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Abstract

Selectivity and resolution of solid-stéte NMR spectra are determined by the dis-
persion of local magnetic fields originating frofn relaxation effects and orientation-
dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent
resonant frequencies can be represented by a set of irreducible tensors. Among these
tensors, only zero rank tensors (scala.f operators) are capable of providing high res-
olution NMR spectfa. In this thesis, I present a series of new developments in high
resolution solid-state NMR concerning the reconstruction of various scalar operators.

In chapter 1 a new method for caléulating zero field NMR spectra is described,
and the evolution matrices of the deﬁsity matrix are evaluated. Zero field order
selective observation, zero-high field correlation spectroscopy, and measurement of
zero field spin diffusion are then introduced. Order selective observation can be used
to simplify zero field spectré. Zero-high field correlation spectroscopy results in two-
dimensional spectra from which all information available in zero and high field spin
interactions can be obtained. The spin diffusion rates in zero field are determined
by the sqﬁare of the dipolar coupling constants and the relative orientations between
the dipolar and the quadrupolar interactioné. A

A general theory of zero field NMR in high field is described in chapter 2. A
coupled space is introduced in which the high field spin Hamiltonian is expressed as
irreducible tensors from rank zero to four._ The scalar operator in this Hamiltonian
can be extracted by dynamic angle spinning (DAS), double rotation (DOR), dynamic
angle hopping (DAH), or pulse sequence for performing zero field NMR in high
field. An analytical solution of these pulse sequence is found, and additional new

trajectories are also presented.

iii



Second order NMR spectroscopy of half integer quadrupolar spin nuclei is de-
scribed in chapter 3. The first order average Hamiltonian is evaluated. 'The resulting
powder lineshapes of the central transitions are simulated. The variations of these
powder lineshapes and the their singularities upon the variable angle sample spinning
(VASS) are discussed. The theoretical and experimental aspects of dynamic angle
spinning (DAS) and double rotation (DOR) are also thoroughly described. Finally,
a general method for averaging out arbitrary rank tensors appearing in Hamiltonian
is developed using group theory arguments.

Chapter 4 presents calculations of MAS, DOR, and DAS sideband intensities. A
new method of calculating MAS sideband intensities is discussed. These intensities
can be calculated in real time, and allow CSA parameters to be easily extracted.
DOR and DAS sidebands are analyzed by moment expansion and Bessel function
analysis. The results show that DOR and DAS sideband intensities depend strongly
on the relative rotor phase and the structure of both DOR and DAS sidebands is
complicated due to.the interference between spinning speeds (in DAS the time ratio
can be converted to two spinning speeds). | '. .

The general theory of chemical exchange processes in solid-state NMR is treated
in chapter 5. The lineshape changes during the chemical exchange are reviewed and
discussed. The motion in icosahedral (Cgsp) molecules is then analyzed. Lineshape
changes due to different jump modes occur smoothly, similar to those observed in
the strong collision limit. Comparing with the experimental results, there are indeed
different phases in the carbon clusters, and motions in Cey have different correlation

times within these different phases.
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Chapter 1

Zero Field NMR and NQR
Spectroscopy

1.1 Introduction

In the development of nuclear magnetic resonance (NMR) spectroscopy, high sen-
| éitivity and resolution are two important goals. In solids, rapid internal random
motions are absent so that the local fields created by anisotropic spin interactions
(e.g. chemical shift anisotropy, dipolar coupling and quadfupolar coupling etc.) are
sensitive to the rélative orientations of spihs with reépect to the external magnetic
field Hf_,. For a polycrystalline or amorphous s;)lid sample, such an orientation depen-
dence results in the dispersion of the absorption line in NMR spectra and makes not
only the interpretation of these spectra difﬁcult[l] (low resolution) but also sensitiv-
iﬁy low. The reason why the resonance freduencies of individual spin nuclei become
orientation dependent is the truncation of the internal spin inte;a,ctions by the larger
Zeeman interaction. One possible solution to eliminate this dispersion is to remove
the external field such that the local fields of all spin nuclei are _equivalent and,
therefore, oriéntation independent. This method is commonly used in pure nuclear
quadrupolar resonance (NQR) [2,3, 4, 5, 6].

The major obstacle in obtaining NMR spectra at zero magnetic field is the low

sensitivity. This sensitivity problem is implied by Faraday’s law which states that the



voltage induced in an rf coil by an oscillating magnetization in the xy-plane is pro-
portional to both the amplitude and the resonance frequency of the magnetization.
These two factors are linearly dependent on the strength of the external magnetic
field, so that the FID signal is proportional the square of the magnetic field. At zero
field, the FID’s intensity is therefore propbrtional to the square of the strength of
the local magnetic field which is at least a thousand times smaller than the external
magnetic field, therefore the sensitivity of the NMR signal is a million times lower
than in high field. This severe sensitivity problem may be overcome by ﬁsing either
SQUID techniques [31, 32, 33] or by the field cycling method proposed by Pound[7],
used first in pure NQR épectroscopy. The most recent application of the field cycling
technique is in time-domain zero field NMR and NQR spectroscopy[8]-[12]. In this
- experiment, the solid_ sample is transferred pneumatically from the high magnetic
field (4.2T) to an intermediate field with the strength about 0.017, and the field is
suddenly turned off. The magnetization then evolves for a length of time ¢ in zero
field under a scalar spin Hamiltonian (of dipolar or quadrupolar interaction), and is
stored along the external field by suddenly turning on the intermediate field. The
sample is transferred back into high field where the z component of the evolved mag-
netization is observed. The whole FID signal is va,cquired by increasing the length
of time evolved in zero field. After the Fourier transformation, a high resolution
spectrum finally may be obtained. The frequencies of the peaks in the spectrum
directly determine the principle parameters of the spin interactions involved in zero
field. This technique combines the advantage of high resolution and high sensitivity
and has'shown its power in determining quadrupolar coupling constants of deuterons
in molecules. _

One would like to advance time-domain zero field NMR and NQR by finding zero
field analogs to multi-pulse and multi-dimensional methods originating from high

field NMR][11]-[18] to simplify the identification of sites, obtain more structural in-




formation of molecules, study the motions in molecules, and measure exchange rate
between orders." Ih most of these new experiments, cumbersome calculations are
necessary in order to obtain theoretical spectra. In this chapter, a simplified calcu-
lation method based on the irreducible tensor theory and Wigner rotation matrices
will be described. I then apply this method to discuss the zero field order selective
observation, zero field and high field correlation spectroscopy, and the measurement

of spin diffusion in zero field.

1.2 Calculation of Zero Field NMR and NQR.
Spectra : |

One of the differences between zero field and high ﬁeld-‘ NMR is that the eigenvalues
of the spin. Hamiltonian do not depend on the orientation of the local principal
axis system of a spin interaction with respect to the laboratory frame[9]. For this
reason, zero field NMR spectra usually show high resolution. One can then ask how
the orientation distribution of a powder sample affects the spectrum. The answer to
this question is that the eigenvectors of the spin Hamiltonian, and thus the transition
intensities are orientation dependent. However, for some corhplicated pulse sequences

in zero field, the common procedure for taking a powder average is complicated due

. to many integrations over trigonometric functions. In this section, we will describe a

general method which can greatly simplify the calculation of the zero field NMR and
NQR spectra by using the irreducible tensor theory and properties of Wigner rotation
matrices[20, 21, 22, 23, 24]. We will show some particular cases where the theoretical -

| spectrum after a particular pulse sequence can be straightforwardly calculated by our

method without performing any detailed integrations in the powder average.
We start with the spin Hamiltonian of a quadrupolar interaction in its principle

axis system, given by[19]

H = p2oT20 + po2(Top + To—2), (L.1)



where the T, are the components of a second-rank irreducible spin tensor defined

by

Tho = %(313-12)

1
Tow = :FE(Iin'*'I:!:Iz)

1
oo = §I=1=Ii, (1.2)
and
1
I:!: = :F%(Iz + ZIy). (13)

The po,m are the principal components of the second-rank irreducible spatial tensor

of the quadrupolar interaction, given by

3 1
P20 =1/56, po21=0, and paz2 =67, (1.4)
where for our case .
’qQ
== TN ett——— 1-
S=we=srar+n - @)

and Q is the quadrupolar moment of the nucleus, g is the strength of the electric
field gradient in the z direction, e is the electron charge, and I is the nuclear spin
value.

The initial state of the density matrix also can be expressed in terms of the

irreducible tensors as

p(0) =" aimTim, (1.6)

im

where a;,, is a coefficient which means percentage of total population in the order
of T;m given in the initial preparation period. From the normalization property of
the density matrix, which is equivalent to the energy conservation requirement for

the whole system, we have

P R S
I’Zm al,mal,m CN(l, I) ’. (1.7)




where Cy(l,I) is a normalization constant, which is a function of the rank of the -
irreducible tensor and spin value, given by[21]

1 M2I +1+1)!
A+12)EI-)

Cn(l,T) = (1.8)

In the derivation of Eq.(1;7) we have used orthogonality properties of the irreducible
tensors , o
Tr{TymTym |} = Cr(l, I)6y6mm- (1.9)
With Egs.(1.1) and (1.6), the evolution of the density matrix under the quadrupo-
lar Hamiltonian during time ¢ is

() = e Mp(0)e M =S am 3 E5 O T, (1.10)

. ) : iL,m U.m' ) . i )
where the 8,‘,';,’,‘,,,(t) are the elements of the evolution matrides of I-th rank tensor,
determined by the spin Hamiltonian. Its explicit representation in general depends
on anisotropic parameters, § and 7, of the interaction, the spin operators in the spin
Hamiltonian, the spin value, and the initial condition of the spin density matrix. If
the initial order of the density matrix is zero, because the 'spin Hamiltonian always

commutes with unit operator the only value of the evolution matrices is one, that is
Eo(t) = 1. . (1.11)

Another trivial solution is that at time zero it is diagonal.

ELS(0) = 61 gbmt,m. | | (1.12)
| It is obviously orthonormal.
S (€ ) = utsbmmar 19

Adima

and the evolution matrix at time ¢, and ¢, is given by

D Entm(t)En, (82) = Efm(ti + 12) (1.14)

l,my

)



If the spin operators in the spin Hamiltonian are linear (e.g. the Hamiltonian of Zee-
man interaction, or chemical shift interaction), the matrix elements of the evolution
matrices are ,

EXL(t) = 61 gy me™, | / (1.15)
where wj is the strength of i-th interaction.

Calculating the evolution matrices becomes very difficult when the spin Hamil-
tonian éonta.ins bilinear spin operators, and in this case, there is no general solution
for an arbitrary value of spin. However the matrix representations still can be ob-
tained for small values of the spin on a case by case basis. As a simple example, let
us consider a spin I = 1 system with a quadrupolar interaction. The highest rank
_irreducible tensor necessary in expansion of the density matrix is two. Thus, the
zero-, first-, and second-rank tensors provide a complete set of basis operators in the
evolution of the density matrix. With the properties of the irreducible tensors[20),

we can derive the following general commutator relationship:
[nlx‘ml ? Tiz,mz] = Z C(lla 127 la m, m2) [1 - (—1)11+12-l]ﬂ,m1+;n2. (116)
‘ 1

Table (1.1) shows all commutation relationships for spin I = 1. By Table (1.1), it is

easy to prove that
[T20, (T2 + T3,-2)] = 0. (1.17)

This last equation allows us to separately derive the evolution matrices for the Ts,
and (T22 + T»,—2) terms in the Hamiltonian (Eq. 1.1). These two evolution matrices
are combined to obtain the final matrix elements of the evolution matrices.
In the next step to calculate the evolution matrices 8:;7’,m(t), we need to consider
a function of operators
F(6) = e AsBAs (1.18)
where A and B could be any two operators. The derivatives of the function f(6) are
dief(a) — _ze—u&a [A’ E]euio
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Table 1.1: Commutation relations for spin /=1

[TI,O_, Tim] = mTym [T, Towa] = :i:?Tl,il
NT1,1, 1] = =T (T30, Topo1] = ~3Th0
[T41, T 1] = FV2T 040 [Tot1, Tog2] = iylng,#1
[T1,41, To1) = FV3Tao | (To.9,T2—2) = Tio
[T1,21, Toz2) = Fv2To,71 [Ty,21, To0] = FV3T221

Other commutators not shown, are idéntica,lly equal to zero.

L0 = (e A, (R, Bled

L0 = (eMAAABA 1)

and the Taylor expansion of the function f(0) is
-."'.-"1 e 1 e Al _

Inour éxamplé the operator A can be either Topor T 2+T5 2, and B is the whole.
set of the irreducible tensors from rank zero to two respeéti‘vely. From Eq.(1.20) and

the commutation relationships of the irreducible tensors which are listed in Table

'(1.1), cycling conditions can be found after the second derivatives of the function

f(6) for spin I = 1. These cycling conditions are tabulated in Table (1.2). From

‘the cycling conditions components of the evolution matrices are straightforwardly

‘calculated. These components are tabulated in Table (1.3). By folldwing the same

procedure above, evolution matrices can be tediously derived one by one for all other

'spin values.

Next we need to determine the response of the spin system to a de pulse. It is well
known that a pulse applied on a spin operator behaves like a rotation operator. In

order to use the Wigner rotation matrices as a representation of the pulse response,
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Table 1.2: Cycling conditions for spin I =1

e-‘"2-°T1,oe‘9T"'-° =T
e-'n2'°T2,0619T2'° —_ T2’0
e—¥T20 (T2,2 + Tz’_2)e'9T2'° = (Tz,z + T2,-2)
e—0T20 (T2'2 _ Tz’;z)ezaTz,o = (Tz,g - T2,—2)
&[0Ty 190 = (<30

d2 [ —6T: 10T _ 23
2 670 Ty 11 T20] = (<03

e—w(Tz,2+T2,-z)T2 0t (T22+T2-2) = T2

e~ W0(T22+T2,-2) (T2 2+ T, 2)619(T2 2+T2,-2) — (T2 2+ T3, 2)

42 [e—la(Tz 2+T2 ‘2)T1 0eﬂ"(Tz 2+472,- 2)] = (- )24T1 0

i‘{;[ —8(To 24T -2) Ty ileiﬂ(T2.2+T2,-2)] = (—2)?Ty 4

do
%‘;[e-—te(Tz,2+T2,—2) (T2,2 - T2’_2)610(T2,2+T2,-2)] —_ (—2)24(T2,2 _ T2,_2)

122. [e—w(Tz,z-!-Tz.—z)Tz, :k'lew(Tz,z-i-Tz,—z)] = (_1)2T2, 41

we represent the dc pulse, and equivalently, the rotation operator, according to Euler
angles, and the spin operators by irreducible tensors. We ﬁll call the rotation oper-
ator P(Qp). As an explicit example, the initial density matrix is given by Eq.(1.6)
in the laboratory frame,.but after a dc pulse it becomes

p(04) = a1m Y. DS () i (1.21)
% m’

In many cases the initial density matrix is represented in the molecular frame. The
representation of the pulse therefore has to be transferred into the molecular frame,
and the response of the spin density matrix to the pulse shows orientation depen-
dence. We use P,(B,m(QM, Qp) to be the matrix elements of pulse rotation operator
in the molecular frame. This representation can be related to the Wigner rotation
matrices in the following way: the spin density matrix is rotated to the laboratory

frame where it is operated on by the dc pulse, and then is rotated back into the




Table 1.3: Zero field evolution matrices, Sf;il,m(t), for spin I =1

l,m U',m

1,1 | 1,0 | 1,-1 2,2. 2,1 {2,0]2,-1] 2,-2
1,1 | 31C4 0 | 3C. 0 2S5+ | 0 | #S- 0
1,0 _ 0 Co » 0 ZSo 0 0 0 —ZSo
L,-1|3lC_| 0. | 1C; 0 255-1 0 | 255, 0
2,2 0 250 0 1+1C| 0 | O 0 1-1Go
21 | 55%5+| 0 |355- | 0 3C+ | 0 | 3C 0
2,0 0 0 0 0 0 1 0 0
2,-1{5%5-| 0 |5%5+ 0 |3C.| 0 |3C, | O
2,-2 0 [FS| 0 ([31-3C| 0 | 0| 0 | i+1iC

In the table, Cy = cos(wst) + cos(w_t), Co = cos(nwet), C— = cos(wyt) —
cos(w-t), S; = sin(wyt) + sin(w-t), So = sin(ywet), S- = sin(w4t) —
sin(w_t), wy = Flwg, w_ = Flwg.

molecular frame. After this procedure, the pulse rotation operator is given by

Plum(@9) = ¥ DY, @DY,... @)Y, (). (22)

myi,m2

- Usually a pulse is represented by the pﬁlse length 6 and the phése @ of the rotation
axis relative to the x axis of the laboratory frame, (in high field case, of the rotating
frame).

Once the initial condition and the evolution rules of the density matrix have.
been determined, we transfer the density matrix from the laboratory framg: to the
principle axis system of the interaction tensor (if ‘there is more than one interaction
in the Hamiltonian, a molecule frame has to be introduced into the calculation, but
now we deal only with a single interaction). In the principle axis system,.the initial

density matrix is
| op(0) =Y e S DY (T (1.23)
lm m/
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The observable, O, can also be represented into the same form as Eq.(1.23).
0= bmY DY (DT (1.24)
im m’ ’
After inserting Eq.(1.23) into Eq.(1.10) and with Eq.(1.24), the FID signal will be

9(t,Q) = Trlp(t)O]
= Y ambn D VD (DEm, T {TimTipm, )

mz,mi
b )lszml ,n2,ms3,mq,m

(1.25)

The orthogonal properties of the Wigner rotation matrices and irreducible tensors
imply that the powder averaged FID signal will be

1)m™ (
G(t) = Z (21 _)*_1all."nblh—mlgylrlzglmzCN(llaI): (1:26)

l1,m1,m2
where Cn(l,I) is a normalization constant given by Eq.(1.8). As we can see from
Eq.(1.26), the evolution matrix, the initial condition of the density matrix, the ob-
servable, and Clebsch-Gordan coefficients totally determine the powder averaged
spectrum. We do not need to perform any integrations over orientations. Another
interesting point is that the observable is actually determined by the initial order in
the density matrix, irrespective of what other orders are involved during the evolution
time under the Hamiltonian. |
As a simple example, let consider the sudden switch experiment for spin I = 1.
Both the initial state and the observable are represented by I, = Tio, and a1 =
b10 = 1 in the laboratory frame. From Eq.(1.26) and Table (1.3), the FID signal is
then |

G(t) = % cos (wgnt) + cos (3 ; ant) + cos (3; ant)] . (1.27)

Other examples will be given in following sections. It should be pointed out that

Table (1.3) can also be used for two coupled spins with spin value I = 3
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1.3 Order Selective Observation of Zero Field
Signals

In zero field NMR and NQR spectroscopy, a single spin I = 1 or pseudo-spin-1
system has four nuclear transitions. Each transition corresponds to a peak in a
spectrum. Thé spectrum will eventually become very complicated as the number of
spin-1’s nuclei in a molecule iricreases, and if ea,ch spin-1 nucleus has different value of
the quadrupolar (or dipolar) coupling constant and the asymmetry parameter. The
éssignment of each peak in the spectrum therefore becomes very difficult. In high
field NMR, there are several methods to simplify a complicated spectrum [30], one of
them is multiple quantum transition NMR speétroscopy 25, 26, 27, 28, 30] In this
method, a multiple quantum opefatbr (pumpiﬁg operator in optics) which isa linéar
combination of a set of different rank ténsors is created by a particular pulse sequence
[25]. The n—qua.ntﬁm coherence in the density matrix is then prepared by applying.
the multiple quantum opefator to the spin system for lengthvof times, %, wheré
the density matrix starts to evolve under the spin Hamiltonian. At the end of the
evolution, another multiple quantum operator is applied to observe multiple quantum
trahsitions. The sécond multiple quantum operator is usﬁally the cohjugate operator
of the first multiple quantum opefator in order to obtain an in-phase spectrum with
multiple transitions. The idea of the multiple quantum NMR can also be used
selectively to observe the zero field signal, and we call this experiment the order
selective observation. In the order selective observation of zero field NMR signal, we
- must prepare a particular initial order for the density matrix by usiﬁg a dc pulse
sequence. This particular order can be completely represented by an irreducible
tensor. . In similar principle, we need another particular order to observe the evolution
of the density matrix in zero field: The zero field NMR signal therefore depends on
the selection of the initial order and the observing order. In this section we will show

four different initial and observable orders. Each of them will yield different signal
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forms, and the linear combination of these signals can greatly simplify the spectrum.

The initial density matrix can be represented according to the orders of the
population distribution and each individual orders (m;) be expressed by the m-th
components of [-th rank tensors, or their linear combinations. For example in the
sudden switch experiment, the initial density matrix only contains the first order
(sometimes is called Zeeman order)l for m = 0 which is represented by T} of the
first-rank irreducible spin tensor, while in the adiabatic demégnetization experiment,
the initial density matrix has the second order: quadrupolar order (or dipolar order)
for m = 0 and 7 order for m = +2, represented by the second rank irreducible tensor,
T20 and Tp2 + T respectively. Similarly the observable also has Zeeman order,
quadrupolar order, and 7 order. The linear combination of the initial preparation and
the observation of the spin density matrix gives us four different choices to observe

the zero field NMR signals for a spin I = 1 system.

Table 1.4: FID signals with different order selective observations in zero field NMR
and NQR for a powder sample with spin [ = 1.

Initial | Observable FID Signal

z VA 3[cos(wyt) + cos(w-t) + cos(wyt)]
Q+n A 3(2sin 26 + sin 8)[a_ sin(w_t) + a4 sin(wt)]

Z Q+n 3(2sin 26 + sin 6)[a_ sin(w_t) + a4 sin(w4t)]
Q+n| Q+n | po(f)+ py(6) cos(wnt) + p— () cos(w-t) + p+(6) cos(ws)

where po(6), p,(6), p_(8), and p,(f) are given by Eq.(1.28) in text as the
pulse response. ax = \/60,2,0 =+ (@22 + az,—2), where as9, az2, and ap o are the
constants to form the quadrupolar order and 7 order in PAS.

From Eq.(1.8), for an experiment which only consists of the initial preparation and
free evolution under the quadrupolar Hamiltonian, the FID signal before the powder
average is given by Eq.(1.25). The powder average depends on the initial order of the

12
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Figure 1.1: Initial preparation and observation of the zero field NMR signal in field
cycling experiment. (a) Sudden switch experiment in which both the initial and
observable orders are Zeeman order; (b) adiabatic demagnetization experiment in
which quadrupolar (or dipolar order) and 7 order are prepared initial, but the ob-
servable is the Zeeman order; (c) the initial and observable orders of (b) are replaced
with each other; (d) both the initial and observable orders are quadrupolar and 7
order, where 6 and & are dc pulse lengths and experimentally we choose § = 6’ or
0=-¢. ‘
13



density matrix and the order of the observable. For the four configurations shown in
Figure (1.1), the powder averaged FID signals are listed in Table (1.4). For the case
in which both the initial density matrix and observable are the quadrupolar and 5
orders, the pulsé response becomes very complicated and the four coefficients in the

last row in Table (1.4) are expressed as

p(0) = —E fi(® Z Z( 1)™agm[(—1)'ag,—mC?(22l,m,2m’)

m=-2m/'=~1

+ a24m/_mC(22l m, —2m')C(221,2m’',m — 4m/)]

() = —Zf;(G) Z Y (—D™asml(—1)ag-mC?(22L, m,2m’)

m=-2m/'=-1,1

- a24m,__mC’(22l m,—2m')C(221,2m',m — 4m')]

—Ef;(l?) Z > (- l)maz,m[( —1ay_mC?(22l,m, m’)

m=—-2m/=-1,1

p+(6)
+ a2 zml_m0(22l m,— ')C(22l m m — 2m')]

p_(6) = - Zfz(ﬂ) Y T (“Dmagml(~1)anmC?22, m, m)

m=-2m'=—1,1

- as 2m’_mC(22l m, —m')C (221, m',m — 2m’)]

; _+1_ - [l +2 Z cos(kﬁ)] | (1.28)

fi(9)

If the demagnetization in the experiment is adiabatic, the initial order of the density -
matrix before applying the dc pulse is quadrupolar and in the principle axis system
the density matrix should be orientation independent and the coefficients a ,, have
the values azo = \/6/ 2 and az 42 = 1/2. Based on this assumption we have plotted
the pulse response in Figure (1.2a). For comparison, the pulse response for the
conjugate quadrupolar order and 7 order, (@ + n)T, to obtain an in-phase spectrum
during detection are plotted in Figure (1:2b).

From Table (1.4) and Figure (1.2), we can conclude the following. When both
the initial and the observing orders are Zeeman order, there are three peaks with
“equal intensity in zero field spectra and no non-evolved peak at zero frequency. If
there is a zero frequency peak, it means that there are some other ofders, appearing

both in the initial density matrix and in the observable, if the speed of turning off
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the intermediate field is not fast enough. However, when the initial density matrix
is determined by the quadrupolar and 7 orders and the observable is Zeeman order,
the peaks at wy, and zero frequency disappear. The transitions with frequency wy
and w_ appear in the dispersive mode and have an intensity ratio of 2 : 1. In
the case where ‘the initial density matrix and observable are both quadrupolar and 7
orders, the intensity of one or two from totai four transitions may be zero by properly
choesing pulse length. For example, when § = 68°, the w_ transition is zero and w,
transition contain more than one quarter of the total intensity, and the 7 transition
is very small. Experimehtally, it is therefore possible to edit the above three different
spectra such that each edited spectrurﬁ contains only one kind of transition once the
pulse length is known. We can also measure the coefficients azm of the initial order
by varying the pulse_le'ngth. This experiment will allow us to confirm the above
assumption and to assertion the adiabaticity of the demagnetization process.

Although the order selective observation provides a way to distinguish the differ-
ent tfansitions by the different pﬁlse response for same kind of spin nuclei, it does
not identify transitions which come from different kinds of nuclei. In order to sep- |
arate transitions which come from different sites in the semple, a two dimensional
.corfela.tion spectroscopy may be used. The simplest pulse sequence for obtaining a
two dimensional spectrum consists of a single pulse which is applied at the end of
the first evolution period. In the principle axis system of the quadrupolar ihteraction
tensor, this pulse becomes orientation dependent. Again this orientation dependenoe
is given by ’P,(,l},m of Eq.(1.30). Before the pulse is applied the density matrix in the
principle axis system is

p) = X ym DR (VEm, (t-) Tham, (1.29)
l1,l2,m1,m2,m3 _
- After application of the dc pulse, the density matrix becomes
p(ty) = y > 03 Dy (D E i, (£4) Praems (2 ) Ty (1.30)
1,l2,m1,m2,m3,mq
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Figure 1.2: Pulse responses under the two pulse sequence (see Figure 1.1d) in zero
field NMR with different pulse length: (a) 8 = &', (b) = 7—0 or ¢ = —8, where wy,
Wy, W-, and w; represent the intensity of transitions corresponding to non-evolved,
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7, quadrupolar orders respectively.
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Following the same procedure in deriving Eq.(1.8) yields the powder averaged FID
signal at the end of the second evolution period t,.

Gltite) = Y, > (—1)ma+me=ms

——Cn(ls, I)
11,12,13,14 m1,™m2,Mm3,Mm4,ms,Me 2l4 + 1

_ X C(lhl2’l4,m17m5)C(l21l3’l4am47ml +m5 - m4)

X C(lly l21 l47 mz,ms)C(lg, l3a l4a mz, My + me — m3)

l R}
X a'llnmlblS:m3"m2‘m6D‘£1llz5)m4 (Qp)g:rzz;’:,l}mg(tl) 31-?-"15—"14,"16 (t2)' (1-31)

After two dimension Fourier transformation, a cross peak appears only when the two
diagonal peaks are the dlfferent transitions of same 31te Expenmenta.l results can

be seen in reference [1 1].

1. 4 ' Zero Field and ngh Fleld Correlation Spec-
| trum

Time-domain zero field NMR and NQR spectroscopy has provided a new meth{_)d
for obtaining high resolution' spectra of a polycrystalline or amorphous sample and |
therefore allows us to measure the dipolax coupling or quadrupolar coupling constants
without the spectral resolution problem [8]-[12]. However, we can observe neither
isotropic chemical shifts nor chemical shift anisotropies. This is because the chemical
shifts linearly depend on the external magnetic field if they are measured in unit of
" Hertz. At zero field, the chemical shifts basically are zero. dn the other hand, the
chemical shift information can be crucial for determining the structure or dynamical
behavior of a molecule.

~ In'order to increase the sensitivity of the zero field experiments, é spin-locking
technique has been employed[9] for the high field observation. This spin-locking
technique effectively disregards the high field spectra and all information contained
in it. After ‘a moment more thought, we know that the correlations between zero

field and high field are also destroyed by spin-locking detection. However such a
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correlation spectrum[18] will lead to a new type of separation of a usual high field
powder pattern based on the high resolution spectrum in the zero field domain and
also takes advantage both of zero field and high field after combination with mul-
tiple pulse techniques in high field{19, 114]. In this section, we will provide a brief
theoretical description of the zero field and high field correlation spectra and show a
set of simulations which potentially could be verified by some experiments.

We start with the initial state of the density matrix, py, in zero field.

po =3 aimTim, : (1.32)

Im

where the Tj,, are the components of a l-th rank irreducible tensor, and the a; .,
are the coefficients which represent the initial state of the density matrix prepared
by switching off the external magnetic field suddenly, or demagnetization to zero
adiabatically and then initialized by application of a strong dc pulse. After we have

prepared a suitable initial state in zero field, it is transformed into a molecular frame,

o' =Y amDQ () Lo, ‘ (1.33)

Lmm'
where the Df,?,,m 's are the components of Wigner rotation matrices, the () are the
Euler angles between the laboratory frame and the molecular frame, and the Tj ’s
are the irreducible tensor in the molecular frame. The zero field spin Hamiltonian in

the molecular frame may be written in general as
H =3 (-)™ A5 Tem, (1.34)

where the A3 ,,’s are the components of an interaction tensor responsible for evolution
in zero field (e.g. dipolar, or quadrupolar interaction). With Eq.(1.34), the evolution

operator in the molecular frame is -
LM(t) = e Mt (1.35)

After evolution in zero field for time, ¢;, we can use a propagator P to store the

coherence parts in the density matrix as a population distribution which relaxes
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slowly. The sample is then moved from zero field to high field for further evolution
with high field spin Hamiltonian which is truncated by the large Zeeman interaction,
that is, | |

HY = 3 (=)D () A3 _mTao, (1.36)
where A% is the components of the interaction tensor in high-field (e.g. chemical

shift anisotropy). The evolution operator in high-field is then
LY () = e, | (1.37)

After evolution in high field for a time, t5, the total density matrix can be calculated
by use of Eqgs.(1.33), (1.35), and (1.37). '

plts, ta, Q) = L (t)PLY@)AYLY T )PTILY (). (138)
Finally the two-dimensional si_gnal. is given by |
9(t1,t2, ) = Tr{Lp(ts, 12, ) }- (1.39)

For a powder sample, an average over €2y has to be performed, and then the FID
| signal is | | , | , |
Gt t2) = /Q g(ts, b2, Uar)d . (1.40)
As an illustrative example, we calculated the zero field and high field correlation
spectra for a spin system I = 1 system which evolves under a quadrupolar Hamilto-
nian in both zero field and high field. The sudden switch pulse scheme is assumed for
initial evolution in zero field (see Figure 1.1a). The only difference between the zero
field Hamiltonian and high field Hamiltonian is that the Hamiltonian in high-field
is thf_: truncated quadrupolar Hamiltonian. In this case we can choose the molecu-
lar frame to coincide with fhe principle axis system of the quadrupolar interaction
tensor. The initial state is I, in the laboratory frame. From Eq.(1.33), the initial

density matrix in the principle axis system is
ou(0) = X Do) Tim (1.41)
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As we know the quadrupolar Hamiltonian in the PAS is
|
'HQ = Wy [Tg'o - -2-7](T2,2 + Tz'_z)]. (1.42)

Under this Hamiltonian, the evolution in the zero field during time ¢; is completely
determined by the evolution matrices £&*) given in Table (1.3). In the high field

domain, the truncated Hamiltonian in the rotating frame is

Hoo =Y DEu(Qu)p2mTop- (1.43)
By inserting Eqgs.(1.41), (1.42), and (1.43) into Eq.(1.38) we can calculate the density
matrix for the correlation experiment,

pltrte, r) = 3 D o(Qn)EL: my (t1)e™ 9P T P Masn, (1.44)

{,mi1,m2

For the simplest case, the propagator P first transforms the irreducible tensors from
PAS to the laboratory frame, projects it on to I, axis, and finally applieé a 90° to it
along I, axis in the rotating frame in high field. Using this definition of P implies

Gty ts) = /Q d Y DS,Q,;,(QM)Dgg,OT(QM)s},;;m(tl)cos[Az,o(szM)tz]. (1.45)

my,mz

Using Eq.(1.45) and Table (1.3), we have performed numerical simulations of the
zero field and high field correlation spectrd for spin I = 1 system with quadrupolar
interaction . Figure (1.3) shows a variation of powder patterns as the asymmetry
parameter, 7, changes from 0 to 1. The new type of separation based on the high
resolution zero field spectra is clearly demonstrated. The complicated powder line-

shape in high field domain decomposes into three (two when n = 0) relétively simple
superimposed lineshapes. Each powder pattern has different shape and corresponds
to the different orders (e.g. quadrupolar order, or 7 order) present in the zero field
domain. The separation thqrefore may be useful fof assignment of the zero field NQR
lines by the superimposed lineshapes, when there are several unequivalent spins in
the sample. Such two-dimensional correlation spectra have been measured by Zax

and co-workers[9, 11].
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(a)n=0.0

High field

© n=0.4_/\/\_ (d) n=0.6‘/\/\—

N

Figure 1.3: Variation of simulated powder lineshapes in zero field and high field corre-
lation spectra with different asymmetry parameter 7 for spin I = 1 with quadrupolar
interactions. The projections of the zero field and high field are shown on the sides
of the 2-D spectrum respectively. Each superimposed powder lineshape in high field
domain is related to the order in zero field domain '
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We can generalize the calculation that resulted in Eq. (1:45) to include other
zero field pulse schemes (see Figure 1.1 b-d). The signal as a function of crystal
orientation and time in zero field can be shown to be

9:(t, ) = 3 Gy, 0)DSy i, (@), (146)

{,my,m2
where the coefficients, .aﬁnz’ml (t1) , depend on the evolution in zero field, and the
summation over ! runs from zero to a finite integer number. In other words, the

zero field signal can be expressed in a finite number of irreducible representations of

SO(3) group. Similar to Eq.(1.46), the high-field signal can also be expressed as

9n(t2, ) = Xt (Do), (1.47)

where the index ! now varies from zero to infinity. Two conclusions c‘an be drawn
from the above discussion. First, in conventional high-field NMR only the identity
representation of SO(3) in the density matrix contributes a powder 1ineshape. The
evolution of the density matrix in the zero field now allows us to observe the high
field powder lineshape with different representations of SO(3). In the above example,
there are total three representations, D@, DM, and D@, of SO(3) participated
in forming the superimposed lineshapes. Second, the orthogonality of the Wigner
rotation matrices implies that the index ms for zero field signal has to be zero after
a:vera.ging over the powder average. This reduction makes the calculation easier,

allowing us to quickly derive the coefficient for Eq. (1.46) for the above example,
ain,o(tl) = Z(—l)mC(l, 17 la my,m — ml)C(la 1) lky 07 0)8111;}—m,m1 (tl)' (148)
m1 )

An interesting application of zero field and high field correlation spectroscopy
will be when the evolutions in zero field and high field are governed by different spin
Hamiltonians. An example of particular interest is the case of two dipolar collpled
spin one half nuclei because in zero field there is only the dipolar interaction of a

lone spin pair and in high field there is only the chemical shift anisotropy, assuming
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that the dipolar interaction has been eliminated in high field by applying a multiple
pulse sequence (e.g. WAHUHA) [114]. In general, the principle axis systems for
these interactions are not the same, so we will introduce a rﬁolecular fra_me which
differs from the ﬁﬁnciple axis systems. For the simplicity, we continue using the
éame initial density matrix and propagator operator in zero field as before. In order |
to usé ‘Eq.(1.44), we neéd to add another transformation from the molecular frame
to the principle axis system. After this has been done, the zero field vsignal will have
the same form as Eq.(1.46) with the coefficient given by |

aﬁn’o(tl) = ZI(—I)""C(I,l,l,ml,m—ml)C(l,l,l,O,O)

' 1
x Y DR QD)D) () g ms (1), (1.49)

m3,mq .

where (p is the Euler angles of the transformation from the molecular frame to the
principle axis system of the dipolar interaction tensor. For the high-field pari: of the

~ experiment, the CSA tensor is

Avo(Qr, Qos) = Y DR (O)DP, (Qes)prm, (1.50)

n,n,

where Qcs are the Euler angles of the transformation from the molecular frame to
‘the principle axis system of the chemical shift anisotropy tensor. At the end of the
“evolution in high field domain, from Egs.(1.49) and (1.50) the FID signal should be

Glt1,t2) = /Q 0 3 0k o (1, o) Do (g )~ 420 Qas)tz, (1.51)
im

Using Eq.(1.51) and Table (1.3), a variation of powder pattéms with different
asymmetry parameter n and relative orientation between the principle axes of the
ajpolar coupling tenéor and the chemical shift anisotropy tensor is shown in Figure .
(1.4). In the simulation, we chose the molecular frame to overlap with the principle
axis system of the dipolar coupling tensor. The‘ superimposed powder lineshapes cor-
responding to zero field peaks wy and wp are strongly dependent on the relative ori-

entation of the chemical shift anisotropy tensor with respect to the molecular frame.
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Figure 1.4: Variation of simulated powder lineshapes of dipolar coupling and chem-
ical shift anisotropy correlation spectra with different asymmetry parameter, 7, and
the relative orientations between two tensors for two spin I = % nuclei with dipolar
interaction in zero field and chemical shift anisotropy interaction in high field, assum- -
ing that two nuclei are chemical equivalent. wp and wp are two transition frequencies
at zero field. Left: 7 = 0, middle: n = 0.5, and right: n = 1.0.
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The full information about two interaction tensors, that is, the dipolar coupling con-
stant ahd the principal values of the éheinical shift anisotropy tensor, therefore can
be obtained from the zero field and high field correlation spectra. These information
will be very important in the determination of a molecule’s structure.

