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© ABSTRACT
The "partially averaged" version of classical_S—matrix theory

is applied to three-dimensional collisions of Li}»with Hz. For an

~ i .

initial collision energy of 0.684 eV cross sections for the'Vibra—‘
tional de-activation of Hz‘from the initial state (nl’j1) = (1, 0)

to final states (n,,j,), n ='O,»j =0, 2, 4,... are computed and
2°-2 2 '2 ST :

" compared with the recent quantum mechanical coupled channel calcu¥

lations of Schaefer and Lester. The agreement.is:quite good,
indicating that this approach is an accurate and practical wayvof
describing these weak,-"classically.forbidden"“procésses which

cannot be treated by ordinary classical trajectory methods.



I. INTRODUCTION,

Vibrationally inelastic processes in threé'dimensional A + BC
collision sfstems at low ehergy present an extremély‘difficult‘task
for molé?ular collision fbeory.. Bécauée such transitions are typi-
cally "classically forbidﬁen" (i.e., weak) processes, iﬁ is in
general not pOSsible to employ the usual.élassical trajectory methodsl
that work well for describing 'classically allowed” , or
strong transitioné; Since the prdcess is weak, one might tﬁink_
that quantum mechanical perturbatidn theory (i.e., the distorted
- wave Born approximation) would be applicable——as it is for the

céllinear version of theiproblemz——but in the ﬁhrée‘dimensional.
A+ BC,syétem there are typically a large nﬁmber.of rotational
 §taEésitﬁét are strongly coupled, iﬁvalidating'fhe normal dis- -
tof;ed wave Borg approximation.3 It is this feature--the large
numbér of strongly couplea rotational states--which alsd makes
the complgte quantum mechahical approach, i.e., a cdupled channel
qalculation, often impractical unless dynamicai apbroximations-
vare introduced to simplifyvit.4

Cl?sgical S-matrix theorys-—a semiclassical model which
combines exact classical'dynamics (i.e., numericaliy computed
frajectorigé) and the quantum principle of supérposiﬁion-;turnssv
_out to be well suited for this situation, for_;s wiil be seen
below, it is possible to cast it in a form that'élipws one to
treat cléSsical—like rotational degfees of freedom within the
spirit of avnormal tréjectory calculation, wﬁile simﬁlténéously'

_ quantizing the quanfum-like vibraﬁional.degree of freedom



semiclassically.. It is importént, ﬁoo, that this &partiél averaging"
technique entails no dynamical approximationé; the only approximations-
bgyoﬁd that of classical S-matpix theory itself ére.negiect of inter-
ference effects, which are presumably quenched by the average over
various Quantum states, and the assumption that fhere-are a large
number (i.é., morelthan two or three) of final rotational states popu-
lated By the vib;ationally inelastic traﬁsition;' The practical
simplifications that result from this "partiallyvave;agéd" version of -
the theory are substantial and appear to make it quite a practical
and accurate way of calculating cross sectioné_for these processes.
There are a number of othef approaéhes6—8‘for treating'this
problem which are also "sgmiclassical"iin nature. FSome of theéé6
are various versions of the élassical”path{ or imbéct pafametér
model in which a classical trajectory is assﬁméd for the transla-
tional motion, this determining a ﬁime;dependent:pefturbétion for
the internal degrges_of freedom; inelastic transitions are then
described.by'a time-dependent SchrSdiﬁger equétion‘for the internal
degfees‘of freedom: Otﬁer modelé7 use full ciassical trajeétoriesx
and invoke a correspondence between the averagégclassiqal ana the aversge
quantuﬁ mechanical energy transfer. Although,thesé épproaches may
be useful in some situations, it isvclear thatﬂthéy'involve dynamical
approximations which invalidate their general applicability; these
dynamical épproximationsQ;pfimarily a de—coupling of the translational
motioﬁ and inelastiC’dynémics itself--are particularly poor in the

case of low collision energy and a‘'weak inelastic transition.
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Section IT first summarizes the theory with.particular
attention to the "partial averaging" anaiYsisg and Section
IIT1 discusses some aspects of the nqmerical methods involved.
The resﬁlps for the 1 > 0 vibrational déactiva;iqn 6f H2 by
Li+ are presented in Section IV and compared to'ﬁhé couﬁled
channel quantum mechanical results of Schaefer'énd Leéter.9
These are the most extensive éouﬁled channel calculations
yet carriéd'out for any fhree dimensional A + BC qollision

procesé, and the excellent agreement between these values

and the present semiclassical results is quite'enéouraging.



II. THEORETICAL SUMMARY; PARTIAL AVERAGING.
The expressions pértinent to the application of classical

S-matrix theory to nonreactive A + BC collisions in three di-

2,10 and the partial averaging

10,11

mensions have been given previously,
technique has also been discussed briefly. Here we wish
to summarize -the appropriate expressions and to deséfibe the

partial averaging idea more fully. In doing so, it is illustra-

tive to consider first the case of a classically allowed transition.

