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Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, California 

ABSTRACT 

A simplified form of Khachaturyan's solution to the general problem 

of determining the strain energy of an arbitrarily-shaped coherent in-

elusion is found for the case of a disk-shaped inclusion. Specific 

strain energies are calculated as a function of the orientation of such 

an inclusion in lattices possessing various elastic properties. Some 

numerical results are presented. The salient features of the specific 

strain energy surface are found to depend only on the elastic properties 

of the lattice. From this a relationship between an elastic anisotropy 

parameter, A, and the minimum strain energy orientation of a disk-shaped 

inclusion is observed. The strain energies of GP zones in Al-Cu and 

Cu-Be age hardening alloys are calculated. The minimum strain energy 

orientations of GP zones in these alloys are identical with experimen-

tally observed orientations. 
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I • INTRODUCTION 

Clusters of solute atoms often formed during the first stage of 

solid solution decomposition in age hardening alloys are usually referred 

to as Guinier-Preston (GP) zones. pP zones are coherent with the sur­

rounding matrix phase, thus any diff~rence in atomic spacing between the 

precipitate and matrix phases will result in coherency strain fields 

around the. clusters. An additional interfacial energy must be associated 

with the clusters because of the composition variation at the precipitate-

matrix interface. Due to anisotropies in crystal lattices, the energies 

associated .with the strain fields and interfaces may be dependent upon 

the configuration (shape and orientation) of the GP zones. In some cases, 

a significant contribution to the configuration dependent energy may also 

be due to interactions between the strain fields of nearby clusters. Gen-

erally, however, the other energy changes accompanying G P zone. formation 

are configuration independent. Neglecting the strainfield interaction 

term, one would expect GP zones to form preferentially in configurations 

which minimize a combination of the strain and additional interfacial 

·energies, thereby minimizing the free energy of the solute atom clusters. 

Let us briefly examine the qualitative arguments which relate the 

shape of GP zones to the size difference between solute and solvent 

1 2 atoms. ' In cases where the solute and solvent atoms are similar in 

size (to within a few percent) the strain fields of the clusters are re-

latively weak. The additional interfacial energy is thus the dominating 

factor and it is minimized by the formation of spherical GP zones. Ex-

amples of binary alloy systems in which such clusters are observed are 

3 4 Al-Ag and Cu-:Co • If the size difference is appreciable, however, the 
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energy associated with the coherency strain field of a cluster is con-

siderably larger. In these cases, an increase in the additional inter-

facial energy is sacrificed to obtain an even larger decrease in the strain 

energy and disk-shaped GP zones are energetically favored. The best-known 

examples of this type of behavior are Al-cu5 and Cu-Be6 • In other pre­

cipitating systems, notably Al-Mg and.Fe-Mo, 17 the size difference is 

quite large. The beginnings of GP zone formation are observed in such 

cases but growth is arrested at a very early stage. It has been sug-

gested that this is due to the mechanism by which solute atoms are .trans-

7 8 ported to the clusters. ' For a more complete understanding of the shape 

of solute atom clusters, additional factors may also be considered, such 

as the anisotropy of the elastic properties of the crystal. 

While the shape of GP zones is seen to depend largely on the relative 

magnitudes of the strain and additional interfacial energies, the pre-

ferred orientation of disk-shaped clusters depends on the anisotropies of 

these terms (this question is obviously irrelevant in the case of spheri­

cal clusters). Schwellinger, Leamy and Warlimont10 have considered the 

specific strain energy associated with a two-dimensionally infinite mis:.. 

fitting precipitate sheet in a cubic lattice. Their calculations indi-

cate the existence of a relationship between the elastic anisotropy of the 

precipitate lattice and the minimum strain energy orientation of the in-

finite plane. In their analysis, however, deformations normal to the 

precipitate plane do not contribute to the strain energy and no strains 

arise in the matrix surrounding the precipitate sheet. Strains in the 

matrix, especially in the direction normal to the precipitate disk, are a 

prominent feature of GP zone formation and it is expected that they would 

.. 

;, . 
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contribute significantly to the total strain energy. The purpose of this 

study is to examine the anisotropy of the strain energy associated with 

finite d~sk-shaped GP zones. 