Although we have only shown two simplé exampleé in the demonstration of the
zero field and high field correlation spectra, other corhbinations are readily conceiv-
able with different zero field pulse scheme. It has to be pointed out that in order to
obtain pure chemical shift ahisotropy lineshape for protons, a powerful homonuclear
decoupling technique has to be applied in high-field. This will make any real experi-
ments of zero field and high field correlation spectrum! very difficult. This is also the
' reason why we have not shown suitable experimental data in the second example for
verification. However, we believe that it can be done in futﬁre, and thus this method

still is pote'nf.ially very useful.
1.5 Spin Diffusion in Zero Field NMR

Time-domain zéro field NMR has proven powerful for obtaining high-resolution spec-
‘tra of polycrystalline or amorphous samples in solids [8]-[18] The convenience is
" obvious in the assignment of the sites, local symmetry, and even the exchange be-
- tween sites from these spectra. In this section we will examine the spin diffusion
(that is the order exchange) process at zero field. It has been shown in high field
NMR, that the rate of the spin diffusion relates directly to the distance between two
spins as well as the orientations of the internuclear vectors[34]. The measurement
of spin diffusion in solids by means of two dimensional spectroscopy: in high field
NMR35, 36, 37, 38, 39, 40] is based on the overlap of lines corresponding to different
sites.> In the overlap region, the eigenstates of the spin Hamiltonian are mostly de-
generate, and therefore, the spins can undergo an energy conserving flip-flop process.

_ Furthermore, the flip-flop transition probability increases as the overlap region in-
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creases. Because the magiletization evolves under a scalar Hamiltonian in zero field,
the zero field NMR spectra therefore are highly resolved, leading one to ask whether
or not the spin diffusion process is possible. Furthermbre, if there is a such process,
how can we interpret it? The answer of the first question is positive owing to the
experimental observation of the spin diffusion process in zero field [17]. The second
question turns out to be much more difficult to answer properly.

In Figure (1.5), two pulse schemes for measuring zero field spin diffusion process
are shown: one is the sudden switch scheme (1.5a) and the other is the édiabatic
sequence (1.5b). Both schemes are a combination of the pulsed zero field NMR
and two-dimensional exchange spectroscopy commonly used in high field NMR[41,
42]. The sample is first polarized in high magnetic field (Ho = 4.2T) and then
moved pneumatically to an intermediate field with field strength about 0.017". This
field then is suddenly turned off in the first pulse scheme. After the magnetization
processes freely for a length of time ¢; under the spin Hamiltonian, the intermediate
field is turned on to store the spin order along the z-axis in the laboratory frame. The
stored spin order is orientation dependent for each individual spin and, therefore, the
spins are not in an equilibrium state. In the 7, period, the spin system undergoes a
diffusion process among different spin orders. After the intermediate field is turned
off again, the magnetization evolves for a time t, under same spin Hamiltonian as
during the first evolution period, but with the initial state affected by the spin
diffusion process which occurred during mixing time. Owing to the existence of the
mixed order among different spin nuclei, cross peaks appear in a two-dimensional
spectrum and the diffusion rates may be measured from the intensities of the cross
peaks (see Figure 1.5¢). The diffusion mechanism in this experiment will be same
as it in high field[34] and now we will focus on the second pulse scheme, where true
ZEro ﬁelci spin diffusion occurs.

In the second pulse scheme (Figure 1.5b), the intermediate field is adiabatically
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Figure 1.5: Two-dimensional spin diffusion experiment in time-domain zero field
NMR used to observe spin diffusion rate. The mixing time 7,, is kept constant in one
experiment. Fourier transformation with respect to ¢, and ¢, yields a two-dimensional
exchange spectrum where the cross peaks indicate the occurrence of the spin diffusion.
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Figure 1.6: Experimental spin diffusion spectra of diethylterephthalate-dy. The
two-dimensional spectra show only the peaks in the region from 100kH z to 120kHz2
in Figure (1.7). (a) 7 = 1msec, and (b) 7, = 50msec. It can be clearly seen that
the spin diffusion occurs on a length of time about a few milliseconds.

28



reduced to zero. In this process, the Zeeman order of the nuclear spins converts to
quadrupolar order (that is the magnetization of the spins is quaﬁtized in the local
field) during the level crossing[43, 44, 45, 46]. A strong dc pulse is then applied to the
spin system in or:der to initiate evolution of the density matrix. After the spin system
evolves for time ¢; under the spin Hamiltonian, a second dc pulse is applied to project
the coherence of the density matrix to spin orders along the quadrupolar principle
| axis. In the next 7, time, the spins will be subjected to a diffusion process. The
populations or spin orders of the individual levels will, therefore, mix with each other
bringing the states toward the thermal equilibrium. By introducing the second free-
pfocession period of a length of time f, generated by the third and fouri:h dc pulses,
the mixed order of the individual levels therefore can be separated and allows us to
measure the rate of the spin diffusion from the cross peaks in the two-dimensional

spectra by two-dimensional Fourier transformation of the zero field signal g(t1, 7m, t2).

Before we dig into the theory of spin diffusion in zero field, we first present the
experimental results of diethylterephthalate-d, in Figure (1.6), vmeasured by pulse
~scheme (1.5b). The a.nisbtropic parameters of the quadrupolar interaction for twd
different sites on ethyl group are wg, = 114.825kHz, n; = 0.017, wg, = 112.35kH 2,
and 72 = 0.013, which are extracted from the zero field spectrum in Figure (1.7). The
corresponding energy levels which are dominated by the quadrupolar interactions are
shown in Figure (1‘8)’. The _stateé are labeled according to the convention given by
~ Vega[47]. The energy levels indicated by arrows are thdse connected.by the dipolar
coupling operators. The kets are given by the product of two sets .of eigenvectors
of thé quadrupolar interactions in the principlé axis systems.. In general, the spin
diffusion only occurs among the energy levels that are oonnectéd by the dipolar
coupling operators_and have the energy differences thatv are comparable with the

amplitude of the dipolar interactions. We therefore expect that spin diffusion only
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Figure 1.7: Zero field deuterium spectrum of diethylterephthalate-d,. The expanded

part of the high frequency resonance peaks corresponds to the two-dimensional spec-
tra in Figure (1.6).
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occurs within two subgroups. Each subgroup consists of four energy levels. From
Figure (1.6), the experimental results show no cross peaks for short mixing time
between different sites. At longer times of several milliseconds, cross peaks between
a and b and between ¢ and d which belong to different sites appear, indicating the
occurrence of spin diffusion. ‘ '

The spin-diffusion process which occurs during the mixing time invol_vés magnetic
dipolar interactions between spins. The strength of the dipolar interaction is defined
by the couplingrconstant which is proportional to the gyromagnetic ratios v; and ¥

of two coupled spins and inverse to the distance between two spins, that is

Wwp = .
3
’ T2

’71’72712 (1.52)
Obviously the rate of the spin diffusion therefore is dependent on the internuclear
distance.
 For the two coupled deuterons, the total Hamiltonian of the system can be written
. ,
H = Ho, + Ha, + Ho, , (1.53)

where, in the molecular frame, the explicit expressions of individual terms are

HQ_.' = Z Dg’),m(QPi)p;,m"Ig,m’

m/',m
Hp = ¥ D @p)omTam (159

and Q2p, are the Euler angles of the transformation from molecular frame to the prin-

_ciple axis system of the :-th interaction. The zero order eigenstates which correspond

to the case that the dipolar coupling constant is zero is just the product of the two set
of eigenstates of the individual spins,-and the unitary transforma.tion operator to the
eigen basis is the product of the two rotation opefator, that is, U=R, (.Q P )R2(22p,)
where these two rotation operators commute with each other.

Because the dipolar interaction is usually very small for deuterons, during free

precession, we can neglect the dipolar interaction, and the density matrix will evolve
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Figure 1.8: Schematic energy levels for a two coupled spin system with I =1 in zero
field. The two sets of the principle parameters of quadrupolar interactions are of
similar magnitude. The energy levels indicated by the arrows are connected by the
elements of the dipolar coupling and do not commute with the main quadrupolar

Hamiltonian.
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primarily because of the quadrupolar interactions. After application of the second
dc pulse, the density matrix in the molecule frame then can be written as
pu(tr) = 3 6 a(t1) i : - (1.55)
iln :
where terms which do not commute with the main spin Hamiltonian should be
dropped because the spin diffusion is much slower ‘than the spin-spin relaxation
during the mixing time.
In order to explicitly relate the rate of the spin diffusion with the coupling con-

stant, we transfer the Liouville-von Neumann equation (with h = 1)

S =], S ase

into the interaction picture with respect to the zero order Hamiltonian Hq, + Hg,s

defined by

P (t) = eatHadipy (e~ Harthar)t, (1.57)

during the mixing time. In the interaction picture, the dipolar Hamiltonian becomes

time dependent, and the density matrix is determined by

LRt = M50, PR 0] | (1.58)

- The solution of the Eq.(1.58) can be obtained by use of the time dependent pertur-
bation theory, or by iteration which leads to a power-series expansionvwith respect

to the dipolar Hamiltonian:

d

2 Pt = —a{HB(0, o3 (0]~ [ drlHB(0), (B (e — ), O 4+ (159)

Since the density matrix can be completely represented by a set of irreducible tensors

of the spin system, the density matrix in the interaction picture also has the form

M) =Y aF (O Tim(D), . (1.60)

imp
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where p = [;l; for all permutations of spins, i, = 1,2. Inserting Eq.(1.60) into
Eq.(1.59) leads an equation of motion for the coefficients by multiplying both sides
. with T}, and using the orthogonal condition of irreducible tensors (see Eq. 1.9).

d 1
Eafm,p(t) = m lp;p, —ay m’,p’(O T"'{[H (), Tr m’(pl)]Tl m(p)}

+ 3 aZ,,0) / drTr{ M5 (), Tim@H5(E = 1), Tr @)}

Vm'py

(1.61)

where C(l, I) is the normalization constant given by Eq. (1.8).
Similar to the treatment of the density matrix, the dipolar Hamiltonian can also
be represented by irreducible tensors
HB®) = 3 b p () Tim(P). (1.62)
im,p
The application of the perturbation theory allows us to extend the integration limit to |
infinity, and to replace the af,,(0) by af,(t) based on the fact that the density matrix
relaxes very slowly with respect to the evolution frequency. Inserting Eq.(1.62) into
Eq.(1.61) yields the evolution equation for the coefficients.
dta”"‘"’(t) = E Wl lm”,a,, ml‘pl(t), o (163)

v, m’

where the rate constants W,’,',)‘,m are given by

w:,;,,,,,,,, CN(l 5 2 [ OTr{Tiim (), T ()] Tim ()}

ll,‘ml,m
+ Z _/ dTbll,fm.m (t) i2,m2 P2( T) ¢
12)m2 P2

X Tr{[Tyy,my (P1), Tom(P)][Tig,ma (P2}, Tor e (P)]}]- (1.64)

This formula is in principle same as that given by Suter et al.[34] except we write it
in forms of irreducible tensors. A further difference is that Eq.(1.64) is derived in the

molecular frame and therefore it is independent of the orientation of the molecular
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frame with respect to the laboratory frame. The rates of spin diffusion only dépend
'on the relative orientations among the molecular frame and the principle axis systems
of quadrupolar interactions and dipolar interactions, which are determined by the
molecular structure. In other words, the spin diffusion rates measured in zero field
with a powder sample are same as those in high field with single crystal. This is
the most important advantage to measure spin diffusion rates in zero field. We
rvnust. indicate that the time evolution determined by Eq.(1.63) is still reversible, - °
and to make‘ it irreversible we have to restrict the irreducible tensor set {T;m} to
a few relevant observables of the system and set af,,(t) = 0 for all other irrelevant
irreducible tensors. This procedure assumes that disregarded degrees of freedoms are
'~ at infinite temperature, irrespective of the transfer order. This aésumptio'n differs
from semi-classical relaxation theory[48, 6]. | |

The first term in Eq.(1.64) determines the precession fréquency in the double
principle axis systems. According to our assumption, only the spin orders in the
density matrix participate in spin diffusion and therefore the first term will be zero.
We now can see that the spin diffusion rates in zero field are also proportional to the
square of the dipolar coupling constants.

For two coupled deuterons, there are sixty-four components of the coupled ir-
reducible tensors from ranks zero to four, and seventeen additional uncoupled irre-
ducible tensors from rank zero to two. All the components of the coupled irreducible
~ tensors are listed in the Tables (1.5) and (1.6). Thus, the coefficients {af,,,(¢)} will |
form an eighty-one dimensional vector, and the formal solufion of Eq.(1.63) can be

written as

AT(t) = eW*AT(0), (1.65)
where 'AT(t) = [alo(t), - -,ai4(t)]. Because the rate matrix W is independent of
the oﬁéntation of the moiecular frame with respect to the laboratory frame, the

diagonalization has to be performed only once. The orientation dependence will
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be included in the initial density matrix, AT(0). Because we neglect the dipolar
Hamiltonian during the free proceséion of the magnetization in the first evolution
period, there are only uncoupled orders in the density matrix at the beginning of spin
diffusion, and the explicit form of the coefficients AT(0) as functions of the time and
the orientation of the molecule frame with respect to the laboratory frame éan easily
be calculated by use of the method of section 1.3. It is possible that the powder
average be analytically solved at the end of the whole evolution. This property will
possibly allow us to numerically simulate the spin-diffusion process.

We now calculate the initial coefﬁcienté of AT(0). From the experimental pulse
scheme (see Figure 1.5b), and assuming that the adiabatic demagnetization is perfect,
the initial density matrix in the molecular frame is

pu(0) = 3 [P ()0} (O T} + DL (m)a3 (0T ], (1.66)
m/;m
where

i 3 i 1
ayo = \/;, a4, =0, a540,= o (1.67)

for i =1,2. After the application of the first pulse, the density matrix becomes

() = % E,??ml (Qur)e™™*DA | (Qur)

m »m,m) ,m2

X [DR n(Qr)asm(O T3 m, + D ()2 (0TS, ], (168)
assuming that the dc pulse is applied along the z axis in the laboratory frame. Now
the spin system evolves for a length of time ¢;, and the density matrix is

2 —m ’
pm(t) = > 1('n’)m1 (Qu)e™™*DR) | (Qur)

Il )m m,m1,m2,Mm3

X Ezv"‘” (ﬂp..)az,m(O)s,’;;,mz(tl,z‘) foma- (1.69)
i=]1

Finally applying the second dc pulse yields

pu(tr) = Y- (8) i (1.70)

i,lLn
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where

,- !
i = Y 22 Tump@  @u)®, T

m,xm’ml »M2,M3,My

x DO, (Qu)e m+mdpR) (Qp)ph ER2 (4,5,  (LT1)

and 7 = 1,2 is the spin index. _

The next step is to evaluate the coefficients in Eq.(1.62) of the dipolar Hamil-
tonian in the interaction picture. From Eq.(1.54) and Table (1.5), we are able to -
rewrite the dipolar Hamiltonian in the molecular frame as

Hp =3 wpDyn(Qp,,)C(112,m,m — m')T} T2 s (1.72)
m,m’ . )
where the C(112, m', m — m/) are the Clebsch-Gordan coefficients. This Hamiltonian
is transferred from the molecular frame to the double principle axis systems of the
two quadrupolar interactions by the unif,ary transformation U = Ry(Qp, )R2(2p,),
and then transferred into the interaction picture by use of the unitary transformation

e~ Ma1+Mq,)t and finally, transferred back to the molecular frame again.

Hp(t) = Y b (6)Tin(l, o), | (1.73)
in ) ] v
with
W) = % wpDSn(Qpn) DL (06D e ()

[ )lz)m)m,rml sM2,Mm3

X Vit mem &L (4, 1)E2 i ma(t, 2)C 1, b2, 1, ma, n — m3),  (1.74)

m3,mj

The matrix representation of the dipolar Hamiltonian in the double princiﬁle axis
systems has the form in Figure (1.9a). There ére thirty-six elements thét are not
zero and no non-zero diagonal terms. Figure (1.9b) shows the matrix elements of
the ﬂip—ﬂop term in the Hamiltonian which is the origin of spin diffusion in high

~ field. According to our discussion at the beginning of this section, there are only
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Figure 1.9: Schematic matrix representation of the dipolar Hamiltonian in the double
principle axis systems of two quadrupolar interactions for two coupled spins with
I = 1 in zero field. The shaded blocks correspond to non-zero elements in the
matrix of the dipolar Hamiltonian, which may have the contribution to the spin
diffusion: (a) representation of the whole dipolar Hamiltonian, (b) representation of
the flip-flop term, and (c) representation of the matrix which actually contributes to
spin diffusion.
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two subgroups in which spin diffusion can possibly occur with total six different rate
parameters. These six rate parameters are related to the matrix elements of the
dipolar Hamiltonian in Figure (1.9¢) and their explicit expression may be calculated

from Eq.(1.74). Once this is done, the rate matrix W can be obtained by use of .

Eq.(1.64). The new spin order distribution may be obtained from Eq.(1.65) and the

~ density matrix at the end of the mixing time should have same form as Eq.(1.70).
After the magnetization evolves for another length of time ¢,, the FID signal is

g(th 1o, Tm) = : Z D‘Srlz)l ,mzt(QM)DSrlt);:,,mz (QM)Dgz,ms T(QM)

i,l)nlml L]

vx D(2) (QM)C_z(mz_ms)o-Dgzns (Qp,.)aé,_,, (O)dié,ml (tl ) Tm)gfn'.i ym3 (t2’ Z) -

me,ms

(1.75)

After tWo—dimensional 'Fburief fransforrhation of Eq.(l.’v{S),vthe intensity of a cfésé
peak created during spih diffusion rha,y be calculated and bthe spin diffusion rate CAn
therefore bé determine_d. | '. | | |

In summary, the measurement of spin diffusion in zero field appears to be po-
tentially useful for structure determination in solid materials where x-ray diffraction
methods are inapplicabie. Experimentally we have observed the spin diffusion pro-
cess in diethylterephthalate-d4, and a brief theory of spin diffusion in zero field has
been described in this chapter. The results show that the rates of spin diffusion
depend on the square of the dipolar coupling constant and the relative orientations
between the nioleculaf frame and the dipolar principle axis syéterh. Interpretation
of the rate is simpler than it is in high field because the rates are independent of the.
orientation of the molecular frame wiﬁh respect to the la»boréutoryf Unfortunateiy, the

numerical simulations have not yet been accomplished and are left for future work.
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Table 1.5: Irreducible tensors in the coupled system with two spin i =1

Too(11) = 71§[T1,—1T1,1 — T1oTh0 + Tiy T4

T10(11) = 5 [T11T1-1 — T Th,]
Ti,+1(11) = i\—}‘g[Tl,:!:lTl,O — Th,0T4,21]

Thp(11) = '\}E[Tl,—lTl,l + 2T oTho + ThTh,-1]

T2 (11) = :%E[TI,OTI,:!:I + Th,21Th 0]
To22(11) = Ty 01T 1
T10(12) = 711—0[\/§T1,-1T2,1 — 2T o100 + \/§T1,1T2,—1]
Ty +1(12) = 711=0[\/€T1,$1T2,:!:2 —~ V3BT Tex1 + T1,21 T30

T50(12) = -\71;[T1,1T2;—1 —T1,1T2,1]

To4+1(12) = :t\—}‘g[\/ng,iszO — V2T 71T, 22 — Ti 0T 41]
T3,42(12) = £ [T1,01 201 — V2T1,0Ts 2]
T30(12) = 71-3[T1,—1T2,1 + V3T T2 + T1,1T2,-1]
T341(12) = 711—5[T1,={:1T2,i2 + V8T 0T 41 + V6T 41T 0]
T3,42(12) = 71§[T1,0T§,i2 + V27,21 T 41]

- T3,43(12) = i Toae
Ti0(21) = J-ll—ﬁ[\/gTz,—lTl;l — 2Ty 6T1p + V3121 Th, -1
T141(21) = 711-0[T2,0T1,il — V3T Tip + V6T 42Th 71
, T20(21) = 71‘§[T2,1Tl,—1 - T5,1T1 4]

T5,4:(21) = ivlg[Tz:lel,O + \/§T2,:h2Tl,:F1 - \/§T2,0T1,¢1]
Tp,42(21) = i71§[\/§T2,¢2T1,0 — T5,41Th,11]
T50(21) = %[TZ—ITI,I + V3T 0Ty + TonTh 1]
T3,4+1(21) = 711=5[\/(_5T2,0T1,11 + V8T 41T 0 + To2Ty 51]
Ts5.40(21) = Vlg[ﬁTQ,ilTl,:hl + 15,4271 )
T3,23(21) = To.00Th 1
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Table 1.6: Irreducible tensors in the coupled system with two spin ¢ = 1 (continue)

Too(22) = ﬁ[Tz,—sz,z - To,1Toy + TooTop — To1Tom1 + T2 To —2)
Th0(22) = \/—11—3[T2,—1T2,1 - 2T2,—_2Tz,2 — T 1o + 21015 o) |
T1,+1(22) = ivll—o[ﬁTz,oTz,i1 - \/§T2,‘:F1T2_,12 — V3211 Top + \/§T2,i2T2,.$1]
. Tg',-o_(‘zz) = 711-4-_[2T2,—>2T2,2v+ 13, 21T2,1 — 2T2012p0 +T 21121 + 2T, 2T, 5]
_b To,+1(22) = 71,1=4[\/6T2;;1Tg,;e2 —TooTox1 — ToarTog + .JgT2,i2T2;¢l]

v Tz,i2(22)= ‘\'}-7[\/§T2,0T2,:t2 — V3T 1Tou1 + V2T 22To0]
T30(22) = o5 2T50 T2 + 2T22 T2 — To,—2Top — 2151 T3,
T3,41(22) = i\/—lfa[\/iTz,ﬂTz,o + \/§T2,i2T2,m§1 — V3T 51 To a0 — \/2__T2,0T2,:|:1]

T3.42(22) = i71§[T2,£2T2,o ~TroToz0]
7 , T3,:k3(22) = 25 [Dx0T2 41 — To1To,20]
Tyo(22) = 7%[T2,-2T2,2 +4T5 1Ty + 6T50To0 + 4151 5,1 + T2 215,
Ty+1(22) = \711=4[T2,:F1T2,=|:_2 + V6T 0To 11 + V6To11To0 + TowoTo 71)
| T4,¥2(22) = \/"11=4[\/§T2,0T2,¢2 + V8T 41 To 41 + V3T2,22T2 0]
Ty +3(22) = 71§[T2,11T2,=ez + T 40T 41]
T124(22) = TopoTone
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Chapter 2

Theory of Zero Field NMR in
High Field

2.1 Introduction

It is the dispersion that causes broadened and featureless lineshapes in solid state
NMR spectra -for polycrystalline or amorphous samples in which there are many
chemically and magnetically different nuclei. One of the origins of the dispersion is
the anisotropic characters of spin-spin interactions in the samples and is reflected by
the orientation dependence of the resonance frequency of each crystal with respect to
the external magnetic field. The extraction of structural and dynamical information
about the molecules in the sample is then achieved only by applying high resolution
solid state NMR techniques, for examples, magic angle spinning (MAS) [56, 57, 58],
dynamic angle spinning (DAS) [78, 76], double rotation (DOR) [72, 104], and mul-
tiple pulse (MP) [114]. The principle involved in these methods is the coherently
motional averaging under which the orientation dependence of the resonance fre-
quency can be completely or partially removed, and the NMR spectra contain only
the isotropic chemical shifts. However, the price paid for applying these methods is
that informa.tion about anisotropic interactions is thereby lost.

Recently, Pines and his coworkers have developed a new method, time domain

zero field NMR and NQR, which can overcome the above limitations while obtaining
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high resolution spectra [8]-[12]. In this method, the sample is pneumatically moved

to an intermediate magnetic field (0.017") after it is polarized in a high magnetic

field (4.7 T). The intermediate field is then suddenly removed completely when the

magnetization of the sample starts to freely evolve under the zero field spin Hamilto-

nian which is a scalar operator, invariant under a rotation operation to the sample.
The resonance frequencies of the maghetization are then orientation independent.

After evolution for length of time,t, the intermediate field is suddénly turned on and

~ the sample is transferred back to the high field for detection. FID signals can be

collected by performing a number of this experiment with a time increment. The
main feature applied in tirﬁe domain zero field NMR is the field cycling technique

- [7] commonly used in pure nuclear quadrupolar resonance (NQR). Zero field NMR
spectra obtained by field cycling technidue therefore consist of sharp peaks whose

frequehcies allow us to measure the principal values of the spin interactior.ls.

The condition involved in time domain zero field NMR and NQR is that the
samples must have long relaxation times in order to maintain the polarization, ob-.
tained in the high field, of the magnetizaf,ion.in .vthe'samples, and the polarization .
changes arising from the zero field evolution before the detection in the high field.
Furthermore, in zero ﬁéld, it is difﬁcuit to seiectiVely excite a particulaf nuclear
species because the Larmor frequencies of all nuclear species are equal to zero in
the zero field. The main reasonv of these two problems is because of the applica-
tion of field cycling technique. The question therefore arises whether it is possible
to directly obtain zero field NMR spectra in the high field without ever taking the
sample out of the magnet. Ihdeed, in series of studies, Tycko has recently shown
that this is possible[49, 50, 51]. The possibility originates from the fact that in a
coupled space, made up of the direct product of spatial and spin coordinates, the
~ high field spin Hamiltonian can be represented by a linear combination of irreducible

tensors from rank zero to four. 'Among them, the zero rank tensor which carries
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both of isotropic and anisotropic information about the spin interaction transforms
like a scalar operator. In-other words, the zero rank tensor is exactly equivalent to
the zero field spin Hamiltonian, and may yield high resolution spectra. Thus the
strategy to accomplish the zero field NMR in high field experiment is to average out
the high rank tensors and leaves only the scalar part of the total Hamiltonian. In
this chapter, I first review the theory of zerd field NMR in high field given by Tycko
(51], based on coherent average Hamiltonian theory[115]. The parameters used in
Tycko’s pulse sequence of zero field NMR in high field is then analytically solved.
These solutions are critical to achieve high quality of the z;ero field NMR spectra in
high field. In section 2.4, I present a new trajectory of zero field NMR in high field.
After that I turn into describing theoretically optimized solutions: " dynamic angle
hopping (DAH), dynamic angle spinning (DAS), and double rotation (DOR) in the
coupled space for zero field NMR in high field. '

2.2 Reconstrubt_ing Scalar Hamiltonian in High
Field |

A zero field dipolar or quadrupolar spin Hamiltonian can be represented by an inner
product of two second rank tensors: one reflecting the spatial behavior and the other
reflecting the spin behavior of the dipolar or quadrupolar interaction,[5]. In terms of
the irreducible tensors, the spin Hamiltonian can be written as [19]

2
H= Y (-1)"As-mTom, ' (2.1)

m=—2
where T3, and A, are components of a second rank spin and spatial tensor respec-
tively. Although Eq.(2.1) involves orientation dependent terms, the whole expression
- of the Hamiltonian is invariant under a rotation operation. After application of a
strong external magnetic field along a particular. direction (the z-axis) in the labora-
tory frame, all spins prefer to align up along the z;axis and the rotational syrhmetry
of the spin Hamiltonian is reduced from SO(3) to C (along the z-axis). In other
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words, because the interaction between the spins and the external magnetic field,
the Zeeman interaction, is usually so large that the internal spin Hamiltonian can
be efficiently truncated. To explicitly represent the truncated Hamiltonian, we first
transform the spin Hamiltonian from the laboratory frame to the rotating frame (that
is, the inferaction picture) by the unitary operator e;"_*z‘, where ‘H, is the Zeeman
Hamiltonian. The spin Hamiltonian in the rotating frame is then time dependent,
and under the first order perturbation approximation, the time dependent parts are

ignored and leave only the time independent term of the total spin Hamiltonian. In

other words, the spin Hamiltonian becomes
H = A2’0T2’0- . v (22)

In order to reconstruct a scalar Hamiltonian from Eq.(2.2), it is possible fo rep-
résent the spin Hamiltonian in terms of a single set of irréducible.t‘ensors, {Fim},
which are the product tensors of the Aj,, and T5. This is equivalent to tranéfofrnv
" the spin Hamiltonian from two separately spaces (spin, and spatial spaces) into the
coupled spatial-spin space, the product space of the spatial and spin spab_es, and -
the {Fi} are tensors in the coupled spatial-spin space. Using the fnultiplication
properties of two irreducible tensors[20, 116, 117, 118], the product of the A, ,, and
Tz,;m is given by -

' i+l :
All ,m1n2,m2 = Z C(lly l27 my, m2)-¢'l,fn1+mz, (2‘3)

I={li~ba|
where C(l;,lz,m,, mp) are the Clebsch-Gordan coefficients. Inserting Eq.(2.3) into -
Eq.(2.2) yields | | |

H= Y C(2,2,1,0,0)F0, - (2.4)

1=0,2,4
where no odd rank tensors appear in the Hamiltonian due to the symmetry properties

of the spin interaction. The zero order tensor Fgp corresponds to the orientally
invariant component of the internal spin Hamiltonian, i.e., the scalar component

usually involved in zero field NMR. The Clebsch-Gordan coefficient of Fop is %,
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but the Fi,, tensors are not normalized. After normalization of the Fi,, tensors,
the coeflicient of the scalar component should be one fifth. This implies that the
strength of the spin interaction will be scaled down by a factor of five, and results in
that the resonance frequencies will be reduced five times in comparison with the zero
field NMR spectra obtained by time domain zero field NMR approach. Although
the remaining terms in Eq.(2.4) are orientation dependent, they can be removed by
using the motional average techniques in high resolution solid state NMR [19] with
some necessary modifications, for example, the sample spinning synchronized by thé
applied pulse sequence. In fhe following paragraphs, I discuss how the zero field
NMR in high field can be achieved.

A rotation operator in the coupled spatial-spin space can be written as
R(@) = RQR)PQr), 25)

where R(§2r) represents a mechanical sample rotation and P(f2p) ié a spin rotation
arising from rf pulses. All rotation operators in Eq.(2.5) are defined by Euler angles:
a is for the spin angle, § for the nutation angle, and « for the precession angle.
Application of the rotation operator R(f2) to the spin Hamiltonian (2.4) yields

l
H= 3 3 C@221,0,0)D5()Fim, (2:6)

1=0,2,4 m=—1
where DS:,),O(Q) are the components of Wigner rotation matrices. Since in Eq.(2.6) one
of the two indices of the Wigner rotation matrices is zero, it is possible fo disregard
one, the v, of the three Euler angles involved in the averaging process. However,
the appearance of Wigner rotation matrices in Eq.(2.6) still provides two freedoms,
the rotation-angle, a, and the rotation axis angle, £, in the manipulation of the
spin Hamiltonian. Furthermore, we can also use a set of rotations in the coupled
spatial-spin space to average the spin Hamiltonain, so that,

N l.
H— % 3 3T €62,2,1,0,00D4(Q) Fim = 0 Fog, (2.7)

k=11=0,2,4 m=—1
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where ¢ is a scaling factor (its maximum value is { if Fo is normalized), and Q. are
Euler angles of the k-th rotation. Any choice of N and Q; which satisfies Eq. (2.7)
will be a trajectory for zero field NMR in high field. However, in order to find the
trajectories, it is necessary to have a general procedure described as follows.

In the first step, we assume that a number of rotations, N, is applied along a
fixed ‘a.iis inciined at the angle, B, with respect to the z-axis in the coupled spatial-
spin space. The average over the .Na rotations results in theltruncation of the spin
. Hamiltonian (2.6), which is |
() =3 = C6221,0,0d5(6)Fis, (28)

@ |=0,2,4

where d((,% (Bx) are the reduced Wigner rotation matrices.
If the applied rotations are discrete, that is, a rotation with finite sizes of the
angles is msta.ntaneously applied at particular time, resultmg in Eq (2.8) has to be

subJected to the condition of

Yemw =g " (2.9)
F=1 10 if m#0
where the rotation angles are
2nk!
— = 2.

and N, = [ + 1, and [ is the highest rank of the irreducible tensors in the spin
Hamiltonian. In our case, [ = 4 and N, = 5. This means that the rotations involved
in the truncation of Eq.(2.6) should possess at least a five-fold symmetry.