A, Classically Allowed Case.

The integral cross section for the n

131 > n232 v1b:at10pal—
rotational transition, S . v
A+ BC(nljl) - A+ BC(nZJZ) SO : - i : (2.1

summed and averaged over the m-components of the rotational states,

is given by.

2

o_ . . (E)) = —5—————— 2 : C(23+1) s .. L, (UL,E)] o, 2.2
npdp iy L k12(2j1 +1 ST, ydpkyem 3yt T

where n, j, and % denote vibrational, rotational, and orbital angular
momentum quantum numbers, respectively; J is the total angular_momen—_
tum quantum number, E

1

and E = El + g(nl,jl) the total energy.

= h2k12/2u is the initial collisioﬁ energy,

Because of the sums over the various quantum number labels ir

5,12

Eq. (2.2), it has been noted’’ that intérference effects in the

S-matrix elements--which are prominent in jpdividual matrix




00004201 4 g

elements——are often quenched. If interference effects are discarded--

and if the n transition is classicaily allowed-~then the

131 7 ™3y

square modulus of the classical S-matrix element is given by5

r é , 9(n j.R ) v -1

X 3 232%2

i gnig B =M | |
23272011 " 9(q, a, g, )

E .23

The meaning‘bf the Jacobian determinant in Eq. (2.3) is the usual:5

A complete set of initial conditions-.for the A + BC classical tra-

jectory are, in action—angle variables, E, J, n,, j.» L., a s a.-
_ _ : . S -1 1 n,c iy
and 62 , the small q's being the angle variablés_conjugate to the
1 . . . .
corresponding action variables, or 'quantum numbers"; with n, jl’
éﬁdvﬁl (and J and E) held fixed, .the initial angle variables an ,
. , . 1
qj , and qz' are chosen so that the final quantum numbers resulting
1 1 ' i
“from the trajectory are the desired .integer values, i.e., so that

"the equations
n (a ’a. ,-CI ) =n
2 nl i 21 2
| ((_l ’a- ,Ef ) =]
_ 2  n,’ i, 21 2

-9 | | (2.4)

220G »q ,qll) L

1 -1

are satisfied. (nz,j2 and 22, written without érguments, are
specific integer values; written with afguments; they are the
specific final values--not necessary integral--which result from

the classical trajectory with the indicated initial conditions.)

- The Jacobian in Eq. (2.3) is evaluated at the root of Eq. (2.4).

-



. ' ;..1
S . . 9(n,yj,L,)
(E,) = ~—5—Te fdJJ'd.?.lfdQ,Z Qi+ 1) 222

o .
n,j.*n.j 3 i
222711 ky (2j1‘+ no.oo. | (2m) . .}8 (qnlqjlqzl)

where it has been assumed that endugh integer Valces contribute
to thevsumS'over 21, 22, and J to replace the sums by integrals.

- Furthermore, if'thereiare at least a few values of n, and j2 that

2

are classically allowed transitions from the initial state (nl, jl),
| . S ‘

then it is reasonable--and greatly simplifies matters--to treat

n, and j2 as continuous variables and to average Eq..(Z.S) over a

quantum number widthl3 about n, and jé, i.e., to assume

(E ) ‘/pdn
0,1, ™0

Carrying out this averaging procedure, Eq: (2.5) becomes

L1
+37 jz*"

dj () - (2.6)
1 f 2, “ny3, o |
: |

o _ 3(n,i, AL )
(E, )= T fdedR. fan fdj fdz (21 + 1) |22

n,j.en.j 1 2 ‘ 3
27277171 k"2 + 1 | (2m) B\q"lqjlq"l)»'

and the simplification resulting from this averaging procedure
is now clear. Eq. (2 7) involves an integral over all final
quantum numbers n,, j2 and 22, so that a change of variables of

integration from (nz, jz, 2 ) to their conjugate initial conditions

(q, » 9, 5 9, )=—i.e.,
q“li I 4

-.1

L 2.5)

(2.7
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4 8 .3
-7=
.la(nj 2,) |
fdn,fd] fdl qu fdq, fdq — ‘ .
27772 " i kl a(q q ql )| ) (2.8)

s | . _: 7 1

A

in Eq. (2.7). Eq. (2.7) thus becomes

' - - - (22 4+ 1
g (E)) = u fd8fdJfdq_ [fdq, fdq, -——F—.
nyipymdy 12(231 + 1) 4 30 N om?d

X_n i «n ( leqlql 92‘19J E)

