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S-Matrix Version of the Kahn Variational Principle 

ABS1RACf 

The S-matrix version of the Kohn variational principle reduces quantum 

scattering (e.g., for describing a bimolecular chemical reaction) to a straight­

forward quantum mechanical calculation: one chooses basis functions (as cleverly 

and efficiently as possible), computes matrix elements of the Hamiltonian operator 

with respect to this basis, and then performs a standard linear algebra calculation 

(i.e., solves a set of simultaneous linear equations M•x =a for x = M-la). This 

paper reviews the basic S-matrix Kohn methodology and describes recent 

developments. The latter are essentially all variations on the theme of searching for 

"better basis functions". "Better" may mean more accurate basis functions, so that 

fewer of them are required; examples of this are a contracted basis of L2 functions 

and distoned "free" functions. "Better" may also mean simpler basis functions, that 

make the Hamiltonian matrix easier to construct and the subsequent linear algebra 

problem easier to solve; the discrete variable re_presentation (DVR), or basis of grid 

points for the L2 basis is an example of this. A different way of reducing the size 

of the basis set is to use a semiclassical correction to the Kohn S-matrix. All of 

these developments are discussed. 
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S-Matrix Version of the Kahn Variational Principle 

I. INTRODUCITON 

It is well recognized that quantum mechanical reactive scattering theory 

provides the most complete description of an elementary bimolecular chemical 

reaction allowed by the basic laws of nature. Thus ever since the 1960s, when 

crossed molecular beam experiments1 opened the door to studying reactions at this 

most rigorous state-to-state level, there has been intense interest and effort devoted 

to developing the theory to the practical stage that reliable calculations can be carried 

out for real chemical reactions. The last few years have seen major progress2.3 

toward achieving this goal, to which this entire volume is witness. 

The recent work here at Berkeley (ref. 4 gives an up-to-date bibliography) has 

been based primarily on the S-matrix version of the Kohn variational principle,4a.d.5 

for once it was realized that this version of the Kohn method is free of the 

anomalous singularities that have plagued other versions of it in the past, 6 scattering 

calculations (even reactive scattering) are reduced to very standard quantum 

mechanical procedures, i.e., choosing appropriate basis functions, computing 

matrix elements of the Hamiltonian, and performing a linear algebra calculation. 

The S-matrix Kohn approach has also been very fruitfully applied to electron-

. molecule scattering,7 producing the most impressive such calculations to date in that 

field. 

In an earlier review2h I focused primarily on recent applications of the S-

. matrix Kohn approach to the H+H2 family of reactions and comparison of the 

theoretical results with recent experiments, while the present one concentrates on 

the theoretical concepts and methodology. Sections II and ill present the S-matrix 
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S-Matrix Version of the Kahn Variational Principle 

Kohn method as we have formulated and used it to date, and Sections N and V 

describe new developments and directions. The discrete variable representation 

(DVR) approach as discussed in Section Nc appears in particular to offer the 

simplest, and thus most powerful avenue for extending these S-matrix Kohn 

methods to more complex chemical reactions. 

INSERT FIGURE 1 ABOUT HERE 

To keep the presentation as clear and simple as possible, to focus on the 

essentials, most discussion will refer explicitly to the collinear atom-diatom 

reaction,, 

(1.1) 

where n1 (ni) denote initial (final) vibrational states. It is extremely important, of 

course, that the methodology can be applied to such reactions (and even more 

complex reactions) in full three-dimensional space, and for all values of total 

angular momentum J; the significance of the recent applications is that this was 

actually done, so that the physically observable integral and differential cross 

sections could be calculated. 4i.k.l,u All of the extra subscripts involved in the three­

dimensional formulae, however, tend to obscure the fundamental theoretical 

considerations, and in fact all of these technical details - angular momentum 

coupling, integration over Euler angles, etc. - were worked out with regard to 

reactive scattering many years ago8 and have been employed essentially unchanged 

by us and others. 

To conclude this Introduction it is perhaps useful to discuss why variational 

(i.e., basis set expansion) methods have emerged as so useful for reactive scattering 
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S-Matrix Version of the Kohn Variational Principle 

problems. The theory of reactive scattering is more complicated than that for elastic 

and inelastic scattering9 because of coordinates, and different formulations of 

reactive scattering turn on how one deals with this coordinate problem. Figure 1 

depicts the situation for the collinear A + BC ~ AB + C reaction. If one were 

treating only an inelastic scattering process (ie. vibrational excitation), 

A + BC(n) ~ A + BC(n'), (1.2) 

then the standard Jacobi's coordinates (ra,RJ are the natural choice, and the 

coupled-channel expansion of the wavefunction has the form 

(1.3) 

where { <Pnl are the (known) vibrational eigenfunctions for diatom BC and n1 

denotes the initial vibrational state. Substitution of this expansion into the 

SchrOdinger equation leads to the standard coupled-channel equations for the 

unknown translational functions 

(1.4a) 

V..,:(R,) = f dra$n(r,)(V-v)$n{r,); 
(1.4b) 

En = E-c,.,_ is the translational energy for channel n, where E is the (fixed) total 

energy and c,.,_ the vibrational energy for state n, V is the total potential energy 

function, and v the potential for the isolated diatom BC. 

The "coordinate problem" referred to above for reactive scattering is that the 

Jacobi coordinates (ra,RJ that are natural for describing the reactants A+BC are not 

5 



S-Matrix Version of the Kohn Variational Principle 

appropriate for describing the products, AB+C. There are several ways to deal 

with this situation, but most of the recent progress in reactive scattering has been 

based on the formulation8 in which the Jacobi coordinates for the various 

"arrangements" (i.e. A+BC, AB+C, AC+B) are all used simultaneously. For the 

collinear case of Figure 1, for example, the expansion for the wavefunction in this 

approach is 

'l'r1n1 = L <l>~(rJfanE-ylnl (RJ + L ~(rc)fcnE-y1n1 (Rc) (1.5) 
n n 

where y = a(A+BC), b(B+AC), or c(C+AB) labels the arrangement of the atoms, 

and {<!>~}and {<!>~}are the vibrational eigenstates of diatoms BC and AB, 

respectively. Note that there are only two independent coordinates (degrees of 

freedom) in Eq. (1.5) for the collinear case shown in Figure 1; i.e., ra and Ra are 

functions of r c and Rc. or vice-versa (specifically, they are linear combinations of 

each other). 