For calculation of the strain energy of a coherent precipitate, two 

approaches are available. Eshelby11 obtained a solution in terms of tab-

ulated elliptic integrals for the somewhat restricted case of an ellipsoi-

dal inclusion in an isotropic elastic medium. A slightly more general so-
. 12 

lution was subsequently obtained by Khachaturyan for the general case of 

an arbitrarily shaped coherent inclusion in an elastic medium of arbitrary 

anisotropy. 

Presented here are the results of a study of the strain energies 

associated with disk-shaped GP zones using Khachaturyan's solution. 

Strain energies are calculated as a function of the orientation of a hypo-

thetical GP zone in various materials. The relationship between the mini-

mum energy orientations and the elastic properties of the material found 

10 by Schwellinger et al is seen to be valid for disk-shaped coherent pre-

cipitates of finite size. 
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II. THEORETICAL CONSIDERATIONS 

A. Khachaturyan's Solution 

12 Khachaturyan obtained a solution of the general problem of deter-

mining the elastic strain energy of a n!ew-phase coherent inclusion of arbi-

trary shape in an elastic medium of arbitrary anisotropy. The assumptions 

inherent in this solution require that the inclusion be isolated in an in-· 

finite elastic medium and that the elastic properties of the inclusion be 

identical wit~ those of the surrounding matrix. The latter is equivalent 

to the assumption that the modulus effect is small with respect to the 

size effect. 

Of primary importance in Khachaturyan's solution of this strain en-

ergy problem is a tensor which shall be referred to as the free state 

strain tensor. Consider the volume which is to undergo transformation. 

Suppose it is removed from the elastic medium and allowed to transform 

free of the constraints normally imposed on it by this medium. The strains 

corresponding to the deformations it undergoes as it transforms in the ab-

sence of mechanical constraints define the matrix elements of the free 

state strain tensor .• 

Khachaturyan's solution to this problem may be expressed in the ·follow-

.ing form: 
0 

E = t .Aij lm c ij 
0 

Elm VT - 1_1 d3~ l8(k)~ 2 A(k) 
2 (2n)3 ~ - (1) 

where E is the strain energy of the coherent inclusiort, Aijlm is the elas-
0 

tic modules tensor, E ij is the free state strain tensor, VT is the volume 

which undergoes transformation and 8(k) are the Fourier components of 8(r), 

the form function (8.(r) being equal to zero outside the inclusion and one 
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inside it). A(~) is defined by the following .equation: 

"'o "'..:1 "o 
(a k, G a k) ... 

"'-1 
where ( ... , ... )is the scalar vector product and G is the Green's Func-

tion of the elastic equilibrium equation for the inclusion. The matrix 

elements of the operator a!' are determined by the relationship 

"o ij . 
[a ] + Aijlrn Eo lm = 0. 

"-1 
Finally, the matrix elements of the operator G are defined by the equa-

tions 

. "-1" 
and G G = 1 

" i. . 
where 11] J = oij. In all of the above equations •. (and throughout this 

paper) summation ~ver repeated indices is implied. 

. . 12 (k) As has been pointed out by Khachaturyan, the quantity A is 

actually independent of the magnitude of the vector ~· This is because 

"-1 -2 
all of the matrix elements of the operator G are proportional to k · 

and a0 is independent of k •. Therefore, the ftmctional formA(~) may be 

replaced by the form A (t) which -is dependent upon the direction but not 

the magnitude of k. Khachaturyan thus re-expresses Eq. (1) in the form 
"' 

(2) 

This is the general form of Khachaturyan's solution to this strain energy 

problem. 't-Jhile the solution exists in principle, evaluation of Eq. ( 2) in 

the general case is difficult. A simplified expression may be obtained, 

however, for the special case of a disk-shaped inclusion. 
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B. Strain Energy of Disk-Shaped Inclusions 

Consider the Fourier components of the form function in the case of 

a disk-shaped inclusion. The only non-zero components lie in a direction 

very nearly parallel to the normal vector of the disk. Thus, as was 

. . 12 
pointed out by Khachaturyan, for such inclusions only k vectors ~!hich are 

nearly parallel to this normal vector vlill contribute significantly to the 

integral in Eq. (2). The validity of this.approximation depends, of 

course, onthe thickness to diameter ratio of the precipitate disk. In 

the case of disk-shaped GP zones, the thickness to diameter ratio is gen-

erally less than 0.07 and the approximation is very good. 

If A (~)is a smooth and slowly varying function of(~) , by the above 

argument only a sli~ht approximation will be incurred by replacing A ( ~) 

with A(n), where n is a unit vector normal to the plane of the inclusion. 