232 1j1 n (2.9)

where the characteristic function X is 1-if the final vibrational

and rotational quantum numbers which result from the trajéctory v

" with the indicated initial conditions fall in the increments13

(n2 - %3 n, + %) and (j2 Q'%3 j2 + %), respectivgly, and is 0
otherwise." The most important practical advanﬁageiof Eq. (2.9)
is that all reference to double-end boundary éénditioﬁs—-i}e.,
the root-search problem, Eq. (2.4)--has been eiiminated, and it
is now necessary to deal with trajectories only through their

initial conditions. In practice, too, one sweeps all the integra- 

tion variables, i.e., the initial conditions, through their

complete doﬁains, assigning the final values of n, (q_ , q. , q, )
' . e L
and j,(q_ ,q. ,q, ) to the appropriate quantum number "boxes",
2707y ‘
thus generating in one calculation the cross sections from (ni, jl)

to all classically allowed final states.
The reader will recognize that the above prescriptioﬁ is the

standard quasi-classical trajectory procedure1 if the integrals



are evaluated by Monte Carlo methods. To see this even more
concretely, note that the limits of integration for 21 and J

are

= |Jl-g’ll+(jl+g‘l) S
"and one normally replaces 21 by the impact parameter b,
b= (L, +3)/k
- 1 2 1 ’

and J by the variable z

1
| 32
I4g- [0y -3+ @ay v 1) @y e

In addition, the impact parameter integral is cﬁt*off at some
value bmax beyond which no trajectories lead to the transition

of interest; since

b
. max 9 1
mfdb2b=Thb S dg s
0 max "
where
. 2 -
£=(/b ) o S

or



. l . .
Ryt =k b ‘/g, ;

these changes of variaBlesdreplace Eq. (2.9) by

101 1 S 1
: : 2 - _ - _ _
c , . . (E)=r1b [ dE [ dz J d(q_ /2m) S d(q. [2m) [ d(q, [2m)
myipmidy il mX 0 o0 o0 ™ 0 1 0o X

(2.10)

X (@ ,4, »d, s%»J,E).
3y

Mol Myl

Since all five integrals have the limits (0, 1), ﬁhe'Mdnte Carlo

evaluation of Eq. (2.10) is straight forward. If Eq. (2.10) is

.~ also summed over final rotational states, -

- O;Zﬁljl(El) E E g yondy D | : - (2.11)' .
then one obtains
o , 1 1 1 _ BN S
0n2+nljl(El)=TTbmax deE fodz fod(qnl/ZW) fod(qjl/Zﬂ).de(qll/Zﬂ)
*nzmljl(anl’azl’ajl’zl’J’E), . o @10

_where the characteristic function here is 1 if the final Vibrétiqnal =

quantum number resulting from the classical trajectbry with the
indicated initial conditions is in the interval (n2 —-%, n, +-%),'and
f

is 0 otherwise.
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B. Classically Forbidden Case.

If tﬁe.(nljl) - (nzjz) transition is_classicélly forbidden——ife.,
if there are no real-valued classicalvtrajectories at the given
values of J‘and‘E which connect these initial and final quantum
numbers—-—then thevabove prescpéption is plearly'népxappiicable;
it gives a cross section of O, QﬁiCh*iS_¢9nsi§ten£7in_that-the-
cross section is indeed small, but which ig'no£ g{gserl[ésfimate.
Some of t‘lh,e.:S,implifying steps discussed above in Sectidh IIA,J
however, are still valid. |

Because of the sums in Eq. (2.2) it is stiil.a”good approximation
to assﬁmevthat interference terms in the S—ﬁatii%.eléﬁents.aré quench-.
ed. If so, then Eq. (2.3) for.thequuare modqlﬁs Of a classical
S-matrix element is modified‘only Byvthe additioh‘ofva exponential

damping factor:5

2 5 305858 17 '

Is. g L4 @B =len” |[—5= || exp(-2m @) , (2.13)

232%2°%101% 9a, a; dq,) , S
oM I '

unité'being used throughout such that h = lf This damping factor.
arises because the classical trajectory whiZh satisfies the correct
" initial and final quantum conditions is complex-valued, i.e.; the
values of ¢ , q, , and q, which satisfy Eq. (2.4) are complex; the
R S | gl -
action integral ¢ along such a trajectory is complex-valued, and the
imaginary part of this action integral is the exponent of the damping

factor. One sees, therefore, that the term "classically forbidden" isx

a generalization of the concept of "tunneling" to dynamical systems of




¥
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" more than_one degree of freedom. Reference 5 has a more extensive
disehssion pf classically forbidden processes.

Even though it is noe not possible to treat‘tﬁe final vibrational
quantum number n, as a‘continuous’variable——beeauee'the S—matrix.

_elements change exponentially for different final integer values of -

n,—-it is still usually the case that a number of final rotational

2 Lo
states have comparable transition probabilities for a given vibration-
al rransition. The reason for this is that atvenergies for ﬁiBrationall&
inelastic processes to be possible; rorationallyfinelastic transitians
are usually strong, classically allowed-like. (Rotationally inelastic
tranaitions are, in fact, essentially‘alwazs classically allowed
prOcesses.lé) t | | |
‘The partial averaging idea, therefore, is to average over the

frnal rotational quantum number as was done in part A, but not over
| the final v1brat10nal quantum number.' (One wishes to average over as
manyvfinalvquantum numbers as is allowable sincevit replaces the final
"quantum condition by initial conditions, which are much easier to deal

with computationally). With Eq. (2.13), the cross section--summed over

final j2—~becomes

i

o (E,) = ——D0—— 43 jas, fdf. fdi.
nymydy L 12(23'1 +1 1o
(2J + 1) "la(anz ) -1

exp(-2 Im &), (2.14)
(21T) 8(q q qg) g :
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and since