The philosophy of this approach is similar to that in quantum chemistry of 

using multicenter (LCAO =linear combination of atomic orbitals) expansions for 

molecular orbitals. For a diatomic molecule, for example, the molecular orbital x(r) 

for an electron is expanded in basis functions utilizing the coordinates of the 

electron with respect to both nuclear centers, 

X(r) = L ai<l>:(ra) + L bi<!>?Crb), 
i 

(1.6) 

where r a are the coordinates of the electron with respect to nucleus a and rb those 

with respect to nucleus b. I.e., when the electron coordinate r is close to nucleus a 
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(located at position Ra,), then r a= r - Ra are the natural coordinates in which to 

choose basis functions to expand the orbital (the first terms in Eq. (1.6)), and when 

r is near nucleus b (located at R~ then the natural coordinates to use are rb = r-Rb 

(the second set of functions in Eq. (1.6)). To cover both possibilities, one uses 

both set:s of coordinates, but note that there are only three independent coordinates 

in Eq. (1.6), i.e., r a is a function of rb, or vice-versa, (specifically r a= rb+Rb-Ra). 

The expansion of the wavefunction in Eq. (1.5) is also essentially the same 

basic idea as the "resonating group model" (RGM) used in nuclear physics.10 The 

different sets of Jacobi coordinates define different "groups" (or groupings) of 

atoms, and the fact that the wavefunction is a linear combination of these different 

terms allows for "resonance" (i.e. coupling, interaction) between them if there are 

non-zero matrix elements of the Hamiltonian ("resonance integrals") connecting 

them. 

Equation (1.5) is thus a natural and efficient way to represent a reactive 

scattering wavefunction, but it introduces the complexity that the coupling between 

terms corresponding to different arrangements are nonlocal, exchange type 

interactions. The coupled-channel equations Eq. (1.4a) are thus generalized as 

follows:8 

L L J dRyV an;yn:(Ra,Ry)fj'tl·~y1n1 (Ry). 
1' n' 

y.t:;a 

(1.7) 

The exchange interactions (the last terms in the above equation), which couple 
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states of different arrangements, are analogous to electron exchange interactions in 

quantum chemistry that arise from matrix elements in which the electron coordinates 

have been permuted (i.e. exchanged). The coupled integro-differenti.al equations 

for the translational functions, Eq. (1.7), are thus analogous to the Hartree-Fock 

equations of electronic structure theory, and as such they cannot be solved by finite 

difference algorithms. 

Indeed, it is the presence of the exchange interaction in this formulation of 

reactive scattering that until recently has stymied this approach. Wolken and 

Karplus11 made some early attempts using it, but these were not completely 

successful. It has ultimately become clear that the most satisfactory way of dealing 

with exchange is analogous to what quantum chemists do in the Hartree-Fock 

problem, namely to expand the unknown wavefunctions in a basis set and 

determine the expansion coefficients via a variational principle. 

II. THE S-MA TRIX VERSION OF THE KOHN VARIATIONAL PRINCIPLE­

POTENTIAL SCA TIERING 

The Kohn variational principleS a is essentially the Rayleigh-Ritz variational 

principle familiar from quantum eigenvalue problems, generalized to deal with 

scattering boundary conditions; i.e., the basic functional to be varied is ('lfl H-EN!). 

where 'if is a trial function. We employ S-matrix type boundary conditions4a.d for 

the scattering wavefunctions and comment below on other possibilities. Most of 

the general and relevant features of the S-matrix Kohn method are revealed by 

simple s-wave potential scattering, so we first describe how the methodology 

8 



S-Matrix Version of the Kohn Variational Principle 

works in this elementary case, and the generalization to multichannel reactive 

scattering is given in the next Section. 

The Hamiltonian is thus of the simple form 

H = -f22 d2 + V(r), 
2~ dr2 

(2.1) 

where V(r) ~ 0 as r ~ oo. The S-matrix version of the Kohn variational 

approximation to the S-matrix (at energy E) can be stated as4d 

S = ext(S + i. <\VIH-EI\ji> ], (2.2) 
h 

where v<r) is a trial wavefunction that is regular (i.e., zero) at r = 0 and has 

asymptotic form (as r ~ oo) 

'!i(r) - -e-ikrv-112 + eikrv-112 S' (2.3) 

where v = hkl~ is the asymptotic velocity. (Note: The convention is used 

'throughout this paper that wavefunctions in the bra symbol <I in bra-ket matrix 

element notation are not complex conjugated.) "ext" in Eq. (2.2) means that the 

quantity in square brackets is to be extremized by varying any parameters in 'I' (r). 

To prove that Eq. (2.2) is indeed a variational functional for the S-matrix (a 

lxl "matrix" in this case of potential scattering), suppose that the trial function 'l'(r) 

is of the form 

\j;(r) = 'l'ex(r) + O'lf(r) , (2.4) 

where 'l'ex(r) is the exact solution of the Schrodinger equation, which is regular at r 

= 0 and has asymptotic form 

'l'ex(r) - -e-ikrv-112 + eikrv-112 Sex ' (2.5) 

and O'lf(r) is arbitrary infinitesimal function (the "error" in Vis usual calculus of 
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variation parlance). Because ofEqs. (2.3) and (2.5), one sees that O'lf(r) = 'l'(r)­
'l'ex(r) is also regular at r = 0 and has asymptotic form 

(2.6a) 

where 

8S = S-Sex. (2.6b) 

Since S =Sex+ 8S [Eq. (2.6b)], the variational functional, Eq. (2.2), reads 

and since (H-E)'Ifex = 0 this becomes 

S['lfex+O'If] = Sex+8S + .i <'lfexiH-EI8'!1> , 
h 

(2.7) 

(2.8) 

where, as usual, temis of order O'lf2 have been discarded. If one integrates by parts 

twice, then 

<'lfexiH-EIO'If> = <O'IfiH-EI'Ifex> 

+ {-f~) ['l'ex(r)O'If'(r)- w'ex(r)O'If(r)Jio", 
(2.9) 

and using the asymptotic forms in Eqs. (2.5) and (2.6a) (and that (H-E)'Ifex = 0), 

this becomes 

<'lfexiH-EI8'1f> = 0 + (1fr) (-2vik) OS = ihoS . 
(2.10) 

Substituting this result into Eq. (2.8) then gives 

(2.11) 

1 0 
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i.e., error in the trial wavefunction enters only as second order error in the S-

matrix, which is the statement that Eq. (2.2) is indeed a variational functional for 

the S-matrix. 

It is interesting (and useful for later reference in Section V) to note that Eq. 

