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) ARSTRACT
% :

A-simplified form of Khachaturyan's solution to therproblem of

- the strain energy of an arbitrarily-shaped coharent inclusion

" is found for the case of a disk-shaped inclusion. Spec fic sfraln eney-

gies are calculated as a function of the orientation o;‘such an inclusion
in lattices posses sinfr various elastic properties.  Some nu ical reSVT ts’

t features cf the spe

]
e

are presented. The sal ific strain,energy

: }..J.

surface are found to depend only on the e]ast1g properties of the lattice.

FLOW tni sy a relationship be
‘Vaﬁd_the_midimum strain energy orie ta*lo of | aAdlsk—sHapad nclusicon is

observed. . The strain energies of GP zohes in Al-Cu and Cu~Be age harden—~

ing allovs are. calculated. : The minimum strain energy ox i ntat lOTS of GP.

o ' “zones in these alloys agree with experlﬁenuall} observed oriéntatibns.



The clusters of sclute atoms that -often form during the first stage
of solid solutio dﬁco:noa;tion in age hardening a2lleys are usually

~t

er~Preston (GP) zonmes. GP zones are coherent with

)..,-

r

eferred to as Guin:

the surrounding matyrix phase, thus any difference in atomic spzcing

o

between the precipitate and matrix phases rebth in coherency
strain fields around the clusters. The strain field of each precipitate -
has an associated strain energy (self straln energ ) and,. in addition,

the interactions of the strain fields of nearby clusiers invoilve inter-

5

action étrain enargies. 1In general, the strain enargy as Well'as>any»addi;:
tional energy‘associated with the Dr°c1altate—natr1x interface depeQd'on‘tna'
configuration (shape and orient ation) of the pre ipitate'ﬁhereas the-bulk
free energy change is configuréfion iﬁde?gndep;;‘;GP ZOH@S?&Ye;y
thus expected té fbrm,prefexeﬁtially in'configutations Which minimize.a

blnaﬁlon of strain and int” acial eneigies;'thereoy ﬁihiﬁiiiﬂé fhé>f
free,energyvof the Eiusﬁers.

:Thé.selfAsttain'enérg?“bf_én'inélﬁsidﬁjhaé béén shaﬁnféﬁ_depeﬁd én

the shape of the inclusion bOLh in the case where the

precipitate-matrix
.. 1.2 L 3
interface 1s incoherant 7. and vher it is coherent.”  In additian,
L e v S : Lo ' SR
nperiodlc ayrays cf coharent preczpltates have been shown _‘to be

nergeflcai‘y preferred over a. random- dlSLrlbuplOﬂ owing to thé interac—
tion of the strain fields of the precipitates. The dependence of the

self strain energy of nonsph e*tcal coﬁﬁrenL precipitates cn their

orientation in an elastically anisotropic matrix‘has bean exzminad by
: . ey . 10 L
Schwellinger, Leamy and Warlimont™ 1n the snec1al case of two dlmeﬂsl -

‘ally infinite misfitting precipitate sheets. Their analysis, however,
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treated a unonequilibrium problem since strains were confined to

1 .

the precipitate phase. The purpose of this study was to examine the
anisotropy of the strain energy associated with disk-shaped inclusiocas

of finite extent.
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tion of the s2lf strain energy of a coherent inclusion,
SN ’ P BT & L. .

several approaches are available, Esghelby obtained 2 solution in

terms of tabulated elliptic integrals for the cass of an ellipsoidal

inclusion in an isctropic elastic medium. This solution was subsaquently

i2

extended to anisctropic media by Walpole. A solution to the general

case of an arbitrarily shaped coherent inclusion in an elastic medium’

13

of arbitraryvanisotropy has been fourdd by Khacﬁaturyan;

Presented here are the results of a'sfudy of the self strain enargieé
'associated.with disk-shapad GP zones'using Khachéturfan's solﬁtion{
Strain- energles were éalculatod as a fumction of the‘o?iéntaticn-éf a
diskfsﬁapéﬁ ;ohéreng inélusion in vérious ﬁé£erials. “The relationship'
between tﬁe minimum energy orientations and thévelastic:aﬁisotropy qf

. 10 .

the matrix phase found by Schwellinger et al is extended tovthe more .
_geﬁefal.casé_of é céherent.preéipitate of finite extent_iﬁ elasﬁic

~equilibrium wigh the matrix phase.