_ o [3G,8)
(dj2 dkz) = dqjl dq21 —_—

j - - — -
1 "193(q_ q, q aq
| npdh b |
Eq. (2.14) becomes
v il = ' - E
o - . (E)) = fag. rfdJ fd(q. /2m) fd(q, /2m)
Ny mydy T 2y gy L 3 4
1 1
3n2 -1 _ o ‘ :
X 2ﬂ|—:-| exp (-2 Im ¢) . (2.15)
3q_ - o :
1

vIn Eq. (2f15) ani is not integrated over-—asvin‘Eq. (2.12) of
Section iIA——but must be chosen to be that specific (complex)
value-fof which |
n,(q_ aj .3, ,ll,jl,J,El) =n, . C - (2.16) .f
1 1 71 o '
The "root—seérch" probiem which coﬁplicates the applicatién of
classical S—matfix theory to three dimensional collision systems10
has thus not been completely eliminated, but has been reduced to
a one dimensional root-search which mgst be carriéd out many times. .
The same changes of variables introduced in Sé;tion ITIA can

also be carried out here, and Eq. (2.15) then takes on the simpler form



' 2 1 1 1 S »
Oné+“131(gl) " nax fod; fodz fod(aj1(2ﬂ)'fod(azl/2ﬁ) PnZ’nl(jlglajlall
i o o B (2.17)
wheré- | ‘ '
S ,_' o, -1 - -
Pné,nl(leléjlqzl;JEl) = [é“l;g— q ~exp (<2 Im 9) . (2.18)
.n 1

'

The vibratiqnél transition probability function‘defined by Eq. (2.18)
has the struct&fe of a collinear vibrational tranéition probability15
which depends parémetrically 6n the initial conaitiéns of the othér /
degréés offfreedom. The analogy to a collinear transition probabiliﬁy
is»purgly.formal, however, for Eqs} (2;17) and (2.18) involve no
_dynamicalvapproximations beiond thaf of classicai S¥ma£rix theory it-
sélf; the ﬁeglect of interference terms, and tﬁé_éésumption'thaf enéugh
.j2 values havé comparable probabilityvthat a sum.over integer valueé of
j2 cén Ee replaced by an integral. It is inferésting, nevertheless;'-
that Eq. (2.17) does have the phenomenological form often assumed;lé
namely a:"gas kinetic cross’seqtion", “bmai’ mulfi?liéd by an avefagé
-vibrational transition probability;.here one seeéfﬁrecisely wHat.this
"average vibrational transition probability" isfv. |
Eq. (2,17) corresponds to a/sum over fin;l rotationa1 states, bqt
it is clear how one can obtain the distribution of final rotatioﬁél
stateé—-aﬁd also. the differential cross section4~wifhin a_cléssicél
Monte Carlo framework. Since | | |

“ngeny3, BV T2 Gy amgE) ey

;‘)El) ¥
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= [di, f§ (cos 8) © 1(G,El) , ‘A ' (2.20)

nyi myd

to obtain the n,j; > n, cross section differential in final

_rotational state and in scattering angle—-i.e., O

- (@)
| npdpmydy
one simply defines a set of "jz-boxes" and "cos B-boxes"; with
the integration variables in Eq. (2.17) chosen_by Monte Carlo,
the numerical value of the integrand—i.e., thé'yibrétional'
transition probability--is assigned to the jz—:and cos 6-box
which corresponds to the final values of jz and cos 6 for the
trajectory which satisfies Eq. (2.16), i.e., the one from which
the transition probability in Eq. (2.18) is constructed. The
distributions in j2 and cos § are thus obtained simultaneously
with the calculatibn 6f-the integral cross section 0. .
| - : iy
only limitations being the usual Monte Carlo'qnes—Fi.e.,_the -

the

_more detai;ed.the.quantities desired the‘morg Monte Caflo»
points are required. Thus it might réquireionly_SO Monte
Carlo points, for example, to evaluate the'integral'cfbss

| sectidn to within 10 % statistical error, buf a large number
of points would be required to obtain the distributiqn of final

rotational states, , and a still larger number of

o]
npdmdy |
points to obtain the "doubly differential" cross section,

: on2j2+nljl(9), differential in j2 and O, to within 10 % stétisti—

cal error. The situation is thus much like an experiment: The

more highly resolved the information'sought, the more effort re-
quired to obtain it. This is, however, a highly desirable feature

of the theory, for it means that one may'obtain less détailed
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quantities'with less detailed calculations. By way of contrast,
in a complete rigorous_qﬁantum mechanicgl theory'it is never
possible to obtain averaged cross sections without first computing

the most detailed cross sections and then proceeding to average

" them.
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IIT. COMPUTATIONAL ASPECTS.