If the applied rotva.tions are continuous, that is, it arises from the sample spinning
with a rate w,, the average over a whole rotation cycle is

2 i m=0 '
" eTtmertdt = { “ron ) (2.11)

0 0 if m#0

where o = wyt, and N, = 27 /w,, the normalization factor.
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In the next step, we choose a suitable set of rotation axes, {8;}. The average
over the rotation axes, {8} can eventually result in the scalar Hamiltonian given in
Eq.(2.7). If the rotations are discrete, the set of the rotation axis angles, {8k}, has

to satisfy

o ifl=0
¥ C(2,2,1,0,0)d5%(8) = _ ,
k 0 if l#0

where Npg is the number of rotation axes. Alternatively, if the time dependence of

1

(2.12)

the rotation axes can be made continuous by rotating the sample about two or more

axes simultaneously, the condition to obtain a scalar Hamiltonian becomes

o if l=0

1 .
—C(2,2,1,0,0 W (8,) = , 2.13)
A ( )I;Id(),o(ﬁk) { 0 it 10 (2.13)

where Ng is one. Eqgs (2.9)-(2.13) present four general conditions for establishing
trajectories capable of affording zero field NMR spectra in high field. In the next
sections we discuss five different trajectories recently proposed by Tycko as well as

by our group.
2.3 Exact Solutions of Tycko’s Pulse Sequence

The first trajectory for obtaining zero fild NMR, spectra in high field was proposed
by Tycko in 1988 on the basis of a numerical computer search [49]. In his original
experiment[50, 51}, the sample rotates around an axis inclined at the angle, 8, = 75°,
with respect to the external field and the five-fold symmetry pulse sequence shown
in Figure (2.1) is applied to the spin Hamiltonian. The five-fold symmetry pulse
sequence consists of five blocks, and is synchronized with the sample spinning. Each
block has a phase increment, 72°, and contains two pairs of delta rf pulses. Each
pair with two pulses forms a discrete spin rotation to‘ the spin operators of the spin
Hamiltonian. The axes of all spin rotations are in the zy-plane of the rotating frame

and the phases of the two spin rotation axes in the k-th block are @or = 2k + ¢
and @2rt1 = 2kp + ¢2 where ¢ = w,7 = 36° and 27 is the length of time involved
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in each block, and ¢, = 0°, ¢ = —22°, the initial phases of the two rotation axes
of the first block. The nufation angles of all spin rotations are 8, = B, = f3, = 46°.
This pulse sequence afforded a high resolution zero field NMR spectrum of a 95%
deutefated solid benzene sample in high field. This spectrum consists of three peaks
whose splitting is equal to the dipole-dipole coupling constant of the two protons in
benzene, multiplied by a.scaling factor of 0.089. In the present section we rederive
Tycko’s-pulse sequence within the general description of the method. |
We assume that the sample rotates around a fixed axis oriented at an arbitrary
angle with respect to the external magnetic field, and consider what kind of pulse
sequence is needed to make the zeroth order average Hamiltonian a scalar. According
to group theory [68, 116], five orientations equally distributed oh a 2 period can av-
erage out up to fourth rank tensors with the exception of the zero rank tensor which
is a scalar. The application of the five-fold symmetry to our case is a.c_complished by
applying five rotational operations to the spin Hafniltonia_n in the coupled spatial-
spin space. Each rotation has an increment, 72°, of the spin angle, a, relative to the
previous one. The average over the five-fold symmetry rotation operatiohs removes
the o dependence in the spin Hamiltonian._ Practically, this can be inj;plemented
.in a way that one rotational cycle is divided into five equal arcs separaLted by 72°
increment. - Within each arc, the pulse sequence shown in Figure (2.1 ¢) is applied
to spin operators of the spin Hamiltonian. This sequence consists of four pulses and
involves two discrete spinl\;otation operafors with fixed rotation axis angleé (the nu-
tation angles, (). Physically, the trajectory of the variation of the spin Hamiltonian
as the sample continuously rotates depend on not only the spin Hamiltonian and
spinning speeds but also the initial position of the sample in the laboratory frame.
" According to average Hamiltonian theory [115], we do not care the exact trajectory
of the variations of the spatial tensors during one spinning period. What is impor-

tant for us is the initial and final values of the spatial tensors in one spinning period,
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Figure 2.1: Generalized Tycko’s trajectory. (A) The rotor cycle, the sample rotates

2n

at an angle 3, with respect to the external field and an angular velocity w, = 37—
(B) The synchronized pulse sequence, each block is phase shifted by 72° from the
previous one, and (C) details of one pulse sequence block, where £, B2 are the
flipping angles with phase o, = 2k + ¢1, Yor+1 = 2k + @2, and ¢ = w,T = 36°.
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and these two values are obviously dependent on both the spinning speed and the
initial position of the sample. As was described in the last section, in order to form
a scalar Hamiltonian, the spin tensors should have the same values as those of the
spatial tensors at the beginning and at the -end of a period. This is the reason why
two discrete rotation operators for the spin operators. in the Hamiltonian are needed:v
one is used to control the initial phase and the other determines the final phase of
the spin tensors in each rotation section. |

The propagatbr of the pulse sequence applied during k-th rotation arc (block) of
a period is '

Li (T) — e~P2loneis e—t-ﬁzk+i(7)ezﬁzl,,2k+1 e—H IV’_2k e—1ﬁ2k(r)e‘ﬂl Lo - (2,14)

where

Pokt1 = 2kp + b1
v = 2k + P |
weT = 36°, T (2.15)

7

and ¢, and ¢, are constant phases for each pulse. The zero order average Hamilto-

“nian; Hy(7) over the sample spinning in the time interval 7 is
-ﬁk (T) = Z Bm(T)e—tkmerAZmT?,O, (2.16)

where .

Bu(7) = { e (€777 = 1)d50(8:) for m#0

< , 2.17)
o(Br)T for m=0 -

and £, is the angle of the rotation axis with respect to the external field.
According to average Hamiltonian theory, by the end of a cycle the total propa-

gator under zero order approximation is

L(r) = f[ Li(r) = e~ e, | (2.18)
k=0
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Since

4
_ ’
Z e tk(m+m')p _
k=0

{ 0 if m+m'#0 (2.19)

5 if mem=0
Egs. (2.14) - (2.17) allow us to write the total zero order average Hamiltonian, H,

as
4 B
A= % B [E e_*mm'”] (e 1do(B1) + 704D (85)] A Taym
< m,m’ :
— _T_Z B—m[ —1méy d(2) L (B) + e—zm(¢2—wr7‘)d(2) (32)] AgmTom, (2.20)

From Eq.(2.20), the zero order average Hamiltonian becomes a scalar operator only
if
; _
—B_n[e” ™ d00(8) + N0 (B)] = ()70 m==2,00,2, (221)
c
where ¢ is a scaling factor. In Eq. (2.21), there are six unknowns (8, 41, B2, ¢1, ¢2,
o) and five complex simultaneous equations for different m. Due to the symmetry
of Wigner rotation matrices, only three equations are independent, which can be
written as five real simultaneous equations (for m = 0, the equation is already real).
Only five unknowns can be determined by these equations, and therefore one out of

the six unknowns varies as a free variable. By redefining the phase variables as

b = b0
¢s = ¢2-%<P, (2.22)

where ¢ = w,7 = 36°, it is possible to express the five real equations as

r

1d§3(8-) [d3(B) +dS3(Br)] = o
—£sin(3¢)d%)0(6,) [d""’ (1) cos(@)) + di(Be) cos(¢h)| = o
{2 sin($)d%,0(8.)[dSD (1) cos(24} )+d‘2’(ﬂz)008(2¢2)] =0 (2.23)
d§ (B1) sin(@}) + d3(B2) sin(dy) =
2(81) sin(244) + d53(B,) sin(2¢h) = 0

52




Eq.(2.23) can be easily solved in the' case of B; = B, = [, as the solution is deter-

mined by the following quadratic equation

2 + Bz + C =0, - (2.24)
where
T = ()
B = %[; sin(g) cos(26}) ~ 1|C ~ 2
B

and ¢} is a free parameter which can be any value between 0 to 27, Aftervobtain Br

from Eqs.(2.24) a.i;d (2.25), the other two variables, By and @5, can be calculated as

| (2.26) v'
¢ =91 |

‘Moreover, from Eq.(2.25), it results that the coefficients B and C have a period of

memw=wﬁ

| m with respect to the ¢'1: that is, the values of the coefficients B and C at ¢) are the
sameasat @ +7. |

We have numerically solved the five simultaneous equations (2.20) for the case
bf B1 # B> by use of computer.. However, the results show that the largest scaling
_ fa,cfor is always foundwhen B = Bo. We are, therefore, not interested in the case of

Bi# B |

| Figure (2.2) shows G, B, ahd o as functions of ¢]. From the figure it can
be clearly seen that solutions of Br, Bp, and o exist only in the region of '¢'1 €
(3\2.69°, 147.31°). In principle, solutions of 8, and B, can be replabe’d with each
6£her. However, for practical convenience, we define the angle of the sample rotation
axis, (3, to be in the range of 0° to 90°. The pulse angle 3, has two sets solutions
varying from —71° to 71° and each set ekhibits an inverse symmeti'y about 8, = 0°

and ¢' = 90°. The solutions of 5, and ¢ are symmetric around ¢’ = 90°.
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Figure 2.2: Exact solutions of 3, B,(81 = B2 = f3,), and ¢ as functions of free variable
¢} in period [0°,180°]. The zero order average Hamiltonian is a scalar operator scaled
down by a factor of ¢ from the untruncated internal spin Hamiltonian for each set

of ¢}, B;, and B,.
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The largest absolute value of the scaling factor o is located at ¢ = —¢) =

32.689°, or ¢; = 50.689° and ¢, = 21.311°, with B, = 8, = 71.064°, and at this
point ¢ = 0.117. A more stable solution is found at £, = 69.505°, B, = 42.864°,
and ¢1 = 84.375°, ¢o = —12.375° where ¢ = —0.0966. Another stable solution
corrésponds to the magic angle at which o = 0.

In Figure (2.3a), the static powder patterns for the asymmetry parameter, n = 0
and n = 0.5 are presented. Figure (2.3b) shows the corresponding high resolution

' spectra containing the same information. Experimentally, zero field NMR spectra

in high field can only be achieved when the spinning speed w, is large compared

with the internal spin interactions (dipolar or quadrupolar coupling). " This will be

the major obstacle for applying this method to extract the principal values of the

quadrupolar interactions. However, the experiments performed by Tycko et.al[50,
51]. have shown the potentia:l applications of the method for studying coupled lone-
pair proton systems in which the dipolar couplings have been scaled down by the

internal random motions.

2.4 A New Sequence for Zero Field NMR in High
Field » o -

In Tycko’s trajectory, a mechanical sample rotation is synchronized with discrete
pulses to obtain an effective scalar Hamiltonian. In this section, I describe an al-
ternative trajectory also based on average Hamiltonian theory, in which both of the
spatial and spin parts of the spin Hamiltonian are modulated by continuous rota-
tions, but one of the rotations is allowed to suddenly change the orientation of the
rotation axis, and the phase of the spinning. In practice this feature should be used
on the spin rotation as it is very difficult to mechanically change the spatial sample
rotation axis. Another feature used in the new trajectory is that the total average

Hamiltonian is obtained over two rotation cycles. This feature may affect the effi-
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Figure 2.3: Computer simulated (a) powder patterns for n = 0 and n = 0.5, and (b)
”zero field” spectra in rotating frame by applying synchronized rotation and pulse
sequence (¢, = 84.375, B, = 69.505, f, = 42.864, and o = —0.0966) for = 0 and
n=0.5. '
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ciency of the sample spinning in terms of a single spin interactioﬁ in the spin system.
However, if the chemical shift anisotropic (CSA) interaction is considered, Tycko’s
trajectory is also needed two cycles in order to apply a 7 pulse between the two
cycles to eliminate the CSA interaction.

We start with the rotating frame spin Hamiltonian given by Eq.(2.2). Application

of spatial and spin rotations to this Hamiltonian yields

HE) = Y DL (DD () Agimi To, e

my,m2 . . .
— Z e—s(mlwr+mzwp)t e~ Hmipr+mapp) dgz 0 ( ﬁr)d("%l ,0'( IBp) A2’m L T2,m2 ,(2 .27)
mi,m2 .

where w, and _’Qp are the spinning speeds of the spatial énd spin rotations respec-
tively, ¢, and l<p‘,, are the initial phase of the rotations, va.nd - and S, are the angles
of the rotation axes with respect to the external field. In order to obtain a scalar
Hamiltonian, the indices of the spatial and'spin tensors have to satisfy the relation-
ship given in-Eq. (2.1): my = —m; = m. The spinning speeds of the two rotations
therefore have to be eqﬁal, that I8, wp = wp = W, and the resulting zero order average
~ Hamiltonian is given by

TH =3 e dD), (8,0 (Be) A -m T (2.28)
- It could be proved that for single pair of rotations around fixed axes it is impqssible
to obtain the zero field scalar Hamiltonian given by Eq (2.1). The next step is to
consider whether two pairs of rotations‘ can extract the scalar operator from the total
spin Hamiltonian in high field. As in the preceding section, we choose to keep the
angle of the spatial rotation axis with respect to the external field constant and alldw
" to change the phase and axis of the spin rotation. After application of the average
Hamiltonian theory over two rotation cycles? the problem is reduced to finding the

solution of the following equation:

4%, (B Dy (5) + ™2 d By ()] = (~1)™, (229)
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where we already set ¢, = 0.
Looking for the simplest solutions of Eq.(2.29), we set ¢p, = ¢p, = 0. Eq.(2.29)

is then simplified to the following set of three simultaneous equations:

8(B:)1d53(Bpy) + 53 (Bpa)] = 0
42 0(B:)1d10(Brn) + 413 (Bpa)] = =0 - (2.30)
42 0(6:)d53(Bp.) + d53(Bpa)] = 0
Compared with Eq.(2.23), Eq.(2.30) not only looks simpler but also there are only
four unknown variables, and since one of them is independent, it can be chosen as a
free variable.

The dependence of the solutions of Eq. (2.30), (Bp,, Bp,, o) With respect to the
free variable 3,, are shown in Figure (2.4). As can be seen from the figure, at magic
angle spinning the scaling factor is zero. The maximl\l'ml scaling factor that can be
obtained from this trajectory is 0.17, but consider the average in the two rotation
cycles the actual maximum scaling factor is only about 0.085, smaller than 0.117 in
Tycko’s trajectory. Nevertheless, this trajectory possess the advantage that the pulse
sequence is very simple and that the point with maximum scaling factor is stable.
The most interesting solution of this trajectory is at B,, = 0° with maximum scaling
factor. At this point we need not to apply any rf field in the first period because the
rotation around the z-axis in the rotating frame commutes with the spin Hamiltonian
and no effect to the spin parts of the spin Hamiltonian happens during this rotation.
As in the case of Tycko’s trajectory, the mechanical rotation has to be synchronized
with rf field, not only the phase but also the amplitude. Experimentaliy, the axes and
rates of the spin rotation may be adjustable by change the offset and the amplitude
of the rf field[71], like the magic angle spinning experiment in rotating frame by Lee
and Goldberg in 1965[119).
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Figure 2.4: Exact solutions of 8, Bp,, and o as functions of the free variable G, in

the [0°,180°] period . The zero order average Hamiltonian is a scalar operator scaled

by a factor ¢ from the untruncated internal spin Hamiltonian for each set of Sp,, Gp,,

and G..
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2.5 Optimized Solutions

Three solutions are readily obtained from Eqs.(2.12) and (2.13). These solutions
coincides with the trajectories used in dynamic a.ngie spinning (DAS)|[76, 78], double
rotation (DOR)[72, 104], and dynamic angle hopping (DAH), which are used to elim-
inate the second order line broadenings of the central transitions in spin half integer
quadrupolar nuclei. The similarity arises because the second order line broadenings
are determined by both the second and the fourth rank spatial tensors of the first
order average Hamiltonian in the rotating frame. The theory behind these trajecto-
ries are also similar, the main difference being that all the rotations applied in zero -
field NMR in high field experiment are performed in the coupled spatial-spin space.

We briefly show here some of the results.

2.5.1 Dynamic Angle Hopping (DAH)

The first set of trajectories can be obtainéd by directly solving Egs.(2.9) and (2.12)
using discrete rotations. These solutions consist in a series of "hops” of the z-axis
_of the coupled spatial-spin space on paths given by two cones. On each cone, the
solutions consist vof five points separated by equal increments of 72°. Ten hops are
therefore needed. Experimentally, these sudden changes can be implemented by hop-
ping the quantization axes of the spin interaction in the coupled spatial-spin space
simultaneously. Although the hoppings in spin space can be made quickly by apply-
ing rf pulses, it is much more difficult to mechanically hop the sample. Practically
the hopping of the sample can be implemented by storing the magnetization along
the external magnetic field (§vhere the magnetization relaxes very slowly), changing
the orientation of the sample in the laboratory frame, and then bringing back the
magnetization to the xy-plane for further evolution. The problem involved in the
storing-hopping experiment is that only one component of the magnetization in the -

zy-plane can be stored each times. It is therefore necessary to design the experiment
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Figure 2.5: Dynamic angle hopping (DAH) trajectory:an icosahedron. The half apex
angle of the first cone (indicated by the vertical arrow), §) = 0°, and the half apex
angle of the second cone (shaded cone), §® = 63.43° with respect to the external "
field. '
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with minimum number of hops. The solution that minimizes the number of hops is
a path defined by the vertices of an icosahedron ( Figure (2.5)).

In this experiment which we call dynamic angle hopping (DAH), the half apex
angle 6 is zero for the first cone. For the second cone, the half apex angle € is
63.43° for the second cone. In a DAH cycle, the sample and the magnetization will
hop through six vertices on the icosahedron with the the magnetization evolving
for a time § (where 7 is the length of a cycle) under the spin Hamiltonian given by
Eq.(2.6). When the sample and the ﬁagnetization have traced a closed path through
all six vertices of the icosahedron, the average Hamiltonian has become a scalar. In
this scalar, the coupling constants 8y of quadrupolar or dipolar interactions will be

scaled down by a factor of five (that is, o = 1).

2.5.2 Dynamic Angle Spinning (DAS) for Zero Field NMR
in High Field
Instead of using discrete rotat@ons (hops), the z-axis of the coupled spatial-spin space
may travel continuously on the two cocentric cones that we have introduced. On the
first cone spins will evolve for a time ¢, while on the second cone they evolve for a
time ¢, under the Hamiltonian in Eq.(2.6). The half apex angles of the two cones
depend on the ratio of the two evolution times % If the ratio is 1, the first half-apex
angle B = 6 = 37.38° and the second half-apex angle B = 6® = 79.19°. This
trajectory possess a dodecahedral syrhmetry (see Figure (2.6)). Five vertices of the
dodecahedron are located on the cone with half apex angle ), while other five
vertices of the polyhedron are located on the cone with half apex angle 8. We call
this trajectory dynamic angle spinning (DAS)(76] for zero field NMR in high field,
and, as in DAH, yields ﬁhe coupling constants § scaled down by a factor of five (that

is, o = 1).
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Figure 2.6: Dynamic angle spinning (DAS) trajectdry:a dodecahedron. ‘The half apex
angle of the first cone (top shaded cone), #) = 37.38°, and the half apex angle of
the second cone (the bottom shaded cone), 6® = 79.19° with respect to the external
" field. : o ,
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Figure 2.7: Double rotation (DOR) trajectory. The first rotation axis is tilted at
6® = 54.74°, the magic angle of the second order Legendre polynomial, with respect
to the external field, and the second rotation axis is at #%) = 30.56°, one of magic
angles of the fourth order Legendre polynomial, relative to the first rotation axis.
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2.5.3 Double Rotation (DOR) for Zero Field NMR in High
Field |
In the previous two trajectories, discrete rotations (hops) or continuous rotations
applied to the z-axis of the cbupled spatial-spin space occur at different times. Ac-
cording to Eq.(2.13), a zero field spin Hamiltonian can also be achieved by rotating
the z-axis of the coupled spatial-spin space around two or more axes simultaneously
A scalar Hamiltonian results when the one of the axes of the two continuous rota-
tions is tilted at ) = §® = 54.74°, the 'magic’ angle of the second order Legendre
‘polynomial, with respect to the static magnetic field Hp, and the second axis of the
rotations is at ﬁzv = ™ = 30.56°, one of the 'magic’ angles of the fourth order Leg-
~ endre polynorﬁial, relative to the first axis (sec Fig. (2.7)). We call this trajectory
the double rotation (DOR) [72] for zero field NMR in high field. The scaling .fa.ctor

of the coupling constants (8,) with DOR trajectory is again ¢ = 1.
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Chapter 3

Second Order NMR Spectroscopy

3.1 Introduction

The dispersion of local magnetic ﬁelds — the spread of resonant frequencies inher-
ent even in the simplest systems — determines selectivity and resolution in NMR

spectroscopy[5, 59]. The local fields among a group of coupled nuclei, for example,

may be rendered nonstationary owing to spin flip-flops, or spin diffusion, and the

associated resonance can acquire a certain width as a result. This kind of linewidth

usually is classified as a relaxation effect. Another source of frequency dispersion

arises from the dependence of most spin interactions on the orientation of the external

| magnetic field relative to each nucleus. Thus both the spin and spatial dependence

of the magnetic interactions must be addressed if one is to realize full spectroscopic -
control in NMR.

Local fields are manifested in different ways in solids and liquids, and spectro-
scopic methods need to be tailored accordingly. At one extreme there is the case of an
isotropic liquid where, in the presence of rapid and random molecular reorientation,
spatial anisotropy is averaged largely to zero.‘ For sufficiently rapid tumbling, only
the isotropic components of the spin interactions remain and so it becomes possible
to achieve truly high resolution. In solids, however, restrictions on molecular motion
prevent the spins from sampling é spherically symmetric set of orientations. Here,

there are two géneral solutions: either remove the. field altogether, and by so doing
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eliminate the very notion of directionality as in zero-field NMR [9] as mentioned
‘in chapter 1 and 2. Alternatively, one can impose an artificial macroscopic motion
on the spins to create the equivalent of a spherically symmetric environment. This
latter option, that of supplying the motion externally, was inherent in the spin echo
experiment[52] and its generalizations[53] in which the spin angular momenta are
perturbed while leaving the molecules in place; and in the sample-spinning exper- '
iments of Anderson [54], in which the sample is rotated. Averaging in spin.space
has progressed from simple spin echoes to the prolonged trains introduced by Waugh
and later workers for sblidé [55]. Averaging in spatial space was extended to solids by
magic-angle spinning (MAS)[56, 57, 58] which is a routine feature of solid state NMR.
In this chapter we consider some new approaches that extend motional averaging in
solid-state NMR, with pa,rticula.r'_emphasis on the NMR of systems governed by elec-
tric quadrupole interactions. These approaches are called dynarmc angle spmnmg

(DAS)[73, 76] and double rotation (DOR)[72, 104 78).

3.2 The First Order Average Hamiltonian with
a Quadrupolar Interaction

We consider a spin system subjected to a Quadmpolar interaction in the existehce of
a strong static external magnetic field. Its spin Hamiltonian in the laboratory frame
(LAB) is[19] | |

H =wol, +wg 22: (=)™ A2—mTom, (3.1)

m=-—2

where wy is Larmor frequency, and wq is the quadrupolar coupling constant, given

.by

_ €@ | |
wo = m (32)

Ay and Ty, are the elements of the second rank irreducible spatial and spin tensors

respectively. The definition of T3, for quadrupolar interaction is given by Eq.(1.33),
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and Ag,y, is

Ao =Y. D2 (oo, | (3.3)

m’

where the p, n, are the principal values of the quadrupolar interaction tensor as listed
in Eq.(1.4), the D,(,f,)m(ﬂ) are the components of Wigner rotation matrices, and 2
is the set of Euler angles for the transformation from the laboratory frame to the
principle axis system (PAS) of the quadrupolar interaction.

The quadrupolar éoupling constant appeariﬁg in Eq. (3.1) can be relate to the
electrical-field-gradient (EFG) which is determined by the stereo-structure of the
distribution of electrons around a particular nucleus in the molecule being studied.
Measurement of the quadrupolar coupling constant therefore provides a method of
obtaining the EFG information. In order to extract this information, we need to
know the evolution rulesvo,f the density matrix under the existing of the quadrupolar
spin Hamiltonian. Following the routine procedure, the total spin Hamiltonian in
Eq.(3.1) is transformed from the LAB frame into the rotating frame (or interactive

representation).

H(t) — ewo];tHQe—onzt

2 v
= wg Y (-1)" A mTome’™ " (3.4)

m=-2
This rotating frame spin Hamiltonian is modulated by the Larmor frequency and its
harmonics. According to coherent average Hamiltonian theory[109, 115], the zero

order and the first order average Hamiltonian of Eq.(3.4) are given by

1 e
0 - =
H 5 /o H(t)dt

MO 5171 [Fan [ * dta[H ), H(t)), (3.5)

where 7. = 2w /omwgay, the time length of a cycle Larmor oscillation.
For most internal spin interactions the zero order average Hamiltonian is a.lready

a very good approximation to the time dependent Hamiltonian given in Eq.(3.4) as
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the Zeeman term is usually large enough to truncate the internal spin interactions.
However, for spin half integer qudrupolar nuclei, the quadrupolar Cbupling constants
are usually so large that the Zeeman field cannot effectively truncate the quadrupolar
interaction, similar to the situation discussed by VanderHart [60] in the low magnetic
field for chemical shift anisotropic interaction. In such cases, the higher ordér effects
" have to be taken into account when transforming the total Hamiltonian from the
'~ LAB frame to the rotating frame. Inserting Eq.(3.4) into Eq.(3.5) yields the total
average Hamiltonian up to the first order approximation in the rotating frame as

" H = AT + ;—% Z —l-(AzmAz-m[sz, Toem] + AamAzo[Tom, Taol), (3.6)

' Wo 0 ,

where, é,nd from now on, the same Symbol as in the LA_B frame is used to expresé
the Hamiltonian in the rotating frame. |

The first term in Eq.(3.6) is same as the first order correction given by pertur-
. batibn theory. The second term includes two parts: a secular (commutes with the -
Zeeman Hamiltonian) afld a non-secular (doés not commute with the Zeeman Hamil-
' tonain). As will be discussed lé,ter, the secular part in the second term cofresponds
to the second order correction of the eigenvalues. The présence of the non-secular
term in the total Hamiltonian raises three questions. The first question is why there
is a non-secular term in the first order average Hamiltonian. Next question is what
contribution does the non-secular term make in the evolution of the spin system,
and the final question is how to handle this non-secular term during the evolution
of the dénsity matrix. The answers of these questions are related to the original
assumption of coherent average Hamiltonian theory. According to the fundamental
rules in quantum mechanics[61], once the eigenstates and eigenvalues of the total
Hamiltonian for a particular systém are determined, all physical properties about -
the system are calculable. For example, the transition frequencies for a particular
observable O are given by the differences of the eigenvalues and the intensity of a

particular transition is determined by the eigenfunctions of the initial and final eigen-
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state, that is, < ¥|O]¥ >. In practice, to solve the eigenvalues and eigenstates of
the total Hamiltonian for a complicated system usually is very difficulty and in many
cases it is impossible. In perturbation theory, the eigenvalues and eigenfunctions of
the total Hamiltonian are gradually approached by adding higher order corrections
to the energy levels and the eigensfunctions of the total Hamiltonian. On the other
hand, in average Hamiltonian theory, we first transform the total Hamiltonian from
the Schrodinger representation to the interactive representation based on‘ Zeeman
Hamiltonian. The total Hamiltonian in the interactive representation becomes a'pe-
riodic function of time with period 7. = 2w /omega,. We then assume that we are
only interested in the behavior of the density matrix at times n7. during the evo-
lution. The value of the density matrix at these periodic points are approximately
given by an average Hamiltonian which is time independent and discards the exact
evolution during a cycle. In other words, the average Hamiltonian theory[109, 115]
gives a stroboscopic description of the time evolution of the density matrix under
the total Hamiltonian for a system. The average Hamiltonian can be approached by
adding the higher order corrections which are functions of multiple time integrals over
the products of the time dependent Hamiltonian, and includes all the contributions
frém fast to slow variation of the density matrix. Thus the average Hamiltonian in
general is not diagonal. If we only interested in the slowest variation of the density
matrix in the n-th order correction, we simply drop the non-secular part. Such a
treatment of the average Hamiltonian corresponds to secular averaging Hamiltonian
theory[19, 63, 64, 65].

We now go back to contihue the derivation of the first order average Hamiltonian.
For half integer spin (I > 3) only the central transitién (—3 < 3) can be observed
in the .NMR experiments. Since the first order perturbation term in the Hamiltonian
does not alter this transition frequency it can be ignored, and therefore from now on

we need only focus on the secular part of the first order average Hamiltonian. Using
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“the product prbperties of two irreducible tensors[20, 21}, the secular part of the first
order average Hamiltonian may be rewritten as:
, 4 |
HO = 5" 3" ow AwTho. (3.7)
_ r=1,31=0

The Ay, Ty terms in Eq (3.7) are ébatial and spin parts of I-th irreducible tensors
arising from the direct product of two second order irreducible tensors respectively;
its explicit expression can be found in Tables (1.5) and (1.6), and ow repfesent the
coupling constants of the second 6rder quadrupolar interaction arising from higher
order approximation, and are given by

5w < I|To|I >?

ow = (-1)'W(2,2,,LI;I'\I)

_ wo < I|Ty|I > |
Z -',-];C(Q, 27 la m,—m, 0)0(2’ 27 l,: m,—m, 0)7 ’ (38)
mF#0 .
where _ .
21 +1+1)
<L >= [21(21 D@0 ' (39)
and C |
, 20+1 ' ,
< Im|Ty|Im! >=<I|T}|I > T lC’(I,l,I; m,q,m'). (3.10)

In Eq. (3.8), C(h, L2, my, mg;m) are Clebsch-Gordan coefficients, W (2, 2, I LU, T
are 6 — j symbols, I is Spin value, and [, 1’ are the tensor ranks. Values of < I|Tj|I >,
W(2,2,1,1;!',I), and ai;: for spin 3, 2, and I are listed in Tables (3.1), (3.2), and
(3.3) respectively. |
Because the quadrupolar coupling tensor is a real symmetric operator, the odd
- rank irreducible tensors Ay are zefo. Thus only the Ao, A2, and Ay terms remain
in Eq. (3.8), among which only the A and A4 depend on orientations. Their

prihcipa.l values are given by

2 2y
pro = 57 |
2(q__ .
pro=—F5 prsy =0, pasa = \/37}52 . (3.11)
8209+ -'1-

Pao = 7-—-2- pax1 = 0, paxo = 7775 ) Pat3 = 0 Paza = $(n6)?
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Table 3.1: Values of < I|Tj|T >.
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Table 3.2: Value of W (2,2,1,1,1,I) coefficients.

-3 =5 I

I,—z I=3|I=3

=112 |1 |__1

52 57 24105

=3 L 9 1./4

{ 52 7002 | 14V 15

where 6 is the anisotropy (for our case it is always set to one) and 7 is the asymmetry
parameter of the quadrupolar interaction. The orientation dependence of the spatial
irreducible tensor A;m can therefore be explicitly represented by using the Wigner
rotation matrices Df,?,,m(a, B,7) and the principal values as
~ 0 |
Aim =Y Dyt n(a,B7)pim, (3.12)
o omi==l

where «, 3, are the three Euler angles relating the laboratory frame and the prin-

ciple axis system of the quadrupolar interaction.

Table 3.3: Values of oyp.

i 21 23 41 43
=3 _-—6_|_& |8 | T
2 5v14 | /35 | 5V/70 | 57
=5 16 [ 6 | 48 | 17
2 5v14 | V35 | 570 | 57
=1 6 |6 | 28 |17
2 V14 | V35 | V70 | 57
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3.3 Static Powder Lineshapes

Second order frequency shifts of the central transitions in half integer spin quadrupo-
lar nuclei possessing a quadrupolar interaction can be calculated by use of Eq. (3.7)
and Tables (3.1-3.3). These frequency shifts are orientation dependent; Such an
orientation dependence results in characteristic powder patterns when dealing with
polyérystalline or amorphous samples. These powder patterns are in general different
from the ones originating from first order contribution of the spin interactions [19].-
In this section we describe these properties of the powder lineshap__es under various
circumstances. | _ v

We start by presenting an altemative method for evaluating the frequehcy shifts 6f
the central tra.néition in tfxe presence of quadfupolar interactions by use of the second
order perturbation :theqry in Eq.(3.1). From the properties of the spin operators (I,
" I, and I,), the matrix representations of the spin operators I, I_, and I, can be

" obtained in the Zeeman basis functions.

<mllplm' > = < m|L|m >= mbm m

<m|lim' > = 5 < ml|l, £ 1l |m >= _\/(I Fm)(I £ m+ 1)0mma1, (3.13)

where m runs from —1I to I, I being the spin value. The relationships between the |
irreducible spin tensors and the spherical spin operators are given by
Tio = Io

1

Tl,:!:l = q:—\/;Ii. ‘ (314)

Inserting Egs.(3.13) and (3.14) into Egs. (1.33) and (1.34) yields the matrix repre-

sentations of the components of the second rank irreducible spin tensor as

<m|Taolm’ > = _i6[3m2_1(1+1)]5m,m'

7
<m|Top|m' > = ;%(2m + 1)\f(I Fm)(I £ m+ 1)1
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<m|Tpzelm’> = %\/(I:F m)(I £m+ 1)(IFm—1)(I £ m + 2)6mm2.
(3.15)

The matrix répreSentation of the total spin Hamiltonian can be obtained by inserting
Eq.(3.15) into Eq.(3.1). In this matrix representation of the spin Hamiltonian in the
Zeeman basis functions, only the elements of five central diagonals are different from
zero. Using perturbation theory, the second order corrections of the eigenvalues of

the spin states m = +3 are

@ Hisl Myl Myl | [Hy gl

Ey’ = -t i 422

: 2uo . Wo wo 2wp

G B L i (N i = [ i e | PP
_% B 2(-‘)0 Wo Wo 2w0 ’ .

and therefore the second order frequency shifts of the central transitions are
2

@ Hs_s? |H_1sl? [Masl? [H_i_sl® |Hisl® |H_i_s
wl L = i) + 29 _ 212 — 2 2 —_ 2’2 — 2 2 (3.17)
752 2w 2wo Wo Wo 2wo 2wo

As can be seen from this expression in the matrix representation of the spin
Hamiltonian the first off-diagonal column is related to A, +; and the second off-
diagonal column arises from As ;.

After some simple algebra, the second order frequency shifts of central transitions

owing to the quadrupolar interactions can be written as
w2 1., 3. .. ,
WPy = =2 = )T+ 5[ Azal® — 21 Azl (318)
2 2 Wo 2 2
From the properties of the irreducible tensor again we have that
A= (1™ Ay, (3.19)

Inserting Eq.(3.19) into Eq.(3.18), and then applying Eq.(3.4) yields the total second
order frequency shifts of central transitions expressing in the basis set of irreducible
tensors from rank zero to four,

3
)

2 Z [0(2) 27 l7 27 _2) + 20(2’ 2: l, 11 '—1)]Al,0’ (320)

1,1
22 1=0,2,4

2
@ _Y,_1
wl 1 wo (I 2)(I+
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where C(l;,12,1,m,, mé) are the Clebsch-Gordan coefficients and A;p are the coupled
tensor elements. The reason of the explosion of odd numbers of index I in Eq. (3.20)
is that the quadrupolar interaction is symmetric and the perturbation approximation
does not change this symmetry\property. Among the three coupled tensors appearing
in Eq (3.20), Ao,o is the only scalar under rotation operations to the sample. This
term creates an isotropic frequency shift to the peak in NMR spectra. Applying
Eq.(3.12) and the principal values of the coupled tensors A, given by Eq.(3.11) into

Eq.(3.20), we can derive this second order isotropic shift as

@ _ B+ )W
180 10w0

(I— %)(1 + g). (3:21)
As can be seen, the second order isotropic shift of the quadrupolar interaction is
proportional to the square of the quadrupolar coupling constant and inversely pro-
portional to fhe Larmor frequency. Therefore as higher magnetic field are applied,
the second order isotrobic quadrupolar shifts become less jmportant.

