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Abstract 

A Universal Asymptotic Velocity Distribution for 
Independent Particles in a Time-Dependent Irregular Container 

C. Jarzynski and W.J. Swiatecki 
Nuclear Science Division 

Lawrence Berkeley Laboratory 
1 Cyclotron Road 

Berkeley, California 94720 

We show that the velocity distribution f(v) for a gas of non-interacting particles bouncing 

around in a deforming irregular container of fixed volume tends to a universal function 

independent of its original form and of the container's shape or time evolution. This function 

turns out to be the exponential velocity distribution f(v) oc e-v/c• This may be contrasted with the 

gaussian Maxwell-Boltzmann distribution appropriate in the case of a gas of interacting 

particles. 

1. Introduction 

The study of the dynamics of classical or quantized independent point particles bouncing 

about inside variously shaped static containers (so-called two- or three-dimensional billiards) has 

received much attention in recent years in connection with attempts to understand the 

characteristics of ordered and chaotic motions in dynamical systems in general (Refs. 1-5). In 

the context of nuclear physics, the study of independent particles in variously shaped 'mean

field' or 'single-particle' potential wells has served for a long time as the starting point for 

models of nuclear structure. The generalization of this problem to the case of time-dependent 

containers is of importance for understanding the order-to-chaos transition in the case of time-

dependent Hamiltonians. In nuclear physics the problem arises in the case of idealized models of 

fissioning or fusing nuclei. The understanding of the order-to-chaos transition is particularly 

relevant in this case, since there is evidence that the transition from ordered to chaotic nucleonic 
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motions is accompanied by a transition in the collective properties of nuclei from those of an 

elastic solid to those of a very viscous fluid (Refs. 6-24). 

The present paper is a contribution to studies of idealized time-dependent dynamical 

systems of the above type, in particular to the long-term behaviour of a gas of independent 

classical particles in a time-dependent irregular container. (This could be regarded as a 

modification of the 'Fermi acceleration problem,' in which independent patticles bounce 

between two oscillating parallel walls (Ref. 25). In our case the dynamics is three- rather than 

one-dimensional and, apart from the time dependence, chaotic rather than integrable.) 

2. The Wall Formula for dissipation 

It was shown in Ref. (6) that, under certain assumptions, the rate of change of the energy E 

of such a gas is given by the so-called wall formula for nuclear dissipation, viz. 

(1) 

where p is the mass density of the gas, v the mean speed of the gas particles and Ii specifies the 

normal speeds of the surface elements dO' of the container, assumed small compared to V. Since 

the energy E is equal to half the total mass M of the gas times the mean square particle speed v2, 

Eq. (1) may be re-written as 

(2) 

where V is the volume of the container, equal to MJp. This equation has been used in the past to 

calculate the short term increase of the energy (or ofv2) by using for v its initial value Yo' But 

for longer times, v will also increase and Eq. (2) by itself is not able to predict the long term 

evolution of the energy. In a recent paper (Ref. 26) this problem was solved by the derivation of 

an equation for the rate of change of the first moment v (in effect a second wall formula), viz 

(3) 
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so that 

where I(t) stands for the following dimensionless monotonically increasing function of time 

Multiplying Eq. (3) by 2Y we also find 

so that, using Eq. (2), we obtain 

i.e. 

It follows that the time evolution of the relative energy is given, for arbitrarily long times, 

by the following closed formula (consistent with Ref. 27): 

(4) 

(5) 

(6) 

(7) 

(8) 

From Eq. (7) we also deduce that after a sufficiently long time, when vlj and Y5 have become 

negligible compared to the monotonically increasing v2 and y2, the following relation between 

the first and second moments holds asymptotically: 
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(9) 

As is readily verified, this happens to be the relation between the first and second moments of an 

exponential velocity distribution f(v) oc e-v/c• Following up this hint we proceeded to generalize 

the wall fonnula, obtaining an expression for the rate of change of an arbitrary moment vn • We 

then deduced that, asymptotically, all the resulting moments agree with the moments of an 

exponential function! 

The Wall Formula for an Arbitrary Moment VD 

The derivation of the generalized wall fonnula for vn proceeds along the lines of the 

derivation ofv2 in Ref. (6). Consider a gas of non-interacting particles characterized by an initial 

isotropic velocity distribution f(v), nonnalized so that 

Jo
oo 

41t dv v2f(v) = 1 . (10) 

The gas is in a very long cylinder of cross-sectional area .10", closed off at one end by a piston 

which begins to move slowly with speed u towards the gas. (The cylinder may be thought of as 

an imaginary prism erected on an element of area .10" of an infinite plane wall moving towards a 

semi-infinite volume of the gas.) After a while the gas in the vicinity of the piston will consist of 

two components; the undisturbed gas which is at rest in the laboratory frame of reference and a 

reflected component consisting of particles that have collided with the moving piston and are 

streaming away from it. In a reference frame moving with the piston the first component is 

streaming towards the piston with speed u and the second is identical with the first except that it 

is streaming away from the piston with speed u. Figure 1 illustrates the velocity distribution of 

both components as seen either from the piston or from the laboratory frame of reference. When 

the piston is at rest, u vanishes and the velocity distribution reduces to the spherically symmetric 

function f(v). The motion of the piston introduces an asymmetry in the figure (as seen in the 
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laboratory frame) and this modifies the moments vn of the resulting velocity distribution in a 

readily calculable way. 