A. Numerical Integration of Compleéx-~Valued Trajectories.

Althqﬁgh the formalism of classical S—matfix theory deals
with initial and final values of action—anglevvafiablgs, it ;s
actually ﬁdst convenient to carry out the numericél integ;atién
of Hamilton's equations in cartesian coordinates and momenta.
The procedure is that one specifies initial copdi;ions in tefms
of action-angle variaﬁlgs (e.g., nl’anl’jl’ajl’zi’ali' .f.){
transforms these into initial conditions for the cartesian
variables,’éarries out the numerical integration 6f‘the trajectory
in cartesian variables, and at the end of the’frajéctory trans—
forms the final values of the cartesian variables into final
values of the actioﬁ—anglé_variables (e.g., nz,jé,ﬁz...). Appendix‘
C- of reference 12 gives the ekpressioﬁs for the initial values of
| the cartesian variables in terms of the action-angle variables
(see also‘Section II B of feferencé iO).‘-With fegard td the tfans-
formatioﬁ at the end of the trajéctory, the final aﬁgular momentuﬁb

variables j2 and 22 are easily determined from the cartesian variables

by using the classical relations

+

[z, x p) * (r, x p)1/?

N =

3,
Lt E= IRy xP) ¢+ ® xp)IME
where (52,22) are the cartesian variables of the diatom and

(BZFPZ) the cartesian variables for the atom-diatom separation at

the end of the tréjectory.

S



The final vibratidnal'quantum number is determined from the
cartesian variables by first computing the total energy'of o T

the diatom
€, =_(22522)/2m + v(rz) » o (3.1)

_ y(r)’being the Vibrational potential of the diatom, and then

. éolving the equation
8(023j2) = €2 (3.2)

for n, (since 52 is known), where e(n,j) is the WKB eﬁergy
level formula for the diatom; it is usuélly known as a Dunham

expansion. Alternatively, with €, known from Eq. (3:1) n, can

2

be computed difectiy from the WKB quantum condition:

1 '3r> . ' é /2
(n2 +3)m =/ dr {2m e, - v(r)] - g /r2} . (3.3)

2° .
<
To a large extént the actual numerical integration of

complevaélued trajectories is the same as for ordinary real-
.valued omes; this is possible by taking advantage of thercomplex
arithmetic capébiiities.of fORTRAN IV. Thus it is only necessary
to declare ali £he coofdinates an& momenta, and the time increment,
to be CbMPLEX variébles and use essentially the same_numerical
integration algorithml7; e.g., Runge-Kutta, Adams—Moultbn, etc. - as
used for real-valued trajectories.  Since it ié ofteﬁ Qpnvénient,

howeGer, to vary the direction in the complex time plane of the
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complex.time increment, Miller and Georgel8 deve;oped a variable
§tep—size“predictor—correctbr,algorithmguit hasfthe:variablef
step—siie and self-starting advantages_bf Runge-Kutta routines
with the efficiency of a prediCtor—cdrrector (e.é.; Adams-Moulton)
- method. Appendix C of rgference 18 gives the‘predicfor and
corrector formulae for the fifth order [error %.O(h6)] version
of the aigorithm; used in the PECE modé,17 the3integrator has
excellent.étability'characteristics.

Theiprincipal feature which distinguishes_phe numerical
integration of complex-valued trajectoriesvffoﬁ-reﬁl—valued
onés lies in the flexibility one has in choosing.#ﬁe'complex
time path‘aiong which time is_incremented; Altﬁough the
quantities from which the classical S-matrix is constructed
are anélytic functions and thus indepéndent of.;hé particular
time path,5 there are practical considerations that restrict
the choice; Thus although translatignal‘coordinéteé behave
as lqw.ofder polynomials in time,  so that.nothing drastic
: happéns to them when t becomes complex, the vibrational

coordinate is oscillatory -

r(t) - req N cos (wt + 1)

- so that it can become eprnentially large aloﬁg>a-complex time
path. The complex time path must be chosen, theref@re, in order
fo stabilize the vibrational motion.

There are a variety of ways of stabilizing the vibratiomal
motion, but the most satisfactory procedure we have found‘to date

is to head the oscillator always toward its next equilibrium
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position. Thus at time t the values r , r s %’, [r. = r(t ), etc.]
» : n n’ n”> n’ "'n n

are known, so that for t near tn one hds the approximation

r(t) sr +r (t - tn) + %-E; (t e tn)2 o - .' (3.4)
and one wrehes'to choose the next time; t + 1, ‘so that
r(tﬁl+ Dtreg 3.5)
_solriog>Eqs. (3.4) and (3.55 gives
At = to+1 -t
= (£ 1 {- + [é 2:+ éé; (red.e r )]1/?} ; .(3.6)’

'with the * sign chosen to insure Re(At) > 0.1? Actually one

.
b

eq
thus the new time increment is chosen to have,thelghase of

wishes only to cause r(t) to head in the direction of r

‘that in Eq. (3.6) but'the magnitude'determined by the truncation -
error estimate of the integrater.18 If At is gi&eﬁ by. Eq.