(2.2) can also be viewed as a statement of the distoned wave Born approxi­

mation.12 In this picture, V(r) is the zeroth order wavefunction (for some zeroth 

order Hamiltonian); the first term in Eq. (2.2) is then the zeroth order term in the 

perturbative expansion of the S-matrix, the second term is the first order 

perturbation correction, and the second and higher order terms are omitted. 

In practice the variational procedure implied by Eq. (2.2) is implemented4d by 

choosing the trial function 'I' (r) as a linear variational function, 

N 
WCr) = -uo(r) + L ut(r)ct. 

(2.12) 

t=1 

where Uo(r) is a function that is regular at r = 0 and has the asymptotic form (as r--+ 

oo) 

uo(r) - e·ikrv-112. 

A simple choice for Uo(r) is 

uo(r) = f(r)e-ikrv-112, 

where f(r) is a smooth cut-off function, 

f(r) -4 0, r -4 0 

f(r) -4 1, r -4 oo, 

such as f(r) = 1-e-ar. The function u1 (r) is 

u1 (r) = UQ(r)* - eikr v-112, 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

1 1 
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and the basis functions { ut(r)}, t = 2, ... , N are real, square-integrable functions. 

The coefficients { ct}, t = 1, ... , N in Eq. (2.12) are the variational parameters in V. 

With V(r) ofEq. (2.12) substituted into Eq. (2.2), the functional sm 
becomes a function of the N coefficients { ct}, t = 1, ... , N. (Note that S = c1.) 

After an integration by parts (analogous to that in Eqs. (2.9)-(2.10)), this function 

takes the form 

(2.17a) 

(2.17b) 

where Mo.o is a 1x1 "matrix", M 0 an Nx1 matrix and M an NxN matrix, 

M 00 = <u01H-EIUQ> 

(M0)t = <utiH-Eiu0> 

(M)t.t' = <utiH-Elut•>, 

(2.18a) 

(2.18b) 

(2.18c) 

for t,t' = 1, ... , N, and where "T" denotes matrix transpose. Applying the 

variational criterion 

a 
- S(cb····Cn) = 0, 

(2.19) 

dCt 

for all t = 1, ... , N, leads to linear equations for the coefficients 

M•c=Mo, (2.20a) 

with solution 

(2.20b) 

Substitution of this solution back into Eq. (2.17) then gives the variational result for 

12 
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the S-matrix 

. (2.21) 

Note that all matrix elements involving the unbounded basis functions Uo and u1 

exist because 

_t· (H-E) { uo(r) } = O. 
liD u1(r) 

(2.22) 

This follows because 

(H-E)uo(r) = (-~~-E) uo(r) + V(r)uo(r) ; 
(2.23) 

the first term above vanishes as r ~ oo because of the asymptotic boundary 

condition of Uo(r), Eq. (2.13), and the second term vanishes as r ~ oo because 

V(r) does. 

At this point it is useful to .compare the above procedure with the K-matrix 

version of the Kohn variational principle that has typically been used in the past. 6 

The Kohn functional forK is 

K['ii} = K _1. <:\VIH-Eiiji>, 
1l 

-where here the (real) trial function 'I' has the asymptotic form 

o/(r) - sin(kr)v-lf2+eos(kr)v-lflK. 

(2.24a) 

(2.24b) 

One then proceeds precisely as above, the difference being that now the "free" 

functions Uo(r) and u1 (r) are 

13 
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u0(r) = f(r)sin(kr)v-112 

u1 (r) = f(r)cos(kr)v·l/2 

(2.25a) 

(2.25b) 

(The cut-off function f(r) is actually not required in Eq. (2.25a) for Uo·) The 

arithmetic is also essentially the same as before, and the variational result obtained 

for the K-matrix is similar to Eq. (2.21) 

(2.26) 

where theM-matrix elements are the same as those in Eq. (2.18) but here with the 

real functions u0 and u1 ofEq. (2.25). And now the problem appears: in the 

matrix M = Mt.t' = <utiH-Eiut•> of Eq. (2.26) the matrix Ht.t' is real-symmetric, so 

that its eigenvalues are real. Every time that the energy E is equal to one of these 

eigenvalues, the matrix inverse M-1 in Eq. (2.26) is singular; this may happen as 

the energy E is varied, or at fixed E if non-linear parameters in the basis set { ut} are 

varied to cause one of the eigenvalues to pass through the value E. These "Kohn 

anomalies", or "false resonances", have been a plague of the Kohn variational 

principle ever since they were discovered by Schwartz in 1961.6a In the limit of an 

infinite basis they become infinitely narrow, and thus unobservable, but they are a 

serious problem in practical calculations (which necessarily use finite basis sets). 

- In contrast, the S-matrix version4a.d,Sb of the Kohn variational method does 

not have anomalous singularities4m because the matrix of H in Eq. (2.18c) is 

complex-symmetric (because the function u1 ofEq. (2.16) is complex and 

functions inside the bra symbol <I are not complex-conjugated). In fact, the 

condition that Eq. (2.21) is singular, namely 

14 
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(2.27a) 

t,t' = 1, ... , N, is the secular equation for eigenvalues of the Schrodinger equation 

(H-E)'If(r) = 0, 

with boundary condition (as r ~ oo) 

'lf(r) oc eila; 

(2.27b) 

(2.27c) 

i.e., Eq. (2.27) is the expression that has been used before13 for determining 

Siegert14 eigenvalues, the complex energies that are the (physically correct) 

complex poles of the S-matrix which characterize the positions and widths of 

scattering resonances. Eq. (2.21) is thus singular only where it is supposed to be 

singular. 

The S-matrix Kohn approach also allows one to identify a corresponding 

basis set approximation to matrix elements of the full outgoing wave Green's 

function a+(E) = (E+ie-H)-1• This is4a 

N 
<aiG+(E)Ib> =- L <alut>(M-1)t t'<Ut•lb>, 

t,t'=l ' 

(2.28) 

where M is as above, Eq. (2.18c), and Ia> and lb> are any square-integrable 

functions. Note that the complex-symmetric structure of the matrix M is the same 

as that in complex scaling/coordinate rotation theory, 15-18 and for the same reasons. 