2. THEORETICAL CONSIDERATIONS

3

. Chachaturvan Solutior
2.1 Khacha an's Solution

L 1 . . s y . e 4 N
Khachaturyan obtained a solution of the general problerm of determin-.

ing the elastic strain energy of a new-phase coherent inclusion of arbitrary

shape in an elastic medium of arbitrdry  anisotropy.  The assumptions in-

herent in this solution require that the inclusion be isplated in an infi- -

nite elastic medium and that the elastic properties of the inclusion bz
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to the assumption that the modulus effect is small yith respect to the

0f primary importance in Khachaturyan's solution of thig strain
enarey problem is a t hict Vﬁh 11 bha ref d ¢ as t e
en2rgy problem is a tensor which shall be referred to as the

strain tensor." Consider the velume which is to undergo transformation.

is removed from the elastic medium and allowed teo. transform

w
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freze of the constraints normally imposed c¢n it by this medium. The strains

-

h

[

corresponding to the deformations it undergoes as it transforms in £

absence of mechanical coastraints define the matrivx elements of the free .

stata strain teunsor.
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Khachaturyan's solution tb the problem may be expressed iu th
ing form o .
1 o o 1 [9X 2, fX
: ~ 1L aq~ ;
E =5 A .. & € V. - % —= Pe | TA (1)
2 ijlm ij 1m 2 fry 3 ~ \.‘/ .
T (27) |
-1 , . . - o~ . 1 PR R N - . §
where E is the strain energy of the coherent inclusion, » is the

[N

Lar
}_.l
i

. . o R . X . .- ) .
elastic modulus tensor, € ., is the  free state strain tensor, VT is the -
ij . : : - A

volume which undergoes transformation and €(k) are the Fourier componasats

-~
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of 8(x), the form func

: {
and un 1y inside it). vA\

of the Green's function of the elastic eguilibrium equations. The
”~
N ; - o . .
matrixz elements of the operator ¢  are daterminad by th e fol ing
relationship
o}
¢ = 0.
Im
)

1

FLnaily,, the matrix elements of the operator G are defined by the equa-

tions
Fa _.L,' ..
61 = A, .. k k-
Jijim 1 om
and
~ A A
..1 N
G G =1
VS i, o .
where [1] J = §... 1In-all of the above eguations (and throughout this
. i- , | .

Jhile rh2 solution ©

1

the Fourier componernts of the form function in the casa o

a disk—shapsad ;1clusL01. The only non-zero components lie in a direction

very nearly parallel to the normal vector of the disk. Thus, .as was

Ty 13
os rrved by Khachaturyan,



” 5 dej direction of k, not on
L . ~ 1.
.

-
By

Q) is a smooth and
IS

~~

if A
- k.
slight approximation will be dincurred by replacing A(a?

)—l‘

wnere

1

n is a unit vector normal to the plame of ths

to the integral in
fprm, ;ﬁe'quantity
its magnitude.
slowly.Varying fugction'of (i},-on1y<ét
with Ab( n,

nclusion.‘A(g)

being constant, it may be removed from the integral and the elastic energy

of the disk-shaped inclusion may be re-expressed as

NONESS

1 o O e _w?
VIt . / - T v k C .
B2y MNim €43 €1 ' 7 2 3 1@l

(zm)
This may be further simplified by making use of the identity
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_ fak R
v,o= | ——, log|? +
R e
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Thus, in th
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equation (1

v - '
T o] o -
E = —- A € L. €, A .
2 ijlm © i3 Im. ~
euvaluation technicuss us=d to

a smooth slowly varying function of

the above approximstion is small.

ase of a disk-shaped inclusion, Khachaturyan re-expressed

.(2){
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so that the error introduced by



2.3 Evaluation of Calculationzl Parameters

From equation (2) it is immediately obvious that the strain energy
of a disk-shapad coherent precipitate is directly proportional to the

volume of the precipitate prior to transformation, VT' Thus, the para—

L . e L ' L - L

meter of interest is the specific strain energy of the precipitate, T
S . ) . - 1,

which shall be donoted ev.' The parameters required for calculation of

2y for a GP zone in a cubic lattice are three independent elastic counstants

(C,,» C,, and C ,), the matrix elements of the free state strain. tensor, -
11 12 L4 v LIS .
and two parameters characterizing the orientation of the disk in the lattice.