(3.6), then the new time increment is thue chosen as
h(At)/|At] .

where lAt|'is the complex absolute value of At and h is the
magnitude-of time increment allowed by the integrater.

The above algorithm for ch0051ng the complex time path is
used throughout the entire trajectory except at the conclu31on

where the time path is chosen so as to terminate the.trajectory

-as a vibrational turning point.-
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B. Satisfying the Boundary Conditions.
There is one complicating feature that has. not yet been
mentioned. The integrals over j2 and 22 in Eq. (2.14) are over

real values of these quantities, so that when changing to

integration variables q, and 52 the integrals over these
31 1

variables must be contour integrals, i.e.,

_ _ B(jzlz)
. ¢, 71¢, "1 3G, q,) E
11 (3.7
’ a(35%,) -
- - 272
=/ ldg; | J ldq | —
o 1 c, 1 . ‘a(qjlqgl)
o Sm.i 0. - oo
- - 72272 L 2 -1
=/ ldqjlY f ldqgll 'lgz:f":":, j{ 'l(gir‘) |,
- C ¢ 9lq_ g, g, ) q
1 2 o 21_ , R
where the contours C, and C, must be chosen so that i, (G. ,q, )
_ 1 2 _ , _ 02 1Y
and 22 (ﬁj ,EQ ) remain real along them. (The.integrand in Eq.
0171 - ‘ _ .

(2.14) is not an analytic function--it is the square modulus of
one--so that the value of the integral depends on'the integration

path.) By‘the usual arc length formula, however,

- aGn 3, ) 2q91/2
ldij | = dRe g, ) |1 +|——2
1 - d(Re q, )
L Jl
[ faam g, 0\* MR
ldg, | = d@e g, ) |1 +{ —— . (3.8)
1 1 A d(Re dy ) '
- 1
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It is pdssible,-therefore,vto integrate wiﬁh résPéct to Re aj and

Re El s provided Im aj “and Im_alj are chosen at :.each integration
1 ‘ 1 : 1 - '

point to satisfy -

]
o

Im-jz‘ ('qj]-’ qg’l)

(3.9)

L]
.
A

Im &, (q. , q, )

B R

and providéd the arc length factors of Eq.v(3.8) are inserted
in the integrand.

Taking this feature into ‘account, Eq. (2.17) is replaced

by'
. , 1 1v1 o 1 _
.o . (E;) = 1b Jd¢ fdz S d (Re q, /27) [/ d (Re q, /2T)
nymydy L max o0 o 317 o 4
an -1 S : :
x Ay A, |om |2 | exp (-2Im®) , (3.10)
: J Bqn . :
: 1
where
o - 22 1/2
C [ ) /2
' d(Re q, )
v - Jy - -
- L 24172
| 4(Iquzl)
" \d(Re q, Y/
. Ay
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For each value of the integration variables in Eq;:(3,10)_one must

- -— -—
—

thus choose the four variables . Z Req '+ i Imq_ , Imgq, ,
n n, - n 3j
. 1 1 _ 1 1
and Im 62 so that the four equations o

Re n, (Re anl, Im anl?.lm.aﬁl’ Iqull) =0, ; | : (3ili a)
Im n2_<Re anl, Im anl,-lm Ejl, Im 321) = 0:~i ' (3.11‘b)
Im jz '(Re 3#1’ Im E[nl, Im c';jl_, Im 521) _ 0 o (311C) .
I £, (Re q , In C—lnl.’ Im C_Ijl, Inm ‘-121) =0 . (3.11 2 |

It is easy to see that'Eq{_(B.ll) must be imposed if one is
to obtain meaningful results. Thus the trajectory corresponding
~to the initial values EJ and q2 is clearly the same if these

1

angle varlables have added to them arbitraty multlples of 2m--i.e. B

if

ml'and m, being arbitrary integers—--while the imagihary part of

- the action integral 9,

dP_ (t) o SR S
= - R 'y dn(t): dj(t) da(t)
¢ = - fdt [R(t) +q (8) t () =55 + 4, (1) =51 (3.12)

R
dt

changes according to
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Im®~> Im & - 2'rrm1 Im (Aj) - 21rm2 Im (Az):vf €' 
where

Ag»='z; (Enl,ijl,izl) -5

b = 3 @“1’63"1’621.) o T

There is clearly no physical significance to which*Zﬂ increment

5,17and izi:are chosen from, i.e., to the values of m, and m,,
so that Im & would not be uniquely.determined if.Im'Aj and Im Af
were not 0,: Eq. (3.11), however, insurés that théy are 0 so

that Im ¢ is indeed uniquéiy defined.