If the functions Ia> and lb> are real, then Eq. (2.28) leads to a useful way for 

calculating matrix elements of the microcanonical density operator, 

<alo(E-H)Ib> = -1t-1Im<a1G+(E)Ib>. (2.29) 

In actual calculations for the S-matrix, Eq. (2.21), one does not wish to carry 

out numerical calculations with the complex symmetric matrix M. Tiris can be 

1 5 
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avoided by the usual partitioning methods, so that Eq. (2.21) can be written in the 

equivalent form4d 

where B and Care the 1x1 "matrices" 

B = Mo.o- Mb·M-1•Mo 

C = Mt,o- M~·M-1•Mo, 

(2.30) 

(2.31a) 

(2.31b) 

where Mo.o• M 0, and Mare as before, Eq. (2.18), except that t,t' = 2, ... , N (i.e., 

only the real basis functions), and 

Mt,o = <uaiH-Eiuo>. (2.31c) 

Here the matrix (M)t,t•,t,t' = 2, ... , N is real and symmetric, and thus more easily 

dealt with. (One can readily verify that a value of E for which det(M) = 0 does not 

lead to a singularity in Eq. (2.30)). 

ill. GENERALIZATION TO MULTICHANNEL REACTIVE SCATTERING 

The methodology described in Section II generalizes in a transparent fashion 

to multichannel reactive scattering-4d and that is of course why we are interested in 

it. The derivations are patterned after those above so only the results are given. 

Thus let ( q'Y'r'Y) denote the internal coordinates and radial scattering (i.e., 

translational) coordinate for arrangement y, ie., r'Y is the generalization of the 

translational coordinates R, of the Introduction, Eqs. (1.5) and (1.7). { cp~( qy)} are 

the asymptotic channel eigenfunctions for the internal degrees of freedom. The 

partitioned form of the multichannel generalization of Eqs. (2.30) and (2.31) then 

1 6 
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read as follows: 

(3.la) 

where S, B, and C are "small" square matrices, the dimension of the number of 

open c}?.annels, e.g., S = [Sn'Y'n·'Y·], etc. B and C are given by 

B = Mo,o - M6·M-l•Mo 

C = M1,0- M~·M-l•Mo, 

where Mo,oand M 1,0 are also "small" square matrices 

(Mo,o)n1,ny = <ubn<P~IH-Eiu~.<j>~.> 

(3.lb) 

(3.lc) 

(3.2a) 

(3.2b) 

Ubn (r'Y) is a function regular at r
1 

= 0 and with asymptotic form (as r
1 
~ oo ), 

Ubn(r'Y)- e·ikn"f'Y/vrryl/2. 

M is a "large" by "large" real symmetric matrix in the composite space, internal plus 

translational, 

(M)tn"f,t'n'1 = <u~<j>~IH-Eiur.n.<j>~.>, (3.2c) 

where { u~(r'Y)} is a square integrable basis (that need not depend on n- i.e. the 

same translational basis can be used for every channel). Mo is a "large" by "small" 

rectangular matrix 

(3.2d) 

Only open channels {ny} are included in the matrices Mo0, M 1,0, and the "small" 

17 
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dimension of Mo. while open and closed channels are required in the matrix M and 

the "large" dimension of Mo. 

The essential aspect of the multichannel generalization of the Kohn variational 

S-matrix is that the translational wavefunctions f'Yfl+-Ylnl (r
1
) in the coupled-channel 

SchrOdinger equation, Eq. (1.7), are expanded in a variational basis for each 

channel (y,n), i.e;, 

N 

f'Yfl+-Ylnl (ry) =- u~n(ry) + L u~ (ry) cn')'t+-Ylnl ' 
t=l 

(3.3) 

and the expansion coefficients (the c's in Eq. (3.3)) are the variational parameters, 

as before. The multichannel variational calculation thus proceeds in a completely 

parallel fashion to the one channel case of Section II (one has only to keep up with 

the additional indices!). 

The exchange interaction in the coupled channel SchrOdinger equation, Eq. 

(1.7), is thus reduced in the Kohn variational result, Eqs. (3.1)-(3.2), to exchange 

integrals, namely the matrix elements of (H-E) in Eq. (3.2) between different 

arrangements, Y* y. I.e., in Eq. (3.2c), the direct product basis function 

(3.4a) 

is a function of the coordinates for arrangement y, whereas 

(3.4b) 

is a function of the coordinate for arrangement y. The matrix elements diagonal in 

the arrangement index, y = y, on the other hand, are "direct" integrals that describe 

elastic and inelastic scattering within a given arrangement 

It was realized quite early4f that one could simplify matters considerably by 

1 8 
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eliminating exchange("/*"/) matrix elements in the "free-free" and "bound-free" 

matrix elements M0,0, M 1,0 and Mo, respectively, in Eq. (3.2). By proper choice 

of the cut-off function f(r) in the "free" functions Uo and u1 (for each channel) one 

can insure that these matrix elements vanish when y:;: 1, i.e., 

(Mo,o)ny,n"'( = Oy,y(Mb,o)n,n', (3.5) 

and similarly for M 1,0 and M0• This is quite important practically because it is 

these matrix elements which must be re-computed at each scattering energy E 

(because the "free" functions Uo and u1 depend on E), and furthermore, the 

exchange integrals are more difficult to evaluate numerically that the direct matrix 

elements (those withy="/). With this simplification, the only non-zero exchange 

matrix elements are the bound-bound ones, Eq. (3.2c), but these are independent of 

. the energy E, so that they can be computed once and then used to compute the S-

. matrix at many values of E. 

Eqs. (3.1)- (3.2) thus express the S-matrix for reactive scattering in an 

extremely straight-forward manner: one chooses basis functions, computes matrix 

elements of the Hamiltonian, and then does a standard linear algebra calculation. 

Specifics related to A+BC ~ AB+C reaction in three-dimensional space- i.e. 

angular momentum coupling, elimination of the three Euler angles for overall 

rotation, conservation of total angular momentum, identical atom symmetry, etc. -

are all given in refs. 8 and 4k. 

As noted in the Introduction, the methodology summarized above has been 

used to calculate integral and differential cross sections for several A+BC ~ AB+C 

reactions.4i.k.l It is a very robust and straight-forward quantum mechanical 
I 
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calculation. The next Section describes some enhancements and generalizations of 

the basic methodology summarized above, the goal being to take advantage as much 

as possible of standard quantum mechanical methodology so as to be able to extend 

reactive scattering to deal with an even wider class of chemical reactions. 

IV. GENERALIZATIONS AND ENHANCEl\.1ENTS OF TIIE l\.1ETHODOLOGY 

Essentially all the generalizations and enhancements of the basic S-matrix 

Kohn approach, Eqs. (3.1)-(3.2), have to do with "better basis functions". Here 

"better" may mean more accurate basis functions, so that fewer are required to 

represent the wavefunction, or it may mean more convenient basis functions so that 

the matrix elements of the Hamiltonian in Eq. (3.2) are more easily evaluated. 