A(n) being constant, it may be removed from the integral and the elastic 

energy of the disk~shaped inclusion may be re-expressed as: 

1 ° 0 A(~) f d~~ 2 
E ~ 2 A.ijlm • ij •1m VT- -

2
- (2rrrJ je(~) I · 

This may be further simplified by making use of the identity: 

. v - J d3~ le q~) 12. 
T - . . ( 

2
7T) 3 

Thus,. in the case of.a disk-shaped inclusion, Khachaturyan re-'expressed 

Eq. (2) in the much simplified form: 

v 
{·ijlm 

0 0 -A(~)} E ~ T .lj • lm 
(3) 

2 

Numerical evaluation techniques were used to show that A (f)is, in fact, 

a smooth and slowly varying fu,p.ction of ( i) so that the error introduced 

·by the above approximation is very small. 

• 
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C. Evaluation of the Calculational Parameters 

From Eq. (3) it is immediately obvious that the strain energy ()t a 

disk-shaped coqerent precipitate is directly proportional to the volume of 

the precipitate prior to transformation, VT. Thus, the parameter of in­

terest is the specific strain energy of the inclusion, ~ , which shall be 
T 

denoted EV. The parameters required for calculation of £V for a GP zone 

in a cubic lattice are three independent elastic constants; ell' cl2 and 

c44 , the matrix elements of the free state strain tensor and two para­

meters characterizing the orientation of the disk in the lattice. To see 

how these parameters are related to measurable quantities, consideration 

of a model of disk-shaped GP zones in binary alloys is necessary. 

13 X-ray studies and, more recently, high resolution electron micro-

S 6 14 · 
scopy ' have suggested that the model proposed by Gerold best describes 

the nature of GP zones in Al-Cu and Cu-Be alloys. . This model', originally 

describing the GP zones which form in Al-Cu age hardening alloys, assumes 

that they are composed of a monolayer of Cu atoms in a matrix of nearly 

pure Al. Assuming that Gerold's model may be employed to describe GP zones 

in all binary alloys, the parameters required for the calculation of Ev 

are evaluated as follows in the case of a supersaturated solution of B in A. 

The matrix surrounding a fully grown cluster in an A-B alloy is near-

ly pure A and it may be assumed that the residual concentration of B has 

only a slight effect on the elastic properties of the A matrix. The most 

readily accessible elastic constants appropriate to this case are those of 

pure A. 

Prior to transformatio~the disk-shaped volume to be transformed con-

tains a more or less random A-B solution. After the GP zone has formed, 
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it contains pure B. In the unconstrained state, deformations must thus· 

take place in the plane of the disk to change the lattice parameter from 

that of the A-B solid solution to that appropriate to a monolayer of B. 

Denote the strain corresponding to free state deformations in the plane of 

the disk E 
p 

Similar deformations may be.imagined in the direction normal 

to the precipitate disk. The strain corresponding to this deformation is 

denoted E
1

• 
n 

The free state strain tensor for a GP zone lying in the (001) matrix 

plane is easily seen to have the following matrix elements 

= 

0 0 

E p 

0 

0 

Asswning that the values of the transformation parameters (E and E ) are r . n 

isotropic, the free state strain tensor for a GP zone in any orientation 

may easily be obtained using coordinate transformation techniques. There 

remains only the evaluation of the transformation parameters E and E • 
P n 

Lattice parameter measurements, traditionally used to determine 

atomic misfits, may riot be used directly in this case since the stable 

crystal structures of the A-B solid solution and pure B are not necessari-

ly the same. If the transformation parameters are assumed to be isotropic, 

the cube root of the volume per atom, L , may be used as a measure of atom­
v 

ic size as well as the efficiency of atomic packing. The change in L 
v 

from an A-B random solution to pure B is a measure of the free state de-

formation which must occur in the plane of the disk during the transfor-

mation. The strain, •p• corresponding to this deformation is: 
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L (B) - L (A-B) 
v v 

L (A-B) v . 

Along the axis normal to the plane of the precipitate disk one might 

reasonably suppose that after the transformation, L would be similar to 
v 

that of a solid solution containing A and B in equal concentrations. The 

value of L for such a solid solution may be obtained by extrapolation 
v 

of measured lattice parameters. The strain, ~n' along the direction nor~ 

mal to the plane of the disk is thus given by: 

c n 
= L (extra AB) - L (A-B). 

v ' v 
L (A-B) 

v 

In cases where the crystal structures of the A-B solid solution and pure 

B are the 'same, this method is equivalent to the direct use of the lattice 

parameter'measurements. 