Since one must solve Eqs.ﬁ(3£ll) many timeé-—dncé for each
set of ﬁhe Monte Carlo-chosen inFegratibn'variables (£, z, Re ijl,
Re all)--it iS clear that one needs an efficient ﬁéy of solving
them. Many.methods were tried but no completely éatisfactory
prbCedure was found; i:e., it was possible to solve Egs. (3.11)
for many sets of integration variables but no automated procedure
was found that could routinely find the root with a small number
(less tha# 10) of:iterations.v

For‘the number of‘special cases.for whiéh ﬁqs. (3.11) were
solved,'however, it always observed that im Ejl.and Imrc_x21 were
small (less than 0.05), with im‘anl being much larger (about 0.5);
i.e., the classically forbidden character of the transition is

associated primarily with the vibrational-degree.qf freedom, as

expected. To simplify the calculation, therefore, it was decided



to allow a,
J1
vary Im*a,'

v J1 : ,
~(3.11 d). In order to obtain a unique value for Im'® it is

24—

and al to remain completely real,ﬂi.e.,_not to
1 :

and Im az in order to satisfyAEq..(3.ll c¢) and
1 ‘ : ' :

then necessary to drdp the terms qj(dj/dt) and qz(dﬁ/dt)vfrom

the integrand of Eq. (3.12); this is consisten;'ﬁith the

assumption that the complex-valued part of the trajectory is

concentrated primarily in the vibrational degree of freedom.

The imaginary part of & is thus taken to be

Im ¢

)
- Im [ dt [RﬁR + q n)
ot n
1
| 2 &
‘= Im [fz(r,n) l | +
: |
. | t2
- Im [fz(r,n) | - p_t |

t

t

1

2

e
+ [ dt (

t

(3.13)

dt (RﬁR - pri)]x

where fz(r,n) is the generator of the transformatién between the

vibrational radial coordinate and momentum (r,pr):and the vibra-

tional action-angle variables (n,qn); since the trajectory is

actually begun'and ended at a vibrational turning point, the

imaginary part f

2T .

"9

R

t3Ra

2

a

t t, and t

1 2

PX ¥ Py + P2

vanishes, as does pr, and since




-25-

the imaginary part of the action integral'is

_ t, .
Im® =-In /S dt (R -
v ‘ g -

+r e p) .

~ ~

e

In practice, the imaginary paft'of d is obtained'aév

‘Im ¢ = Im X(tz)' ,

.Wheré x(t) is obtained by adding one extra differential

equation to the twelve first order equations for the

trajectory in cartesian coordinates,

DX = - R(E) ¢ B(e) -x(e) c p)

'; with'fhe initial condition

x(ty) =‘0 

With these approximations-~-namely that aj 'andzaﬂ'are

1 1

taken to be real and consistent with this the action integral
is defined by Eq. (3.14)--it is now only necesséry_tovsolve

"the one complex equation

n,(q ) =n
2 n; 2

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

for each giﬁen set of integration variables in Eq.. (2:17). This

is easily accomplished by first evaluating nz(an:)'fdr the three

_ R 1
real values (involving completely real trajectories) 9,
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2w/3, and 4m/3; these values determine the three coefficients in
the functional form

nZ(qnl) = a +a, cos qnl + b, sin qnl . (3.19)

With the fit to nz(anl) given by Eq. (3;19) one solves Eq.»(3.l8)
for the approximate complex value of anl, runs a complex t?ajectory
to evaluate-Fhe exact nz(anl) at.this value; uses:this vaiﬁe and
two previoﬁs ones to fedetermine the coefficients in Eq.,(3.l9)
and iterates the procedure. It usually takés oniy 3 to 5 complex
tréjectories, after the 3 .real ones, to find theirdot of Eq. (3.18)
and evaluate the vibrational trénsition probability-function of |
qu. (2.18) . | _

v'Althbugﬁ-we would like to have been able to solve Eq. (3.11)
_ and use Eq. (3.10), the approximation of leavingvaji and 621 real,.
and for consistency modifying the expression for Im @, seems for
this system to make little difference in the reSul;S,'certainly
no more than 10 - 20% in the final cross sections. ‘In other cases;—
perhaps those involving stronger rotationél‘vibfational coupling,
such as HCY + Ar--it may be necessary to re-examine this‘approximation.

Better yet, perhaps better numerical algorithms will be devised to

. obviate the neéessity for invoking it.



i
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~function was used; an accurate_fit‘of the. Kolos-Wolniewicz H.

of H, by Lif——i.e., o_ . (El).for (n

"for an initial collision energy E
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IV. RESULTS AND DISCUSSION.

The interaction potential for the Li+‘- H2 syskem was taken
o ‘ N

to be the same as that used by Schaeféf and Lester’ in their
quantum mechanical coupled channel calculations. For the vibra--

tional potential of H, --which must be added to the interaction

2

potentiél fo obtain the total pbtential energy,fuﬁction-—a Morse
2
potential was‘also used in some tésf calculations,. and this made
neglible différence.