It is first useful to re-write the S-matrix Kohn equations, Eqs. (3.1)-(3.2) in a 

more general fashion. Combining the generic coupled channel expansion of the 

wavefunction [Eq. (1.5)] with a basis set expansion of the translational functions, 

cf. Eq. (3.3), shows that the general form of the Kohn trial function is 

'Pylnl =- <l>ylnl + L <I>; Cyn.ylnl + L X;\. c;\.,ylnl' 
y,n ;\. 

where <l>-yn(q'Y'r
1
) is an asymptotically incoming wave in channel ')'11, 

.lim <l>i'Il(q.,,ry)- <l>~(qy) e·ik)'Ilrrfvi'Illn., 

r.,~ 

(4.1) 

(4.2) 

<I>-yn• is the corresponding asymptotically outgoing wave, and {X~J is an L2 (square 

integrable) basis that spans the interaction region. The bound-bound and bound­

free matrix elements in Eq. (3.2c) and (3.2d) are then designated as 
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(4.3a) 

(Mo)A.,ny = <x~.,IH-Eiu~.<l>~·> . (4.3b) 

In Eqs. (3.1)- (3.2) above- and in all applications to date- the L2 basis {x1J 
has been chosen to be the direct product of the various channel eigenfunctions and a 

translational basis, 

(4.4) 

so that A.= ·yn.t, but this is not necessary. The {X;) basis can be chosen in a variety 

of ways, using a variety of coordinates. There is even some flexibility in the choice 

of the "free" wavefunctions { <I>"fl}, the only requirement being the asymptotic form 

in Eq. (4.2). Here we note several of these possibilities that have been tried so far. 

a. Distorted Free Functions 

One way to keep the L 2 basis as small as possible is to use better free 

functions, i.e., functions Uo and u1 that describe the wavefunction accurately to 

smaller values of r
1 

than the simple plane waves discussed above. For example, the 

functions <I>"fl in Eq. (4.1) and (4.2) can be chosen as 

(4.5a) 

where the translational function matrix u 1. is the solution of the inelastic coupled 
n~n 

channel SchrOdinger equation for channel "(, 

0 = (- 211
2 

d
2 

- Eyn·) u1
. (r .... ) + L v~',n"(ry)u1 .. (ry) ' 

~~ n~n •· n" n~n 

(4.5b) 

with asymptotic boundary condition 
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(4.5c) 

this radial function is irregular as r
1 
~. but the cut-off function f(r) regularizes it. 

These "distorted" free functions4t describe inelastic scattering separately in each 

arrangement, so that the L 2 basis can be restricted more specifically to the very 

short range exchange region (and thus be smaller). The free-free and bound-free 

matrix elements are also considerably simplified with these distorted free 

functions:4k 

(M ) ·- 8 ;,
2 ~ (u1 lf21u1 ) 0,0 yn,"(n - "(,"( 2~ ;: n"+-n n"+-n' 

(M 0) • = 8 "' [in 8 · + ;,
2 

"" (u "f' lf21u 1 )~ l, yn,"(n 'Y•l 2 n.n 2~ ~ n"+-n n"+-n' J 

b. Contraction of the L 2 Basis 

(4.6a) 

(4.6b) 

(4.6c) 

Another way to reduce the size of the L 2 basis is to borrow the idea of basis 

set contraction from ab initio electronic structure theory. I.e., one begins with a set 

of "primitive", easy-to-use functions, and then transforms to a better basis, e.g., by 

diagonalizing the Hamiltonian for some reference problem. The new basis 

functions are linear combinations of the original ones, but one actually uses fewer 

of these good basis functions than the original number of the primitive ones (cf. the 

transformation from many atomic orbitals to a fewer number of molecular orbitals). 

22 
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A quasi-adiabatic contraction4q of the channel eigenfunctions has been especially 

easy to use, and in applications to the H+H2 and D+H2 reactions it approximately . 

halves the number of L 2 basis functions necessary to achieve convergence. Since 

the computational time is proportioned to the cube of the size of the matrix M that is 

inverted in Eq. (3.1), this reduces the computational time by almost an order of 

magnitude. 

The quasi-adiabatic contraction procedure4q starts with the primitive direct 

product basis of Eq. (4.4), i.e., 

XA.(q,r) = <l>n(q) Ut(r) , (4.7) 

where for the moment the arrangement index 'Y has been dropped since the quasi­

adiabatic contraction is carried out separately in each arrangement The channel 

index n includes open and closed channels, and the translational basis is a set of 

distributed Gaussians19 

(4.8) 

t = 2, ... , Nt. Adiabatic internal functions { <l>n< q;r} are the eigenfunctions of the 

Hamiltonian 

h(q;r) = h(q) + V(q,r) , (4.9a) 

the full Hamiltonian with the translational kinetic energy operator omitted. The 

adiabatic eigenvalue equation thus reads 

h(q;r) <!>n(q;r) = En(r) <l>n(q;r). (4.9b) 

Use of adiabatic internal eigenfunctions, however, is complicated by derivative 

couplings that result from such a basis; a quasi-adiabatic basis accomplishes 
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essentially the same goal and is much simpler to implement. Quasi-adiabatic basis 

functions have been widely used in solving coupled channel scattering equations 

using propagation methods,20-24 in which different internal basis functions are used 

in different sectors of the reaction coordinate. This is especially convenient here 

because the translational basis { ut(r)} of distributed Gaussians, Eq. ( 4.8), is a 

localized basis. We thus utilize the adiabatic internal functions not at all values ofr, 

but only those values {rt} at which the distributed Gaussians are located. Defining 

t 
c!>n(q) = c!>n(q;rJ , (4.10a) 

the L2 basis {XA.(q,r} that we use is thus 

(4.10b) 

with A.= (n,t). Each translational function ut(r) thus has the internal function that is 

the adiabatic eigenfunction at the position rt about which ut(r) is localized. (Note 

that this is essentially the same idea as the "shifted oscillator basis" used in another 

context by Makri and Miller.25) 

In practice the adiabatic internal eigenfunctions are determined by expanding 

them in terms of the asymptotic channel eigenfunctions 

c)>~(q) = L c!>n{q)Wn',n; 
(4.1la) 

n' 

i.e., wn',n is the transformation matrix in the internal space, whose column vectors 

are the eigenvectors of the matrix representation of h( q;rJ in the asymptotic basis 

(4.11b) 

where 

V n',n(r) = J dq .P,·(q)* V(q,r).P,(q) . 
(4.11c) 
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The matrix eigenvalue equation thus reads 