Consider a time interval L\t during which a number of particles will have collided with the 

piston. These are particles whose dj.stance g, from the piston and speed towards the piston (given I· 

by u + z) satisfy the inequality g, < (u+z)At. The number of particles in a slab of thickness g, and 

cross-section Aa is g, v Aa, where v is the number density of the undisturbed gas. Hence the 

number of particles colliding with the piston in time L\t, whose velocity components are restricted 

to lie between p and p + dp, and between z and z + dz (Le., whose velocity vectors lie in a ring of 

volume 21tpdpdz in velocity space) is given by 

vAaAt (u+z) f(v) 21tpdpdz. 

After colliding with the piston the above particles will have their z-components of velocity 

changed from z to -z-2u. The effect of this change on a particle's speed in the lab frame of 

reference is 

and the effect on the n-th power of the speed is 

L\vn = v~ew - v~ld = [p2 + (z+2u)2]n12 _[p2 + z2]n!2 

= 2nvn-2 zu + 2[ nvn-2 + n(n-2)vn-4 z2]u2 + ... , 

(11) 

(12) 

where v2 = p2 + z2, and where we have kept only the first two terms in the expansion in u, 

considered small. Multiplying Avn by Eq. (11), integrating over p from 0 to 00, over z from -u to 

00, and dividing by L\t gives the rate of increase of the summed n-th powers of v for the particles 

in the cylinder: 
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..Q.l:vn = vAa f dz f dp p47tf(v) [nvn-2z2u + (2nvn-2z+n(n-2)vn-4 z3) u2 + ... J . (13) 
dt . 

z=-u p=O 

Changing the variable of integration from p to v, noting that pdp = vdv and that the lower limit 

p = 0 corresponds to z = Izl, we find 

00 00 

3l:'vn =vAa J dz J dv v47tf(~)[nvn-2z2u + (2nvn-2z+n(n-2)vn-4z3)u2] (14) 

z=-u v=lzl 

We split the z integration into J~u dz and J:O dz and note that the former, representing a SlIlall 

interval of size u, will lead to a contribution of higher order in u than u2. This leaves an 

expression for 3tLVn identical with Eq. (14), except that the lower limit in the z-integration is 0 

and in the v-integration is now simply v = z rather than v = Izl. We evaluate the integrals by 

taking the factors z2, z and z3 in the square bracket outside the v-integration and carrying out the 

z-integrations in each case by parts. (The first part is z2, z or z3 and the second part is an integral 

over v whose dependence on z enters only through the lower limit v = z). The result is 

00 

..Q.l:vn = vAa J dz z47tf(z) [nzn-2 z3 u + (2nzn-2 z2 + n(n-2)zn-4 z4) u2] 
dt 3 2 4· 

z=O 

Since z is now merely a dummy variable of integration, the result may be written in terms of the 

moments vn as follows 

3tLVn = vAa [~ nu vn + (n vn- 1 + ! n(n-2) vn- 1 ) u2] . 

(15) 

where vn = f. 00 41tdv v2 vn f(v) . 
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We now apply this 'piston formula' to the case of a container whose surface elements dO' move 

with outward nonnal speeds specified by n. Thus u is to be identified with -n. Integrating over 

the surface of the container will give the rate of change of the summed n-th powers of all the 

particles' speeds in the container. If the number of particles in the container is N then the rate of 

change of the average of vn, i.e. dvn/dt, is obtained by dividing eq. (15) by N. Since NIv = V, 

the container's volume, we fmd 

(16) 

For volume preserving deformations of the container theflI'St term vanishes and we find the 

following generalized wall formula: 

dv
n 

= 1. n (n+2) vn- 1 .L" n2 dO' . 
dt 4' V] 

(17) 

For n = 2 we obtain the standard wall fonnula in the form of Eq. (2). For n = 1 we recover the 

'second wall formula' of Ref. (26) (our Eq. (3», derived here in a different way. We shall now 

proceed to use Eq. (17) to derive the asymptotic fonn of the velocity distribution f(v). 

4. The Asymptotic Form off(v) is an Exponential 

Combining Eqs. (3) and (17) we have 

dv
n =.1 n (n+2) vn-( dv . 

dt 3 dt 

For n = 2 we find 

which is the same as Eq. (7) and leads asymptotically to 
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Forn = 3 we have 

dv3 =llv2dY~ll 4.2 1y2dY=ll. 4.2 .1.1 dy
3 

dt 3 dt 3 3 2 dt 3 3 2 3 dt 

. v3 -->.ll. 4.2 . 1.. 1 y3 
.. ---, 3 3 2 3 . 