To see how these paramsters are related to measurable quantities, considera— -

tion of ra medel of disk-shaped GP zones in binary alloys is necessarsy.

- . 14 : : . . ' .

X-ray studies and, more recently, high resolution electron micro-

15916 T = a1 - . S ! - 17 ' -
scopy have suggested that the model proposed by Gerold = best describes

the nature of CP zones in Al-Cu and Cu-Bz alloys. - This model, originalily

]
fl
0

describing the GP zones which form in Al-Cu age ha ning alloys, assumes

that they are composed of a monolayer of Cu atoms in a matriz of nearly

pure Al. Assuming that Gerold's model may be employed to describe'GPv

zenes in all binary alloys, the parameters required for the calculation of

£,, may be evaluated as follows for the case of a supersaturated soluition
B in A,

The matrix surrounding a fully growﬁ clﬁsfer is nearly puré A and
it may be assumed that the residual-cqncentfation of B ﬁéé only a slight
effect on the_elastic properties of the A matrix. The most feadily acces—
siblé elastic conétants éptrépriate to this.case‘are thersfore those of

pure A.



Prior to transformation, the disk-shaped volumz to be transfofﬁad
contains & more or less randbm A-B solution. After the GP zoné has formed,
the volume contains pure B. 1In thé uncoﬁstfained state, defofmations.
must occur in the plane of the‘diskvto change the lattice parameter from ,
that of the A-B solid solution to that appropriaté~§o a monolaver of B.

-Denote the strain orrebpondldg to free stute deformations in tﬁe élahe ﬁf:'
the disk ép. Similar»defotmgtions may be. imagined in the directidnvnormai"
to the prGC'pitatevdisk. The strain coresponding to tfhis deforrat;ou is.

denoted

The frés state strain tensor for a GP zone lying in the (C0l) matrix

o
m
Ft
0

plane is easily seen to have the following matrix el

)]

Assuming that the values of the transform wntlon paramster (Ep and fn)

~ are isotropic, the free state strain tensor for a GP zone in any orien-

tation may be .easily obtained using coordinate transformation techniques.

formation paramaters

u
3
:

Thus, there remains only the evaluation of the t

¢ and E: .

P n R
LdtLlCe pqrameLLr maasuremaents, traditionally uséd to determine

atomic mis sfits, may not-be used directly in this case since the c¢yystal:

structure of the A-B solid solution and. pure B are not necessarily tho

same. If the transformation parameters assumed to be disotropic, the

cube root of the volume per atom, Lv’ may be used as a measure of ato*lc.

size as well as the efficilency of atomic packing. The change in LT from
. _ v

o
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~an A-B random solution to pure B is a measure of the free state deforma—
tion which must occur in the plane of the disk during the transformdtion.

The strainu, fp’ corresponding to this defo

L (B) - L (A-B)
v - v

L AL
P V(\_ B)

Along the axis normal to the plane of the precipitaﬁe disk one might
reasouably.suppose that after the transLormatioé, Lv would be similar to:
that of a solid solution‘containing‘A and B in‘equal concentrations. The
value:of Lvaor such a solid soluiiog'may be obtained by éxtrapoiation.of

—o

measured lattice parameters. The strain, én, along the direction

normal to the plane of the disk is thus given by

-Lv.(extrapoiaued AB) - Lv (A~B)

. . . v

In cases where the crystal structures of the A-B solid solution and pure
B are the same, this merhod is equivalent to direct use of lattic

parameter measurements.