(4.11d) 

where 

Eh = En(rr.) • 

With the index A. now identified as A.= (n,t), the bound-free and bound­

bound matrices of Eq. (3.2) are given by 

(4.12a) 

(4.12b) 

The transformation matrix U in the composite space of all degrees of freedom is 

then defmed by 

(U)n't',nt = Ot•tW~·n (4.13) 

.·and the Mo and M matrices ofEq. (4.12) can then be conveniently expressed in 

terms of the matrices Mo' and M' in the asymptotic basis: 

Mo=UT•Mo' 

M =UT•M'•U 

(4.14a) 

(4.14b) 

where Mo' and M' are the matrices in the asymptotic internal ("primitive") basis 

(Mo')n't',n = <<l>n·ut'IH-EI<j>nuOn> 

(M')n't',nt = <<l>n•Ut•IH-EI<j>nUt> 

(4.15a) 

(4.15b) 

In applications one typically first computes the bound-free and bound-bound 

matrices in the asymptotic (or diabatic) basis, M0' and M' of Eq. (4.15), and then 

transforms them to the quasi-adiabatic representation Eq. (4.14). If the same 

number of quasi-adiabatic eigenfunctions is retained in the L 2 basis as the number 
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of asymptotic functions used to represent them- i.e., if the matrix W of Eq. 

(4.11) is square- then the same results will be obtained by using the asymptotic 

(i.e., diabatic) internal eigenfunctions as the quasi-adiabatic internal eigenfunctions. 

This is obvious since the relevant quantities in the expression for the S-matrix are 

invariant to this orthogonal transformation of basis; e.g., 

B =Moo- MoT·M-l•Mo 

= M00 - (UT•M0')T•(UT•M'Ut1UT•M0' 

=Moo- Mo'T•U·U-l•M'-l•(UTtl•UT•Mo' 

=Moo- Mo'T•M'-l•Mo'. 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

As noted, however, many fewer quasi-adiabatic internal eigenfunctions are needed 

than the "primitive" asymptotic (diabatic) internal eigenfunctions that are used to 

represent them. Thus the matrix W, and the transformation matrix U, are 

rectangular matrices, so that Eq. (4.16d) is no longer equivalent to Eqs. (4.16a) and 

(4.16b). The matrices Mo and Min the quasi-adiabatic representation will thus be 

much smaller than the matrices Mo' and M' in the diabatic (asymptotic) 

representation; i.e., Eqs. ( 4.16a,b) describe a contraction of the internal basis set. 

The quasi-adiabatic contraction of the basis is applied separately in each 

arrangement y to obtain a contracted set of functions for that arrangement The 

complete basis set is then the union of the contracted sets from each arrangement 

The transformation matrix U ofEq. (4.13) is thus diagonal in the arrangement 

index 

(U)yn't';ynt = Oy,.Ot't W~.n (4.13') 

where w1t is the quasi-adiabatic transformation for the internal degrees of freedom 
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at r;1 of arrangement y. All further aspects of the calculation are then precisely as 

above; i.e., the contracted matrices M and Mo are given in terms of the primitive 

ones by Eq. (4.14) and the S-matrix by Eqs. (3.1) and (3.2) 

Another important example of a contraction - or actually just a clever choice of 

basis - is to use the body-fixed, or helicity representation for the L 2 basis 

functions,26 and the space-fixed, or ,/-representation for the free functions. Thus 

the channel index n in Eq. (3.1)- (3.2) is n = (v,j,K) for the L2 basis, where (v,j) 

are the vibrational and rotational quantum numbers for the diatom, and K is the 

projection quantum number for the diatom rotation with respect ry (the atom to 

diatom center of mass coordinate vector) as quantization axis; this is the body-fixed, 

or helicity representation. For the free functions in Eq. (3.1)- (3.2), the channel 

index is n = (vj,l), where v andj are the same as above, and lis the orbital 

angular momentum quantum number for the relative motion between the atom and 

the center of mass of the diatom; this is the space-fixed, or .t-representation. For 

large separations between atom and diatom, the Hamiltonian tends to be more 

nearly diagonal in the l-representation (because the centrifugal potential, .t2J2~. 

is larger than the interaction potential for larger), but for small distances it is more 

nearly diagonal in the K-representation (because here the interaction is typically 

larger than the centrifugal potential). The transformation element <kll> relating the 

l-and K- representations is a Clebsch-Gordan coefficient.8 Application to the 

F+H2 ~ HF+H reaction has shown the enormous utility of this approach. 26 
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c. Discrete Variable Representation for the L 2 Basis 

A more radical choice for the L2 basis {XA.} is a discrete variable 

representation (DVR), i.e., a set of grid points that span the interaction region. The 

particularly advantageous aspects of this L 2 basis is that no integrals are required in 

order to construct the Hamiltonian matrix involved in the bound-bound and bound­

free matrices M and Mo of Eq. ( 4.3) and also that the matrix M (the one that must 

be inverted, cf. Eq. (3.1)) is extremely sparse. Both of these features of the DVR 

make it extremely attractive for extending the S-matrix Kohn methodology to 

chemical reactions involving more than three atoms. 

DVR methods have been pioneered in recent years by Light and co-workers27 

(through the origins go back much farther28) for use in vibrational eigenvalue 

calculations, Peet and Y ang29 have made similar applications of the related 

collocation method, and Friesner and colleagues30 have utilized similar methods for 

the electronic SchrOdinger equation. Peet et a/.31 have shown previously that DVR 

and collocation methods can in principle be efficiently used inS-matrix Kohn 

variational calculations, but this previous work was not readily generalizable to 

reactive scattering. More recently, though, Colbert and Miller-12 have presented a 

DVR methodology that does deal with reactive scattering, and efficiently so. The 

specific DVR they have devised also has a particularly simple and generic or 

universal character, it involves only the grid points themselves, with no explicit 

reference to an underlying basis set, both for the bound-bound and bound-free 

matrix elements in Eq. (4.3). 

For a collinear A+BC ~ AB+C reaction, for example, one first lays down a 
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two-dimensional direct product grid in some convenient coordinate system that 

covers the interaction region. Colbert and Miller'2 have used the normal mode 

coordinates associated with the transition state, but other choices are possible (e.g., 

hyperspherical coordinates should also work well). Figure 2 shows such an x-y 

grid superimposed on a contour plot of the H+H2 ~ H2+H potential energy 

surface. If {X;,} and {yj} are the grid points, then the grid is truncated by 

introducing an energy cutoff V c• and only grid points (i,j) are retained for which 

(4.17) 

The grid is also truncated in the asymptotic regions at a value Rmax• the translational 

coordinate in the reactant and product regions. Therefore even though one begins 

with a direct product grid, the energy cutoff criterion, Eq. ( 4.17), adapts it to the 

shape of the potential energy surface for the specific problem in a very simple and 

controllable way. Convergence can be tested simply by increasing the value of V c· 

INSERT FIGURE 2 ABOUT HERE 

The L2 basis {lx.y>} ofEq. (4.1) and (4.3) is thus the set of grid points li,j>. 

