n "' !:l.f2/f2 Io !:l.f2/f2 Io > to 

(22) 

yielding a small f as before, f < (10-4 to IQ-1 ). (See also Baym et al. 1969, Eq. 
(5) and Manchester and Taylor 1977, p 193.) We have used measured values of the 
ratio (fl.f2/f2)/(fl.njn) ""' IQ-6 to 10-4 for the Crab and Vela pulsars respectively. 
(See Manchester and Taylor 1977, table on p. 118.) So the observed range of the 
fractional change inn is consistent with the crust having the small moment of inertia 
calculated and the quake involving only a small fraction, j, of that, just as in Eq. 
(21 ). Nevertheless, without undertaking a study of whether the nuclear solid crust on 
strange stars could sustain a sufficient buildup of stress before cracking to account for 
such a sudden change in relative moment of inertia, or whether the healing-time and 
intervals between glitches can be understood, we cannot say definitely that strange 
stars with a nuclear solid crust can account for any complete set of glitch observations 
for a particular pulsar. However we have laid part of the groundwork for such an 
assessment. A_nd we have shown that quite plausible fractional changes in the crustal 
moment of inertia can account for the magnitudes of glitches. Nevertheless, we should 
keep in mind that the problem of quakes or rotational timing glitches on compact 
stars, whether neutron stars or strange stars, does not appear to be simpler in nature 
than the prediction of earthquakes, a science with a notable derth of successes! 
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