3. RESULTS OF STRAIN EIL;C& CAACULATTO\S

3.1 Dependsnce of the Specific Strain Energy'on Elastic Propertisas

" Calculations from lattice parameter measuremants” for a variety of
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that the absolute values of € and éi generally fall between 0.0%4 and
: . \ v

i
[g;

ific

B 81

than that of ép. For investigation of the dependence of the spa

s

strain energy on the elastic properties of the matrix, the typical values

Ep = 0.10 and € = 0.07 will be used. All calculations T eferred to iz

this section employed these values of ép and €_.
i [23

=
Lra

Jete

The specific

0]

n energy was calculated as a function of GP zone

f\a

orientation v51n5 th stic constants corréspon ing to.saveral diffe rantb
metals.. It is not suggested that disk—sﬁaped GP zbnes.are observed im
-alloj" based on alL the se neL;ls, thay hﬂve b n.Lae& Lo*‘é pari%éd

Durp se only. Some of the results are plottéd ianigurés‘l,vZ an&-B. Iﬁl
these plots, the direction associated ﬁith the radial vector is parallel
to.the CP_zone normal and the magnitude is proportional'to e . for that

orientatioan. hese radial pLoLs are planar proflles of' the specific

strain energy surface of a GP zone in the particular elastic madium.

corresponding to Fa are given in Table 1.  Figure 1 shows the varia ation

o
A

of the specific strain energy upon votation of the norma vector of a P
zone in the (100) lattice plane. Owing to the Lour~rold S}uwﬂur) of tne

(100) plane, the plot is symmetric about the [011] axis. iFigUIe 2 is alsoi

an £ surface profile for an Fe lattice. In this case the GP zone normal
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to the (110) lattice plane. As z rasul

o

has been coufine of this study

{

~

for a GP zone in an Fe lattice, it was found that the -

~

of the € su

fac
"‘[ N

(D

GP zone orientations with the normal wvector pargliel to a <100> direction
correspond to minimum values of Ev, saddle points ars associated with the

<110> orientations and the <111> orientations correspond to maxima on the .

specific strain energy surfacs.

{0
42}
el
©
It}
P

The effect of a change in thé elastic constants on th
energy surface can Ee seen.by comparing figufest aﬁi 3. Figufé 3Ais a piot
of the same rotation plane as FigurévZ,-howéver,.tﬁe‘elastic constanté have |
been éhaﬁged to Fhose éorfespdndingAtéANb (see.Tablevl). As beﬁore, the -
".inO$ , <110> and <111> orienﬁatioﬁs éorrespond ;o extrema on the specific
‘strain enargy surface. ~The roles of thé‘<lOD>.and <111> orientations,
however, are clearly reversed when fhe'elaétié éqﬁstanﬁs of Fe aré;repléced
by thbse of Nb.
| Table 1 summarizes the results of_calcﬁlations'iavolving he elastic
constants of a number of metalé,but'retaining the sams values of ¢ and
En' In all casesii; was  found tﬁat the <100> ; <lld>.a§d_<1115.ofientations_

correspond to extremz on the specific strain energy surface. The values

of € for these orientations thus characterize the surface and they are

this table is .the

A, defined as -



Table L. Numerical results for the eritical orientations with fixed values of ¢ and ¢ .
. - ' - P 1