I 
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III, RESULTS OF STRAIN ENERGY CALCULATIONS 

A. Dependence of the Specific·Strain•Energy on Elastic Properties 

15 Calculations from lattice parameter measurements for a variety of 

age hardening alloy systems in which disk-shaped GP zones form have shown 

that the absolute values of t and t generally fall between 0.04 and p n. . 

0.15. 

of t . p 

In addition, the value of t is usually somewhat smaller than that 
n 

For investigation of the dependence of the ~pecific strain energy 

on the elastic properties of the matrix, the values of the transformation 

parameters will be fixed at t - 0.10 and t = 0.07. All calculations p n 

referred to in this section employed these values of t and t . p n 

The specific strain energy was calculated as a function of GP zone 

orientation using the elastic constants corresponding to several different 

metals. It is not suggested that disk-shaped GP zones are observed in 

alloys based on all of these metals, they have been used for comparison 

purposes only. Some of the results are plotted in Fig. 1 through 6. In 

these plots, the direction associated with the radial vector is parallel 

to the GP zone normal and its magnitude is proportional to € for that 
v 

orientation. These :radial plots are planar profiles of the specific strain 

energy surface of a GJ> zone. 

Many profiles of the specific strain energy surface were investigated 

for the case of a GP zorte in ail Fe (bee) lattice. The elastic constants 

corresponding to Fe are16 c11 = 23.7 x 
11 2 

10 dynes/em , c12 
14.1 X 1011 

2 . 11 . . 2 
dynes/em , c

44 
= 11.6 x 10 dynes/em . Figure 1 shows the variation of 

the specific strain energy upon rotation of the normal vector of a GP zone 

in the (100) lat·tice plane. Owing to the four-fold synnnetry of the (100) 
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plane, the plot is symmetric about the [011] axis. Figure 2 is also an 

€ surface profile for an Fe lattice. In this case the GP zone normal 
v 

has been confined to the (llO) lattice plane. As a result of this study 

of the € surface,in Fe, it was found that the GP zone orientations with v .. 

the normal vector parallel to a <100> direction correspond to minimum 

values of £ , <111> orientations correspond to maxima on the specific 
v 

strain energy surface and saddle points are associated with the <110> 

orientations. 

Figures 3 and 4 are also plots of the (100) and (llO) rotation planes, 

however, the elastic constants have been changed to those corresponding to 

¥1. As before, the <100> orientations are minima, t!"le <111> orientations 

' are maxima and the <110> orientations are saddle points on the specific 

strain energy' surface. Comparison of Figs. 2 and 4 shows, however, that 

the depth and sharpness of the minima are greatly reduced in the case of W. 

Figures 5 and 6 again correspond to (100) and (llO). planar pr<ilfiles of 

the specific strain energy surface. The elastic constants in this case 

are those cif an Nb (see Table I) lattice. As in the previous cases, the 

<100>, <110> and <111> orientations correspond to extrema on the specific 

strain energy sur~ace. The roles of the <100> and <111> orientations, 

however, are clearly reversed when the elastic constants of Fe or W.are 

replaced by those of Nb. 

Table I summarizes the results of calculations involving the elastic 

constants of a number of metals but retaining the same values of ~ and . p 

~ • In all cases it was found that the <100>, <110> arid <111> orienta­
n 

tions correspond to extrema on the specific strain energy surface. The 

values of £ for these orientations thus characterize the surface and they 
v 



Table I. Numerical results for the critical orientations with fixed values of t and t • p n 