The remaining terms in Eq.(3.20) are orientatioh' dependent. The lineshape ob-
served in the solid-state NMR arising from a pdwder sample is therefore determined
by both the second rank and fourth rank ﬁensors simultaneously. This static line-
shape can be obtained by performing a pqwder average in the frequency domain
of the transition fréquencies determined by Eq.(3.20), weighted by the transition
probabilities P = sin 4. Figure (3.1) shows a set of simulated static powder patterns
varying with respect to the asymmetry parameters 7. As can be seen from Eq. (3-20),
the ratio of the second rank tensor and fourth rank tensor is independent of the spin
values. The lineshape therefore is also inde_:pendent of the spin values, and thus the |
lineshapes shown.in Figure (3.1) can be expected for the central transitions of é,ny
half integer spin nuclei.

~ Practically important in the analysis of powder patterns is the positions of the

singularities appearing in the powder lineshapes, and these singularities can be de-
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Figure 3.1: Variation of simulated powder patterns of the central transitions for half
integer spin nuclei subjected to quadrupolar interactions with different asymmetry
parameters 7.
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rived from the relationships {19, 115]

o @ _ K S
ey =0 amd ol =0 (3.22)

The solution of Eq.(3.22) can be found using the explicit representation of the

second order shift w(fl_l in terms of trigonometric functions. By use of Egs. (3.11),
. 2 2 : '

(3.12) and the representation of Wigner rotation matrices, this second order shift

can be written as

9
w(fl_l = (2)[ 77 ———(3cos® 8 — 1)+—nsm ,Boos2a+32n sin* B cos 4o
2 2

99 + in )

250 ——2-2(3 — 30 cos® 8 + 35 cos* ﬁ)+ (7oos B — 1) sin? B cos 2a],

(3.23) |

where w( ) can be thought fictitiously as a second order quadrupolar coupling con-
stant with the definition of
o = Z—%(I - %)(1 + g). | (3:24)
Inserting Eq(3.23) into Eq.(3.22) yields the singularities of a powder lineshape,
listed in Table (3.4). As will be discussed later, the singularitieé listed in this table
. are aléo for the powder lineshapes under variable angle sample spinning (VASS). The
second order Legendre polynomial P, and the fourth order Legendre polynomial Py
are used to represent the scaling factors of the lineshapes under VASS. For static
powder lineshapes, both of P, and P, are simply set to unity. One of the six singu-
larities only showé up when 172 Ig—l%—;;ifle = 3. When the asymmetry parameter is
~ zero, the second and third singularities will degenerate.

- Figure (3.2) shows the frequency variation of the singularities in the powder
lineshapes arising from segcbnd order effects as a function of the asymmetry param-
eter. In the figure, two of the six lines represent the sharp peaks of the lineshape,
wp, = 55(69 — 307 + 13772)(4;2?2) for0<n< 3, 0orwp =22-7n)for; <n<l,
and wp, = (-7 + 10n + 172)wg) for 0 < n < 1. other two are the shoulders,
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Figure 3.2: Frequency Variation of the singularities observed in powder lineshapes
arising from second order effects of the quadrupolar interactions in half integer spin
nuclear systems as the symmetry parameter 77 changes.
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Table 3.4: Singularities appearing in second order powder patterns

(2)
B o [w__‘_, - wm]/w
. 162P4— 120P2+(40P2+9P4 )11
0 any T
x 0 243 Py +240Py— (480 P, —270P4 )1~ (80 P2 — 171 Py )12
2 256
T x 243P+240P2+(480 Po—270P, )n— (80 Po—171 Py )n?
2 2 , 256
x 1 cos-1 [g Py 16 ] __80P2—195P,P;—81 PZ+(35P, P4 +63P7)n?
2 2 21nP, 245
cos—1 +. /3 Py—b, Py 0 __40P24-60P; P4+243P2+(40P2—80P, P4—9P])n?
c Py 490 .
: +(80P22—300P2P4 —270P)n
490
cos=! + a._P4—b_ T 40P2460P; Py +243P2+(40 P2 80P, Py—9P2)n?
c— P4 2 490
(80P2—-300P2P4—270P2)n
490

where ax = £2167 — 450 — 243, by = 24(3 — 7 + 27), and cx = 7(+45n —
- 9n? — 81). P, and P, are the second and fourth order Legendre polynomials.

ws, = (69 — 300 + 13n2)w(2) for0<n<iandws, =6+ for0<n<1
while the flanks of the powder lineshapes are given by maximum and minimum fre-

quencies, Wmin = 15(—7 — 107 + 7%) and wWmas = 55(69 + 307 + 137%) for 0 < 7 < 1.

3.4 Powder Lineshapes under VASS

To discuss the behavior of second order effects of the quadrupolar interaction ﬁpon
rotation along ah'axis forming a variable angle with respect to the external field,
which is called variable angle sample spinning (VASS) (103, 88], we have to introduce
a relé.tiohship between the laboratory frame, the sample-fixed coofdinates frame
(SFC), and the principle axis system (PAS) in Figure (3.3). Because the sample
rotation only affects the spatial part of the spin Hamiltonian, implying that thé spin
Hamiltonian commutes with itself at all times. Henceforth, the eigenvectors are not
"mixed with each other, and only the eigenvalues of the spin Hamiltonian oscillate

- periodically during the sample spinning. The time dependent resonance frequencies
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Figure 3.3: Two successive sets of Euler angles, 25FC and QPAS, determine the
direction of the magnetic field relative to the principle axis system at each nuclear
site.
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of the nuclear spin resulting from this process can be written as

W 1= 3 T CDYL(FC(t)) A, (3.25)
22 024 m
where
Ci= ""’[0(2 2,1,2,-2) +2C(2,2,1,1,-1)]. (3.26)

Under the fast spinning condition, where the spinning speed is much largef than
the amplitude of the second order quadrupolar interaction, the fast oscillating time
dependent terms are averaged out in the time scale of experimental measurement.
Under these circumstances, powder lineshapes are iny determined by the time inde-
pendent part in Eq.(3.25). Figure.(3.4) shows the variation of the simulated powder
lineshapes with different asymmetry parameters 7 of the quadrupolar interaction,
and different angles of the sample spinning axis with respect to the external field.

The singularities of the powder patterns are given in Table (3.4), where the second
and fourth order Legendre poiynomials, P2(cos 0) and ‘Py(cos6), depend on the angle
'@ of the rotation axis with respect to external field. When 6 = 30.56°, or 8 = 70.12°,
the magic angles of the fourt_'h lorder Legendre -pol).'nomial, the equations in last three
rows in Table (3.4) are no longer valid because the right side of the equations tehds to
diverge at P, = 0. Therefore, near the region of the magic angles of the fourth order
Legendre polynomial only three singularities appear and the total powder lineshapes
become similar to the ones arising from the chemical shift anisotropy effect (see
Figure 3.4). The boundary condition for the singularities can be actually found
from the valid solutions of & and § in Table (3.4). These results are represenf.ed
g‘rephically in Figure (3.5). As can be seen that there are two gaps around the
magic anglesl vof the feurth order Legendre polyndrhial, whose widths depend on the
asymmetry parameter. The fourth singularity does no longer exist when the angles
of the rotation axis are larger than 62°. ‘ |

Figure (3.6) shows three-dimensional gra.phs of the frequency variations of the

singularities observed in second order powder lineshapes for different asymmetry
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Figure 3.4: Variation of the powder lineshapes with different asymmetry parame-
‘ters 7 and different angles of the sample rotation axis with respect to the external
field in VASS under fast spinning condition. 0° (icosahedral angle), 30.56° (root of
Py(cos B9)), 37.38°. (icosahedral angle), 54.74° (root of P;(cos 3)), 63.43° (icosahe-
dral angle), 70.12° (root of Py(cos B¥)), 79.19° (icosahedral angle), 90° (icosahedral
angle)
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70°, 0

00 02 0.4 0.6 0.8 1.0

Asymmetry parametér n

Figure 3.5: Variations of the boundary conditions of the singularities with the angle,
6, of the sample spinning axis in VASS. The shaded areas represent the existence of

“singularities for a particular angle and asymmetry parameters, 7. Two gaps around
the magic angles, 30.56° and 70.12°, of the fourth order Legendre polynomial can be
clearly seen in the singularities, wy, ws, and wg. When the sample spins in any one of
these two gaps, there are only three singularities and the resulting powder lineshapes
are similar to the ones arising from chemical shift anisotropy interactions (CSA).
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Figure 3.6: Three-dimensional graphs for the representation of the frequency varia-
tions of the singularities as angles of the rotation axis, 8, and the asymmetry param-
eters, 7, change.
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‘Rotation axis Angles(degree)

Figure 3.7: Variation of the frequencies of the singularities with different asymmetry
parameters, 7, as the angle of the rotation axis, 8 increases from 0° to 90°. From the
top to the bottom, the asymmetry parameter is 0, 0.3, 0.5, 0.7, and 1.0 respectively.
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parameters and angles of the rotation axis. The surfaces of the first three singularities
are very smooth, the other three exhibit some discontinuous regions around the
magic angle of the fourth order Legendre polynomial. For the fourth singularity, this
region is very small. Figure (3.7) presents two-dimensional schemes of the frequency
variations of the singularities with different asymmetry parameters as a function of
the sample spinning axis angles. From the flanks of the figure it can be clearly seen
that the most narrow widths of the powder lineshapes under VASS should appear
between 60° and 70°.

3.5 Dynamic Angle Spinning (DAS)

Using the lineshape analysis methods to obtain the principal values of quadrupolar
interactions will not in general work in the case of many sites in the molecule being
studied. This is because of the overlap among the lineshapes arising from different
sites possessing different quadfupola.r interactions in the molecule. In order to extract
useful information (for instance the isotropic chemical shifts and the second order
isotropic shifts arising from quadrupolar interactions), it is necessary to have a high
resolution spectra consisting of isotropic shifts by eliminating the anisotropic broad-
enings owing to second order effects of the quadrupolar interactions in the central
transitions with half integer spin nuclei. The first order inhomogeneous broaden-
ing which originates from this spin Hamiltonian can be efficiently averaged to zero
by using magic angle spinning (MAS)[56, 58]. However after applying MAS to a
powder sample originating in second order quadrupolar interactions, the linewidth
is only reduced by about a factor of three. Even under VA‘SS, there is no solution
to completely eliminate second order brbadenings (see Figurev3.4). This is because
second order lineshapes are determined by both the second and fourth rank tensors
simultaneously. Under the fast spinning condition, the coefficients of the second and

fourth rank tensors are second and fourth order Legendre polynomial, P;(cos6) and
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Pi(cos6). In the interval of [0°,90°], the node of P is §® = 54.74°, and nodes of -
P, are 054) = 30.56° and 0&4) = 70.12°. There is no common node for P, and P,
(see Figure 3.8) and therefore the sample spinning with only a single fixed rotation
axis inclined at any a,nglé with respect to the external field cannot eliminate all the
anisotropic broadenings in the second order lineshépes. |

Accordihg to Eq.(3.20), the second order frequency shifts of the central transi-
tions are inversely proportional to the Larmor frequency wo. In other words, the
second order broadenings of powde_:r samples will decrease as increasing the external
magnetic field. >As an example, let‘;s consider a quadrupolar nucleus with coupling
constant wg = 100kHz which is a typical.value.for a spin 3 nucleus. In order to reach

~one hertz resolution of the spectrum, the Larmor frequency, wy, of the spin nucleus
has to be in the ordér of wg = 10GHz, corresponding to a magnetic field between
10°T to 10°T for various gyromagnetic ratios. It is obviously impossible to obtain
- such high magnetic field with the modern technology , and therefore to eliminate the
second order broadening by increasing the external magnetic field is not realistic.
However it is still useful (and sometimes necessary) to measure the lineshape at dif-
_ferent magnetic fields in order to distinguish the chemical shifts and the quadrupolar
-interactions. The liheshapes of second order quadrupolar interactions as a function
of magnetié field strength can be seen more clearly in Figure (3.9).

Figure (3.10) shows the variation of the second order shifts of the central transi-
tionsv of each individual crystals as the angle 6 of the sample spinning axis changes
with respect to the external field. In Figure (3.10a), each line corresponds to a
particular crystal orientation chosen randomly in SFC. As can be seen, the second
order frequency shifts of each individual crystals oscillate with differeht frequencies
and different initial phases as the sample spihning axis angle changes from 0° to 90°.
Ho&ever, if each line in (3.10a) is diﬁded by the value of its ﬁrst point (corresponding

to § = 0°), all lines dramatically refocus at two points: one is at § = 0° and the other
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Figure 3.8: Plot of second and fourth order Legendre polynomial, P»(cos) and
Py4(cos @) versus the angle of the rotation axis in VASS. (a) Plot in polar coordinates,

(b) in Cartesian coordinates. The nodes of P, and P; are indicated by the dashed
line.
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Figure 3.9: Variation of the second order powder lineshapes of the central transitions
with a quadrupolar interaction as the magnetic field Hyp increases. The quadrupolar
coupling constant, wg is 100K Hz, and 7 = 0.5. The spectrum will be high resolution
once the Larmor frequency is in the order of 10GH z.
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is at @ = 63.43°. This feature tells us that although the second order shifts of the
central transitions of differently oriented crystals in SFC vary differently With the
sample spinning axis angle 6, there are two positions, § = 0° and @ = 63.43°, of the
sample spinning axis, at which the second order shifts of the central transitions are
proportional each other. Even more interesting is that the proportional coefficient
is a negative number. If a spin starts to process with a particular frequency deter-
mined by the orientation of the spin with reépect to SFC at the first position (assume
0 = 0°), all spins will reverse the orientations of the procession after the sample spin-
ning axis transfers from the first position to the second position (6 = 63.43°). The
- only difference is that the procession frequency are changed by a factor of five (see
(3.10b)). This scaling factor can be compensated by extending the evolution times of
the spins at the second position five times. In other words, by properly setting up the
experiment, the anisotropic broadening can be completely refocus by spinning the
sample at two different axes during different evolution times. For the above example,
the spins evolve for time ¢; during which the sample is rotating around the Z; axis,
6, = 0°, in the LAB frame and for time ¢, after the rotation axis is suddenly flipped
to the angle of ; = 63.43° with respect to the external field. When t; = 5¢;, all
the anisotropic shifts will completely refocus, and an echo will appear. We call this
echo the dynamic angle spinning (DAS) echo. In fact, such a behavior will happens
if each line is divided by other positions of the sample spinning axis. (3.10c) shows
another pair of angles of the sample spinning axis, §; = 37.38° and 6, = 79.19°, in
whichvthe scaling factor is one.

In order to apply the feature that the second order shifts of the central transitions
change proportionally after the sample spinning axis transfers from one angle to
another with respect to the external field, let us consider an ideal experiment in
which the sample is spinning at an angle 6, during evolution time At, and at another

angle 0, during At, achieved by suddenly flipping the rotation axis of the sampie
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~ Figure 3.10: variation of the second order shifts with different angleé of the sample

spinning axis with respect to the external field. (a) Frequency dependence with
the sample spinning axis angle, and each line corresponds to a particular crystal
orientation chosen randomly in SFC. (b) After each line in (a) is divided by its first
point corresponding to 8 = 0°, all shifts refocus at 6, = 0° and 6, = 63.43° and
w1 = —dwy. (c), same as (b) but divided by the value at 6, = 37.38°, all lines then
refocus at 6, = 79.19° and w; = —w», for all spins.
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between 6, and 6,. This experiment is called dynamic angle spinning (DAS). For
sirhplicity we assume that the sample rotation satisfies the fast spinning condition.
The accumulated phases of the épin during evolution time At; and At, with spin
Hamiltonian H; and H; are

e@) = 3 Cdih(61) Aty

1=2,4

0) = Y Cdi)(62)AoAty, (3.27)

1=2,4

where the second order isotropic shift is not included because it is orientation inde-
pendent. Since H; and H, commute with each other, the total phase at the end of

the experiment is the sum of ¢(6;) and (62), that is

0(01,05) = 0(0:) + 9(82) = 3 CildSn(61) Aty + dSh(82) At) Ay (3.28)

1=2,4

If we choose the total phase to be zero, it is necessary to satisfy the condition

Py(cos6,)At; + Po(cosb)At, = 0
Py(cos01) Aty + Py(cosO2)At, = 0, (3.29)

where we replace dg}, by Legendre polynomial P, since ,('}) = P,. The two pairs
of angles shown in Figure (3.10b) and (3.10c) exactly satisfied the simultaneous
Egs.(3.29). Other solutions are schematically shown in Figure (3.11). In (a), 6, and 6,
are plotted as function of the time ratio k = %% separately; in (b), a parametric graph
with the time ratio, k, shows that there two regions in which Eq.(3.29) has solutions:
one is related to k and the other to 1/k. The analytical solﬁtion corresponding td

the curves in Figure (3.11) are

w3353

cos?(6;) = %(1 + %\/E) (3.30)

Each pair of rotation axis angles given by Egs.(3.30) are called DAS complementary

angles.
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- Figure 3.11: Graphic representation of DAS complementary angles resulting from of
Eqs.(3.30) as a function of the time ratio k = %%. (a) Individual plots of 6; and 6,
versus k. (b) Parametric plot of the DAS angles with the time ratio k shows the two
sets of solutions of 6, and 6,: one is related to k and the other to %, which are mirror
image with each other about the diagonal line.
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Figure (3.12) shows simulated spectra for several pairs of DAS complementary
a.rigles with different asymmetry parameters. Each pair of the lineshapes in each box
is mirror imaged about the isotropic shift. The first pair corresponds to the maximum
scaling factor, k = 5, which will lead the shortest time spun at 6;. The second. pair
is the solution of the magic angles of the fourth order Legendre polynomial P,(cos @)
where k = 1.87. The third pair is choice actually used in the DAS experiment with
k = 1. One of the final pair is §, = 90°, at which the maximum sensitivity of the
signal can be received expéﬁmentally with k£ = 0.8. The difference of the linewidths
between two sets of spectra therefore is determined uniquely by the scaling factor

k= ‘2‘%- For example, when At; = Ats, k is equal to unity and the solution is
6; = 37.38° and 60, = 79.19°. This pair leads that the two sets of spectra has same
linewidth. |

It is well known that the MAS trajectory can be thought in a way that the
magnetic field traverses on a'cone in an octahedron in the SFC frame. The circle of
the cone passes three vertices of the octahedron and the point of the cone is at the
center of the octahedron (see Figure 3.13). Similarly the DAS trajectory with k =1
can also be thought in a way of that the magnetic field traverses on two cones whose -
circles pass the vertices of a dodecahedron and the pointé of the cones are the center
of the dodecahedron in the SFC frame. Other solutions of the DAS trajectory also
relate to a dodecahedron or an icosahedron. Later, we will show that the symmetry
of the DAS trajectory is actually determined by the icosahedral group. For this
reason, we list some of the angles in an icosahedron and a dodecahedron in Table
(3.5). |

The isotropic part in the spin Hamiltonian obviously will not be effected by the
flippings of the rotation axis at the middle of the whole evolution. Experimentally,
the data is acquired at the top of a DAS echo. The amplitude of the echo will therefore

be modulated by the isotropic resonance frequencies of the spin nuclei. After Fourier
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Figure 3.12: Calculated second-order powder patterns of the central transition with
a spin—3 nuclei after motional averaging with a single rotation axis at various DAS
complementary angles. The first pair,0° and 63.43°, is the icosahedral angles corre-
sponding to the shortest time at 8; and k = 5. The second pair, 30.56° and 70.12°, is
the magic angles of the fourth order Legendre polynomial, P;(cos#) with k = 1.87,
while the third pair is the dodecahedral angles and also the experimentally demon-
strated k = 1 case. The final pair, 39.23° and 90°, has k = 0.8, where the maximum
sensitivity of the rf coil may be obtained. '
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Figure 3.13: The external magnetic field, viewed in SFC, actually traverses on one or
two cones in MAS and DAS. (top) The magic angle cone crosses three vertices of an
octahedron in MAS. (middle) Two DAS cones cross ten vertices of a dodecahedron
in k = 1 case, while (bottom) is the DAS trajectory on an icosahedron. V is used
to label a vertex, P for pentagon, T for triangle, and E for edge of the symmetry
geometry, and C to label center and Latin letters in the indices to distinguish different

centers
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Table 3.5: Angles in an icosahedron or a dodecahedron

Label | Dodecahedron | Icosahedron | Value | cos?8 | Po(6) | Py(6)
61 0Z0V, 0zOT., |37.38| &2 | L =y5
02 0Z0V, 0zZOT., |79.19° | %22 | - o5
0 020z 0Z0Z {00.00°| 1 | 1 1
A OZOP. 0zoV |6343°| 1 | F | =
0 OZOE,, OZOE., (31720 | Bl | ¥548 | _3=45
b6 ' OZOE,, OZOE,, |58.28 | ¥ f—ga 3+v5
6, OZOE, ‘OZOE., [90.00°| 0 | -} g
s ooV, | o, 0T, [4381°| § | 1} 10
b OV,0OV4 0T, 0T, |7053°| 1 | -1 1
6w | OWOE, | OE,0T, |s474°| 1 | o | -%

where O is the center, V is the vertices of the dodecahedron and icosa-
hedron, and E. is the centers of the edges, 7 is centers of the triangles,
and F; is the centers of the pentagons. Latin letters in the mdlces are
used to dlstmgulsh different centers (see Figure 3.13).

transformation of the amplitude of the DAS echo, a high resolution spectrum can be
obtained. The details about the DAS experiment[80] will be described in next section
and the physical insight about DAS also will be theoretic'ally thoroughly treated in

‘the final section of this chapter.

3.6 DAS Experiments

Preliminary experiments were performed on Bruker AM-400 spectrometer. The mag-
" netic field is 9.4 T and the resonance frequency for sodium-23 nuclei is 105.84M H z.
‘The whole DAS experimental setup is shown in Figure (3.14). It consists of a DAS
probe, a step motor with the intelligent motc;r controller (IMC), and an IBM-PC
computer [81]. In the DAS experimer;t; the flippingable probehead is driven by the
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step motor which is instructed by IMC. The functions of the step motors are pro-
gramed by use of IBM-PC computer and their codes are then loaded into IMC. All
instructions of IMC are triggered by TTL pulses from the AM-400 spectrometer in
order to synchronize with the pulse sequence. The motor is coupled to the flipping
probehead via a Kevlar string. The reaéon we choose Kevlar string is that it has
very small stretch under large force such that the vibration during flipping can be
minimized in reaching the fastest flipping. The probehead is similar to the common
cylindrical MAS prbbehead additionally suppled a puller which allows the probehead
is flippingable. The coil is wrapped around the sléeve of the spinner in order to have
maximum filling factor. The rf pulse is input via two pins which function as the
flipping axis of the probehead. With controller feedback from an encoder attached
to the motor, precise movement during the hop and reproducible values of initial and
final positions for the experiment are accomplished.

In calibration of two angles 6; and 65, we first set the magic angle 8 = 54.74° by
- maximizing the rotational echoes in a bromine-81 FID from solid KBr(in some cases
we also used deuterated hexamethylbenzene (HMB) to adjust the magic angle[83]),
which was packed in the sample spinner along with a sodium-23 powder sample. The
reason we choose KBr to assign the magic angle is that the resonance of the bromine-
81 nuclei is close to that of sodium-23, and the quadrupolar coupling constant of the
bromine-81 nuclei is not extremely large so that the rotatidnal echoes in an FID
signal arising from the first order contribution of the quadrupolar interaction can be
clearly seen once the sample is spinning at magic angle. Aftér setting the spinning
axis to the magic angle, the probehead is moved to 6; by stepping the motor, and the
number of steps can be calculated from the motor .resolution of 0.36° obtained using
a thousand step incremental encoder and a hundred step motor with one sixteenth of
a step capability, leading to comparable angular resolution in the probehead position

due to a 1:1 coupling ratio between the step motor and the probehead.
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- Figure 3.14: DAS experimental setup. The flippingable probehead is driven by a
step motor which is fully programmable via a IBM-PC and the code then is loaded
into the intelligent motor controller (IMC) and finally its function is triggered by
TTL pulse from AM-400 to synchronize the pulse sequence.
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Figure 3.15: Pulse sequence applied in DAS experiment. All three pulse are 90° for
the central transition, and their phases are tabulated in Table (3.6).
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Figure (3.15) shows the pulse sequence and the spinner positions. Since the
quadrupolar coupling constant is much larger than the strength of the rf field for
half integer spin nuclei, the response of the magnetization for central transition to
a rf pulse is same as a selective pulse to the pair of energy levels with m = i%
[84, 85, 86]. The length of a 90° pulse is scaled by a fabtor of2/(2I+1)in comparison
with the one measured in liquid sample with same rf field. For sodium-23 nuclei with

large quadrupolar interaction, the 90° pulse length is 6.2 usec at 61 = 37.38° and

© 4.1psec at 6; = 79.19° while that of NaCl, whose EFG is zero due to high symmetry

molecule structure, doubles the above values.

One important concept used in the DAS pulse sequence is the storagé of a mag-
netization. It relates to the fact that the relaxation of a ma,g'netizatioh is inhomo-
geneous. For example in solids the transverse relaxation is usually much faster than
the longitudinal relaxation. If the transverse component is transferred to the longi-
tudinal oompongnt, it can the_refore relax in much longer times than in th¢ transverse
plane. We called this the storage of the magnetization, first used in the magic angle
hopping experiments[87_, 88]. | '

The magnetization of samples with large quadrupolar interactions and chemical
shift anisotropies is brought into zy plane by applying a 90° pulse along the z-axis

in the rotating frame, where it evolves for a length of time ¢,. The density matrix at

‘the end of the evolution time #; is

(o 13 @ 33
p(t1) = —cos(wg’ (61)t:1)I§ * + sin(wg’ (01)t)12 %, - (3.31)
where
BO) =X Cdp @A, (3:32)
[
and Iz%—Tl and I!%_Tl are the fictitious operators for central transitions {84, 85, 86]. The

11
second pulse along z axis rotates I ? component of the density matrix to along the

external magnetic field where the evolved density matrix is stored during flipping the
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sample spinning axis from 6, to 6,. After this flipping, the stored magnetization is
rotated back into the zy plane by the third pulse along the z axis. After the density

matrix evolves for a length of time ¢,, it becomes

11

1 _ '
plt,ts) = E[oos(wg)(Ol)tl + WP (B2)t2) + cos(WS (61t — wS (B)t2)|1Z 2
1 1-1
+ E[sin(wg)(Ol)tl + wg) (02)t2) - sin(wg) (Ol)tl - wg) (02)t2)]1% z,

(3.33)

According to Eq.(3.29), when t; = kt;, a DAS echo forms with two residual com-
ponents: the relaxed magnetization during flipping which are ignored in the present
derivation, and the double precession magnetization. These residual components can

be eliminate experimentally by use of the phase cycling listed in Table (3.6).

Table 3.6: Phase cycling in DAS experiment

¢1| 2| P3| P | & Real - Imaginary
X|X|XxX|Y|X Ci++C- Sy—5_
X|X|X|Y|X Ci+C- Sy—S-
X|x|x|Y|x C.+C- 8. -5_
X|X|X|Y|X Ci+C- Sy—S_
Y] X|[X]|X]|Y C,—C- Se+S_
Y|IX|X|X|Y C,-C._ | Sy+S_
Y[X|{X|X]|Y C,—-C._ Sy+S_
Y|IX|(X|X|Y C,—-C_ Se+ S
sum 8C, 85,

in this table ¢, ¢, and ¢3 are the phases of the first, second and the third
pulse respectively, and ¢, (¢) is the real (imaginary) buffer detection phase.
Cy= %cos(wg) @)t £ wg) (02)t2) and Sy = %sin(wg) (61)t, = wg) (62)t2).

1

Consider the experiment illustrated in Figure (3.15) with the phases of the pulses
assigned in Table (3.6) with a sample of polycrystalline sodium sulfate (Na2SOy)

102




using an axis ﬁib from. 6, = 37.38° to 6, = 79.19° and the evolution times t, =
ts = 1.5msec. The quadrupolar coupling constant of sodium nuclei in the sample
isv e?Qq/h = 2.6 MHz and the asymmetry parameter is 7. = 0.6. After the first
pulse, while the sample is spinning at 6, with respect to the external field, the
magnetization evolves é,t the frequencies wg ) (61). An oscilloscope trace of the decay
of the signal is shown in Figure (3.16a). After 1.5msec, a second pulse is applied to
store a component of the magnetization and then the spinner is performed a flip to 6.
Following the third pulse which bringé the evolved magnetization into the zy plane
agaih, the evolution frequencies of the each individual spins are wg ) (62), opposite to
the prévious precessing frequencies. All the magnetization therefore refocuses after
. 1.5msec and a full echo may be reconstructed after eight experiments, as shown
-in Figure (3.16Db). At' the center of the echo, only the evolution of the isotropic -
co'mponent. remains (in this experiment, isotropic shift had been set to zerd). The
echo clearly indicates the refocusing of the chemical shift anisotropy and of the second
order quadrupolar broadenings. Other broadenings with bilinear spin operators in
the spin interaction Hamiltonian (e.g. the dipolar inte'réction)'cannot be effectively
refocused because .the other orthogonal components in the density matrix represented
by the bilinear spin operators cannot be efficiently stored. The amplitudes of the
echoes are therefore smaller than the initial v.alue‘. Another reason why the echo
_ amplitudes decrease is due to the effects of relaxdtion and spin diffusion happened
during the storage time. Nevertheless, DAS is applicable to dilute spin nuclei, such
as 170. | : | o |
" The DAS experiment. with k = 1 is performed by increasing t; in steps of A.t, in
the ofder of 10 to 100 microseconds. The effective bandwidth in the high resolution
spectrum is 1 /2At. Sodium-23 results have been obtained on both N a25'04 and
Na3C,04, and they are presented in Figures (3.17) and (3.18). In Figure (3.17),

the DAS echo amplitudes of sodium sulfate (NaySO,) were acquired in quadrature
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Figure 3.16: Demonstration of forming a rotational echo in a DAS experiment of
polycrystalline sodium sulfate (Na2SO,4). (a) The FID signal of the central tran-
sitions after applying a 90° pulse decays in time of 500 usec. (b) An echo of the
transverse magnetization occurs at t; = 1.5msec after the third pulse in the DAS
experiment. Experimental parameters is same as in (a).
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and the resulting FID in ¢, was Fourier transformed to produce the one-dimensional
spectrum of Figure (3.17c). This high resolution spectrum contains one isotfopic
peak, shown at 0 Hz in the frequency domain, with a linewidth of 575 Hz. The
sideband pattern has a spacing of 1.64kHz, which is one-half of the spinning speed
‘of the sample. The appearance of the sidebands at half of the spinning speed can
be expected since the evolution is divided ivnto. two periods with a storage of the
magnetization between them (see next chapter for details).‘ The linewidth of the
central peak is nai'rowed by a factor of about seven in comparison with the MAS
results in Figure (3.17b), and the isotropic frequency can easily be identified from
the maximum of the symmetric central peak.

A tWo—dimensional DAS power spectrum for sodium-23 in polycrystalline Na.Cs 04
is presented in Figure (3.18). The quadrupolar coupling: constant of sodium nuclei
iS-(UQ = 403kHz and the ésymmetry parameter is 77 = 0.72. Data were collected
as a series of complex FIDs ih two dimensions. The ¢; domain shows the evolutioﬂ
- of the magnetization under spinning at the angle of §, which modulates the FID in
the ¢, domain\a,cquired when the sample is spinning at the -‘ahgle 6,. After a two-
dimensional Fourier transformation is performed on the FID signals, a correlation
spectrum between spinning at 8; and 6, may be obtained. The projection on the F}
domain shows the powder lineshape spinning at the #; while the projection on the
- F; domain produces thé lineshape spinning at the 6. From the figure, it can be seen |
that the projection along the diagonal axis yields the high resolution DAS spectrum
(Figure (3.17c)). .

The residual linéwidth is determined by the dipolar coupling between the spihs.
To prove this we have performed a Hahn echo experiment with Na2SO, when the
sample spins around the axis tilted at 62; the decay of this echo is determined by
the dipolar coupling between sodium nuclei scaled down by a féctor of Px(cosfs). It

has been pointed out above that the DAS experiment only stores two linear orthog-
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Figure 3.17: Demonstration of DAS experiment with polycrystalline sodium sulfate
(Na2S0Oy,), where wg = 433.3kHz and = 0.6. (a) Static powder pattern, (b) MAS
result, (c) DAS result. The sidebands in the DAS spectrum appears at half of the
spinning speed (3.36 K Hz in this experiment).
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Figure 3.18: (A) Two-dimensional DAS spectrum of polycrystalline sodium oxalate
(NazC,0,), where wg = 403kHz and n = 0.72. The projection on the F; domain
shows the lineshape spinning at 6, while the projection on F» domain produces the
lineshape spinning at 6, and (B), the two projected spectra are mirror image with
each other. The DAS spectrum yields from the projection along the axis at the angle
of tan~! k = 45° with respect to the F; axis. Spinning speed is about 5.5kH z.
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1
onal components, IZ

1z :
and I ? in the density matrix. The other components are

=1
therefore lost and this leads to broadenings of the signals in the spectrav. Indeed, the
dipolar Hamiltonian is represented by bilinear spin operators and therefore produces
many orders of coherences in the density matrix. Although in principle there is a
way to store all these orders in the density matrix, this is just too complicated to
implement it experimentally. Another fact is that thé rf pulse is actually equivalent
to a selective pulse due to the large first order quadrupolar interaction in the Hamil-
tonian, and therefore can affect only the energy levels corresponding to m = +1.
After the dipolar Hamiltonian is expanded according to the fictitious spin operators,
there is a scalar term with the form I,-% :2_113-% e which can not be canceled by any
pulée sequenceé. This may result in the dipolar broadenings in the DAS signals that
cannot be eliminated in any way.

For other DAS complementary angles, the experimental set up is same as the
one used in Figure (3.14) and the pulse sequence shown in Figure (3.15). The DAS
spectrum may then be obtained from the projection along an axis inclined at an

angle of tan~! k with respect to F; axis in the frequency domain.

3.7 Powder Lineshape in A Multi-Dimensional
Space

We discuss here the two dimensional lineshapes of the central transitions obtained by

flipping the sample between two arbitrary angles. Figure (3.19) shows the variations

of the two dimensional powder lineshapes with different flipping angles and different

asymmetry parameters. As can be seen, these two dimensional lineshapes consist of

a ridge when the asymmetry parameter is zero. This high resolution feature of the

powder lineshapes observed in two dimensional space raises a fundamental question
" whether any powder lineshapes will be highly resolved in a high dimensional space.