_ » » , Specific StrainbEnefgy for Strain Encrgy |
Element Flastic Constants Indicated Orlentation N Ratios
- 1 2 : S| 2 3 _
: . ’ Y dxy 3/ el - A 1
. | L0 dynes/em | Ay 107 evian | ey<i10v g1
Reference | Cy, C, ~ C., 1 <100> <110>.  <111> o E,<10G>  E#100>
cu (19) 16.84 | 12.14 7.54 3.20 | 0.716 1.455 1.629 | 2.031 2.274
Ag (19) | 12.4 9.34 4.61 3.00  § 0.479 |} 0.962 1.084 | 2.010 | 2.264
Au (19) | 18.6 15,7 a.20 | 2090 | 0487 | 1.027 | 1.177 | 2,110 | 2.420
Ni (19) 24.65 14.73 | 12.47 2.51 1.359 2.225 2.430 | 1.637 '1.788
Fe (20) 23.7 14,1, 1.6 . | 2.42 ,f 1.312 | 2.103 | 2.294 | 1.603 1.748
A 21y f10.82 6.13 2.85 | 1.22 | 0.624 0.693 | ©.7L4 | 1.110 |  1.144:
Wo(19)  150.1 1514 }19.8 1.13 3.501 | 3.679 | . 3.735 1.051 | 1.067§
I, % |24.0 1 w0 o} 7.0 0} 1.00 | 1.602 1 1.602 '1.602 { 1.000 {  1.000
I, % 12000 | 12,0 4.0 F 100 | 1,099 { " 1.099 | 1.099 | 1.000 1,000
Mo (19) 46.0 17.5 11.0 10775 1 30129 ] 2,795 | 2.672 0.893 0.8564 .
“lee (22) 135.0 | 6.78 {10.08 | 0.714 | 2.44 § 2.17 | 2.06 | 0.889 0.844 |
UMb (23) 12406 13.4 0 4 2,87 7 0.813 L. 1.461 .} 1.042 §  0.879 } 0.714 | 0.602
I1 and Iz.ﬂf¢ two hypothetical lsokropic materials with cubic lattices.

‘
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For the particular valuyes of € and én used in these calculatiops, the
v p .

<100> oriasntations are minima when A > 1 and the <111> orientatiocus are
minima for A < 1. This is the same relationship found by Schweilinger
10, - . . . - . . ; et e en s . '
et al”" in their study of two-dimensionally infinite misfitting shszets.
For the purposes of this paper, however, it is not vet  a general state-—

ment since the shape of the specific strain energy surface may also. de-

pend on the values of the transformation parameters.

That €v‘f0r a particular orientation must depend on the transformation

parameters if evident from the limiting case. As &P and én go to zero,

€V must @lso go-to zero, For all sets of elastic constants listed in
Table 1, however, it has been found that thes ratios €v><llO> / €, <100>

and € <111> /& <100> are independent of the values of the paramatars
v . v . . .

by

€ and € . This is significant because it shows, for all the cases in

P n
Table 1, that the salient features of the specific strain energy surface
are independent of the parameters characterizing the transformatiomn.

For these cases the shapas of the €, surface depends only on the elastic -

properties of the matrix phase.



4. DISCUSSTON
4.1  Relationship between Minimum Enefgv Ofiénta_iano and Elastic Anisotropy
In the pre#ious section it was observedbthat for all ca listed in
Iable‘l; the shape of the specific strain urface‘is.indepandent f

the transformation

tations corrsespond

the ratio €, <111>
Figure 4 is a4 plot
from Figure 4 that
one observes that
than one,
For A <1

surface. -

correspond to mi

for any disk-shaped coher

tensor has

nima on the ¢

the form

parameters €

and ¢
P n

-

/-

€

<

of this

‘this approximate linear relationship is valid

—~

for A > 1 the ratio

)

£

surface.
v -

-
ent

of (3).

.

to the minimum value o
anisotropy parameter

A
3,

In cases where the int

energy s

Since the <111> or <100> orien-

all Cases

fde

€ in
AT

an essential featur

<111> / e~
. v

- This linear relationship 1

[~

(=R

&
=

ol

A

lying that the <001> orientations are minima on the

his ratio is less than one so-tnhat the <111> orianta

~

"

surface’

Inferring

-

1“1

LE

all cases,

<001> is a2lso greatsr

—~

<

tioms

o~
o

valid

inclusion provided that the free state strain

ac1al and interaction

energies are isotropic {(or where the s21f strain energy is. the dominant

term),
'if.A > 1 and the.<
of typical si;e in
‘d 4180

enargy wou

a few hundred evrgs

b= important

111> planes if A < 1.

dicate, howaver,.