The bound-bound matrix M of Eq. (4.3a) is 

(M)·· ···· = l.:r .. ·••• - E(; .. , (; ... = T··· (; .. , + T·· (; .. , + (; .. , 8-··(V(x· y·)-E) · lJ,lJ 4 "'iJ,lJ u JJ u JJ JJ u u JJ 1' J ' 

(4.18) 

the potential matrix is diagonal, as always in a DVR, and the kinetic energy is the 

sum of two one-dimensional kinetic energy matrices. The latter has the form32 

I 2/3 ._., ' 2 
.. , 1t , 1-1 

11 (-1)1-1 

Tu· = 21I1Lh2 \ 2 . ··f ' 
-- l:;C:i 

(. '')2 ' 1-1 (4.19) 
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the only parameter involved being the grid spacing ~. or the "energy quantum of 

the grid", tz 2/(2milx2); Tjj' for they-degree of freedom is similar, and the grid 

spacings are chosen in a mass-weighted fashion, m,.&2 = ny\y2. The bound-free 

matrix ofEq. (4.3b) is given by 

(4.20) 

i.e., (H-E) operate on the free function <I>..,ir'Y'Ry) and then one evaluates this at the 

coordinates (Xj.Yj). Thus no integrals are required to obtain M and Mo in Eqs. 

(4.3). 

The most novel feature of Colbert et al.'s32 DVR is the kinetic energy matrix 

Eq. (4.19). It is not only extremely simple, but independent of any specific 

underlying basis set; i.e., it is a property only of the ¢d itself. It can be derived32 

as the infinite limit of a Fourier expansion and also as an infinite order finite 

difference expansion. 

Test calculations by Colbert et a/.32 for the collinear H+H2 ~ H2+H and 

Cl+HC.t ~ ClH+Cl reactions obtained converged reaction probabilities with 

only -20% more grid points than conventional basis functions (i.e., Eq. (4.4) for 

the L 2 basis. This is extremely encouraging with regard to the possibility of 

carrying out such calculations for more complex systems because the DVR, or grid 

basis avoids integral evaluation in order to obtain the Hamiltonian matrix and also 

because the Hamiltonian matrix is extremely sparse (which facilitates evaluation of 

the matrix inverse M-1 in Eq. (3.1)). Quasi-adiabatic, or other contraction schemes 

used with conventional basis functions can also be employed in an identical fashion 

with a DVR.33 
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V. A SEMICLASSICAL CORRECTION TO THE KOHN S-MA TRIX 

Recall the (formally exact) distorted wave representation34 for a generic S-

matrix element 

where 'Pi and 'Pr are distorted waves for the initial and final states, i.e., scattering 

solutions of some zeroth order Hamiltonian flo, normalized with the unit incoming 

flux that we have been using throughout this paper, 

'Pi(q,r)- I <l>j(q) Vj112 [-e-ikl Bji + eikjf s?i] ' 
j 

(5.2) 

where { <l>j( q)} are the channel eigenfunctions. S fi is the zeroth order S-matrix that 

which results from lfo. d V in Eq. (5.1) is the residual interaction, the part of the 

total Hamiltonian H not included in lfo, i.e., 

and G+(E) is the Green's function (operator) for H, 

Since 

a+(E) =.tim (E+ie-m-1 

E~ 

<Ho-E) 'Pi = 0 ' 

Eq. (5.3) shows that 

(H-E) 'Pi = d V'Pi , 

and similarly for 'P f• so that Eq. (5.1) can also be written as 

(5.3) 

(5.4) 

(5.5a) 

(5.5b) 

Sfi = S0f 
1
· + _i_ { <'P~H-EI'Pi> + <(H-E)'P~G+(E)I(H-E)'Pi>} . (5.6) • • 11 
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Eq. (5.6) is formally exact for any distorted waves 'Pi and 'Pr that satisfy the 

boundary conditions Eq. (5.2), from free waves 

(5.7a) 

with 

(5.7b) 

to 'Pi and 'Pr being the exact solutions of the total Hamiltonian (in which case 

sfi = Sji and (H-E)'Pi=(H-E)'Pr=O). Eq. (5.6) is a more useful form than Eq. (5.1) 

because there is no explicit reference to the zeroth J¥iniltonian (or the residual 

interaction) which define the distorted waves 'Pi and 'Pr; one only needs to specify 

the two distorted wavefunctions themselves. This is most convenient for the case 

of reactive scattering for which the two zeroth order Hamiltonians are in fact 

different. 

IT one discards the term in Eq. (5.6) (or (5.1)) involving the Green's 

function, then the distorted wave Born approximation (DWBA) is obtained, 

(5.8) 

One also recognizes Eq. (5.8) as the Kohn variational functional (Eq. (2.2) for the 

case of potential scattering), as was noted before. The S-matrix Kohn variational 

method can thus be thought of as the distorted wave Born approximation with "very 

good distorted waves", i.e., the best ones that can be obtained (in a variational 

sense) within the basis set that is used. If the basis set is sufficient! y large, then the 

distorted waves can be made arbitrarily good and the DWBA then approaches the 
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exact S-matrix. 

Here we consider the possibility of correcting an S-matrix Kohn variational 

calculation by approximating the last term in Eq. (5.6), the one involving the 

Green's function. If the variational basis is sufficiently large then this is of course 

unnecessary, but there may be situations for which this limit is unattainable. Eq. 

(5.6) thus has the form 

sfi = sKVPr1· + i <xriG+(E)IXi>, • • 11 
(5.9) 

where the first term here is the result of an S-matrix Kohn variational (KVP) 

calculation, and the functions Xi and Xr are 

Xi = (H-E)'Ifi 

Xr = (H-E)'Ifr • 

(5.10a) 

(5.10b) 

where 'Pi and 'Pr are the variational wavefunctions resulting from the variational 

calculation. Note that Xi and Xr are L 2 functions. One thus needs a useful way to 

approximate matrix elements of G+(E) between L 2 functions. (If one uses a basis 

set approximation4a to this matrix element, with the same basis used for the Kohn 

variational calculation, then this correction term varnishes identically. I.e., one 

needs to approximate this matrix element of G+(E) beyond the basis that has already 

been used.) 