To discuss this question, let’s consider the lineshapes arising from the chemical
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Figure 3.19: Two dimensional lineshapes of central transition with half integer spin
nuclei show high resolution features, especially for the n = 0 case. 6, is 70.12° for all
six graphs, and theta, is, §; = 20°(top row), 30.56° (middle), and 54.74° (bottom)
for 7 = 0 (left column) and 0.5 (right column), where wg = 400kH z, wo = 100M H z,
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and [ =
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shift anisotropy interaction. It is well known that the resonance frequency with a
chemical shift anisotropy interaction (CSA) for any spin nuclei can be represented
as

wos = we[DEY(B) + n(DE(@ 6) + DBa(ax ) |, (3.34)

where w, is the anisotropy of the CSA tensor, and 7. is the asymmetry parameter.
After the sample is subjected to a fast spinning around a fixed axis inclined at the
angle, 8, with respect to the external field, wes is scaled down by a factor of Py(cos6),
that is

wes(8) = Po(cos Bwes(0). | (3.35)

Consider a DAS-type experiment involving only CSA interactions, in which the sam-
ple rotates around an axis inclined at 6, during the evolution time ¢, and then flips to
the second angle 6, during evolution time ¢2. After implementing a two-dimensional
Fourier transformation on the FID signals, the relationship of the frequencies between

the first and the second domain is

__ Py(cos ) _ Py(cosb) |
w2 = PQ(OOS 01)w1 [1 PQ(COS 01) Wisor (336)

where wi,, is the isotropic shift. Eq.(3.36) tells us that after the powder lineshape
determined by Eq.(3.34) is represented in two dimensional space, the contour of the
lineshape will be a sti‘aight line. The slope of the line is determined by the ratio
of P5(62)/P3(6,). The center of the line is given by the isotropic shift multiplied by
[1 - ‘%%Zf)], and the length of the line relates to the strength of the CSA tensor.
Spectra with different isotropic chemical shift will be separated with each other in this
two dimensional space, and high resolution one dimensional spectra can therefore be
obtained from these projection along' the axis at the angle of tan’l[%(%‘] with respect
to the f; domain. The chemical shift measured by the projection spectra obviously is

scaled according to the slope of the contour line, and the anisotropy and asymmetry

parameter of the CSA tensor may be obtained from the lineshape along the contour
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iine. Another way to obtain two-dimensional spectra is to redefine P»(cos #)t as a new
variable and then to linearize this variable by properly choosing the sample spinning
axis angle. The two-dimensional FID signal becomes a function of t and P:(cos6)t,
that is G(¢, Px(cos 6))t. After two-dimensional Fourier transformation, one dimension
. will be high resolution spectra'whose peaks correspond to isotropic chemical shifts,
and the other dimension shows CSA powder lineshapes. This expenment is called
MYDAS proposed by L. Frydma.n and his co-workers [89].

In the case of the second order effects of the quadrupolar interactions, the two-
- dimensional powder lineshapes Qf the central transitions become ambiguous as can
be seen from Figure (3.19). Only fbr n = 0, the contour of the lineshape keeps the
high resolution structure in two dimensional space and only when the two angles .
satisfies condition Eq. (3.25), the contour line is straight (of course this case is still
true for any asymmetry parameter). For other angles, powder lineshapes show a
smooth cﬁrve From Eq.(3.29), under the fast spinning condition around an axis
inclined at the angle of 6 with respect to the external field, the second order shift for

centra.l transition is
(2) -1 (6) = C'2P2(9)A20 + C4P4(9)A4 05 - (3.37)

- where C; is given in Eq.(3.28) and Fy(6) is the I-th order Legendre polynomial. From
Eq. (3.13), the angular dependence of Ay is only determined by the Legendre
polynomials, that is,

Ao = P(B)pio, - (3.38)

where pio is given in Eq.(3.12). The contour of the two dimensional lineshapes of
the central transition is therefore determined by the solution of the following two

simultaneous equations.

w1 = CopaoPa(01)Pa(B) + CupaoPu(6:) Pu(B)
wy = Cop20Ps(02) Pa(B) + CupaoPa(02) Ps(B). (3-39)
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The solution of this equation is

wy = B+4+kwi+AyYC+Duw for wmin < w1 < Wmia

wo = B+kw — A\/C + Duw;  for wmin < w1 < Winaz (340)
where
L _ Pu@)
X))
o= CopaoPa(61)"
C4P4,oP 4(91)
3 .
A = 5'5-02»02,0 [P2(62) — Pa(61)k]
B = %(5 —9K)A
C = 30— 10k" + 9k
70
S —
C4p4,0P4(01)
: 1 9k
Wmin = 7[02,02,0132(91) — 3CupaoPs(61)] + 53 + Copo,o
1 3
Wmid = —-2'C2pz,oP2(01) + §C4p4,op4(01) + Copo,o
Wmaz = Copoo+ CapaoPa(61) + CapaoFa(6:). (3.41)

In the above equations, we assume the isotropié frequency is zero; otherwise the
frequency variables have to be replaced by w; — wis. In Eq.(3.40), w» is double-
valued only in the region wmin < w1 < Wmpid, where the wpin, wmid; and wyez are the
frequencies of the singularities observed in the one dimensional powder lineshapes
(see Figure (3.2) and Table (3.4)). The curvature of the contour may be obtained
from the derivative of Eq.(3.40). Since the coefficient D depenas on the anisotropy
of the quadrupolar tensbr, the curvature of the contour will in general depend on
the anisotropy except. when A = 0, which is again the DAS trajectory. This means
that although the lineshape of the central transition with 7 = 0 is highly resolved in
two dimensional space, it is not easy to obtain a projection spéctrum in which the

position of peaks only relates to the isotropic shift of the spin nuclei. However the
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_extractioh of the anisotropic information still may be implemented by simulating the
two dimensional contour line by usé of Eq.(3.40).

To overcome the ambiguity of these two dimensional lineshapes of the central
transitions, it is necessary to extend the dimensionality of the observing space. As
we will see, the lineshapes will, indeed, become resolved planes in three dimensional
space. Actually, from Eq.(3.37), the resonance frequencies inéluding isotropic shifts

in tree dimensional space are

w1 —wiso = CaPs(01)Az0 + C4P4(01)A4,o
W — Wiso = CoPa(02)A20 + CyPa(02)Asp
W3 — Wiso = 02P2(03)A2,o + C4Py(03) Asp- . (3-42)

It is easy to obtain the solution of Eq.(3.42) which is
wy = Aws + Blws + (1 — A" = Bwieo, - (3.43)

where

Py(61) Py(03) — P2(61) Ps(61)
_ P3(02) Pu(63) — Pa(03) Py(62)

g = Pa62)Pu(6:) — Py(61)Pu(6a)
v Py(02) Py(63) — Po(63) Py(62)°

:.A’=

(3.44)

Eq(343) defines a plane in the three dimensional space, and the coefficients, A’ and
B', are related only to the angles of the three sample spinning axes. The center of
the plang is determined by the isotropic shift multiplied by a factor of (1 — A’ — B’)

and the area of the plane is related to the strength of the quadrupolar interaction.

3.8 Double Rotation (DOR)

In the sections 3.5 and 3.6, we have described the principles and the 'experiménts of
the dynamic angle spinning (DAS). Now we turn to discuss another main method for

. obtaining high resolution spectra for central transition with quadrupolar interaction,
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named double rotation (DOR). After applying a rotation around a fixed axis at
a particular angle with respect to the external field to, the Hamiltonian will be
truncated along the rotation axis if the spinning speed is fast enough. The residual
parts then are determined by the Legendre polynomial P,(cos ) (in our case, [ = 2,4).
For example, if the applied rotation is MAS, the residual lineshape of the central
transition for a powder sample is uniquely determined by the fourth order Legendre
polynomial, P;(cos ). The linewidth of the lineshape will be scaled down by a factor
of 1/P,(cos ) = 2.57 where §2) = 54.74°, the magic angle of the second order
Legendre polynomial P(cos6). In the variations of Py(cos@) and P,(cos§) with 6,
there is no cross point at which the values of P,(cosf) and P;(cos§) are .equal to
zero simultaneously (see Figure 3.8). However, the linewidth of the powder pattern
for a powder sample varies as the angle of the rotation axis changes, (see Figure
3.9), and can be further narrowed by applying another rotation relative to the first
rotation. In other words, the linewidths of the powder patterns can be continuously
narrowed té any degree by properly applying several rotations in same time. A trivial
solution can be found to eliminate completely the second order broadening with two
rotations. This corresponds to the double rotation (DOR) method: the first rotation
is performed along the magic angle 62 with respect to the external magnetic field
while the second rotation occurs at one of the magic angles % of the fourth order
Legendre polynomial P,(cos ). |

After applying two rotations to Eq.(3.20) and by using Eq.(3.12) twice, the tran-
sition frequency betweeri two central levels (m = +3) becomes

i
KL= 2 C X D)o@ ()P, m (U (8)) Atms, (3.45)

=0,2,4 my,mo=~| ]
where C; is given by Eq.(3.26) and Q,., (¢), ©,,(t) are two sets of Euler angles which
define the transformations from the laboratory frame to the outer rotor frame (ORF)
(the first rotor frame) and from the outer rotor frame to the inner rotor frame (IRF)

(the second rotor frame) respectively. We assume that the spinning speeds of the
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outer and inner rotors are w,, and wy,, fhe first rotation axis angle is 8,, with respect -
to the external field while the second rotation axis is at the angle of §,, relative tov
the first rotation axis. The initial phases of the first and second rotations are ,, and
r, Tespectively. The explicit expression of the two sets of Euler angle are therefbre
given by

Q, = (Writ + @iy Briy W)

Qr, = (Wryt + Qg Bray Vra)-
As in MAS, all spins have cylindrical symmetry around the external magnetic field

(3.46)

H, 50 that <, can be set to zero. For a powder sample, the absolute orientation "
of individual spin in the IRF is not important because spins have equal probability
to be at each orientation. Thus we can also set o, to zero. Finally, o, and 72
determine the relative phase <, between outer and inner rotors (say v, = @y, + Yr,,
see Figure (3.20)). |

After expanding Eq.(3.45), three terms result: the first term (I = 0) is a scalar,
~ independent of the orientation and of time; the second term is only time indepen-
dent; and the third part depends on both orientation and time. Furthermore since
the Hamiltonian commutes with itself at all tirhe, the total phase evolved after ap-

plication of a 90° pulse is

.(p(t) = CpAoot + Z Cwit + Z Cro(t) | (3.47)
) =24 =24 .
where
l - .
W= Z d(‘"ll),()(ﬂ"l)d-(-lz\lm,m(ﬂrz)Al,—Nm . (348)
. m=-1. o : . v
and

dD o(Br)dD, i Bry) | - '
(pz(t) — Z 2 1,0(:3 1) Mm2,m1 (ﬂ 2)Almze_'m”r(6—1(m1wf1+mzwr2)t _ 1) (349)

my ’mz#o 'mlwrl + m2wr2

and N = %:i The first term in Eq.(3.49) corresponds to the isotropic shift, the
second term determines the linewidth and also the lineshape for powder samples,

and the third term generates a set of sidebands.
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Zorr

Initial inner-
rotor position

Figure 3.20: Scheme of the coordinate transformation among the laboratory frame,
the outer rotor frame, and the inner rotor frame. The rotation axis of the outer rotor
is titled at the magic angle, 6 = 54.74°, of the second order Legendre polynomial,
while the inner rotor spins around 8¢ = 30.56°, one of the magic angles of the fourth
order Legendre polynomial. ‘
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If we ssume that the spinning speeds of both rotations are much larger than the
ami)litudes of the spin Hamiltonian H( of the central transition, the third term in
Eq.(3.49), ¢i(t), becomes small enough to be neglected at all time. Since from the
properties of Wigner rotation matrices, df,?,(ﬂ) = Pi(cos(B)), the anisotropic shift in
Eq.(3.49) wy can be eliminated if

{ Py(cos f,) Pa(008 fira) = 0 ' 350)

Py(cos Br,) Ps(cos Br,) = 0
and N = g{;- is not an integer less than .ﬁve. The solution of Eq.(3.50) is G, =
6™ = 54.74° and B,, = 6 = 30.56° , 70.12°, or vice versa. If N is an integer, the
residual broadening cannot Be totally suppressed due to the interference between two
spinning speeds. Figﬁre (3.21) shows the Qariation of the residual line broadenings
in the central tfénsition of a 'pdwder sample after application of DOR, for different
‘ratios N. From this figure it can be seen that when the two spinning speeds are equal, |
N = 1, the linewidth of centerband is about one tenth of the static linewidth, and
will narrow with increasing ratios betweeﬁ the two spinning speeds. The linewidth
' reaches the order of the rélaxation brbadening, or of high vofder residual broadeningé
when the ratio between the two spinning speed is larger thé,h thréé. This means that
the condition we gave at the beginning is not very crucial and therefore the design
of a double-rotor probe should concentrate on increasing the spinning speed of the °
outer rotor. When the ratio between the two spinning speeds are not an integer, the
lineshapes shown in Figure (3.21) will be the envelop of the sidebands which oofne

from the interference between the two spinning speeds.

3.9 DOR Experiménts

DOR experiments were carried out on Bruker AM-400MHz spectrometer with a
homemade DOR probe[79, 104]. The static magnetic field was shimmed using the

deuterium resonance of D;O; linewidths are below 10Hz.
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N=0.0 0.5 : 1.0

Figure 3.21: Residual lineshapes of the centerband of the central transition with
quadrupolar coupling constant 2.6 M Hz of spin I = % nuclei after double rotation
(DOR) varying with the ratio of the two spinning speeds, w—:f, and the asymmetry

parameter 7.
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In the DOR probe[79, 104], the sample is contained in a small rotor which is
embedded in the body of a large rotor spinning at the magic angle 8, = 54.74°
of the second order Legendre polynomial with respect to the static magnetic field.
Henceforth, the small rotor is named inner rotor and the large rotor as outer rotor.
The angle B between the spinning axes of the inner and outer rotors is 30.56°,
one of the magic angles of the fourth order Legendre polynomial. To design va,n
efficient double-rotor many of the requirements for a conventional high performance
MAS system have to be met[91]. A further complication with double-rotor systems
arises from the fact that a spinning object, like the inner rotor, has a tendency
to maintain its spinning orientation unless a torque‘is exerted on it. Torque is
obviously not desirable here because it imposes an extra burden on the limited load
capacity of bearing system: Fortunately, as will be illustrated below, the torque can
be reduced to a tolerably small value whén the fatio of the two spinning speeds,
wp/w;, approaches a certain ﬁxéd value that depénds on the structure of the inner
rotor. As illustrated in Figure (3.22), the motion of the inner rotor can be visualized
as the motion of a rigid cylinder with a fixed point, in this case the cross-point of
the two rotation axes; the pattern of the motion is the well-known precession motion

but without nutation. The equation relevant to such motion is

dJ
a—=‘r v : | | (351)

where J is the angular momentum of the inner-rotor and 7 is the torque applied to
the inner rotor through the bearing. The angular momentum can be expressed in

terms of the spinning speed w as
J = iLw, +jlw, + kLw, (3.52)

where i, j and k are the unit vectors of the principal axis system (x,y,z) of the moment
of inertia tensor of the inner-rotor with principal values I, I, and I,. In our case

this tensor is symmetric, I = I,. There are two contributions to the inner-rotor
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N

Figure 3.22: By adjusting the ratio of moments of inertia (I,/I.), the addition of
the two vector components of the angular momentum along the inner-rotor axis z
and the y axis can be made to point along the outer-rotor axis Z, so that spinning
the outer-rotor will not affect the orientation of the total angular momentum of the

inner-rotor.
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spinning speed, the spinning speed of the inner-rotor, w,, spinning around its own
axis and the spinning speed w, imposed by the outer-rotor. This second contribution
can be decomposed into two components, w; cos B along the z-axis, the spinning axis
of the inner-rotor, and w, sin B; along the y-axis which is chosen to be in the plane,

zZ, where the Z direction is along the outer-rotor spinning axis. Thus we have
wy=0, wy=wsinf;, w,=ws+w;cos/f. (3.53)

Viewed from the laboratory frame, the only way to make J time-independent (i.€.
zero torque) is to design the system in such a way that J points along the Z-axis as

depicted in Figure (3.22). This can be achieved if

Lyw, sin (3, '
= : 3.54
tan 5, I (w1 + we cos Bo) (3.54)
or | |
we/w) = cos ,Bz(ﬁ—y -1) =k (3.55)

F4

Clearly, from this .equation,‘ for a fixed ratio of I,,/1, determined by the vdimensions
of the inner-rotor, the ratio wo/w is fixed for torque-free conditions. - |
For a ratio ws/w of 5, when the outer rotor speed reaches 1kHz, the inner-rotor
speed must be 5kHz; this is not hard to achieve with current techniques. Since the
inner rotor is inclined at an angle inside the outer-rotor, the dimensions of the inner
rotor (both the length and the diameter) will determine the eventual diameter of the
outer rotor which is a crucial fdctor in obtaining highi outer rotor speeds. With the
goal of producing higher speeds for both the inner ahd’outer_rotors, we have designed |
a new double-rotor[104] with a reduced diameter of the outer rotor and a turbine
system for the inner rotor with paiameters recommended for MAS operation[91]; the
. driving jets are placed at both ends of the inner rotor.
An illustrative sketch of the double-rotor probe is shown in Figure (3.23). For

the purpose of detailed studies of the inner rotor behavior, we used a two-port air
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Figure 3.23: New double-rotor probe designs. (1) inner rotor with flutes at both ends;
(2 and 2’) building blocks of the double rotor held together through the axles (13)
with the matched counter parts (13’), and the step-shoulder (14) with the matched
counter parts (14’); (3) and (4) air channels and holes for bearing and drive system
of the inner rotor; (5) pins to hold the inner rotor in place; (6) and (7) bearing and
drive system for the outer rotor; (8) air exhaust holes for the outer rotor; (9) pins
to hold the outer rotor in place; (10) air passage for the inner rotor which fits into
(10’) with small clearance; (11) space for rf coil; (12) air exhaust holes for the inner -
rotor; (15) caps holding inner-rotor in place and allowing air escape for the inner
rotor system; (16) flutes for outer rotor; (17) flutes for inner rotor.
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injection system similar to that used in the original design[79]. The new double-
rotor is machined in three piecés held together with the axle (part 13) and the step-
shoulders (part 14) on the center piece (part 2) by press-fitting into the matched
counter parts (parts 13’ énd 14") on the end pieces (part 2'). This structure has
several advantages. AThe cylindrical structure of the center piece allows efficient
use of the available space within the outer rotor. Moreover, the cylindrical shape
also prevents structural deformations; deviations leés than 0.015mm can be made
over the whole length of the outer rotor. In addition, we can now also use more
fragile ceramic materials for the rotor body because a tight press-fit of the matching
pieces is not necessary here; we can use clamp .buttons screwed on top of the axles
(part 13) to hold the three pieces together as well. The new structure also prevents
any air leakages through mismatched fits.. As a result of these modifications, and
reducing tHe inner rotor diameter to 4.6mm, we were able to reduce the outef;rotor
to a diameter of 13mm and a length of 46mm. A further reduction of 1ength and
diameter is possible with an one-port air injection system feeding both the bearing '
and the drive of the inner rotor. The outer rotor described above is able to reach
a spinning’speed of 2kHz after careful balancing under conditions of single rotation;
a spinning inner rotor has no 'apprecia.bl_e influence on the outer-rotor performance
when the outer-rotor is spinning below 1kHz.

To operate the double rotor, we start slpinning the inner rotor first and then the
outer rotor. Initially, the ratib wo /Ql is usﬁally too high to satisfy the torque free
condition discussed above. Consequently, a torque is generated, and the friction on
the inner rotor from the bearing system slows down the spinning of the inner rotor; at
the same time, the ratio wo/w; decreases and with it the torque and friction, finally
stabilizing the inner rotor spinning speed at a lower value that depends on the bearing
and drive system. As the outer rotor 'speed increases, the inner rotor speed. must

also increase in order to adapt itself to the torque-free condition. In fact, precisely

123



at the torque free condition the system is not stable, since any accidental slow-down
of the inner rotor can trigger a torque avalanche. To be more‘speciﬁc, any decrease
of w» increases the torque when the ratio wé Jw is at the torque free condition; this
in turn further decreases we implying a further increase of the torque and leading
finally to a crash of the inner rotor motion; the outer rotor system is too large for
w; to adapt itself quickly to any change of the inner r;>tor motion. On the contrary, -
the system is in a stable state when the ratio wo/w, is close, but higher than the
torque free condition, as long as the weak torque generated can be tolerated by the
bearing system of the inner rotor. Any accidental slow-down of the inner rotor will
now decrease the torque and friction, bringing w; up again; similarly, any accidental
speed-up of the inner rotor will increase the torque bringing w. back down' again.
~ This self adjusting mechanism protects the inner rotor against any instabilities. It
can be shown[92] that under the influence of a torque the relationship between ws
and w; can be written as

= kw; + Awp -(3.56)

Wy = cosﬁg(fy/lz —Dw; + m
which reduces to Eq.(3.55), the i:orque free condition, when 7(the absolute magnitude
of 7 in Eq.(3.51)) or Aws is set to zero.

Both the inner and outer rotor spinning speeds can be .measured experimentally
from the sideband positions of 2*Na in sodium chloride where the line is broadened
by dipole-dipole interactions. The sidebands resultiné from motions of the inner and
the outer rotors can be clearly distinguished owing to the large wo/w; ratio which
adiabatically decouples the NMR effects of the two rofors. Figure (3.24) is a plot of
Ve = wy/2m versus v, = w; /21 obtained for two different inner rotors; A is 13.3mm
long and B is 15.2mm long with k values of 4.5 and 5.1 respectively. The different
specific gravities of Vespel and sodium chloride have been taken into account in

the calculation of k. Points in Figure (3.24) represented by the same kind of solid

symbols are obtained under the same conditions for the inner rotor, i.e. the same
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Figure 3.24: The inner rotor spinning speed v, is plotted versus the outer rotor
spinning speed v». The symbols A, O and V represent data for inner-rotor A (see
text) obtained with air pressures of 25, 30 and 35 psi respectively. Line 1 is a linear
fit for all of these data with k = 4.9 and Aw; = 573Hz (see Eq.(3.56)). The arrows
indicate the highest v, speeds before the motion of the inner-rotor crashes. The
symbols o, e and © represent data for inner-rotor B (see text) for which e were .
obtained with an air pressure of 30 psi and ¢ with an air pressure of 35 psi; o were
obtained with variable air pressures. Line 2 is a linear fitting for e with k = 5.3 and
Avy = 1.4kHgz; line 3 is a linear fit for ¢ with k = 5.4 and Ay, = 1.2kHz.
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bearing and drive air pressures. The plot shows that the inner rotor speed depends
linearly on the outer rotor speed over a wide range of vy, but tends to deviate from
it when v; comes closer to the point where the motion of the inner rotor crashes.
The experimental slope k obtained from the linear fitting is 4.9 for rotor A and is
5.4 for rotor B and does not depend on the air pressure used; moreover, these values
are quite close to the calculated values. According to Eq.(3.56), this implies that
the torque exerted on the inner rotor through the bearing adjusts itself with w; until
it can no longer be tolerated by the bearing system. The intercept of v, at v; = 0
is not zero and is larger for rotor B which makes the deviation from the linearity
more significant when Av, = Aws /27 starts to change. The nonzero positive value
of Av, is in agreement with our argufnent discussed above based on the stability
requirement that vy must be slightly exceed the value dictated by the torque-free
condition. The relationship between Av, and the air pressure used to operate the
inner rotor depends on the details of the inner rotor bearing and drive system; as
seen in Figure (3.24), the inner rotor A has a smaller Az)g value than B for the same
air pressure and is less sensitive on the air pressure used.

Figure (3.25) shows 23Na spectra of a sample containing a mixture of sodium
sulfate and sodium oxalate of which the molar ratio of sodium atoms is 2:1. The
static spectrum shown in Figure (3.25a) is 10kHz wide. Under MAS at 5.7kHz
(Figure (3.25b)), the linewidth is reduced to 2.5kHz and some structure is visible.
Under DOR (Figure (3.25¢)), the line collapses into sharp lines and the two-peak
structure is clearly revealed; the intensity ratio of the two components is 2:1 just as
expected and the linewidth is 80Hz (0.8ppm) for both lines.

In the above sections, we have described two new methods, DAS and DOR. Both
of them can effectively average out second order broadenings in the central transi-
tions of spin half integer nuclei with large quadrupolar interactions; high resolution

spectra can therefore be obtained with them. More applications to other spin half
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Figure 3.25: NMR spectra of 2Na central transition in a 2:1 polycrystalline mixture
of sodium sulfate and sodium oxalate. (a) is the static spectrum and (b) is the
MAS spectrum with rotor spinning speed of 5.7kHz. (c) is the DOR spectrum with
vy = 970Hz clearly revealing the two line structure. (d) is a expanded version of (c)
showing the centerband peaks originating from the two components of the mixture.

127



integer nuclei, especially for 7O, can be found in reference [90]. We now turn to the

description of the generalization of the DAS and DOR methods.

3.10 Iterative Averaging of Tensorial Interactions

In designing suitable averaging techniques, one should realize first that it is often
unnecessary to implement full spherical symmetry. Since the anisotropy of the spin
interactions is well defined, only a subset of the full rotation group is needed for
efficient averaging. The problem then becomes one of determining which trajectories
are both adequate and also feasible to implement through bulk macroscopic motions.

The orientational dependence of .a nuclear or electronic dipolar transition fre-
quency can be formally represented as a sum of components, each one irreducible

under the rotation group SO(3):
w= Z wz _ (3.57)

1
The contribution of each component w; depends on the 2] + 1 values of the corre-

sponding tensor A; ., (see Eq.(3.20)), which forms the basis of the representation D®
of SO(3). It also depends on the orientation Q5F€ = (o, 3,7) of the magnetic field

in a sample-fixed coordinate (SFC) system (see Figure 3.3); namely from Eq.(3.25)
w=Yy, ClAt,ng),o(QSFC): ' (3.58)

where D,(,?,o is an element of the associated Wigner rotation matrix (which is also a
representation of the full rotation group) and C; is a constant given by Eq.(3.26).
The particles in a hetero_geneous sample are randomly oriented, and hence exhibit

different sets of values A,
Aim =3 pm DS} o (QP45), (3.59)

where the p; .+ denote principal tensor components of rank I. For example, the prin-

cipal components of a quadrupolar interaction tensor are given in Eq.(1.35) while
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the second order tensor of the quadrupolar interaction in the ekisting of a Zeeman
interaction are given by Eq.(3.11). Dispersion in the Euler angles QP45 reflecting
different orientations of the sample-fixed coordinate frame relative té the local princi-
pal axis system (PAS), is the formal reason behind inhomogeneous line-broadening in
NMR (or modulation of the intensity in optical spectroscopy or NQR). The isotropic
part of the frequency in (8.57), wp, is the same for each particle in the sample and
thus is potentié]ly measurable with the highest analytical resolution.

- Spectroscopic measurement always requires a finite time to establish the differ-
ences between energy levels, during which the system contiﬁues to evolve and during
which one can change the relative direction of the fields and of the sample. The
orientation of the SFC, in general, is a function of tirhe, and its motion imposes a
 time dependence upon the transition frequency. The observed phase of the signal,

at some instant T, is proportional to
’ . _ i _ v
o(T) = /0 it w(t)=CY Aim /0 dt DOy (Q5FC(t)). (3.60)

which reflects the cufnulative effects of the _chahging resonant frequency. Stroboscopic
measurement with a sampling period of T, followed by a Fourier transformation, gives
the average frequency of the transition over the interval. The simplest anisotropic
term in the expénsion of w, the dipolar térm w1, can be eliminated by summation over
two opposite directions, QSFC and QSFC | to give a net phase of zero at the sampling |
point. More generally, the anisotropy described by ténsor components Ajmo for

a particular ! can be averaged away by directing the field at N = [ + 1 or more
directions to form a cone (Figure 3.26), that is, |

2
R = (=0 + kB, @6
because
N
3 DW(EFC) = NdY) o (8)6mo (3.62)
k=1 : .
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Figure 3.26: A basic succession of field directions that eliminates anisotropy due to
a tensor of rank I. The magnetic field scans ! + 1 directions, forming a cone with
opening 26W.
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in Eq.(3.60). The remaining term, proportional to A;¢, then can be eliminated by a

suitable choice of the apex angle 3©
dop(B') = Pi(cos V) = 0.  (363)
- Values of BY for tensors up to rank [ = 10 are given in Table (3.7). In real space this

Table 3.7: Roots of Legendre polynomials of P;(cos 3®).

o~

R

90.00
54.74

39.23  90.00

30.56 70.12

25.02 57.42 90.00
21.18 4861 76.19
18.36 42.14 66.06 90.00
1620 37.19 58.30 79.43
1450 33.28 52.17 71.08 90.00 |
1312 30.11 47.20 6432 81.44

© 00 N O U W N e

p—
o

approach has been'demonstrated in experiments involving the averaging of chemical
shift anisotropy I = 2 [87]. In this work, the sample was mounted on a goniometer
and reoriented so that the magnetic field assumed three orthdgonal directions during
the experimer;t. As the reorientation process was relatively slow, the magnetization
was stored along the field direction during the reorientation. Magic angle spinning
can be‘rega.rded as a continuous version of this (cubic) symmetry, in which the
magnetic field traces out the continuous circle on the sphere, with the a.pek angle
of the underlying cone determined by (3.63). This trajectory forms the basis of the
- MAS technique.
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Frequently, however, anisotropic interactions are determined by more than a sin-
gle rank tensor, for example, the second order effect of the quadrupolar interaction
in a magnetic field which is not strong enough to truncate the quadrupolar interac-
tion. Under these condition the line broadening caused by combining several tensors
simultaneously cannot be suppressed by rotation about a single axis, but rather only
scaled and altered. For example, the lineshape of the central transition for half in-
teger spin quadrupole nucleus is determined by the second- and fourth-rank tensors
that describe the second order effect of the quadrupolar interaction. Figure (3.4)
shows various calculated powder pdttems of the central transition for spin (I=3
in a sample spinning around a single axis at different angles. Figure (3.27) shows an
experimental example of the central transition of N a — 23 nuclei in sodium oxalate
at 105.8M Hz under VASS. For standard MAS, the powder pattern is determined
by the fourth rank tensor (Figure 3.27c). Spinning at either one of the magic angles
of the fourth rank tensor results in spectra with lineshapes characteristic of the sec-
ond rank tensor (Figure 3.27b and 3.27d) while other possibilities give mixed results
with some variation in linewidth (Figure 3.4)[103]. It is clear that the anisotropy
due to more than one tensorial rank demands a better approximation to spherical
symmetry. As an initial possibility we consider point subgroups I" of SO(3). |

Owing to the high symmetries involved, the effect on the spectral components
(3.57) can be conveniently analyzed with group theory. We are interested in the
average value of each frequency component over all N rotational operations R of the
symmetry group G which obviously is a subgroup of the three dimepsiona.l rotation
group SO(3),

z:Alm Y, - (364)
where
DOy =~ zv"’om}z). (365)
ReG
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Figure 3.27: NMR spectrum of the central transition of Na-23 in sodium oxalate at
108 MHz. a) Static sample, b) Sample spinning around axis at 30.56°, ¢) Sample
spinning around axis at 54.74°, d) Sample spinning around axis at 70.12°.
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The representations of the group SO(3) reduce under subgroup G as
DY () = 3 aPDED) (Qp). (3.66)
T

The average of the transformation matrices (3.65) and also the averaged frequencies
@’ can be different from zero only if expansion (3.66) contains the totally symmetric
repr@entation A,. This follows directly from general orthogonality properties with
respect to summation over ‘group elements [68], namely from orthogonality with the

symmetric identity representation , while
Dy'on(G) = bmm. (367)

The multiplicity a" of any irreducible representation I'" can be evaluated from the

general expression for traces

1
oD — % 3 xO(R) "D (R) (3.68)
R

and the characters calculated from

sin(l + %)CR

O(pY — 0 _ .
XOW) = S Dn(On) = S22, ~ (369)

where (g is an angle of rotation of the corresponding symmetry operation, related

to Euler angles by

cos (O‘L;Li’i‘—)] (3.70)

and the characters of the identity representation are

Cr=2cos” l[cos

x“(R) =1. (3.71)

In Table (3.8) are shown characters of reducible D,(,?,’m for all physically different |
- symmetry operations (classes) of the most symmetrical, icosahedral finite rotation
group G = I. In the last column we give the multiplicity of the symmetric repre-
sentation A, after reduction of the original representation ’D(l) m- Of the first ten

anisotropic spectral components, only two (I = 6and ! = 10) survive averaging under
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Table 3.8: Characters of D&, representations of the group SO(3) after decomposition
by the icosahedral group. .

R|E 12Cs 12C% 20C; 15C,

Cr| 0 72 144 120 180

l alA1
01 1 1 1 1 1
113 r T 0 -1 0
2({5 0 0 -1 1 0
317 -r -7 1 -1 0
419 -1 -1 0 1 0
5111 1 1 -1 -1 0
6 |13 7 7 1 1 1
7115 0 o o -1]| o
8|17 —-r —F -1 1 0
919 -1 -1 1 -1 0
1021 1 1 0 1 1
wherer=k*=2-@, andF:l—‘Z@

icosahedral symmetry. A summary of the averaging of the tensor components under
subgroups of | SO(3) is shown in Figure (3.28). Although icosahedral symmetry is
very powerful, it has not yet found any widespread use in NMR ekcept as a special
case of dynamic angle spinning (DAS), a point to which we have discussed in section
3.4 and will return later for more.

Selective averaging of interactions with different ranks can be recon/étructed iter-
atively. Given a certain set of directions {2 of the magnetic field in the sample-fixed

coordinate (SFC) system, an additional splitting of directions around the original
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Figure 3.28: Averaging of spherical harmonics under subgroups, (for our interest,
symmetry point groups), Dy, T, O, I) of SO(3).
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ones, as shown in Figure (3.29) will give a stroboscopic phase of

N NII ' .

AT) = s 3 A 3 Dt (%) - Do) (3.72)
m/;m J

After averaging over the first set, 0, this can be expanded as

oD =5 5 hodd, (ﬂ')dﬁfzow")ze-mww» |

m=-1

Z A mIZDS,iZ,m(szSf.’,om;')

ml—NI

—N/ _ .

Z At Z Dl (%) Z Do (), (3.73)
m’——l . )

- where the last two sums disappear if the multiplicity of the first splitting is N’ > .
A tensor of any rank ! thus can be averaged if either #’ or 8’ = ¥, and if
the multiplicity of both splittings exceeds the rank, N',” > I. Two possibilities for
seleéting B allow for simultaneous averaging of two tensors of different ranks. As can
be seen from (3.73), the multiplicity of the first splitting can be reduced to I; + 1 if
- 1y is the lowest of i;he two ranks. In that case the ordering of the apex angles also
becomes important: B" = B®, otherwise terms AL DB (B)DR (B4), where
m' = —ly,—lo +1,..,—N',N’, .., 5, will not be averaged. Extension of this iterative
| procedure to further terms of different rank is obvious.
Straightforward extension of thé multiple splitting to a continuous trajectory,
involving multiple rotations, would also require multiple time dimensions. The am-
biguity of the phase parameters ' in (3.72), however offérs possibilities for a one-

dimensional trajectory.' Introducing a time dependence |

"

Y+ = Y+wt and
o, = Nuw,t; | (3.74)

we can replace (3.72) by its continuous counterpart

h,l2

T , . _
P =3 T Awd® . (6)d00(3%) /0 gmwrtm N4m)kinogy (3 75)

I m'm
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Figure 3.29: Tensor interactions of two ranks, [; and l,, can be eliminated with an
additional, or secondary splitting, of the field directions under which the interactions
are averaged. The symmetry axes of the new cones retain the original symmetry of
the primary splitting.
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If
w,T(m'N+m)=Kkm, k=1,2,... (3.76)

then expression (3.75) reduces to-
0uia(T) =TI Awodsh(BD)dih(8%) = o, (3.77)
1

which describes a rotation of the ﬁeld.directio_n with a slow change in the rotation
axis (Figure 3.30). Vertices of polygons with opening 28%2) exactly fit this trajectory,
while the symmetry axes of the polygons trace out a cone with opening angle 23%).