.Figure 1 shoﬁs the cross segtions_for Vibrétional de—activation
l’jl):= @,0) aﬁd n, = 0--
= 0.684 eV. The values labeled

2 nyJym 3y

1

SC are the present semiclassicél'}esults, and thé error bars indicate
the statiétiCal error’ in the Monte Car1oUevaluétion of Eq. (2.17);.
1000 Monte Carlo points weré’used. ’ |
The points designated QMI in Fig. 1 are the results of Schaefer
and Lest'ef"s9 quantum mechanical calculation with a coupled channel

expansion including the states

o
[
o
[
[]

. 0, 2, 4, 6, 8, 10 I 4.1)
n=1; j =0, 2, 4

ns=2;§=0,2 . o

The values labeled QM IT are their results.20 obtained by adding
one additional rotational state to each vibrationél manifold:

j=12 for n = 0, j =6 for n =1, and j = 4 forln =2,
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The large change in the quantum results'wigh this increase
in basis set seems to indicate that the coupled ghannelnexpansion
is still some ways from convergence, a rather diécbncérting ob-
sérvatioﬁ since the basis set already produces up to 75 coupled‘
channels! - (It should be noted that Schaefer and ﬁestef9 were
primarily interested in pure.rotational transitibhs, n; = n,,
»and their'results dd indicate the expansion to‘bencohverged for
these processes.) Another possibility is that.fhéfdifference
between the QM I and QM II results is dﬁe to numerigal error,
for the algorithm used for solving the coupled eéﬁations does
not seem well suitéd for treéting‘prpcesseé with small transition
probabilities.21’22’ :

The cross section summed over final rotational states, O

n.<n j
9 2171

'for (ni,jl)'= (l,O)yand n, = 0, is 1.87 a s 1.15 aoz, and
0.83 abz, féspectively, for the QM I, QM II, and semiclassical
calculatibns. Within the uncertainty of the quantﬁm meéhanical
results, therefore, thevseﬁiclassical ;ross sections are in excel—.
lént agréement with ;he quéntum'§alues, bdth in magnitude and in
the distribﬁtion of rotational.states-(Fig. 1) bop;lated in the
vibrational de—activation. o

The distribution in_scatfering angle, i.e.,;thg differential
cross section, fér the 1 > d vibrétiohal de—activation was élso
obtained within the classical Monte Carlo framework.. It is
quaiitatively the séme for each final rotational state, so only

the total result, summed over j,» is shown in Fig. 2; i.e., the

quantity shown is
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6 @ . | (4.2)

L (®) =3 o .
M T § P2l ™

The result is hard sphere-iike‘(i.e., iéstropié) exéepf for a
narroﬁ ﬁeékbin the forward difectionf |

Finally, it is iﬁteresting té‘ésk wﬁat the rotational
~state distfibution in Fig. 1 signifies about the dynamics
- of the inelastic process. First, one sees.that a substantial
aﬁouﬁt of the energy released By the vibrational de-activation
goes into rotational exciﬁati&n. The éﬁount»of fotationa1
exéitétion is considerably less than that of a VrésQnantf
processl(né'change in trans;atidnal energy), howevér, for
théf would demand a final rotaﬁional state j, ='é; .Another
intéresting comparison is to a étafistical distribﬁtionvof

"final rotational states; this corresponds to

c «10

0j

) (El) o (2j2 + 1) [E -_E(O,jz)] , | (4.3)

where E is_the total energy and €(0,j2) the vibfétional—rotational'
energy of H2 for n = 0 and j ='j2. This distribution,
normalized'to the_semiélassical'cross section, is_tﬁe dasﬁed

line in Fig. 1. The amount of fotétional excitatioﬁ is thus

-alsp much less than that based simply on available phase space.
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V. ~'CONCLUDING REMARKS.

The partially averaged version éfkclassical's—matrix theory

. thus appeérs to be an accurate and praﬁticalumethod_for describing
classigélly forbidden vibrationally inelastié pchésSes in fhrée-
dimensional A + BC collision systems. The priméryyadvantage of
the approach is that one caﬁ treat tﬁe classicélﬁlike rofational‘
dégreeé of freedom within the usual Monte—Carlo‘framework,:while
quantizing the vibrational degree §f fréedom within the classical
S—matrix‘framework, all without the nécessity of introducing any
approximations to the.dynamics itself; vMany of the practiéal

. difficulties of‘applying the claséical S—matrix.moael to three-
dimensional collision systeﬁs are thus circumVehtéd, and the
computatibnal efficiency of theiapproach is compafable to that

of ordinary trajectory methods. '

% .
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FIGURE CAPTIONS -

Cross sections for the (1,0) - (O,j)’vibrational

de-activation of H, by Li* at an initial collision

. energy of 0.684 eV. QM I and QM IT labtel the

quantum mechanical results of Schaefer and Lester

(ref. 9) with two different basis sets,. SC desig-

‘nates the semiclassical results'ofvthis.paper;
and STAT is the statistical distribution of Eq.

- (4.3) (normalized to the SC total croés section).

The angular distribution, or differential cross
section for the samevprocess as in Figure 1, summed

over final rotational states.
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information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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