The approach considered here is a semiclassical a~roximation. Using the 

standard relation between G+(E) and the time evolution operator exp( -iHt/h ), one 

has 
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(5.11) 

and with the standard semiclassical approximation35 for the propagator this 

becomes 

(5.12) 

Here x2(x1,p1) is the final position that results from a classical trajectory with 

initial position and momentum (x1,p1) (and final timet), with p1 = p1(x2,x1) 

determined by the (non-linear) boundary condition 

(5.13) 

i.e., for x1 fixed, one must find the value of p1 such that the final position at time t, 

x2(x1,p1), is equal to the specified value x2• The sum in Eq. (5.12) is over all 

roots of Eq. (5.13), and S is the classical action integral along the classical 

trajectory (or trajectories) determined by boundary conditions (x1,xv, 

S (x2,x tl = f dt' [p( t')•X(t) - H{p(t'),x( t') D , 
(5.14) 

where His the classical Hamiltonian. v in Eq. (5.12) is the Maslov index, the 
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number of zeros experienced by the determinant of the Jacobian ax2(xl,pl)/()pl in 

the time interval (O,t). 

One can avoid dealing with the non-linear boundary problem, Eq. (5.13), 

however, by using the "initial value representation";36-39 i.e., by changing 

integral:J.on variables in Eq. (5.12): inside the integral over x1, one changes from x2 

to p1 as the integration variable, and since x1 is constant inside the x1 integral, one 

has 

d d 
axz(Xl,Pl) 

Xz = Pl ----'--1 

aP1 

(5.15) 

so that Eq. (5.12) becomes 

(5.16) 

Eq. (5.16) entails no approximation beyond the basic semiclassical approximation 

itself, and its obvious advantage over Eq. (5.12) is that the integration variables are 

initial conditions, so that double ended boundary are avoided. It is also 

advantageous that the classical Jacobian factor lax2(x1,p1)Jap11 appears in the 

numerator in the integrand ofEq. (5.16); therefore even though the semiclassical 

propagator is most in error near the zeros of this Jacobian, these enter as zeros in 

the integrand, and not as singularities (as they do in the propagator itself). Also, 

since it is when the Jacobian passes through zero that the Maslov index v increases 

(discontinuously) by unity, the fact the integrand is zero at such points means that 
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the integrand is continuous throughout. 

The practical task in utilizing Eq. (5.16) is thus to evaluate the integral over 

the phase space of initial conditions, a problem complicated by the fact that the 

integrand is oscillatory. Heller37 describes one way of doing this, which appears to 

work well. For systems with more than one or two degrees of freedom it may 

prove necessary to resort to Monte Carlo methods for dealing with such integrals.40 

The semiclassical correction to an S-matrix Kahn calculation is thus given by 

utilizing Eq. (5.16) in Eqs. (5.9)-(5.11). Specifically, this correction term (the 

second term on the right hand side of Eq. (5.9)) is approximated semiclassically as 

(5.17) 

with Xi and Xr given by Eq. (5.10). Since Xi and Xrvanish as L2 functions in the 

asymptotic regions- the more rapidly the better 'Pi and 'Pr approach the solution 

of the Schrodinger equation- one will need to integrate the classical trajectories 

for only short times to evaluate the integral over time in Eq. (5.17) (because x2 ~ 

oo as t ~ oo, and thus Xr ~ 0). 

One may think of Eq. (5.17) as being a correction for the error in the Kahn 

variational calculation due to lack of completeness of the variational basis set 

Therefore if the semiclassical approximation is accurate, one can obtain accurate S­

matrix elements from Eq. (5.9) and (5.17) with much smaller basis sets than would 
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be required for convergence of the variational calculation alone. (E.g., if the 

semiclassical approximation were exact, one would obtain the correct S-matrix with 

no L2 basis functions in the variational calculation.) This may thus be a very 

important procedure if one can evaluate the oscillatory integrals in Eq. (5.17) in a 

generally practical way. It is also interesting and ironic to realize that one is using 

classical mechanics (semiclassically) to correct quantum mechanics! 

VI. CONCLUDING REMARKS 

One may thus say that the general prescription for carrying out quantum 

mechanical reactive scattering calculations is now quite clear but that one has just 

begun down the road of practical developments that can be made. Section IV 

describes some of these methodological developments - all of which can be 

characterized as how to choose basis functions more efficiently - but one expects to 

see many additional contributions. It very much reminds one of the early days of 

quantum chemistry, and it is clear already that many ideas developed in that field 

can be usefully brought to bear on quantum reactive scattering. 

One major difference with quantum chemistry is that matrix elements of the 

Hamiltonian (i.e., integrals) will never be able to be evaluated analytically in the 

~present case as they can be in electronic structure theory. (This is because the 

potential energy surface is a very complicated function of the nuclear coordinates, 

different for every system, and not simply Coulomb's law.) For reactions more 

complex than an atom-diatom system, integral evaluation will likely be a major 

bottleneck. For this reason I believe that the DVR methodology described in 
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Section IV c, and developments therefrom, are extremely important for further 

progress. 

The semiclassical correction procedure described in Section V is another 

approach for reducing the size of the L2 basis that is required. One obviously needs 

to test this scheme to see how poor an S-matrix Kohn variational calculation can be 

(i.e., how small an L 2 basis can be used) for the semiclassical correction to be able 

to provide an accurate netS-matrix, Sr.i = L\S~~ + £\sfJ· Since classical 

trajectories can be computed for extremely complex systems, this could open the 

door to applications for much more complex chemical reactions. Much thus 

remains to be done! 
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Figure 1 Schematic depiction of a collinear A + BC ~ AB + C potential energy 

surface and different ways of choosing coordinates. (a) Jacobi coordinates for 

arrangement a(A + BC) and c(AB +C); (b) reaction path ("natural collision") 

coordinates; (c) hyperspherical (here simply polar) coordinates. 

Figure 2 Contour plot of the LSTH potential energy surface for the 

H+H2~H2+H reaction in mass-weighted Jacobi coordinates. The points indicate 

the DVR grid in mass-weighted normal coordinates (x,y) of the transition state. 

The larger grid (the smaller points, which also lie underneath the larger points) 

results from cutoff parameters v c=4 e v and Rmax=8 ao. and the smaller grid (the 

larger points) is the one obtained with Vc=2 eV and Rroax=6 l!Q· 
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