The iterative geometry déscribed above was first applied to the averag;ing of
second and third rank interactions in spin space, using double modulation of the CW
irradiation [71]. In _.real space, applications based on an iterative scheme were. used to
average second order quadrupole line-broadening {72, 104]. The fast reorientation is
performed with a double rotor assembly (DOR), in which a powder sample is placed
in a small .rotor (inner rotor), spinning inside a larger rotor (outer rotor) (see Figure
3.23)[79]. The spinning axis is inclined at the angle ) relative to the symmetry
axis of the outer rotor, which is itself spinning at %2 relative to the magnetic field
direction . | '

The third (and probably most general) averaging scheme, dubbed dynamic angle
spinning (DAS)[76], is suggested by the patterns in Figure 3.27. Note that two of the
lineshapes (Figure 3.27b an 3.27d) are in fact mirror images with different scaling
factors. The reflection symmetry about an isotropic shift value is caused by a sign
v inversion of Py(cos B9), and the scaling ratio is given by

Py(cos ﬂ§4) )

I
Py(cos B

| = 1.87, | (3.78)

where ,3%‘” = 30.56° and ﬁé’” = 70.12°, respectively. Since the shift reflection occurs
with the same scaling ratio for each particle in the sample , it is possible to rephase

the signal of all particles simultaneously at some time T'. If evolution for a period
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Figure 3.30: A continuous one-dimensional trajectory to eliminate two tensors. A
complementary set of points (commensurate with the basic splitting) can be found
at every point on the trajectory, to average one of the tensors. Such a set is shown
here as a pentagon. The centers of the pentagons form a continuous cone with apex
angle such that another tensor will be averaged.
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7T proceeds at the angle 5;, and subsequently for a period (1 — 7)T at B, the

accumulated anisotropic phase will be
T
o(1) = [ w(BE)dt = @) +w(B)(1 = )T, (379)
The modulation (3.79) disappears for each interaction of rank n if
Pa(cos B1) + Pa(cos Bo)(1 — 7) =0, | (3.80)

which results in ¢(T') = 0. A signal recorded at constant intervals of time T,2T,3T,.., -
then will be independent of all anisotropic terms, and carry information only about
the available isotropic shifts. | | |
Many variations of this approach are possible because motion of the spinning axis
is not limited to discrete positions and equal probability. Any function of time 8(t),
satisfying the condition o .
[ w@ypra =0 @8
where p(t) 'is}a weight function, will periodically refocus the phase. For examplé,
linear sweep of the spinning axis betweeﬁ the angles 19.05° and 99.19° is a solution

to (3.81). Similarly, the above DOR trajectory can be understood as
cos[B(t)] = cos(B®) cos(8@) + sin(B®) sin(8@) cos(w,t) (3.82)

and p(t) = 1, where w, is the spinning speed of the outer spinner, and 5® and
B are the magic angles of the Legendre polynomials P(cos B) and Py(cos3). The
DAS trajectories can also follow the symmetry of regular polyhedra. The solutions
of (3.80) generally describe surfaces in three dimensions space (81, B2, 7), as shown
in Figure (3.31). Since the spinning angles can be interchanged, the surfaces exhibit
inversion symmetry. A simultaneous solution for two equations of the form (3.80) is
obtained at any point on a crossing line of two surfaces (Figure 3.31). Two solutions,
(37.38°,79.19°,1/2) and (0°,63.43°,1/6), describe circles which traverse the vertices

of an icosahedron (Figure 3.32) and thus present continuous extensions of icosahedral
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Figure 3.32: Icosahedral symmetry can be implemented with just two continuous
trajectories in cases where tensors of rank two and four are to be eliminated. In
the laboratory frame, this appears as a fast rotation of the sample at two different
angles in succession. Time spent along one particular trajectory is proportional to
the number of vertices. In top the vertices are those of an icosahedron, the two
spinning axes are ﬂfl) =0° and ,ﬁ,‘) = 63.43° and the ratio of times spinning at the
two angles is 1:5. In bottom the vertices are those of either an icosahedron or a
dodecahedron, the angles are ﬂfl) = 37.38° and ,Bél) = 79.12° and the ratio of times

spinning at the two angles is 1:1. g
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point symmetry. One of the solutions may be converted to the other just by inversion
of one direction. Equation (3.79) also can be extended to give solutions for averaging
three or more tensors, with the addition of controlled time delays and spinning angles.
Such experiments will be successful if the motion of the spinning axis is fast compared
to the transverse relaxation rate, or if the transient magnetization can be stored along
the polarizing field. The latter method was actually used in dynamic angle spinning
(DAS) experiments to remove second order quadrupole line broadening in spectra
of O-17 [78]. We close by mentioning that averaging by icosahedral symmetry (or
double rotation) in both spin and spatial coordinates simultaneously is an optifnal

solution for zero-field NMR in high field (see chapter 3)[50].

\
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Chapter 4

- Calculation of Sideband
Intensities in MAS, DAS, and
DOR NMR

4.1 An Approx1mate Method of MAS Sideband
Intensity Calculation |

4.1.1 Introduction

Magic angle spinning (MAS) in solid-state NMR as a powerful method for eliminat- ‘
ing the dispersioh in spectra caused by the orientation distribution 6f the resonance
frequencies of the magnetization in polycrystalline or amorphous samples is obtain-
ing more and more applications for stuaying 'molecular.structure and dynamics. In
contrast to the high resolution spectra in liquid NMR which results from the avefag-
ing under rapid ihooherent tumbling of particles, the Zeeman transition frequencies -
of spin nuclei in the polycrystalline or amorphous samples are severely broadened
owing to the lack of these random motions [5, 59]. Such motions, where present, act
to average anisotropic interactions (for example, chemical shift anisotropy(CSA),
dipolar, and quadrupolar couplings between spin nuclei) to zero. -Where the neces-
sary averaging over the internal random motions of a spin system does not occur,
macroscopic motions which are, in most of cases, coherent, have to be applied to the

sample to improve spectral resolution. MAS, in which the sainple rotates around an
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axis inclined at the magic angle (6,, = 54.74°) with respect to the external static
magnetic field Hy is today one of the most common methods used for this purpose.
This technique was first proposed by Andrew and Lowe in the late 1950s to suppress
homogeneous broadening due to the dipolar interaction[56, 57, 58]. Later, Schaefer
and Stejskal showed that CSA also can be averaged to zero at relative low fields [93].
In the extreme where the spinning speed far exceeds the breadth of the anisotropy,
MAS yields the isotropic shift at the expense of any information concerning the
anisotropy. This condition must be met for homogenéous broadening, for example,
which is caused by homonuclear dipolar interactions. However, for inhomogeneous
broadening (e.g. CSA and the first order quadrupolar interaction) sidebands develop
around the isotropic peak if the spinning speed is smaller than the anisotropy[94].
Maricq and Waugh[95] subsequently proposed that the free induction decay (FID)
signal be expanded as a series of moments in order to extract the anisoﬁropic informa-
tion from the sidebands. Herzfeld and Berger[96] also developed a general method,
involving Bessel functions, to calculate sideband intensit;ies. The anisotropic _infor-
mation is extracted by time-consuming simulations of the intensities of the individual
sidebands. In this section we propose a new method to calculate approximate side-
band intensities, in real time without using a large data base which is necessary
in Herzfeld and Berger’s method for time efficiency. The new method involves ex-
panding the FID signal in a basis of irreducible spatial tensors in such a way, when
averaged over all orientations, only zero rank irreducible tensors (scalar operators)
contribute to the sideband intensities. Symmetry properties of the sidebands can
be seen clearly in this expansion, and an approximate formula up to ninth-rank ir-
reducible tensors is obtained by truncating the series. The dependence of sideband
intensities on anisotropic parameters (6,7) can then be expressed explicitly. With
least square fitting programs, the extraction of the principal values of the chemical

shift anisotropy from the sideband intensities obtained from MAS spectra can be
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quickly and easily performed.

4.1.2  Theory

We start with a rare spin nuclear system (such as *C) in which nuclear spins in-
teract with the external static magnetic field Ho via anisotropic chemical shielding.
According to the notation and conventions given by Mehring[19], we can represent
the spin Hamiltonian as

. , | |
H=wl, +weol, +wo Y (—1)"AzemTom, (4.1)

m=—2

where the wp is the Larmor frequency of the spin nuclear species invol\}ed, 7 is the
isotropic chemical shielding, I, is the spin operator, and A,_,, and 7o, are the
components of the second rank irreducible spatial ahd spin tensors respectively. In
Eq.(4.1), the first term represents the Zeeman intéraction, and the second term is
the isotropic chemical shift while the third term the chemical shift a:nisotropy (CSA).
The principal values, pg;n, of the CSA tensor is given by

3 1 |
p'= 55, - P2 = 5775, px1= 0. : (4-2)

By using the properties of the irreducible tensors and the Wigner rotation matrices,
the A2 in Eq.(4.1), reflecting orientation dependence of the CSA Hamiltoniah, can

be expressed as
A2m = Z DSvi:)m(Q)pan . (43)

m=-2

where D&, (€2) are the Wigner rotation matrices and 2 = Q(a, 8, 7) are Euler angles.

- After the spin Hamiltonian given in Eq.(4.1) is transformed into the rotating
frame by the unitary operator e~*°=*, the time dependent terms in the total Hamil-
 tonian can be neglected under the first order perturbation approximation, and the

total Hamiltonian becomes

H = woAonzo, (44)
~ assuming that the isotropic chemical shift (wp@) is zero in this particular case.
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After the sample rotates arbund a fixed axis inclined at an angle, 6, with respect
to the external magnetic field, viewed in the rotor frame fixed on the sample, the mag-
netic field, Ho, actually journeys on a cone with half apex angle 8 (see Figure 3.13)).
In order words, the magnetization traverses the spinning.trajectory of the sample,
and the local fields determined by the CSA tensor change periodically. Henceforth,
the component of the second rank irreducible spatial tensor, Az, becomes time de-
pendent. By using the Wigner rotation matrices, the spin Hamiltonian in the rotating'

frame becomes

\ .
H=9Tn > DZy(,)Am, (4.5)

m=-2

whére Q, = Q.(0,0,w,t), 0 is the angle between the rotor axis and Hy, and wyt
is the azimuth of the z-axis of the rotor frame with respect to Hy. In Eq. (4.5),
~ the time-independent part, corresponding to m = 0, disappears when 6 = 0, the
magic angle of the second order Legendre polynomial; The remaining components
in Eq. (4.5) are time dependent. Since the sample spinning is only applied on the
spatial parts of the spin Hamiltonian, the spin Hamiltonian always commutes with
itself at all times. This means that the eigenvectors of the spin Hamiltonian remain
unchanged at all times, but the eigenvalues are modulated by a set of harmonics.
Hence the resonance frequency becomes time dependent, and the FID signal for a

* spin I =  system can be written as

9(t) = exp {—ip(t)}, (4.6)
where
o(t) = g_u:z) : m;2 d2,(0.) Ao 47)
and
$m = (exp {—imuw,t} — 1). @49

In general, Eq. (4.6) describes a phase-modulated signal with the associated

Fourier spectrum showing a band structure. Each oriented single crystal contributes
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~ a particular sideband pattern, and what we see is the average over all orientations
for a powder sample. Such an averaged sideband pattern is not related simply to the
anisotropies and asymmetry parameters of the CSA tensors, however; In order to
extract these parameters frorh the experimental results obtained under MAS, Mar-
icq and Waugh expanded Eq. (4.6) in a multiple moment series, and found that the
-second and third moments of the MAS NMR spectra are indeed related fairly simplyl
to 6 and 7. In practical applications of the moment analysis method, the second and
third moments are first calculated from the sideband intensities and the spinning
- speeds of the sample obtained from the experimental MAS NMR spectra, and then,
using the relationships between the moments and the principal values of the CSA
tensors, the anisotropies and asymmetry parameters, can be calculated. Sincé the
intensity of the N-th order sideband, in general, decayé, but the frequency increases
as the order of the sideband, N, increases, the contﬁbution of small sideband inten-
sity to the moments can not be ignored, and therefore, this method requires very
~ accurate measurement of all sideband infensities, which is difficult to do. Moreover,
the method fails when sidebands originating from different site in a spin system
overlap. To overcome these problems, Herzfeld and Berger first expa.nded Eq. (4.6)
using Bessel ﬁlﬁctions and subsequently converted it to a Fourier series. The N-th
coefficient in the Fourier expansion then corresponds to the N-th sideband intensity.
- Nevertheless, the ihtensity of each sideband has a very complicafed dependence én
~ the anisotropic parameters, and the problem can be inverted only by time-consuming
numerical simulations.

The dependeﬂde of the intensiﬁiés on anisotropic parameters is complicated ’be—
cause the integrals over all orientations in Eq. (4.6) cannot be solved analyticall);.
Here, instead, we will expand the FID signal into a Taylor series. By virtue of the
properties of the products of two irreducible tensors, the FID signal is recast in a

 basis of irreducible tensors from rank zero to rank infinity. The rotational transfor-
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mation properties of irreducible tensors yield analytical solutions for the integrals up
to any order.

The first step in this new method is to expand Eq. (4.6) into a Taylor series to

obtain |
o= Tlel (4.9
Substituting Eq. (4.7) into (4.9), we then have
g(t) = (\/7 “00 ) £t (4.10)
where

fk(t) = Z Z Z B(ml,ﬂlz,...,mk)¢m1¢m2...¢mkA2,m1A2’m2...Az,mk
m1#0 mo#0  myE#£0
(4.11)

and \ \

2

d2 3 (0m)d2 5(0m) - - - d2 o(6m)
mims... mgd*

B(ﬁll, ma,..., mk) (412)

Later, we will see that the function fi(t) only depends on the asymmetry parameter

7.
In the next step, we introduce the product of two irreducible tensors given by[20]

. L+l
All,ml Alz,mz = Z C(lla l2) l; my, M, Ty + m2)Al,m1+m2, (413)

I=|ly—la|

where C(l1, 12,1, mi, m2, my+my) are the Clebsch-Gordan coefficients. Iterating using

Eq. (4.13), we can represent the product of k second-rank irreducible tensors as

4 L+2 le—2+2

A2,m1 A2,m2 R 142,1".,= Z Z Z 0(2, 27 ll, m, 7n2)

11=0 Ip=|i1 2] lk—1=llk-2—2|
k-1
C(ll, 2,13, m; + my, ms) e C(lk_g, 2,11, Z m;, mk)Alk—le‘F s (4.14)
i=1 =

With the orientation dependence expressed in terms of the Wigner rotation ma-
trices, the average of the l-th rank irreducible spatial tensor over all orientations
is

(4.15)

lom =

— {Ao,o(zl,...,zk_s) ifl=0and m=0

-0 otherwise

150




Hence after the powder avérage, only the scalar part in Eq. (4.11) remains:
2

Aoo ( L. lk—3)=" Z C(2,2,l1,n1,12)C(l1,2,l3,m1 + n3) ..
Nlyeeyp—1=—2 . .
v k-1 k-1 '
0(21 2’ 07_ Z n;, — Z ni)p2,n1p2,‘n2 - P2 Mk 1/)2 2 —1 n' : (4.16)
i=1 i=1

In this equation, the product of k components pon, (i = 1...k) is of order 6, and
will cancel with the §* in coefficient B of Eq. (4.11). Thus fi(t) is only a function
of the asymmetry factor . From Eq. (4.2), the power of the asymmetry factor in
fi(t) is determined by |

= [L%ll] + [ll;?-l] +..+ [l—T;il]. | (4.17)

The result of the square-brackets, representing the truncation of each individual term
in Eq. (4.17), is an integer with the value zero or one. Since from Eq.(4.3), pn, are
not equal zero only if n; = 0,22, and since the sum over all indices, Y% . ni, has
to be zero after the poWder average according to Eq.(4.15), the number of indices
which has value 2 must equal the number of indices with value —2. Thus Eq. (4.17)
can only result in an even integer number. This means that the power of 7 must
be even and, consequently, the sideband intensitiés are not sénsitive to the sign of
the asymmetry factor. This feature follows, then, that the sample rotation does not
change the symmetry of the spin system, in agreement with the relationéhip between
the static powder lineshapes and the asymmetry parameters 7, (usually we can take
0<n<1). .

The symmetry pfoperty of coefficients B can be easily found after the powder

average by use of the properties of reduced Wigner rotation matrices:
B(my,my,...,m) = (=1)*B(-m,, —my, ..., —my). (4.18)

In the final step, from Eqs. (4.14) and (4.15) we have m; = ¥¥-! m,. Inserting

this condition into Eq. (4.11), we thus obtain

k
¢m1 ¢‘mk—1¢ Z"‘ y _1+( 1) +2Z( 1)"2 Z

J1=1 Jn=in-1+1
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cos[(mj, + ... +m;, )wrt] forevenk
isin[(mj, + ...+ m;,)w,t] for odd k.
(4.19)

In Eq. (4.19), when k is an even number, the product of k functions ¢;(i = 1...k)
is also an even function about Nw,t; otherwise, it is an odd. This means that
even order terms in the Taylor expansion symfnetrically correct the intensities of
sidebands whereas the odd terms result in the differences of sideband intensities
about the centerband. Because the odd terms are antisymmetric, they make no
contribution to the centerband.

With substitution of Egs. (4.15),(4.16), and (4.19) into Eq.(4.11), fi(t) can be

expressed by

9N N
f@)y= Y. D Limnn® exp(—imw,t) (4.20)
m=-2N n=0

where N = [k/2] and

k ' k-1
Ik,m,n = Z(—I)J . Z E E Bl(mla Tty Mk—1,— Z mi)
Jj=0 L yoosdi—3 My, 10 N1y k-1 =1
. . k-1 k~1
xC(2,2,l;;my, ma)C(11,2,la; my +mg,ms)--- C(2,2,0, ) my, — Y my)
=1 i=1

k—1 k-1
xC(2,2,l;11,n2)C(l1,2,l2; 11 + n2,m3) - - C(2,2,0, ) _mi,— D i)
_ =1

=1

J j . k=1,
X Py * -p;’_zl_c_;m[é(m =S m) + (-1)*6(m+ > mi)s@2n - l%‘l)
= i=1 =1 i=1

(a.21)

and B’ = §*B, and p),, are equal to py,, with § = 1 and n = 1 given in Eq.(4.3),

that is, they are no longer functions of §-and 7.

4.1.3 Results

In the last section, we have solved the powder average up to infinitive order in the

Taylor expansion of the FID signal. After substitution of Eqs. (4.11), (4.16), and
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(4.17) into (4.9), however, the FID signal can be represented as a qurier series
again (see Eq. (4.20)) and the sideband intensities can be obtained by evaluating
" the Fourier coefficients. As the order in the Taylor expansion increaseé, the number
of summations over all Clebsch—Gox_'dan coefficients also increases as (k — 3), where
k is the k-th order in the expahsion. Using a computer, it is eaéy to determine the
coefficients of the first ten orders in the Taylor expansion, but calculation of higher-
order coefficients becomes very time consuming. Fortunately, though, in practice the
| spinning speed is not much smaller than the CSA (especially for '*C), and in these
circumstances the approximation up to ninth ordér, as we will see, is already very
- good for the calculation of sideband intensities. | |

Here we only list the coefficients of the first four orders in the Taylor expansion
and use them to draw some general properties of the sideband intensities under MAS.
All other coefficients can be obtained from Egs. (4.11), (4.14), (4.16), and (4.19).

Thus, o ‘ | ‘

fo®) =1
he) =0 |
R0 = %(3 + 772)[—% + gcos(w,t) + —1-15 cos(2wyt)]

f3t) = %?\/g(—l + n%)[2 sin(wyt) — sin(2wyt)] | (4.22)

First, it can be seen from Eq. (4.22) that thé éero order term is always equal one
while the first order term is zero. This implies that the first order term has no
correction to the first order (%1) sidebands due to the asymmetry paramét‘er. This
explains that once the spinning speed is in the regime of the linewidth of the static -
powder pattern the sideband intensities measured experime'ntally become more or
less symmetric around the centerband. Such a distribution of the sideband intensities
is no longer sensitive to the asymmetry parameter and therefore cannot be used to

extract the anisotropic information. Second, when n = 1, the value of f3(t) is zero.
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Figure 4.1: Variation of sideband intensities with the ratio of chemical shift
anisotropy (woé) to spinning speed (wr), computed for the case = 0.5. Solid
lines are calculated by numerically integrating Eq. (6) over oll orientations, and
dashed lines are obtained by our approximate method (up to the ninth order). (a)
Centerband intensities. (b) First-order sidebands (£1). (c) Second-order sidebands
(£2).
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This conclusion can be extended to all odd terms in accordance with the symmetry
properties of odd and even orders in the Taylor expansion as discussed at the end of
‘the last section. Intuitively, the powder pattern is symmetric around the isotropic
frequency once 7 = 1. Thus the sidebands should also be symmetric around the
centerband. r.I‘hird, the sum‘of all coefficients of sidebands in fi(t) is always zero
except for k = 0. This means that the correction of each order just redistributes
each sideband intensity over the whole set of sidebands, and the FID signal is alwayé
" normalized. ‘ |

In order to see how good the approximate method is, we have to evaluate the
sideband intensities exactly from Eq (4.6). According to the result given by Herzfeld
and Berger[96], the intensity of the Nth sideband is

[ [ sn@per| [ exp—iNo+ vl (429

In= 1674 Jo

where

o | ,
2 _wo Z d’"O(a’")Ag,mexp(-ime). . (4.24)

3 —tw, m=-2

¥(6) =
Composite ten-point Gaussian (Gauss-Legendre) quadruture has been used to eval- ‘
uate the three-dimensional integral in Eq. (4.24).‘ To calculate the intensities of
a set of sidebandé between one half and five minutes on Micro VAX II depending
on the accuracy needed. Figure (4.1) shows that a comparison of sideband inten-
sities computed through the first ten orders of the Taylor expansion (dashed line)
and the exact solution (solid line) obtained by numerical simulation[96]. Since the
ratio of the number of multiplications involved in the numerical integration of the
exact sblution given in Eq.(4.23) to that in the approximate method is at least in
the order of ten thousands, the computing time reduces from about six hours for
the exact result to a few seconds for the approximate method. Both results are very
close when the ratio of the anisotropy to the spinning speed, ;‘L, is smaller than
three. For 22 ¢ > 3, the sideband intensities calculated by the approximate method,

~ however, tend to diverge. Figure (4.2) shows the convergence under approximations
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Figure 4.2: Variation of sideband intensities with the ratio of chemical shift
anisotropy (woé) to spinning speed (wr) under the approximate method, with first
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lines) orders. n = 0.5. (a,e) Second-order sideband. (b,d) First-order sideband. (c)
centerband.
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of different order. We see that the sideband intensities converge at higher orders,
and that_ bthe rate of convergence is muéh the same as for the sinusoidal functions.
The total intensity obtained from the sum over all sideband intensities is always one,
even though each sideband itself diverges. This is because the higher order sideband
intensities are given by redistributing the lower order sideband intensities and keep-
ing the whole intensity of the spectrum at unity. So, the divergence comes from the
incorrect intensity partition of each sidebénd for large value of %’iﬁ. | |

In order to extract anisotropic information, the experimental sideband intensi-
ties have to be normalized fbr comparison with the theoretical values. Experifnental
signal-to-noise therefore must be good enough to permit accurate measurement and
sumfnatioh of all sideband intensities. To overcome this requirement, Herzfeld and‘ v
Berger proposed .an alternative method in which the anisotropic information is e'x-v
tracted by measuring the ratios of the sideband intensities to the centerband intensity.
Furthermore, as mentionéd above, thé differences of sideband intensities around the
centerband are relatively sensitive to fhe asymmetry factor (n), whereas the aver-
ages of these sideband intensities are sensitive only to the anisotropy (6)(see Figure
4.3). Although there is a maximum difference of the N-th order sideband intensi-
ties around centerband, the change of the difference is the minimum at axial and
near-axial situations. This method therefore is only slightly better than the method
used by Herzfeld and Befger. We use ﬁhe ratios of the differences (averages) to the
centerband intensity to extract the anisotropic parameters by least squéreé fitting,.
In the fitting program (MASFIT), the initial values of the anisotropic parameters
are calculated by Eq. (4.22), and then by use of the Davidon—Fletcher-Powell (DFP)
algorithfr_1[98], the anisotropic parameters can be extracted in a few seconds. Figure
(4.4) shows contours of the surface used in the fitting program. We can clearly see
that there does exist a unique minimum, but that the surface is very smooth in the

dimension of the asymmetry factor 7. As a result, the determination of 7 is relatively
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less accurate than that of the anisotropy é.
The overall quality of the fitting can be seen in Table (4.1). One severe problem
appears when the asymmetry factor 7 is very small (that is, in the near-axial regime).

‘Here the differences of the sideband intensities for different 7 are so small (see also

Table 4.1: Results of sideband analysis

6(ppm) n

Lead Nitrate (PbNO3)(%°” Pb)

Reported | 35443 0.0 £0.16

Powder Lineshape - 359+%5 0.0
Sideband - 3465 0.08 0.1
Benzoic Acid(*3C)

Reported 71.0+4 0.6 +0.12

Sideband | 634+5 08+01

- Phoshous Pentaoride(3! P)

Reported | 218.0 £ 20 0.0 % 0.18

Sideband ' 1906+ 5 0.06 % 0.1

‘Powder Lineshape 193.0 £ 5 0.0

Figure 4.3) that extraction of 7 becomes quite difficult. Such a problem exists both
for moment analysis and powder lineshape simulation[97] methods.

- This approximate method also can be applied to calculate the centerband in-
tensity after all sidebands are suppressed by a TOSS pulse sequence[99]. The FID
signal of a spectrum with sidebands contains a series of rotational echoes. Moreover |
the rotational e_ého results from the periodicity of the phase, which runs from 0 to
2 ovér time. After TOSS, however, this period no longer exists[100], and then Eq. |
(4.8) must be replaced by

dm = exp(—imwyt). . (4.25)
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This expression becomes @, dm, ... ¢m, = €xp(my + ma + ... + my) = 1 after the
powder average. Thus f(t) becomes time independent, and 9(t) gives the intensity
of the centerband. From Eq. (4.18) and the prbperties of the Clebsch-Gordan coeffi- -
cients, it can be found that fi(t) are zero if k is odd number. Figure (4.5) shows the
variation of the centerband intensity with the ratio of the anisotropy to the spinning
speed, %"ré, at 7 = 0.5 in a TOSS experiment. It can be seen that, after TOSS, the

centerband intensity converges much faster than MAS centerband intensity.

4.1.4 Conclusions

We have shown that the FID signal under MAS can be expanded into a Taylor
series which contains products of k irreducible spatial tensors (k = 0...00). The
properties of irreducible tensors permit the integrals over all orientations to be solved
analytically. The FID signal then becomes an expansion in a set of basis scalar
operators, which are uniquely determined by the anisotropic pa.rametérs of the CSA
tensors, and the coefficients in the expansion are given by a series of Clebsch-Gordan
coefficients. After all the coefficients and the scalar operators are evaluated, the
sideband intensities are functions of 72, and the total pattern of sidebands can be
understood as a sum of symmetric‘ and antisymmetric parts about the centerband.
The odd terms in the expansion determine the antisymmetric pattern, and make
no contribution to the centerband intensity, while the even terms contribute to the
symmetric part. After manipulation of the Clebsch-Gordan coefficients, we obtain an
approximate formula up to the ninth order in the Taylor expansion of the FID signal.
Sideband intensities can be easily calculated within real time using this formula even
for the spectra consisting of many deferent sites whose sidebands overlap with each
other. The results are in satisfactory agreement with the exact solution obtained
by numerical simulation if the ratio of the anisotropy to the spinning speed, %"f—,
is smaller than three. The anisotropic parameters can be extracted very efficiently

using this method combining with least-squares fitting methods. We also apply this
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method to calculate the centerband inténsity after eliminating the sidebands using
TOSS pulse sequence in MAS. The results show that the centerband intensity after

TOSS converges to the exact value much faster than MAS centerband intensity. This
apprmdmate methbd also can be applied to sideband intensity calculation in double

rotation (DOR)[72, 104, 105], and dynamical angle spinning (DAS)[76] NMR

4.2 Sidebands in Double Rotation (DOR) NMR
4.2.1 Introduction ' |

For half integer spin nuclei, the dispersion of the central transitions (3 < —%) for a
polycrystalline or amorphous sample mainly comes from the second order effects of
the quadrupolar interactions[101, 102, 103]. Such a dispersion makes NMR spectré,
featureless owing to the overlap of lineshapes resulting from different sites in' the
.sample, leéding to a majof obstacle in the a.pplicati(')ns of high resolution solid state
'NMR to a large class of these nuclei. Theoretically the dispersion of a particular
nuclear transition is determined by the orientation-dependent resonance frequencies
of the magnetization with reépect to the external rﬁagnetic field. The orientatibn
dependence of the central transition frequencies arising from the second order ef-
fects of the quadrupolar interactions cab be described by the linear combination of
a second- and a fourth-rank spatial tensor (see Eq. 3.8 or 3.20), and thus cannot be
removed completely by the conventional magic angle Spinning (MAS) method[56, 58]
(see Figure 3.4). Recently, it has begn proven experimentally that double rotation
(DOR)[72, 78, 104] as well as dynamical angle spinning (DAS)[76, 73] are the right
solutions to suppress the second-order anisotropic broadening and yield high resolu-
tion spectra. In DOR, a small inner rotor is embedded in a large outer rotbor (see
Figure 3.23). The outer rotor spin around an axis inclined at #® = 54.74° (the magic
angle of the second-order Legendre polynomial) with respect to the external mag-

netic ﬁeld while the inner rotor rotates around another axis tilted at 8¢ = 30.56°
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(one of the magic angles of the fourth-order Legendre polynomial) relative to the
rotation axis of the outer-rotor. 4

From section 3.8, all the anisotropies of the interactions can be effectively aver-
aged to zero by DOR if the ratio of the inner rotor spinning speed to outer rotor
spinning speed is larger than four, and if the spinning speeds of both rotations are
much larger than the amplitude of the internal anisotropic interactions (chemical
shift anisotropy, quadrupole, and dipole). However, owing to the mechanical lim-
itation of sample spinning system, the typical spinning speed of the outer rotor is
about one kilo-Herz or less while the spinning speed of the inner rotor reaches five
kilo-Herz. It is obvious that the spinning speeds of both the inner and outer rotors
are not in the fast spinning region. Since the second order quadrupolar broadening
is still inhomogeneous, using DOR will, therefore, yield high resolution spectra ac-
companied by a train of sidebands. Although the appearance of the DOR sidebands
makes the assignment of the spectra difficult, a cheap way to extract anisotropic
information from the DOR sidebands is provided through the analysis of the DOR
sideband intensities[96, 106].

In this section, the sidebands in the DOR spectra are analyzed By the moment
method proposed by Maricq and Waugh and also the Bessel function method used by |
Herzfeld and Berger in MAS sideband analysis. General formulae for the calculations
of the moments and sideband intensities are derived. Unlike in MAS, the sideband
intensities depend on not only the anisotropic parameters (6 and ) and the spinning
speed of the outer rotor, but also the ratio of spinning speeds of the inner rotor to the
outer rotor as well as the relative rotor phase between the inner and outer rotors. The
sideband patterns with a particular rotor phase is more sensitive than the average
over the rotor phases, similar to the difference between the sidebands arising from
a single crystal and those from a powder sample. Finally, numerical simulations are

implemented and shown to agree with experimental results. Anisotropy information
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of the quadrupolar interaction therefore can be recovered by simulatihg the sideband

intensities or the rotor phase dependence of the sideband intensities.

4.2.2 Experimental Results

Figure (4.6) shows the experimental spectra of sodium-23 nuclei in sodium oxalate
with quadrupolar coupling constant 2.43 MHz and asymmétfy parameter 0.72 under
- DOR. It can be clearly seen that the spectra consist of high—resolution isotropic
peaks accompanied with a train of sidebands like those under MAS. However the
“envelop of sidebands does not mimic the static powder pattern (a feéture observed
in a MAS spectra under slow spinning condi’tion). This can be explained as follows.
‘The envelop of sidebands of the first rotation spinning at the magic angle 69, forms
a P lineshape meanwhile the envelop of sidebands of the second rotation vspinnivng
at 6 forms a P, lineshape. The total envelop of all sidebands is the convolution
of these two lineshé.pes. When the inner rotor does not spin fast enough, the total
envelop will be severely distorted.

In addition, the frequency difference between two nearest sidebands in a MAS
spectrum is uniquely determined by the spinning speed w, »o‘f the sample. However -
in DOR spectra there are total eighty-one different sets of sidebands in principie.
Each of them has the frequency difference of miwr + mowre corresponding to a
particular pair of m,, m, values from —4 to 4. All sets of sidebands. overlap each
other and make the pdttem of sidebands complicated. Experimentally, since the
inner-rotor spins much faster than the outer rotor, the intenéity of sidebands are
mainly determined by the outer rotor spinning speed. |

4.2.3 FID Signal under DOR

"

After applying two simultaneous rotations to the sample with half integer spin nuclei,

the time dependence of the central transition frequencies arising from the second
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Figure 4.6: Variation of sidebands measured experimentally in sodium-23 spectra
of sodium oxalate with different spinning speed under double rotation (DOR). The
quadrupolar coupling constant is wg = 405 kH z, the asymmetry parameter, 7, is
0.72, and the Larmor frequency of the sodium nuclei is 105.8 M Hz.
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order effects of the quadrupolar interactions is given by Eq.(3.45) or
!
Wi =3 C X Do ()P, m (e ()) Atma, (4.26)
z 2 1=0,2,4 mi,mo=—1 .
where C is given by Eq (3.26) and Q. (t) and Q,,(t) are two sets of Euler angles
defined by Eq.(3.46). If we assume an on-resonance condition, the total phase of the

magnetization at time ¢ after a.pplymg a 90° pulse is

o) = S Byme-miretma) (gritmuntmut 7y (4.27)
' my,mo=—4 ,.
where
B — Z dg;) ()(,Brl)d(lz’m1 (Br2) Z (l) (ﬁ)p e 1.m7 (4.28)
’ e 1=2,4 miWwey + Moo m m'm2 )

and the Euler angles, (a, £, 7), are used to describe the orientation dependence of a
single spin nucleus in the inner-rotor frame. The FID signal therefore can be simply
written as o | _

gty =, | (4.29)
For a poWderv sample, the average over all orientations may be implemented by

performing a three-dimensional integral over Euler angles, that is -
6t)= = [Mda ["d "y dg g 430)
(t)—ﬁﬁ /0 ’Y/o sin BdB g(t). (4. )v

It may be worthwhile to point out that the 7 symmetry for o integral and half =
symmetry for J integral are totally destroyed here due to incomplete truncation of

the sample rotation.

4.2.4 Moment Analysis of DOR Sidebands

Moment analysis method was first proposed by van Vleck[107] in order to characterize
powder lineshapes in NMR spectra arising from homogeneous spin interactions, for
example, the dipolar couplings between like-spin nuclei. Later Maricq and Waugh[95]

had applied this method to analyze the sidebands in MAS spectra. The moments
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calculated from the sideband intensities and the spinning speeds in MAS spectra can

then be used to extract the chemical shift anisotropy parameters 6 and 7. Here we |
can also adapt this moment analysis method to analyze the DOR sidebands, and to
extract, if possible, the anisotropic parameters of the quadrupolar interactions. We

first introduce the definition of the n-th moment given by

M, = /_:wwﬂa(w)= Y Wiy, (4.31)

N=-

where wjyy is the resonance frequency of the N-th sidebands , Iy is the iﬁtensity, and
G(w) is the spectrum given by G(w) = 3y IN6(w—wn), resﬁlting from Fourier trans-
formation of the FID signal G(t) without relaxation broadenings. Once the spectrum
is measured experimentally, the moments can be calculated by use of Eq.(4.31).