' Specific Strain Energy for i 
Element Elastic Constants 

Indicated Orientatiori 

11 2 eV/A3x10-2 
& 10 dynes/em A E1z<110> 

Reference en c12 c44 <100> <110> <111> €v<l00> 

Cu (17) 16.84 12.14 7.54 3.21 0. 716 1.455 1.629 2.031 

Ag (17) 12.4 9.34 4.61 3.01 0.479 0.962 1.084 2.010 

Au (17) 18.6 15.7 4.20 2.90 0.487 1.027 1.177 2.110 
--·· 

Ni (17) 24.65 14.73 12.47 2.51 1.359 2.225 2.430 1.63} 

Fe (16) 23.7 14.1 11.6 2.42 1.312 2.103 2.294 1.603 

Al (18) 10.82 6.13 2.85 1.22 0.624 0.693 o. 714 1.110 

w (17) 50.1 15.14 19.8 1.13 3.501 3.679 3.735 1.051 

Il * 24.0 10.0 7.0 1.00 1.602 1.602 1.602 1.000 

12 * 20.0 12.0 4.0 1.00 1.099 1.099 1.099 1.000 

-
Mo (17) 46.0 17.6 11.0 0. 775 3.129 2.795 2.672 0.893 

1
cr (19) 35.0 6.78 10.08 o. 714 2.44 2.17 2.06 0.889 
r-

Nb (20) 24.6 13.4 2.87 0.813 1.461 1.042 0.879 o. 714 
L --

Ii and r
2 

are two hypothetical isotropic materials with .cubic lattices. 

~u<lll> I 
Ev<lOO> 

2.274 

2.264 

. 2. 420 
I 

1. 788 I 

1. 748 

1.144 

1.067 

1.000 

1.000 

0.854 

0.844 

0.602 

I 
1--' 
N 
I 
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are presented in Table I. 

Perhaps the most significant general feature of this table·is the 
. ' 

relationship between the elastic anisotropy parameter A, defined as: 

and the orientation corresponding to the minimum specific strain energy. 

For the particular values of • and • used in these calculations, the p n 

<100> orientations are minima when A > 1 and the <111> orientations are 

minima for A < 1. This is precisely the relationship found by Schwellinger 

et allO in ·the1·r d f d" i 11 · f" · · f" · 1 stu y o two- 1mens ona · y 1n 1n1te m1s 1tt1ng p ates. 

For the purposes of this paper, however, it is not yet a general statement 

since the shape of the specific strain energy surface may also depend on 

the values of the transformation parameters. 

B. Dependence of the Specific Strain Energy in tp and ~n~ 

That € for a particular orientation of a GP zone must depend on the 
v 

transformation parameters is evident from the limiting case. As E and 
p 

En go to zero, €v must also go to zero. For all sets of elastic constants 

listed in Table I, however, it has been found that the ratios £ <110>/£ <100> 
v v 

and E. <111>/£ <100> are independent of the values of the parameters E and 
v v p 

En~ This is significant because it shows, for all of the cases in Table I, 

that the salient features of the specific strain energy surface are independ-

ent of the parameters characterizing the transformation. For these cases the 

shape of the E surface depends only on the elastic properties of the matrix v . 

phase. 
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IV. DISCUSSION 

A. Relationship Between Minimum Energy Orientations and Elastic Anisotropy 

ln the previous section it was observed that for all cases investigated, 

the shape of the specific strain energy surface is independent of the trans-

formation parameters t and t • Since either the <111> or <100> orienta-. p n 

tiot1s correspond to the minimum value of € in all cases investigated (ex­
v 

cept for the totally degenerate case when A - 1), the ratio € <111>/£ <100> 
v v 

reflects an essential feature of the surface. Fig. 7 is a plot·of this 

ratio vs the anisotropy parameter A. ·rnferrirtg from Fig. 7 that this ap-

proximate linear relationship is valid in all cases, one observes that for 

A > 1, the ratio € <111> I € <100> is also greater than one, implying 
v v 

that the <100> orientations are minima on the € surface. For A < 1 this 
. v 

ratio is less than one so that the <111> orientations correspond to minima 

on the £.., surface. This relationship, originally proposed by Schwellinger 

et a110 , is thus valid for all disk-shaped coherent inclusions. One may 

conclude that if the strain energy is the only configuration dependent para-

meter, disk-shaped GP zones will form preferentially_on the <100> matrix 

planes if A > 1 and on the <lll>planes if A < 1. Simple calculations for 

GP zones of typical size, however, indicate that an additional- interfacial 

energy term would be important if the interfacial energy density exceeded 

2 a few hundred ergs/em • 

B. The Case for Al-Cu 

The Al-Cu binary a11oys are the basis of many technologically 

important alloys, meriting special consideration of this case. '!'he elastic 

constants of Al are given in Table I and the transformation parameters 

15 computed from lattice parameter measurements are t = -0.108 and E = 
p n 
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0.0595. Vigier et al
21 

report that the GP zones in an Al-11.74 a/o Cu 

alloy have a diameter of about 80 A and the pre-transformation thickness 

of a monolayer may be taken as half of 'an Al lattice parameter, about 2 A. 