For general n we have, by induction 

- (n+2)n (n+l)(n-l) n(n-2) 42 1 1 1 1 -n 
vn~. . ... ~'-'-'- ... -v 

3 3 3 3234 n' 

It follows that 

vn (n+2)! 
-~ . 
yn 2.3n 

Now for an exponential function f(v) oc e-v/c , the ratio of vn to yn is given by 

rooo dv vn+2 e-v/c / rooo dv v2 e-v/c 

vn JI JI (n+2)! - = = -'------"-

v
n 0.- d •• 3 .-vlc / f: dv.2 ~vl' J 2.3

n 

This proves that, under the explicit and implicit assumptions made in arriving at Eq. (19), the 

asymptotic velocity distribution f(v) for particles bouncing about in an irregular, volume-

conserving, time dependent container is an exponential. 

5. Discussion 

(19) 

The explicit approximation made in Section 3 concerned the slowness of the wall velocities 

Ii compared to the particle speeds. At fIrst this seems like a serious limitation, suggesting that the 

theorem about the asymptotic velocity distribution being exponential holds only if the container 

is restricted to very slow deformations. On reflection one realizes that this is almost certainly not 

the case. Thus insofar as the particle velocities increase monotonically with time, they will 
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eventually become larger than the wall velocities and the approximation IIiI « v will 

automatically continue to improve with time, becoming virtually perfect asymptotically. But 

could it be that if initially IIi I is very large compared to V, the particle speeds will not increase 

with time? Again this is most unlikely, since the simplest qualitative way of understanding why , 

it is that the standard wall formula predicts an increase in the particle energies is based precisely 

on considering the limit of very large piston speeds. The argument is most transparent if one 

considers the gas in the cylinder to have initially a sufficiently sharply cut off velocity 

distribution, one that is essentially zero for v > Ve. In that case for piston speeds exceeding Ve 

there is a gross asymmetry between the cases of the inward or outward moving piston. Inthe 
\ 

former case the gas particles are speeded up dramatically by the large piston speed, but in the 

latter no particles ever collide with the piston and their speeds remain unaltered: there is no 

compensating slowing down at all. This is the qualitative way of understanding why the sign of 

the second term in Eq. (14) is positive and shows that the argument for the average speeding up 

of the gas particles is actually strongest when the wall velocities are large. (Of course, one needs 

to exclude pathological situations where the gas particles-or some finite fraction-are actually 

at rest and never hit the wall of the container. But for any finite particle speed, a particle will 

eventually begin hitting the wall elements and its average speed will begin to be boosted by the 

collisions. One must also exclude contrived situations where the container's deformations are 

continuously speeded up so that the approximation v» IIiI is never satisfied.) 

The more serious, implicit, assumption underlying the present analysis concerns the 

application of the piston formula, Eq. (15), derived for a semi-infinite volume of a gas with 

standard density, initially at rest and isotropic in velocity space, to the surface elements of a [mite 

container. What one is effectively assuming here is that also in the case of the finite container 

each surface element dO' continues to be bombarded by particles as if they originated in a gas of 

standard density, at rest in the laboratory frame, and with an isotropic velocity distribution. For 

this assumption to be valid one clearly needs some kind of randomization hypothesls relying on 

the irregularity of the container and of its time dependence. As discussed already in Ref. 6, it is 
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very easy to construct counter-examples where the randomization hypothesis is not satisfied. 

One class of examples concerns containers whose shapes are such that the particle motions are 

integrable (e.g. boxes or spheroids). Another concerns containers whose motions are globally 

regular, i.e. overall translations or notations. (See Ref. 6.) Apart from such obvious exceptions, 

the randomization hypothesis relies on the observation that the particles about to collide with an 

element dcr of the container arrive at the location of dcr after collisions at many different instants 

with many irregularly oriented other surface elements, whose orientations and states of motion 

do not, by hypothesis, define any preferred directions in coordinate or velocity space. We expect 

that the randomization hypothesis will encompass a large class of irregular, time-dependent 

billiards, but the precise, mathematically rigorous specification of situations where the 

hypothesis might fail could turn out to be a difficult problem in theoretical dynamics. 

A word about the limited relevance to the nuclear problem of the theorem concerning the 

long term behaviour of a gas. Even apart from the need in that case to study the effects of 

quantization, if a nuclear system were to deform for a time long enough to wash out its step-like 

velocity distribution (appropriate to a degenerate Fermi gas) into an exponential distribution, the 

justification for treating the nucleus as a gas of approximately independent particles would have 

disappeared. Thus the present finding should be viewed as a contribution to the abstract study of 

the dynamics of time-dependent systems of non-interacting particles, which only in some of its 

aspects does have relevance to the nuclear problem. The striking simplicity of the universal 

exponential velocity distribution for irregular billiards brings to mind the even more universal 

gaussian Maxwell-Boltzmann distribution. This raises the interesting question of how general 

the exponential distribution might, in fact, turn out to be. How does it generalize to the case of 

independent particles in a smooth time-dependent potential well? 
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Figure Caption 

Fig. 1. The appearance of contour lines of the velocity distribution function for a gas in the 
vicinity of a piston moving with speed u towards the gas. Here z and p stand for Vz and vp, the 
components of a particle's velocity v along the z and p directions, p being the radial distance 
from the axis of the axially symmetric velocity-space distribution. 
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