In order to relate the moments with the anisotropic parameters of the quadrupolar
interaction, it is possible to den'vé a relationship between the FID signal and the

moments given by [5]
(=a)"

G(t) =) ——Mx (4.32)

n=0 T . :

The inverse expression of Eq.(4.32) gives the n-th moment
M, = z“c%;G(t)lt:o. (4.33)

Inserting Eq.(4.30) into Eq.(4.33) and then taking an average over all Euler angles
'yield the first few moments. In order to represent the complicated equations, we first

introduce following definition:

Peclpe—3(L)pe()pe_1(m)] = C(hilaLy, my, mo)C(LylsLo, m) + ma, mg) - - -

k-2 k-1 k-1
XC(Lk—3’ lk—l; lk, Z mg, mk_.l)C(lklkO, Z mi, — Z mi)

i=1 i=1
pe(l) =1y L, (4.34)

i=1

where C(l;l5l3, mym;,) are the Clebsch-Gordan coefficients. The first four moment

can now be written as
M =1
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'Ml =0
M, = 3 az[p2(1)]poolp2(l)]

p2(d)
M; = %)as[Pz(l)]POOBoz(l)]'FX(:)as[Ps(l)]Poofps(l)]
M, = 2(:)04@2(1)]PW[P2(1)]+2()04[1’3(1)]/700[?30)]
+ Y audpL)paB)]poolpr (L)pa(d)], (4.35)
P1{L)pa(t)

. where pk(l) = lilp---lx. The scalar operators (or zero rank irreducible tensors),
poolpr(1)], ariSing from the product of k spatial irreducible tensors, Aym, for i=

1---k, are given by

poolpe-3(L),peD] = " Poclpe-s(L)Pe)pe-s(M)]oum, - - Pu_smi-iy, T s
. |  Pk—1(m) - (4.36)
and pim are the principal values of the second order quadrupolar coupling tensors
shown in Eq.(3.12). The coefficients of the scalar operators in the moment expansion
can be expressed as ‘

alpes @@ = 5 dlpes(L)pel)pe(m)pes ()]

Pr(m)pr—1(n)

as[pg(l)‘] = ) 3mw, —nlu{m)dzlpz(l)pz(m)m(n)] x

p2(m)pi(n)

alp(N]= Y [Amwn +mwn,) + 3(Mawr, — niws,)lda[pa(D)pa(m)p (n)]
p2(m)p1(n) '

aslps()] = Y. 6[mawr, — (N1 + n2)wr,|da[ps(t)ps(m)pa(n)]
p3(m)p2(n) '

di[pe=3(L)Pe(D)Pr(m)pr—r(n)] = Cyy - - - CoodD o (61) - - dgﬁ)o (61)
xd$, (62) - - - dS¥).. (62) Pecpe—s(L)pe(l)pr-1(n)]
 k ,
ne=3nk | | (4.37)
i=1 o
As can be seen from Eqs.(4.35), the n-th moment is represented in a set of
zero rank irreducible tensors (or scalar operators), poo[px—3(L)pk(l)], for k=2---n.

Each scalar operator arises from the produét of k second order quadrupolar coupling
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tensors, pj, m,, for ¢ = 2.--k. Actually, the representation of the n-th moment in
the set of scalar operator given in Eqgs.(4.35) is also true for the static situation, but
the ﬁ-th moment is only related to a single scalar operator which is the product of
n second order quadrupolar coupling tensors. The sample spinning therefore results
in the mixing between the static moments with the sample spinning speeds.

The anisotropic parameters é and 7 of the quadrupolar interaction are encoded
in the zero rank tensors. From the definition of the principal values of the second
order quadrupdlar coupling tensors given by Eq.(3.12), the zero rank tensor can be

expanded into

. k v
poo[ps—k(L)pe(l)] = 6% Z: bilps—k(L)pe(1)]n*, (4.38)
where |
b; [Pk—é(L)Pk(l)] = Y Peclp-3(L)pe(l)pe-1(n)]C(22l, ma,ny — ) - - -

Pik—1(n}),pi(m)
x  C(22lk, my, . — mk)p2.7n1p2,ﬂ1 —my " P2,m P2,ng—mys (4°39)

with the conditions of

Nk

k-1
- Z n;
j=1
k
2 = ) (Ims| +In; — my)), | (4.40)
=1

and pe., are principal values of the quadrupolar coupling tensor with § = 1 and
n=1 }

The fourth and higher moments do not contain any new information which is not
already available from the second and third moments. The anisotropic parameters
therefore may be calculated from Eqs.(4.38) after the second and the third moments
are obtained from the experimental DOR spectra. It has been shown by Maricq -
and Waugh([95] that the second and the third moments obtained from the MAS
spectra are independent of the spinning speed and the fourth and higher moments

increases with w,. However in the DOR case, only the second or lower moments
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are independent of the spinning speeds and the third 6r higher moments increase
with. wr, and wy,. This explains Why the envelop of the sidebands does not mimic
the static powder lineshape and changes with the spinning speeds because the third
moment determines the asymmetry properties around the isotropic frequencies of
the lineshapes. In the MAS case, the parameter u = M, /M2, which characterizes
the lineshapes, increases with w?, leading to qué.si-LoréntZian lines of decreasing
halfwidth of the envelop. In the vDOR case, the parameter u increases With the
spinning speeds w,, and w;, linearly and bilinearly. This means that the halfwidth

of the envelop of the DOR sidebands decreases according td quasi-super-Lorenrzian

lines. This feature can be seen from Figure (4.6).
It is general that all moments except the zero and first moments are depen-

dent on the relative rotor phase v,. Introduction of this phase dependence in the

 moment calculation does not bring any new information and makes the whole ex-

pression more complicated. Experimentally by randomly taking the relative phase
at different times, the relative phase effect may be"average'd out. This averaging

process is equivalent to taking an integral over the relative phase in Eqgs.(4.38) to

yield % , m; = 0.
4.2.5 Bessel analysis of DOR sidebands

The moment analysis may have severe problem in practical cases since in pﬁhciple
an infinite number of sidebands has to be taken into account or else the short time
behavior of the rotational spin echoes has vto be analyzed very accurately. The
solution to overcome this problem is to use Bessel function analysis of the sideband
intensities developed first by Herzfield and Berger.

From the properties of Bessel functions {Jk(2)}, we can derive

e =Y T(2)e™™, » (4.41)
k
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where
2) = (=) Jw (2)Ji-r (—12), | (4.42)
> _

and z is a complex number. The inverse transformation of Eq. (4.41) is
1 2m 1(kf~ze*?)
Je(2) = — / e do. (4.43)
2w Jo
Now, by use of Eq. (4.41) FID signal arising from the central transitions can be
expressed

g(t) = { H Z Z ‘7K'"1"'2 m1Jn2)\-7K,,.1...2( Bml,mz)}

mi,me=—4 Km1 ,m2 Kml mz

X e_i{(Nr1Ur1+N"2w"2)t+"/r(N1 +N2 )+a(N1 +N, 2)} ' (4°44)
where
N;l = Zml,‘mz le:nl m2 (445)
N7o = Tmime mszl ma?
fori=1,2.

Averaging of Eq. (4.44) over a and then using of the inverse transformation in

Eq.(4.43) yields

1 g 27
Gity=—= >_ / sin 5dg / dyIy,, N,,e " (NriwrtNrwn)t (4.46)
272 = Jo 0 ’
rl,i¥r2
where
Ierer? = Ferer2 Z FNr,N,-z —1(NPI_NT)'7T (4'47)
Ny _
and

FrouN = ﬁ [ e, / 46, exp{— ler101+N,262+mh§__4 By~ (04 mat)])
(4.48)
From Eq. (4.47) and (4.48), it can be seen that the phase of sidebands is deter-
mined by the relative rotor-phase between two applied rotations. Such a property is
different from the MAS case where all sidebands are in phase after averaged over the

Euler angle a. However the sidebands in DOR sj)ectra will be in phase only after
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averaging Eq.(4.44) over the relative rotor-phase. Experimentally this can be done
by accumulating FID signal without synchronizing the outer-rotor. The FID signal

“under DOR then becomes

N s 27
Gl)=55 2 /0 sin 8dg fo Y| Fy N, |7 expT¥NriwrtNeaweadt (4 49)

~ where the overline of the G(t) indicates the average over the relative rotor-phase.

In the limit that the inner rotor spins infinity fast, the coefficients By, m, given
in Eq.(4.28) are not equal zero only if my = 0. This feature leads to the fact that
the integration of Eq.(4.48) over 0, is equai zero except for Ny, = O, and that the
number of integrations of F reduces to one. |

_ Sideband intensities have been evaluated by numerical integratidhs of Eqs.(4.46),
(4.49), for various cases. Composite ten-point Gaussian (Gauss-Legendre) quadru-
ture has to been used to approximate all integrals over «, 3, 7. Owing to complicated
orientation depe'ndénce (compared with the MAS case) ,. the simulations of sideband
intensities are much more time consuming than ones in the MAS case. To overcome
such a problem, linéa.r interpblation technique may be adapted [111];' Figure (4.7)
shows how the sideband intensities varies with the spihning spéed of the outer rotor
with different ratio of two spinning speeds after averaging over tihe rela,tive.rotor'

phase.

4.2.6 Symmetry Propertiés of DOR Sidebands

Both the intensities and the phases of the sidebands in DOR spectra depend on

: thé relative rotor phase 7, between the outer rotor and the inner rotor. From the

experimental results and simulations, even when the relative rotor phase is zero,

~ there are still phase .d,ifferences among each individual sidebands. Figure (4.8) shows

the variation of the sideband intensities, In, v, for Ny = 0, and N; = 0, %1, +2 with
the relative phase ;. As can be seen from the figure, both the intensities and the

phases of all sidebands vary with «,. The intensities of real components of the even
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Figure 4.7: Schematic variation of simulated sideband intensities as the spinning
speed of the ourter rotor, w,,, changes with different ratio between the two spinning
speeds of the inner and the outer rotors, :—:Z, after average over the relative phase v,
where we use the quadrupolar coupling constant and the asymmetry parameter of
the sodium-23 nucleus in the sodium oxalate sample, wg = 405kHz, n = 0.72, and
wo =105.8M Hz=.
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Figure 4.8: Variations of the simulated DOR sideband intensities with different rel-
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the sodium oxalate. Larmor frequency is wo = 105.8M Hz, and the outer rotor
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Figure 4.9: Experimental results of the DOR sideband intensities in the sample
of sodium oxalate as the relative rotor phase <, between the inner and outer ro-
tors changes. The quadrupolar coupling constant and asymmetry parameter are
wo = 405kHz and n = 0.72; the Larmor frequency is wo = 105.8M Hz; the outer
rotor spinning speed is 700 Hz while the inner rotor rotates at the rate of 3.3kH 2.
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order sidebands (Nll =0, :%:2,etc.)are always positive while the odd order sidebands
are oscillating around zero. Especially interesting are the intensities of the odd order
sidebands which at 4, = 0° is just opposite to those at 7, = 180°. The exact
variations of the sideband intensities with the relative rotor phase are determined
the anisotropic parameters, § and 7, of the quadrupolér interaction as well as the two
spinning speeds of the inner and outer rotor. In practice, these variations can be used
to extract the anisotropic information by comparing the simulated and expe__rimehtal
results. As an example, Figure (4.9) shows the experiinental results of the sideband
intensities of the sodium oxalate varying with the relative phase under DOR, in
agreement with the simulated results shown in Figure (4.8). The experiment was
implemented by synchrohizing the outer rotor using a lase'rwsen_sor. The optical
signal detected from the sensor ié transferred to TTL pulses using a logiéal circuit,
and then the TTL pulses are used to tn'ggér the pulse program of the spectrometer.
By changing the triggering times, we are able to vary the rotor phase from 0° to
360°. Actually the extraction of the principal vaiues of the quadrupolar interactions
can be fulfilled by fitting only the variation of the centerband intensities with the
relative rotor phase. The advantage of this method is that the centerband usually
contains most of the intensity of the central transition which is necéssa.ry to obtain
the best accuracy of thé fitting between simulations and the experimental results.
Figure (4.10) shows the parametric plots of the relative phase -, dependence of the
éenterband intensities with different asymmetry parameters, 7, of the quadrupolar
interactions. | '

" The most interesting feature observed from the variations of the side_bémd intén—
sities Vwith the relative rotor phase is thatl near the centerband, odd sidebands have
inverse symmetry about the relative phase"y, = 0 and v, = 7. Practically, such an
inverse symmetry can be used to eliminate the odd sidebands and then to improve

the spectral resolution. To fulfil that, the outer rotor has to be synchronized at
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Figure 4.10: Parametric plots of the variation of the DOR centerband intensities
as the relative rotor phase 7, between the inner and outer rotors changes from 0°
to 360° with different asymmetry parameters (7), where the quadrupolar coupling
constant is wg = 433kH z, the Larmor frequency is wy = 105.8M Hz, and the outer
rotor spinning speed is 700 Hz while the inner rotor spins at the rate of 3.3kHz.
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v = 0° and v, = 180°. After adding the two spectra together, the odd sidebands
near the centerband can be totally suppressed [112, 104]. Figure (4.11) show the
experimental result of sodium oxalate.

In order to see this inverse symmetry from Eq. (4.46), we extend to the ultimate
case in which the spinning speed of the inner rotor is much larger than the second
order of the quadrupolar interaction. Hence, all terms relative to the w,s in Eq.
(4'27) can be ignored, yielding the phase of the magnetization evolved at time ¢ as

4 o o
o) = ";1 Bumo[sinm(7y + wyt) — sinmry,). (4.50)

Now, we can define ¢, and ¢, by

{ Pe (t, 'Yr) = Em=2,4 Bmo[Sin m(’Yr + (Urlt) —sin m’YT] | (4.51)

©olt, V) = Lm=1.3 Bmo[sinm(yr + writ) — sinmy,].
Substitute 4, = 0° and ~, = 180° into Eq (4.51), the observing phase can be repre-
sented as | '

{ Pt = 0°) = Gulty 1o = 0°) + (2, 7% = 0°) (4.52)

Pt 1 = 180°) = @e(t, % = 0°) — (£, = 0°) |
If we average the FID signal generated by Eq. (4.52), the total FID for central

transition is
E(t'j — ./s; do exp—zspe(t.‘7r=0°) { e—t‘Pe(.t.’Yr=0°) + et¢o(t,7r50°)} ' (453)

Using the property of Bessel function, the FID can be written in a series of Bessel
function |

90 = [ dexpm =0 S 4 (—)V]Uy-sk(Bro)Iu(Br)e M (4.54)
N,k

In Eq. (4.54), the ¢, only contributes to even sidebands because the basic harmonic
frequency is 2w,;. The odd sidebands are then determined by the second part. When

N is odd number, the intensities of all odd order harmonics are zero.
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4.2.7 Conclusions

Double rotation (DOR) éa.n efficiently suppress the second order broadenings arising
from the quadrupolar interactions under the fast spinning speed condition and only if
the ratio of the two spinning speeds larger than four. Under slow spinning speed con-
dition, the bxfoadenings still can be narrowed with companion of sidebands. Through
the moment analysis of the DOR sidebands, only the second or lower moments are
independent of the sample spinning speeds. The dependence of the third moment
on the sample spinning speed explains why the envelop of the DOR sidebands does
not mimic the static powder lineshape and changes with the sample 'spinning speeds.
The lineshape characteristic parameter u = M, /m% increases linearly and bilinearly
with the sample spinning speeds, The change of the envelop of the DOR sideba.nds is
according to the quasi-supper—Lofentziém. From Bessel function a.ria.lysis of the DOR
sidebands, the variations of the sideband intensities are determined by the sample
spinning speeds, anisotropies of the quadrupolar interaction, and the relative rotor
phase between the outer and inner rotors. The existence of the inverse symmetry of.
the odd mimbersidebands for the relétive rotor phase at ,'= 0 émd at v, = 7 allows
us to completely suppress the odd nimber sidebands by adding the twb spectra and
thus to improve the spectral resolution. By the use of average Hamiltonian thedry,

properties of irreducible tensors, and Bessel functions, the sideband intensities can be

~exactly evaluated (see Eqs. (4.43), (4.46), and (4.49)). Computer simulations reveal

all of the above properties of the sidebands in DOR spectra and results are satisfied

with experimental results. Based on these simulations, the anisotropic information

- of quadrupolar interactions can be extracted.

All of the above results can be applied to any other inhomogeneous interactions.
For homogeneous interaction, if wy, is much larger than the amplitude of the inter-
action, we can average over second rotation first, reorienting spins along the rotation

axis. The broadening then becomes approximately inhomogeneous. By applying the
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first rotation without the condition of fast spinning, the broadened line will split to a
set of sidebands and the spectra.l resolution will be much higher than those resulting

from the MAS even with the same spinning speed.

4.3 Sidebands in DAS NMR Experiments

In the last chapter we described the general principles of the dynamic angle spinning
(DAS) based on the assumption that the spinning speed of the sample during the
experiment is much larger than the amplitude of the first order average Hamiltonian
with the quadmpolar interactions of half integer spin nuclei. In practice, owing to
the mechanical\ properties of the spinning system, the spihning speed usﬁally cannot
satisfy the fast spinning condition. Under this circumstance, the time modulated
spin Hamiltonian will develop a train of sidebands in DAS spectra like those in MAS |
spectra. This is because the first order average Hamiltonian of the quadrupolar in-
teraction is still inhomogeneous. In this section we present the general treatment
of the DAS sidebands based on the moment analysis and Bessel function/ analysis
methods described in last section. Using these methods, the sideband intensities
are numerically evaluated. The results show that the intensities of the DAS side-
bands are dependent not only on the spinning speed and the principal values of the
quadrupolar tensors, but also on the relative rotor phase and the time ratio between
the first and the second evolutions. Both the intensities and the phases of the side-
bands vary with the relative phase, but no inverse symmetry like that in DOR has
be found in the variations of the sideband intensities With the relative phase in DAS
spectra. The dependence on the time ratio between the two evolutions in the DAS
experiments results complicated DAS sideband structure. Additional sidebands be-
tween one rotational cycle appears, and the number of the additional sidebands in
one rotation cycle is determined by the time ratio, k; = % For example, in the case

of k =1, there are two sidebands: one is at w,/2 and the other is at w,, where w, is
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the sample spinning speed.
4.3.1 FID Signal of DAS NMR

In DAS experiments (see Figure (3.15)), the sample rotates around an axis inclined

at the angle of 6, with respect to the external magnetic field Hy during evolution

time t1, and at another angle of 8, during evolution time ¢,. The time dependence

of the central transition frequencies with quadrupolar interactions in a half integer

spin nuclear system is given by Eq (3.25), or

W 0= 2 5 0D O A, (4.55)

1=02,4 ™
where C; is given by Eq.(3.26). At the end of the second evolutlon time of ¢, the
total evolved phase of the magnetlza.tlon under the first order avgarage Ha._rmltoman

with the quadrupolar interaction is

ot = [ WP 0@+ [ WP 0@l (456)

Two sets of Euler angles are defined by

(4.57)
sz'(t) = Q(wrt + ¢2) 02) ’72))

{ Qr, (t) = Uwrt + ¢1,01,m)
where we have a,ssumed that the spinning speeds during different evolu'ti.on times are
same, ¢; and ¢, are the initial phases of the azimuth angle at the beginning of the
two evoluﬁion times, and +; and +, are the initial phases of the rotation axis relevant
to the /laboratory frame. Owing to the cylindrical symmetry of the magnetization
around the external field Hy, 71 and . may be set to zero. If we acquire the data at
the DAS echo tops, t2 = kit1 (k. is same as k in chapter 3) where é.S k<5 from |
Eq.(3.30). Thus using the representation of the Wigner rotation matrices, inserting
Eqs.. (4.55) and (4.57) into Eq. (4.56) yields the FID signal in the DAS experiment.

g(t) = exp { Y €7 [Bn(8o)e” ™S Y(—kst) — B (61)9(2)] } - (458)

m#0
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where

Ba(0) = Y G4m0 0), |m|<!
=24 T _
B(t) = 1—e Tk (4.59)

and t = t; +1;. In Eq.(4.58) we have assumed that the magnetization is on resonance,
the m = 0 term is zero by the requirement of DAS condition and thus should not be
included. The powder averaged FID signal may be obtained by inserting Eq.(4.58)

into Eq.(4.30). The initial phase ¢; becomes unimportant and therefore is set to zero

and ¢, = ¢.
4.3.2 Moment Analysis of DAS FID signal

The moment analysis method has been described in the last section. After inserting -
Eq.(4.58) into Eq.(4.30) and then applying Eq.(4.33), the expressions of the moments
of DAS NMR spectra are same as those of DOR spectra given in Egs.(4.35). Of

course, the coeflicients of the scalar operators are different, given by

axlpr-s(L)pe()] = Y dilpe-3(L)pe(V)pe-1(m), 2]

Pk—1(m)

aslp()] = 3 muw.di[p(l)p1(m), 3]

p1(m)

aafps()] = D (ma1+mo)wrde[ps(D)p2(m), 3]

p2(m)

afp()] = Y muwedi[p(D)pr(m), 4]

pi(m)

di[pr—3(L)pe(Dpr-1(m),n] = Cy---C, Pcc[Pk—s(L)Pk(l)Pk—l(m)]

2) (2) n
x E® -.ED lEl( ) i (4.60)
where
n 1 n— -3
E{m = o [(2" " = 1)kedDy(82)e™™ + dDo(61)), (4.61)

(1 + kt)"_l
and peo(k) is the zero rank tensor arising from the product of k second order quadrupo-

lar coupling tensors, defined by Eq.(4.36). The anisotropic parameters § and 7 of the
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quadrupolar interaction are encoded in the zero rank tensors which can be explicitly
“ seen in Eq.(4.38). From an experimental spectrum under DAS, the second and third
moments may be calculated by using Eq.(4.31) a,ndv Eq.(4.60), 6 and n may then be
extracted in a very manner if we know the initial phase of the ration at the begin-
ning of the second evolution time of t,. If the DAS experiment is performed without
synchronization of the sample rotation, the average over the initial phase ¢ has to
be irﬁplemented in Eq.(4.60) in order to obtain correct moments.

The fourth and higher order moments do not contain any new information which
is not already available from the second and third moments. In the moments of the
MAS spectra, both the second and third nioments are independent of the spinning
speed w,. However in the moments of the DAS FID signal only the second moment
is motion independent and the third and higher moments increases with the spinning
speed w,. This means that the shape of the e‘nvelbp of the DAS sidebands will change
with w, which is quite different from the MAS 'éase in which only the halfwidth of the
envelop of the MAS sidebands decreases as increasing w,. In addition, the parameter
p = M,/M3 increases with both w, and w? leading to quasi-super-Lorentzian lines

of the envelop of the DAS sidebands.

4.3.3 Bessel Analysis of DAS Sidebands

Bessel function analysis method of the sidebands also had been introduced in the

last section. From the properties of Bessel functions Ji(2) given. by Egs.(4.42) to

(4.44), FID signal can be expressed as

9(t) = {H 222" Fin|Br(82)) T [~ B (62)) Tk [Brﬁ'(91)]~7zm[—3m(91)]}
MAO im Jm km bm

1
4 -

where

4
No = Y mim~+ jm+km+lm)

m=—4
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4

m=~4
4

N, = Z Miyy,
m=—4
4
N,, = 2 m(km + jm)

m=-—4

After averaging Eq.(4.62) over a, the FID signal becomes

9®) =Y gn,(61,£)9-n, (02, )€™,

Ny
where
gn,(0,1) = ”go 12: Z Tin |Bma(0)] Tjon [— B (6)]€ 7N
and m
N, = { 8 2om Mim = 135 [Ng — Lo M) " for =6,
T Mlim + 12 dm) = i ke T Mim + Nyg| for 6 =05,

Using Eq.(4.43), the FID signal becomes

g(t) — E Z I}’:ll (OI)INl-N¢ (01)IN2 (02)1-;,2_1\,¢ (02)6—1(N¢¢'_*'(N1wr1 +N2Ur2)t]’

Ng N1,N2
where '
1 27 _ —sma
= [ e,
and
Wp, = 1 W, Wr, = kt
™ — 1+ kt (] re — 1+ktw‘r'

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

After averaging Eq.(4.67) over a powder sample, the total FID signal is given by

f —1(N; t4+Nower, )t
G(t) = Y Inyne Nrwmtthown)t,
N1,N2 :

" where

(4.70)

1 2w : * * -1
=2 [ [ s 4567 52 L, )15 (00 s O0) -, B2 (471
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Figure 4.12: Variations of the simulated DAS sideband intensities, In, n,, as the
relative phase,p changes for the case that k = 1, 8, = 37.38° and 6, = 79.19°.
The quadrupolar coupling constant is wg = 405kHz, its asymmetry parameter is
7 = 0.72, from sodium oxalate, the sample spmmng speed is w, = 3K Hz, and the
: Larmor frequency is wy = 105.8M H 2.
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What we can conclude from Eq (4.64) is that the overall sideband pattern under
DAS is sum over a set of the convolutions of two individual sets of sidebands due
to the evolution during times ¢, and t, respectively. After gn,(6,1) is expanded into
a Fourier series, the coefficients (intensities) of each individual harmonic is depen-
dent on all parameters during the whole evolution. The effect of the relative phase
¢ is also dependent on the parameters and in general cannot be used to edit the
spectra obtained with different relative phase such that some of the sidebands can
be suppressed. This feature can also be seen from Eq.(4.59), the symmetry of the
coefficients, B,, is dependent on the symmetry of A,,, unlike in the DOR case which
Aim is truncated by the inner rotor spinning, Thus the accumulated phase of the
magnetization given by Eq.(4.58) cannot be represented as the form of Eq.(4.51)
when ¢ = 0 and ¢ = n. Furthermore, from the numerical simualtions of the vari-
ations of the intensities and the phases of the DAS sidebands as the relative phase
¢ changes from 0° to 360° shown in Figure (4.12), the real components of the DAS
sidebands are always positive for the case of k; = 1, corresponding to 6, = 37.38°
and 6, = 79.19°, and the spinning speed is w, = 2kH z or higher, where we assume
that the quadrupolar coupling constant is wg = 405 kH 2, the asymmetry parameter
is 7= 0.72, and the Larmor frequency of the nuclear species involved is 105.8 M H z.

Experimentally if the rotor is not synchronized during spinning the relative phase
is a random variable for different acquisitions. This is equivalent to taking an average
\ )
over the relative initial phase, resulting in Ny = 0. Using Eq.(4.44), the sideband

intensity becomes

1 2w . -
Tme = [ [ sinBdBay 1In, 0)PI1n,6)P. (4.72)

Using Eq.(4.72), we have evaluated the sideband intensities varying with the sample
spinning speed, wy, shown in Figure (4.13). In the simulations, we used composite

ten-point Gaussian (Gauss-Legendre) quadruture to integrate over o, 8, 7. The pa-
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Figure 4.13: Variations of the simulated DAS sideband intensities, Iy, ,, with the
sample spinning speed for the case that k = 1, corresponding to 6, = 37.38° and
0> = 79.19°, and N, = 0, N, = 0,%1,+2, where the quadrupolar coupling constant
of the sodium-23 nucleus wg = 405k H z, its asymmetry parameter is n = 0.72, and
the Larmor frequency is wy = 105.8M Hz.
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rameters used in the simulations are wg = 405kHz, n = 0.72, and wp = 105.8 M H 2.
As can be seen from the figure, the sideband intensities around the centerband dis-
tribute more symmetric than those in MAS. This feature leads to the sideband in- |
tensities are not very sensitive to the asymmetry parameter, 7.

The structure of the sidebands in DAS NMR spectra can be interpreted as follows.
If we assume that k; = 7’:21- where k; and k; are two integers, the maximum number of
sidebands is k; +k; in one rotor cycle w,. Of course the intensities of the sidebands are
different. In general those corresponding to small N, and N, have larger intensities
and therefore there are three main sidebands in one cycle whose frequencies are wy,,
Wrg and wr respectively. In the case of k: = 1, two sidebands in the middle will
overlap together and the whole pattern is uniquely determined by the frequency
wr/2. Figure (4.14) shows the simulated spectra of polycrystalline sodium oxalate
using same parameters as in Figure (3.29). The other simplest solution is for k.= 5.
In this case one of the rotation axis is aligned on the external magnetic field H,,
that is, #, = 0, and then the coefficients of B,,(0) = 0 when m # 0. In Eq.(4.72) the
number of summations furthermore reduces to one. The frequency difference between

two nearest sidebands is wy,. In other words, the maximum spectral resolution can

be obtained under this situation.

4.4 Conclusion

In this section we described the general theories of the DAS sidebands based on the
moment analysis and Bessel function analysis methods. From the moment analysis of
the DAS NMR spectra, the third and higher moments increase with w,, and the en-
velop of the DAS sidebands changes according to a quasi-super-Lorentzian Iineshape
as the sample spinning speed inpreases. Using Bessel function analysis of the DAS
sidebands, the structure of the sidebands are a sum over a set of convolutions of two

individual sets of sidebands involved in the evolution times of t; and t, respectively,
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Figure 4.14: Simulated DAS spectra using same parameters in DAS experiment of
sodium oxalate, that is, the quadrupolar coupling constant of the sodium-23 nucleus
wq = 405kH z, its. asymmetry parameter is 7 = 0.72, and the Larmor frequency is
wo = 105.8M Hz. (a) Static powder lineshape; (b) residual lineshape after MAS; (c)

DAS spectrum obtained with w, = 3.36kH 2
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and the sideband intensities are numerically evaluated. The results show that the
intensities of the DAS sidebands afe dependent not only on the spinning speed and
the principal values of the quadrupolar tensors, but also on the relative phase and
the time ratio between the ﬁrst. and the second evolutions. Both the intensities and
the phases of the sidebands vary with the relative phase, but no inverse symmetry
like that in DOR has be found in the variations of the sideband intensities with the |
relative phase in DAS NMR spectra. After averaging the sideband intensities over
the relative phase, the sideband intensities become more or less symmetric around
the centerband, especially when the sample spinning speed is in the fast region, and
thus, they not very sensitive to the asymmetry parameter, 7. The dependence on
the time ratio between the two evolutions in the DAS experiments results in that
the structure of the DAS sidebands becomes'very complicated. Additional sidebands
between one rotation cycle appears, and the number of the additional sidebands in
one rotation cycle is k; + ko, assuming the time ratio is k; = ,—'221, where k; are k; are
integers. For example, in the case of k; = 1, leading to k; = k; = 1, there are three
sidenabds: two are at w,/2 and the other is at w,, where w, is the sample spinning
speed. We also show the possibility of the extraction of the principal values of the

quadrupolar interactions by simulating the sideband intensities.
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Chapter 5
‘Motions in Solid Cg

5.1 Ih_trodu_ction

A sixty carbon (Ceo) molecule having a molecular structure with icdéahedral sym-
~metry, waé first proposed theofetically by Kroto and his coworkers in the early
1980s[125, 124], and has been named buckminéterfullerene. Subsequent to the early
mass spectroscopy experiments, some micro-quantities of this molecule was obta.inéd
in cluster beam experiments by use of a polarized laser to vaporize the graphite
[126]. Mofe recently, macroscopic amounts of Cey molecules [127] have been synthe-
sized, stimulating intenée interest and activity. A number of spectroscopic studies .
of this molecule have been carried out confirming to the icosahedral symmetry of
Ceo molecules [135, 136]. Further studies reveal that materials arising from the
Ceo molecules intercalated with alkali metal atoms to form the ‘fullerides’ A.Ceo
become superconductors [128] below the critical temperatures T,.. The critical tem-
peratures T, depend on the alkali metal atoms used in the intercalation, and for
A = K130, 129] T. = 18K, while T, = 28K when A = Rb [131].

NMR spectroscopy experimenfs of Csp molecules were performed first by Tycko
-and his coworkersf137] as well as Yannoni and his coworkers [139, 140]. The spec-
tra obtained from their Kraria.ble_temperature solid-state NMR experiments showed
some interesting lineshapes. These lineshapes consist vof a sharp peak at the center

. indicating the isdtropic chemical shift, and a CSA-type powder pattern. Based on
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these spetra,; they concluded that the sharp peaks are due to some residual carbon
clusters whose motions are relaﬁvely fast when compared to the Cgy molecules. In
this chapter, we assume that the motions of Cs molecules in the solid state consist
of icosahedral jumps. By assuming this model, we have been able to simulate the
powder lineshapes measured by Tycko and Yannoni et al. The results show that
the samples of solid Cey are indeed not homogenous, resulting the sharp peak which
indicates that the carbon clusters have different motions from the Cg moléCules.
We will use a chemical exchange model to study the jump motions (molecular
reorientations) in Cgp molecules. The random jump motion of the Cg molecules is
physically différent from a chemical exchange process. Chemical exchange is defined
by migration of atoms or groups of atoms from one molecule t;b another or from one
part of a molecule to another which can be distinguished by the different resonance
frequencies. Such exchanges can happen in both inter- and intra-molecule. In the Ceo
molecules, atoms are relatively fixed and cannot move around physically. Since the
molecules themselves have very high symmetry, there are sitting in potential barriers
which are determined by the crystal symmetry. The motions of the Cso molecules
from one 'conﬁguration to another have to be very quick, and look like sudden jumps
from one configuration to another. Thus, the jumps of the atoms in a molecule is
via the jumps of the molecule itself. For this reason, the chemical exchange theory
will be reviewed in the first few sections. However, we do not just restrict ourself to
the literature, but will emphasize the lineshape changes for different cases based on

our own simulation results.

5.2 Theory of Chemical Exchange

As a simple example, let us first consider a chemical exchange process of two-site
jumps. We assume that the jump from one frequency to another is a stationary

Markov process[5, 142]. From this assumption, one can conclude that the jumping
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rate from one site to another is time independent. Then from the modified Bloch

equation, the evolution of the magnetization at two sites is determined by

—Ml(t) = zwlMl(t) + R[M2(t) - Ml(t)]

C%M2(t) = woMy(t) — k[Ma(t) — M (t)], . (5.1)

where M; and M, are the magnetizations, w; and ws are the frequencies at site 1
and 2 respectively, and « is the jumping rate from site 1 to site 2 or vice visa. By
use of the standard method for solving a linear, first order differential equations. we

find the solution of Eq. (5.1) to be

M(t) = cipert+cer?
My(t) = cpeet+ e, (5.2)
where _ .
. v _ ,
Ay = —2-{2(0.11 +uwe) -2kt \/452 — (w1 —w2)?}, ’ (5.3)
and

()\i — wy;) M;(0) + &[M;(0) + M2(0)]
Cit =
Ap — A
for = 1,2 and M;(0) is the 1n1t1al magnitization of the - th site.

(5.4)

As can be seen from Eq.(5.3), the frequency difference of two sites decreases, and
the linewidths of two separated peaks are uniquely determined by the exchange rate
K as it inéréases, but satisfies the condition that x < (w; — ws)/2. On the other
hand, when £ > (w; — ws)/2, the two peaks coalesce, but the linewidth decreases
according to two exponential functions as the exchange increases. The width of the
component corresponding to eigenvalue )\, decreases to zero as « increases, and the
other component becomes very broad (see Fig. (5.1)) whilé its amplitude tends to
zero.  After Fourier transforming Eq.(5.2), the lineshape of the spectfum can be
represented as.

K'(wl - w2)2

1
2[(w — wn) (W — w2)2 + K220 — (@1 — W) (5.5)

| Mw) =
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Figure 5.1: Dependences of the resonance frequencies and the linewidths with the
exchange rate, k, in two-site jump model: (a) frequency dependence; (b) linewidth
dependence '
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Fig.(5.2) shows variation of the lineshapes of the two-site jump model with exchange
rate, K. '

In order to generalize chemical exchange theory to n-site jumps, we introduce the
exchange rate matrix #«# whose elements «;; represent the exchange rate from site ¢

to j. By the population conservation, we have

Similarly, we define the magnetization vector as M = (M;, My, --- ,My), and the

frequency matrix with diagonal elements w = (w1,wa, -+, wn). Now the dynamical

equation of magnetization for n-site jumps can be written as

d

ZM(t) = o+ #] - M() 67

The formal solution of Eq.(5.7) is

M(t) = e O+Mm(), (5.8)
or in frequency domain,
MWw)=1-A"Yw) - M(0), ‘ o (5.9)
where A(w) =wl -+ 7, 1= (1,1,---,1),and i is a unit matrix. |

For a general chemical exchange proé_ess, it is very difficult to solve .Eq. (5.8) or
(5.9). The general solution also gives very little physical insight. For most cases, one
only considers two exfreme situations: (i) Nearest neighbor exchange, also called the
weak collision approximation, in which k,-,,-_,_l = Kij—1 = K and K;; = 42 . (ii) All
site exchange, the strong collision approximation, with equal rates for all exchanges.