A plot of the variation of the ,strain ~nergy of a GP zone of the above 

dimensions with the normal vector confined to the (100) plane is shown in 

Fig. 8. Figure 9 is a similar plot for a GP zone in Al-Cu but the rotation 

plane is (llO) in this case. From these plots it is seen that the <100> 

orientations correspond to the minimum strain energy and it is interest-

ing tonote that this is also the observed GP zone orientation in Al-Cu 

alloys.
1 

In Fig. 8 and 9 the minima are broad and shallow (A being only 

slightly greater than'one) and from this, one might expect some variation 

in the observed orientations of the GP zones. Since no variation is ob-

served, on~. could speculate that the addit·ional interfacial energy or strain 

field interactions might be important in this case. 

In Al - 1. 74 a/o Cu alloys, GP zone densities of the order of 5 X 1017 

-3 are conunonly observed. 
1 

Assuming that all of the .GP are in (or Cm zones 

very near to) to minimum strain energy orientation and ignoring strain field 

interaction~, the strain energy associated with the GP zones in this alloy 

is 8.6 cal per mole alloy. Comparing this with other energy changes which 

. 21-22 . accompany GP zone format1on, it is seen to be a plausible value. 

C. The Case for Cu-Be 

Similar calculations may be made for another important alloy in which 

disk-shaped GP zones are observed~ Cu-Be. The elastic constants for Cu are 

given in Table I and values of E and E of -0.118 and -0.0433 respectively 
p n 

1 1 d f 1 . . 15 F c 12 37 I were ca cu ate rom att1ce parameter measurements. or a u- • a o. 
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6 
Be alloy, the observed GP zone diameter is about 60A and the thickness 

is taken as one half a Cu lattice spacing, 1.85A~ 

Plots .of the variation of the strain energy when a GP zone normal is 

confined to the (100) and (llO) planes are shown in Figs. 10 and 11, re-

spectively. Again the minimum strain energy orientation is <100> and this 

. 1 corresponds precisely with the observed GP zone orientation in this alloy. 

Comparison of Figs. 8-11 re-emphasizes the dependence of the shape of the.· 

strain energy surface on the anisotropy parameter A. Unlike the case for 

Al-Cu, the minima in Figs. 10 and 11 are fairly sharp and deep so one 

would expect other factors to be less necessary in surpressing variations 

in the observed orientations of GP zones in this alloy~ 

D. General Discussion 

One striking feature of age hardening alloy systems is the apparent 

ease with which GP zones form in some alloys but .not in others. In the 

two cases considered in the previous paragraphs, disk-shaped GP zones form 

quite readily. Such GP zones have been observed in other alloys but they 

do no!:_ appear to form as easily as one might expect after examination' of 

the Al-Cu and Cu-Be alloys. Consideration of Table I may permit some spec-

ulation on this point. 

Supersaturating binary alloys exist with all of the elements listed 

in Table I as the base metal. Comparing the minimum values of € for the . v 

various metals, it is seen that the values for Al and Cu are among the 

lowest of all of the elements listed. Since the strain energy associated 

with the coherent clusters contributes to the barrier to nucleation and 

growth, the low values of € for Al and Cu are well correlated with the 
v 

apparent ease with which GP zones form in these alloys. Similarly, it may 
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be noted that the minimum value of E for Fe is comparatively large and, 
v 

1 

indeed, disk-shaped coherent precipitates are not an important strengthen-

ing mechanism in iron based alloys. At present, the energetics of precip-

itation processes are not well do~umented so it is impossible to determine 

the relative importance of the strain energy contribution to the barrier 

to GP zone formation. Further investigation in this area is clearly in-

dicated, however, in order to expand the understanding and applicability 

of this strengthening mechanism. 
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V. CONCLUSIONS 

1. An approximate expression for the specific strain energy of an 

isolated disk-shaped inclusion is obtained from Khachaturyan's 

solution to the general problem. Numerical results are presented 

for'a riumber of metallic elements with varying elastic properties. 

2. It is found that the shape of the specific strain energy surface is 

independent of the transformation parameters. 

3. The relationship between the anisotropy parameter A and the GP zone 

orientation of minimum strain energy proposed by Schwellinger et a1
10 

is verified. An ~pproximate linear relationship between the ratio of 

the strain energies for the <111> and <100> and the parameter A is 

observed. 