/cmz.-

Cdin

Simpla'calculations“for GP zones

r

erfacial enesrgy

4.2

The Case

for Al-Cu

disk-shaped GP zoneé will form pfeferentially on the <100>‘plaaes

that the.anisot O”V of tbe 1ﬁter:ac~a

The Al-Cu binary alloys

are the basis of

£ oie
zZ1ce

many technolo

all) im pof—

consider

ation of

tant alloys meriting special
~ constants of Al are given in

puted from lattice parameter

measurements

this case.

s.are ¢

0.108 and €
I n

Thz alastic

Table 1 and the transformetion parameters com-~

0.0595.
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- Vigier et,él24 reporﬁ that the GP zones iﬁ.an Al~1.74 a/o Cu alloy have
diameteriof-about 80 A énd the pfa~transformation thickgess_of a mondlayer-’
may bavtaken,aé half of an Al lattice parameter, abouf 2-A!

A.plot of the variation of the strain énefgy for a GP éone.of the
above dimensions with the normal vecior éonfined tp the (110) plana is
shown in Figure 5. The <lOO>io%ientatidn5 cérraépond t§ the minimum sﬁrain 
energy wnich is-the observed GP zone orientatid; in Al-Cu alloys;25 lIn
Figure 5.the minima are broad and éhallog (A being énly slightly greater
than one) and from‘this, ohe might expéct somevvafiétion in the observed
orienﬁation of the GP'zones.  S'ﬁcevho variation is obserﬁed, ong could
spe¢u1ate'that inﬁerfacial energies or éirain f‘eld interactions migh@:

b ant in this cas

¢
(3
(0

importan .
! 3 _ s . . i0 L7
In Al-1.74 “/o Cu alloys, GP zone densities of the order of 5X10
-3 ' 25 . Y. = . .
cm are commonly observed. Assuming that a2ll of the GP zones are in
(or very near to) the minimum strain energy orientation and ignoring in=-
teractions between strain fields, the strain energy associated with the

GP zones in this alloy is 8.6 cal per ﬁole alloy.

4.3 ‘ThelCése for Cu-Be
Simila:ﬂ calculatioﬁs may be made for another'im;ortant:glloy in
>wLich_disk*shaped GP . zones are obée:ved, Cu-Be. The elaétic”constants:for
Cu are given in Table 1 and Galues of fp‘aﬁd én calculated from laﬁtice
| 18 | |

parameter measurements  are —0.118 and -0.0433, respectively. For a

Cu-12.37 a/o be alloy,l6 the observed GP zone diameter is about 60 A

- . . N T e
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A plot of the varviation of the strain energy when a GP zone normal
S oS B A

~is confined to the (110) plane is shown in Figure 6. Again the dminimum

strain energy orieptation 1s <100> which corresponds to the observad GP

. 25 . ¢ e ' o
zone orientation in this alloy. Comparison of Figures 3 and 6 re-empha—

~

1

cr
[¢]

sizes dependence of the shape of the strain energy surface on ths - . -

anisotropy parameter A. Unlike the case for Al-Cu, the minima in Figure 6

are fairly sharp and deep so one would expect other factors to bes less | -

necessary in surpressing variations im the observed GP zone orieatations

in this allioy.
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5. CONCLUSIONS

lf An approximate expression.for ﬁhe speéificrstrain energy éf aﬁ
iéolated’disk—shaped_inclﬁéion ié obtéined.from Khac'atﬁryan’é éolution
to the genaral problem. Numerical resglts are presented for a number of
metallic elemenés wifh vafying elastic_properties; e ‘ ': .
S 2. - It'is fOund‘that the sﬁape of'thé specific strain.energy surfacé
ié'indépendent of the'tfansformation paramatérs éé and enir
3. The relationship between the anisbtropy parameter A and the GP
zéne.orientatioﬁ'of minimum sfrgin énérgy ptoposéa‘by'SCHWQlliﬁger ét éllo

also found for the case of finitevdisk—shaped precipitates. An appfcxif S

mate linear relationship bétween tﬁe ratio of the strain:éﬁergies.fo:

the <111> and <iOO> orieﬁtations and the anisatfopy paramétér A is oﬁgerved;f
4. - Profiles of.straiﬁ:energy surfaces afé ﬁresénted'for Al—Cu:

and Cu~Pe alloys. :The“minimum eﬁérgy orieﬁtatiqﬁé_agree.witﬁ the ex-

perimentally observed GP zome orientations in_thesevalloyé.'
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This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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