4. Profiles of strain energy surfaces are presented for Al-Cu and Cu-Be 

-alloys. The minimum energy orientations are identical with experi­

mentally observed orientations. 

'• 
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FIGURE CAPTIONS 

Fig. 1. Variation of the specific strain energy of a GP zone in an 

-
Fe lattice where the normal vector has been confined to the (100) 

plane. 

Fig. 2. Variation of the specific strain energy of a GP zone in an 

Fe lattice where the normal vector has been confined to the (llO) 

plane. 

Fig. 3. Variation of the specific strain energy of a GP zone in a 

W lattice where the normal vector has been confined to the (100) 

plane. 

Fig. 4. Variation of the specific strain energy of a GP zone in a 

W lattice where the normal vector has been confined to the (llO) 

plane. 

Fig. 5. Variation of the specific strain energy of a GP zone in an 

Nb lattice where the normal vector has been confined to the (100) 

plane. 

Fig. 6. Variation of the specific strain energy of a GP zone in an 

Nb lattice where the normal vector has been confined to the (llO) 
I 

plane. 

Fig. 7. The relationship between the ratio Ev <111>/~ <100> and the . 

elastic anisotropy parameter A. 

Fig. 8. Variation of the strain energy of a GP zone in an Al-Cu alloy 

where the normal vector has been confined to the (100) plane. 

Fig. 9. Variation of the strain energy of a GP zone in an Al~Cu alloy 

where the normal vector has been confined to the (llO) pla~e. 
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Fig. 10. Variation of the strain energy of a GP zone in a Cu-Be 

alloy where the normal vector has been confined to the (100) plane. 

Fig. 11. Variation of the strain energy of a GP zone in a Cu-Be alloy 

where the normal vector has been confined to the (llO) plane. 

( 



0 0 0 0 ~ 2 0 ! 5 6 s 

-23- .. 

[001] 

. . 

Specific Strain Energy, eV/A3xlo-2 

XBL 749-7327 

Fig. 1 



.. 

-24-

[001] 

I 
I 

-~ / 
/ 

I 
/ // 

/. 

----/·/ 

/ 

Specific Strain Energy, eV/A3xJo-2 

XBL 74 9-7328 

Fig. 2 



")_· 0""".·. .~ ..... • !:i. 6 6 

-"-25-

[001] 

0
-=:_ ~--"-0 ___ ..__ -~-...L...-.-'--""----~ [010] 

. I. 2.0 3.0 4.0 
Specific Strain Energy, eV/A3 11.10-2 

XBL 7411-7580 

Fig. 3 



1.,•' 

-26~ 

[001] 

Specific Strain Energy, eV/ A3 x.Jo-2 

XBL 7411-7579 

Fig. 4 



0 0 0 0 4 2 0 I 5 6 7 

-27-

[001] 

~----"-----~-~-........_ .... [010] 
0 0.5 1.0 1.5 

Specific Strain Energy, ev/A3 
X lo-2 

X BL 7411-7577 

Fig. 5 



.. 

-28-

[001] 

I 
I 

Specific Strain Energy, eV/A3 x.lo- 2 

XBL 749-7329 

yig. 6 



0 0 0 0 4 2 0 ~ s 6 8 

-29-

0 0 
rt") 

~ ~ 
..... 

I 
0') 
v ,, ..... 
_J 

ID 
X 

0 
f() 

<[ 

... 
Q) -Q) 

E 
0 

0 ... r--
0 

(\J a.. . 
bO 

•.-l 

>- ""' 0. 
0 ... -0 
C/) ·-c 
<l 

0 

0 q 
(\J 

(100) "3 /<Ill> "3 



-30-

[001] 

Strain Energy, eV 

XBL 7411-7576 · 

Fig. 8 

I 



0 0 0 0 4 2 0 J 5 6 '9 

-31-

[001] 

0 25 50 75 

Strain Energy, eV 

XBL 749-7331 

Fig. 9 

'I 



-32-

[001] 

I 

• o' 

Strain Energy, eV 

XBL 7411-7578 

Fig. 10 



0 0 0 0 4 2 0 ~ 5 7 0 

-33-

[OOI] 

.• 

Strain Energy, eV 
.. 

XBL 749-7332 

Fig. 11 



/. 

0 u {j ') - ' 

P------------------LEGALNOTICE--------------------~ 
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United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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