The analytical solution for the strong collision limit was first obtained by Alexan-
der and his coworkers{144] in .1977 by use of representation theory of the symmetry
groups. Later, Wemmer et al.[145, 146] a.ppliéd matrix manipulation to invert the
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Figure 5.2: Variation of the lineshapes in two-site jumps with different jumping rates,
K, where w; = —w, =,200H 2, and « is in unit of Hertz.
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matrix A. Based on this matrix manipulation method, we solve the chemical ex-
change process in strong collision limit following the convention given by Mehring
[19).

According to the strong collision limit, the exchange rate matrix # has the form

[~ (N-1) 1 1 - 1
1 -N-1) 1 - 1 - - '
=K o ( . ) o _ = —Nkl + &I, (5.10)
1 R —(N%l)J

where i consists of only ones. For convenience, we define ardiagonal matrix B as
= (w+ N_n)i — D, . (511)
and a reguiar matrix C as |
C = fni. o (5.12)
Then the matrix A in the formal solutién, Eq.(5.9), of chemical e_:xcha.ngé becomes

-~ -~

A=B+¢ |  6513)

In order to calculate the inverse matrix of ‘A, we expand A~! into Taylor series
Ae BT (-1 B0y (619

i+6¢ % I |

Now we realize that the matrices B and C have the property,

CB-'C = —xLC, B (5.15)
~ where
| 1
L= 5.16
_ z:z(w wj) +1/To; + Nk’ (5.16)
Insert Eqs (5.15) and (5.16) into Eq.(5.14), and we obtam :
< CB!
-1_ Q-1

. [1+ 1_%]. (5.17)
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Finally, if we assume that the magnetization at each site is equal, that is bf M(0) =

+(1,---,1), the lineshape after chemical exchange can be written as

1 L

Mw)=1-A"1.M(0) = NI (5.18)

Here we assume that all sites have same initial magnetization and N is number of
sites. |

So far, we have only delt with different isotropic sites or one specific orienta-
tion of a molecule with respect to the laboratory frame. In solid, we usually need
to consider the chemical exchange process, or molecular reorientation, in a powder
sample, which was first studied by Spiess[148, 149, 150] in NMR although the line-
shape analysis methods were first demonstrated in ESR spectroscopy by Sillescu and
co-worders[151, 152). Each site is frequently subjected to at least one anisotropic in-
teraction (e.g. chemical anisotropy, dipolar coupling between sites, and quadrupolar
coupling if the spiﬁ 6f each site is larger than 1/2, etc.). We are particula:ly inter-
ested in the chemical exchange process in molecules with chemical shift anisotropies.
In this case, the resonance frequencies which label the sites in molecules are deter-
mined by the orientations of the principle axis systems with réspect to the molecular
fra.mé, the principal values of chemical shift anisotropy, and the orientations of the
molecule frames with respect to the laboratory frame. The transformations between
the laboratory frame (LAB) and the molecule frame (MOL), and between the MOL
frame and the principle axis system (PAS) are illustrated by Fig.(3.3). We now can

represent the frequency of j-th site as

2

wi= 3 DEo(Qr)wim(), (5.19)
m=-2
where
wWim() = 35 Do(Q)p2m, - (5:20)

and the Q; are the three Euler angles from the MOL frame to the PAS and the
from the LAB frame to the MOL frame, D,(,f,)o are the components of Wigner rotation
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matrix. The p, ,, are the principal values of the chemical shift anisotropy with values

3 1
P20 = \/;5, p2,21 =0, pois= 5775, ' (5.21)

where § is the anisotropy and 7 is asymmetry factor. We have assumed that the
principal values are same for all sites. |

After chemical exchange, the lineshape given by Eq.(5.9) will be similar to liquid
situation except for the orientation dependence of the molecules in the laboratory

frame. For a powder sample, the overall lineshape is given by
M(w) = L / M(w, Q) sin 0d0d¢. | ' (5.22)
4n T

This lineshape is more complicated than in liquids and also more interesting. As.a v
simple example let us first consider two-site jumps of a water molecule (H20) in a
hydrate sample. From the measurement of f,he lineshape of ice with a chemical shift
anisotropy by multi-pulse technique [153], it was shown that the proton shielding
. tensor is axially symmetric about the bond direction. .The ahgle between two bonds
is 109.5°. The two protons of the water molecule are assumed to perforfn' 180° jumps | :
about an axis which bisects the bonding angle. . Fig.(5.3) shoWs the linesha.pés with
different exchange rates:. In the very slow motion limit, the lineshape is almost same
as the axial-symmetric lineshape while at fast motion limit, it becomes completely
asymmetric. Between these two extremes, the 1ineshapeé are distorted. One thing
we can see .is that as the exchange rate increases two additional singularities appear
and gradually dominate the features of the lineshape. |

From the standard method [115] of lineshape analysis, the singularities of a pow-

der lineshape are given by

Ow(0,¢) _, Ow(b,¢) _
— _0,——-—6¢ =0, v(5-23)

where w(f, ¢) is the resonance frequency of the magnetization. Applied to our case,

the resonance frequencies have to replaced by the eigenvalues of the evolution matrix
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Figure 5.3: Variation of the powder lineshapes with different jumping rate in two-site
jumps on a magic angle cone (e.g. two protons jump in H,0O in solid state). In
simulation, the spectrum width is SW = 10kHz, and the principal values of the
chemical shift anisotropy are éwo = 3kHz, and n = 0.
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(a@ + 7). For two-site jumps, the eigenvalues are given by Eq.(5.3) in which the

resonance frequencies of the magnetizations of site 1 and 2 in rigid state are

(08 = Ldp@e ™ dn@pa
we(6,9) = z<—1)’"d53?0(e>e-=médé?3n<e<2>>pz,o, ~ (5.24)

m

where the d® mm @€ the components of reduced Wigner rotation matrix, and §® =

' 54.74°, the so-called magic angle. Inserting Eq.(5.24) into Eq.(5.3) yields

A = l{ng,o sin?(6) cos(2¢) — 2« + \/ 4?2 — 2p2 , sin®(20) cos?(¢)}. (5.25)

Substitutes Eq.(5.25) into Eq.(5. 23) four singularities can be obtained in agreement
R with the simulated lineshapes shown in Figure (5.3). These four smgula.ntles are
given in Table (5.1). In each of the first three singularities, there are two components
with same imaginary values (resonance frequencies): one does not disperse and the
other disperses according to the rate 2« during the chemical exchange. The last
singularity only exists in the region 0 S Kk < 715p2,0. The two components in this
singularity have their own frequencies but with common line broadening facﬁor. The
variations of the frequencies of the two components with the exchange rate is same
as in Figure (5.1). |

Table 5.1: Singularities in a powder lineshape of spm nuclei with chemlcal anisotropic
interaction under two-site jumping :

0 . ¢  Apm

0 any ¢ | Kk

z 0 3120 — 2k % 2]

3 3 3(—1p20 — 25 24]
cos(26) = :‘llfg;"ﬁ- 0 | 3(paot /oho — 262 — &
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5.3 Symmetry Properties of Discrete Jumps

So far we have not considered symmetry effects in the chemical exchange process.
In many cases, a molecule has a symmetric shape. This symmetry will dominate
all the physical process in the molecule if there are no external perturbations to
destroy it. Discrete jumps from site to site are therefore restricted by the molecular
symmetry. In this section, we briefly summarize the effects of molecular symmetry on
the chemical exchange process, using symmetry group theofy proposed by Alexander
and his coworkers [143].

We first assume that the local symmetry group of an undestorted molecule is
G. All jumping sites (i = 1,2,---,N) are then related by the elements of the
symmetry group. The magnetization at site j for fixed orientation Qs forms the
basis of the representation (reducible) of the group G, that is

M(wj, QM) = M(R’lw,-, QM) = RM(wi, QM), (526)

- where R is an element of the group G. Thus each element «; ; of the exchange rate
matrix # can be associated with a definite element of the group, «;; = x(R) because
Q; = RQ;. Moreover since x(R) is uniquely determined by the group operation R,
the jumping rates corresponding to all equivalent elements, that is those belonging
to the same class C in the symmetry group G, are same. Furthérmore, from detailed
balance, Eq.(5.7), we also have k(R) = x(R™!) so that the conjugate classes always
have the same jumping rate . Oécasionally R and R™! will not belong to the same
class. In this case, there should be a higher symmetry group than G, and we can use
the larger symmetry group to handle the exchange rate matrix. We assume below
that this transformation has already been done.

The exchange rate matrix # can also be used as an operator, and its i-th com-

ponent, after it has been applied to the i-th magnetization, can be written

KiM(Q,;, QM) = Z K,i,jM(Qj,'QM) = ZVI{.C Z(Ra - I)M(Q,, QM), (5.27)

a€c
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where &; = (ki1,Ki2, " ,%iN), and K. is the jumping rate for the class C of the
symmetry group G. Now we assume that the basis functions for the irreducible rep-
reséntation of the symmetry group G are \I!f, () where A means the A-th irreducible
representation, and u is an index of the row in a multi-dimensional representation.
These basis functions still depend on the orientations of the molecule frames relative
to the LAB frame becaﬁse all orientations of the molecules have equal probability
in a powder sample. This symmetry is determined by the group, SO(3), and is not
relevant to the curre_nﬁ problem. The magnetization at éite ¢ then can be expanded

in terms of the basis functions of G.
M, Q) =Y al, U5 (). - (5.28)
Ap ) -

The coefficients a}, are uniquely determined by the symmetry group G, e.g. in
terms of the projection operators onto the group elements. From the theory of
representations of a symmetry group, we have

Em*mM)—nc w*mm,.? O (529)

 a€c
where 7, is the order of the class C, x2 is the character, and v, is the dlmensmnahty
of the A ureduc1ble representatlon of the group G. Applylng Eq.(5.29) to Eq.(5.27)
yields | |

n,M(Q,,QM) = —Zmz:aw W (5.30)

where

| 5 — S nene ( = X—A) . | (5.31)

12
Now we wish to apply these results of group theory to find the steady state
solution of Eq.(5.17). The first step is to transform Eq.(5.7) from the time domain
into the frequency domain by use of the Fourier transformation. Each component of

the magnetization vector M satisfies

[(w — wi) — ki) M, Qar) = 1M;(0). (5.32)
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From Egs.(5.30) and (5.28), we have
D W — w) — k] My = 1M:(0), (5.33)
)

where

M=) al, ¥, _ (5.34)
I

The lineshape observed experimentally is actually determined by the totally sym-
metric representation (A4,;) of the group G because only the A, representation is
orientation independent. Therefore we only need to find the projection of the to-
tal magnetization onto the totally symmetric répresentation, that is My,. To solve
Eq.(5.33) for M, is still very complicated because the left side of Eq.(5.33) is not, in
génera.l, block diagonal in the basis of the irreducible representations of the group G.
This point will be seen more clearly later. However, in many cases, the frequency w;
of the i-th site has its own local symmetry properties. For example, the CSA tensor
of the chemical interaction always has a D, symmetry. Once the local symmetry
group S for each site is a subgroup of the molecular symmetry group G, the calcu-
lation of My, from Eq.(5.33) can possibly be simplified. This simplification occurs
is because we need to consider only those irreducible representations which contain
the totally symmetric representatic;n of the subgroup S. These representations are
called the relevant representations, and all others are irrelevant. The restriction to
the relevant representations often considerably simplifies the whole calculation. If
S contains just the identity of G then no simplification can be done. On the other
hand, if S is same as G, then the spectrum is totally invariant to the motion, and
no parameters are needed because k4, = 0 always.

As a simple example to illustrate the above statements, let us consider that only

one relevant representation in M; beyond the identity representation (A;), that is

M,(QM) == MA1 + M-,;)A (5.35)
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After we find the relevant representation M; ,, and insert it into Eq.(5.33), we have

Yw — w) Mi(Qr) — kA (Mi(Qpr) — Ma, (Qr)) = 2M;(0), (5.36)
or
| Mi(Q) = 1M 1(?2) ':J*)M_";(fl"‘) (5.37)
The the total magnetization is
Mo, 20) = X M (01 ) = N Mg () = 3 O =M @) g 5

: Ww — w;) — K
and .we may finally obtain a solution identical to Eq. (5.18) which was obtained by
using matrix manipulations in the strong collision limit. As can be seen, this proce-
dure is much simpler than the mdtrix manipulation. Moreover, in many cases, even
if there are more than one relevant representatioﬁ, ba group theoretical treaf,ment can
still simplify the calculation of the chemical exchange process.

In order to demonstrate the above statements more clearly, we now derive an
explicit general equation for My, that eventually will results in the lineshape of
a powder 'smnble. We follow the éxpansion method given by Freed, Bruno and

Polnaszek (FBP)[154], but use our own notation. According to FBP theory, we can
explicitly represent the orientation dependence of the i-th magnetization M;(, Q)

by us1ng a complete set of Wigner rotation matrix elements.

M ) = 3 (2’“) QD" e DO (@),  (539)

i,mm’

) 13 . . . . . . . :
where A, ../ is function of wi and its value is given by the inverse transformation.

A (2”1)2 / o D“’m, () Mi(%, Q). (5.40)

m,m’

The exchange rate matrix # then couples the A:;f,m,. This procedure does not take
into account the éymmetry of the problem. For N different sites, there will be a
total of N(2! + 1) equations for each . In order to take a,dvantage of the symmetry
properties of the problem, we notice that €2; and §2; are related by the jump R;; from
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site ¢ to j. Such a process can also be implemented by rotating the molecular frame
from Q) to R,.‘J-IQ M- In other words, Euler angles €; themselves are determined by
the orientation of the molecular frame with respect to the laboratory frame, that is
Q = (Qy). Now we can expand the ith magnetization M;(:, Q) in terms of
6 (Q2m)-

Mi(Qi, QM) = Z (—2—l;2—1) mm’DSrlt)m'(Qi) (5'41)
l,mm’
Obviously
| Dgz)m' (Qt) = Z D'Srl;)m” (Q ) 1(71;)" m’(QM) (542)

m’

Substituting it in Eq.(5.26) gives

M ) = e T (2“’1)’ A S (Ra— DDY, (). (5.43)

tmm' a€c

We now expand the D, () in the basis function ¥4, () of the group G.
DS,?,,,,(Q ) = za; Lo (5.44)
Inserting Eq.(5.44) into Eq. (5.43) and using of Eq. (5.29) gives

M (% ) = Crese 3 b 1)’ Z ) Xe Xe gt () - Df,?m,(szz-)].
b (5.45)
The coefficients, a“ . are the coupling coefficients between two sets of representations
(like those between product space and coupled space in the quantum mechanics of
angular momentum), and they satisfy orthogonality condition. From Eq.(5.44), we
have

V() = T 0l D (). (5.46)

um’
Furthermore, the frequency of the i-th site can also be expanded in terms of Wigner

rotation matrices.

wi (%) = 2 Pz,ng,)o(Qi), | (5.47)
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and

GEIM(Q% ) = Y o Ay DD (DD (). (5:48)

l,m,m’ m"
From the product properties of two Wigner rotation matrices, we have

L+l2

Dirlu,mp‘fvzlz,nz Z C(ll,lg,l ml,mz)C(ll,lz,l nl,ng) my+ma,n;4nz? (549)
=)l =1a]

where C(ll,lg,l my, my) is Clebsch-Gordan coefficients. By use of equations from

(5.45) to (5.49), Eq.(5.32) becomes

(W + _)Am m’ + Z Kk mmIAl k,m' + Z m_mu m’ v —m’,m’ = M-‘(O)(S(l), (5.50)

ll mll
where . ‘
Xc Al T ‘
Iﬁk m, .m/ z Nk Z p_’m F, 6k,m ’ (5.51)
and _ ‘
B,‘,f_m,, = P2mrC (2,1, 1, m",m — m")C(2,l',1,m,0). (5.52)

In the left side of Eq.(5.50), the first and second terms are vobv‘iously diagonal, and
the second term, which contains the chemical exchange rates, mixes with different
elements in the same irreducible representation. The third terms are no longer di-
agonal and mix different irreducible representations because of the coupling between '
magnetization and its resonance frequency. If there is no local symmetry group for
each site, Eq.(5.50) cannot be reduced further to diagonal or block diago_nel form
beca.use.the basis functions are already irreducible. On the other hand, if the local
symmetry group is a subgroup of the group G , Eq.(5.50) can be rewritten in the basis
functions of the subgroup S. We assume that this has already been done before the
derivation of the Eq.(5.50), and therefore, A} .. can be found from this equation.
In other words, in the Eq.(5.50), the summation over A is only for the relevant rep-
resentations. Furthermore, one more relevant representation can be removed after
rearranging the jump term. As it can be seen from Eq.(5.50), there is no index to
specify a particular site. This tells us that the information about the jumps is com-

pletely contained in the coefficients a;}fm. In practice, these coefficients therefore have
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to be explicitly computed. Moreover, the lineshapes observed in the NMR spectra
are proportional to AJ,. This quantity can be calculated from Eq.(5.50) by trun-
cating the series at some suitable value of ! [154]. On the one hand, the accuracy of
the calculation of A, will increases as ! increases while the number of mixing terms
A} v is increases roughly by I2. However, the size of the diagonal jump terms does
not increase with ! so they do not effect convergence. To obtain good convergence it
is necessary to have some non-zero rate (e.g. T3) for the molecular tumbling.

In practical applications of the above procedure for calculating the effects of the
chemical exchange, we have to determine the group G and its subgroup S. It is
relatively easy to assign group G if we know the symmetry of a molecule. For the
chemical shift anisotropy (CSA) tensor with a nonzero asymmetry parameter 7 the
local symmetry is the D, group as can be seen from the fact that the CSA tensor
does not change after applications of 7 rotations around three orthogonal axes (x,
¥, z) in the PAS. If the asymrﬂetry parameter is zero, the local symmetry therefore
is determined by product group of D, and Cu(2), that is, Dy ® Cx(2) at least.
The group S theh should be a subgroup of both the local symmetry group and the
molecule symmetry group G. However, sometimes, the group S is determined by the
symmetry of the orientations along which the molecule is distorted by the discrete
jumps[143]. Once we know the molecular symmetry group G, and the subgroup S
under which the Hamiltonian is an invariant, the next step is to find out the relevant
representations. This can be obtained from the orthogonality theorem of group
theory. The number of an irreducible representation of the subgroup S, contained in
an irreducible representation of the group G is given by

ar= Y XS RXER) | (5.53)

Res
If a, 4, is larger than zero, representation A of G is relevant, otherwise it is irrelevant.
Once we know the number, N,, of the relevant representations of G, the number of

rate parameters in the chemical exchange process is also determined, that is N, — 1
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since'n,g1 = 0 always.

The third step is to determine the coupling coefficients a;\‘;ﬁ;,. Physically, the
coupling coefficients represent the projections of the elements ’D,(,I,),m, of the Wigner |
rotation matrices, which are the irreducible representations of SO(3) group, along
the basis functions, \Ilp ' of the irreducible representations of the group G. In
principle, once we known the basis functions of all irreducible représentations of Gitis
straightforward to calculate the coupling coefficients from the inverse transformation
of Eq.(5.46). Multiplying both sides of Eq (5.46) by D: ﬁn,(Q ;), and then summing
over all possible orientations and all m’ y1elds '

= Z Dlm m’ (Q )‘I’p m’(Qi)a | (554)

m’ i '
where the orthogonality condition for the basis functions of the group has been used.
Z p m’ (Q )\Ilp. m’ (Q ) 6)‘,'\'611»#'5_1,1" (5’55)
ieG,m’ v .
For the A, representation, it is extremely simple to calculafe A" because that the _
basis functions are equal ones. Thus \Pg:;,(ﬂ ;) is proportional to spherical harmomcs,

that is ,
Gom = BN 2_(=1)"Y(6:, 6), (5.56)
i
where By is a normalization constant, and summation is over all possible operations
of the group G. | | |
However for other representations of G, it is difficult to have a complete set of ba-.

sis functions. Fortunately, for most simple symmetry groups, all the representations

are listed in text books on group theory[68, 156]. A general procedure, introduced by

Golding [161], for determining these coefficients with double valued groups is based
on the Clebsch-Gordan series for the product of two irreducibie representations of a
group and the correspondence between the angular momentum and the irreducible
representations. We brieﬁy summarize this procedure here. First we realize that the

couphng coefficients a m form the transformation from the ! representation D (') m of
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SO(3) to the A representation of the group G. It will be seen that the coupling coef-
ficients are related to the Clebsch-Gordan coefficients or the V' coefficients between
the coupling of two irreducible representation of the group G. In order to compare
our results with those of Golding, we use a ket |Au > to represent the basis function
W), of the irreducible representation X of the group G. In order to be general, |Ay >
is usually defined by a complex function.

Now we define the relationship between [Au > and |lm > for a specific [ value as
I >=3"adt |lm > . (5.57)

Since we have defined [Ax > to be complex, the coupling coefficients can be chosen
to be real numbers which depend only on I,m, A, and p, and which satisfy the
orthogonality conditions.

z a"):fna:::fn = 6)",\/6"‘“’"‘“:, ‘(558)
and
> OOy = G- (5.59)
Au ‘

The inverse form of Eq.(5.57) is
lim >=3"a)h | > . (5.60)
A

As it is well known that the coupling between two angular momerntum L, and L, to
form the third angular momentum L; is defined by L; + L, = L. Correspondingly

the relationship among kets |lymy >, |lame >, and |l;l2lm > is given by

lh,my > [la,my >= ZC(ll,lz,l,ml,mz)”llzlm >, (5.61)
3
and |
|l1l2lm >= Z C(ll,lz,l,ml,mz)lll,m1 > |l2,m2 >, (562)
my,m2
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where C(ly,12,1,m;, my) are Clebsch-Gordan coefficients. It will then follow by sub-
stituting the appropriate expressions of the form of Eqs.(5.57) and (5.60) into (5.62)

that
|lA/L >= Z a;)in '\;’fi,laﬁg",izC(ll,lg,l,ml,mg)lllz\lul > |l2/\2/£2 >.
MM1,M2,A1,A2,41,42
(5.63)
However, the [ related function |IAp > itself is a linear combination of |Aj oAy >,
that is _
du>= Y ;}lijﬂxl,\z,\p >, (5.64)
A1,)2

“where coefficients C.ph 1"\2 depend only on [y, Iy, I, A;, and Ay. The order of A,

A2 is important in the C{:‘;;\ 7 coefficients. Furthermore, the coupling between two

irreducible répresentation is given by -

|Ap >= Z C(A1, 22, A, ul,uz,u)lz\lul > |Aope >, (5.65)
B2 . :
and | A _
At > |Aope >= ZC()\I,)\z,/\,ulauz,ﬂ)|f\# >, : (5.66)
S .

where the coefficients C(A1, A2, A, 1, o, i) are still formé.ll_y Clebsch-Gordan coeffi-
cients, coupling two irreducible representations of the group G. The values of these
coeﬂ‘iciénts depend on the particular group and are tabulated in reference[160, 156]
for most symmetry groups. These coefﬁcients have all fhe properties of the common
Ciebsch—Gordan coefficients. Inserting Eq.(5.65) into (5.64) yields

Dp>= 5 CM2C(M, Aay A, i, iy )| Arpar > [ o > . (5.67)

U1,l2,1
A1,A2,41,42

Comparing the coefficients in Eqs.(5.63) and (5.67) yields

ali:% C(Ala A21 ) M1,y 42, ”) Z az:ina;\;i,i:u a‘:;,i?;zc(ll) l2a la my, 7"'2)7 (568)
m,m1,ma, )
with the condition
> |C(/\1,>\2,/\ 1, f2, 1) | =1. (5.69)

K142
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Hence, the coefficients a)t,, C(A1, A2, A, p, 42, ), and C{:f;:j are all related by
Eq.(5.68). If we know all the coupling coefficients C'(A;, A, A, p1, 4o, i) for a group
G, and all the ), coefficients for specific I; and lp, the C,;}% and a)!,, coefficients
for a specific | value can be determined by using the triangle condition, Ly + L, =L
of the Clebsch-Gordan coefficients. If, on the other hand, all the coefficients ayt, for
I, 1o, and | are known, we may determine all the C’,);f,:% and C(\1, A2, A, p1, p2, 1)
coefficients. The coupling coefficients C(A1, A2, A, f1, p2, #) will, in general, depend
on how the irreducible representations of the group G are defined.

One representation of the coupling coefficients between two irreducible represen-
tation are the V coefficients[157, 158, 159] which are similar to Racah’s V. In order to

let V coefficients possess properties analogous to Racah’s V coefficients, its definition

with Clebsch-Gordan coefficients C(\1, A2, A, p, fi2, 1) is given by Golding as

(_1)2a\z+z\+l-t .
V(AI: /\27 A: M1, 2, p’) = TC(AI’ ’\2’ ’\’ K, U2, ﬂ'): (570)

where n? is -the dimension of the irreducible representation \ of the group G. Now
we can apply the properties of Racah’s coefficients to this V' (A;, Ao, A, i1, 2, 44) Sym-
metry coupling coefficients, namely:

(a) it is unchanged by an even permutation of the indices,

(b) for an odd permutation, the V((A1, A2, A, u1, p2, 1) coefficients are changed by
a factor (—1)M+Az+r)

(c) for a change of sign of subindices u,u2, and u, the V coefficients are changed

by a factor (—1)*1+?2+2,
V(A1 Ao, As, 1, 2, 3) = (=1)MH2PV (Mg, A, A, o, i, 1)
= (—1),\1+’\2+’\V(A37 A2) Al) H3, 12, p’l)
= (=DMPRRV (A, Ay, Ag, — g1, —piz, —pia). (5.71)
From the procedure outlined in above, in principle, all the coupling coefficients,
ayt, may be calculated one by one with the tables of Clebsch-Gordan coefficients
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between irreducible representations of groups, which are listed in most of text books

of group theory([68, 156, 160]. However, since the icosahedral group is complicated

‘and has very few applications, the coupling coefficients have not been calculated. We

consider it beyond the range of this work to do so, and leave it as a future project.

5.4 Computational Approaches and Examples

In the last two sections, we have described the general theories for calculating chemi-

cal exchange processes. In practice, we usually deal with a chemical exchange process

~ with more than two sites and in many cases more than one rate parameter. It is often

very difficult to produce an analytical solution for these general chemical exchange |
broblems, and we have to solve them'by numericél methods. |

We have written a program called CESC (Chemical Exchange with Strong Colli-
sion limit) which solve the general chemical exchange problems in the strong collision
limit based on the Eqgs.(5.18) and (5.22). CESC has versibns of FORTRAN 77, VAX
PASCAL, and THINK PASCAL for the Macintosh. The orientation of each site
is input from the parameter file, and the powder average is done by the Simplex
method. _

For the problems in the weak collision limit, another program named CEWCIM
(Chemica.l Exchange With Weak Collision by Inverting Matrix) was written and is
based on Egs.(5.9) and (5.22). Again the powder average is done by the Simplex
method, and matrix inversion is performed by the LU decomposition method. ‘The
advantage of using matrix inversion method to calculate the lineshapes under the
cherhical, exchanges is that its algorithm is simple, and the accuracy is relatively
easy to be controlled by using double precision numbers throughout the numerical
calculations. The simulated results are stable. The disadvantage of this method is
that one matrix inversion must be done for each value of the frequency. In order

to obtain a spectrum, np (np > 100 usually) points has to be taken. In other
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words, each spectrum is obtained by pérforming np matrix inversions. For a powder
sample, we need to take N, X N, 6rientations (N, is number of steps for ¢ and
N, for .0) to have a powder average. Furthermore, each matrix inversion requires
N3 multiplications. Thus total number of multiplications for a powder averaged
spectrum is np X N, X N, x N3. The program therefore is very slow, but with the
recent advances in computer technology, spectra can be simulated on work-station
computer for up to 60 sites and 10,000 orientations for a powder sample.
In order to bypass the time consuming matrix inversions, Gordon and McGinnis[162]

proposed a procedure in which a QR transformation is first applied to diagonal the

non-Hermitian exchange matrix 1 (Qp) + 7.
S () (o (r) + 7)S(Qwr) = M), N X))

where the §(Qy) is the transformation matrix and A(€y) is the diagonal matrix of
the non-Hermitian matrix «w(§2») +#. Notice that none of the matrices in Eq.(5.72)
depend on the frequency. After Fourier transformation of Eq.(5.8), the spectrum is

then given by
M, Q) = 1- SQu)lwl - N7 (@57 () - M(0),  (5.73)

which can be evaluated to yield

- LADELMOL

Thus the whole lineshape of N sites is reduced to a single summation over the N sites
once the diagonalization and the inversion of the transformation matrix have been
performed. N o§v the number of the multiplications is reduced to approximately 2N, x
Ni x N3 4+ 3np x N2 for a powder averaged spectrum. Based on the above algorithm
and the QR algorithm in EISPACK, we have written a program called CEWC. The
main problem with this program is that the accuracy of the diagonalization of a

matrix becomes very bad once the dimension of the matrix is larger than 20 even
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when the calculation is carried out using double precision numbers. I think a better
program for matrix diagonalization now exists, such as the QZ algorithm.

* An alternative method is the‘ group theoretical treatment of the chemical exchange
process. From what we showed previously, Eq.(5.50) can be used to approximately
calculate thé lineshapes by truncating the series at some suitable [ value. As it has
be mentioned in the last section, to do that we need to know the coefficients ant,. At
the end of the last section, we have shown a general procedure for calculating these
coefficients, but still we have to know the coupling coefficients V' (\y, Ao, A, 1, 2, ) .
which depend on the properties of the symmetry group G and its irreducible repre-
sentations. Examples to illustrate application of this procedure can be found in the
references {144, 161, 145] etc.

In many cases, we need to compare the lineshapes 6wing to rotational diffusioh
and due to discrete jumps in order to study the movtions'of a molecule. The lineshape
with rotational diffusion may not be calculated exactly with the exchange matrix
- formalism because its dimension is infinite. However, we can use two methods to yield - -
an approximate lineshape. One is based on the theory proposed by F‘reéd, Bruno,
and Polnaszek[154]. The other is that using a very large number of discrete sites to
form an exchange matrix whose fo-diagénal elements are all‘equal, that is same as
strong collision model. This matrix then can be used to approximately replace the
infinite dimension chemical exchange matrix. Thus we can use our progrém CESC
to calculate the lineshapes for rotational diffusion model. Both methods are very
good at lineshape simulations. The second method was first used by Wemmer([145)].

In order to calibrate the above three programs (CESC, CEWCIM, and CEWC),
let us consider chemical exchangé process in a molecule with tetrahedron sym-
metry. Both the experimental and theoretical investigations were first done by
Spiess[148, 149, 150] in solid white phosphorus in the B-phase at va.rious'temper-
atures. Unfortunately the simulated lineshapes shown in his first paper [149] and
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also in Mehring’s book[19] are wrong due to errors in the powder averaging. Later,
Wemmer et al studied the dynamical processes in ice. Based on their results, they
concluded that the water molecules bond together according to tetrahedral symmetry
to form ice.

The CSA tensor in a tetrahedral molecule has a local D, symmetry and the
characters of the D, group is tabulated in Table (5.2). Since the CSA tensor of

Table 5.2: Characters of the dihedral group D,

Dy | E Cof2) Co(z) Co(y)
A1 1 11
By}l 1 1 -1 -1
By |1 -1 1 -1
Bs| 1 -1 -1 1

protons in ice has an asymmetry parameter of 7 = 0, the CSA tensor has even
higher symmetry. This new symmetry group is D. In the tetrahedron group Ty,
there are two subgroups: Ds, Cs. The characters of T} are listed in Table (5.3). From

Table 5.3: Cha.raéters of the tetrahedral group T, e = &3

T,|E 4C; 4C? 3C,
All 1 1 1
: |
1
3

€ c* 1

€* e 1

0 0 -1

the Tables (5.2) and (5.3), the decomposition of each individual representations of
tetrahedral group under its subgroup D; can be performed by use of Eq.(5.53),

and is tabulated in Table (5.4). It can be seen that there is only one relevant
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Table 5.4: Decomposition of the representations of the tetrahedral group T under
the dihedral group D,

D,
A
2A,
By + B, + B;

N s~

representation beyond the identity representation in the T, group if the subgroup is
D,. The lineshaﬁe during cﬁenﬁcal exchange therefore is uniquely determined by a
single rate parameter. This rate parameter éorresponds to the jumping rates of all
C; and C, rbta.tions in the tetrahedral group. Thus, the chemical exchange process
~ satisfies strong collision condition. |

Fig.(5.4) shows variations of the lineéhdpes calculated by CESC, CEWCIM, and
CEWC respectively with djﬁ'ereht rates. At slow exchange rates, the amplitude of
the real part in exchange matrix is very small, and the imaginary part dominates the
behavior of the diagonalization. In this case, the matrix is in its most unHermitiah
form, and the accuracy of the diagonalizaf,ion procedure is the worst. This behavior
explains why the iineshape simulated by CEWC is not very smooth atilow exchange
rates. Otherwise, all the lineshapes simulated with differént prograrﬁs are quite
similar, 'indicating all the programs work well. |

In the variation of the lineshapes shown in Figure (5.4) for a tetrahedral molecule,
-there are two singularities beyond the original two singularities of a powder pattern
with a CSA interaction in which the asymmetry‘ parameter is zero. One. is alwayé
at isotropic frequency with its amplitude, neither the linewidth nor the frequency,
depending upon the exchange rate. Both the frequency and the linewidth of the
other singularity depend on the exchange rate. In the very slow exchange region,

the position of this singularity is at % and the peak is very sharp. As the exchange
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Figure 5.4: Variation of the lineshapes with different exchange rates in a tetrahedron
molecule simulated: (a) by CESC, (b) by CEWC, and (c) by CEWCIM: programs
respectively. The exchange rate is in unit of Hertz; the anisotropy of the CSA tensor
is wpé = 3kH z and its asymmetry parameter is zero.
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rate increases, the position of the singularity reduces to the isotropic frequency and
its linewidth increases. In the fast éxchange region, there is only one single sharp
peak in the spectrum. All these properties of the lineshape with exchange rate can
be explained by use of the singularity analysis method described in chapter 3 and
also of section 5.2. '

In the molecular frame, if we choose the three C; rotation axes as the XYy,

and Zys axes, the frequencies of four sites are

wi(8,8) = Y dBO)d (Om)e ™5 pyg
w(0,4) = 3 d2(0)dD, Om)e™ ™+ o
wa(8,8) = 2 do(O)dom(m — Im)e™ ™ F )y

wi(0,6) = 3 d2(O)dn(r — Bn)e ™ E Oy, (5.75)

where 0, is the magic angle, 6, = 54.7_4-°. Once the Zp axis becomes alighed with
the direction of the external magnetic field, § = 0°, the frequencies of all four sites are
Z€ro. The ;na{;rix @(Qu) + 7 is therefore reduced tb a real syminetric matrix whose
 diagonal elements are equal. It will be seen later that one of the four eigenvalues for
this 4 x 4 matrix is actually zero. Thus this particular orientation corresponds to one
of the singularities of the lineshapes during chemical excha.nge. The frequency of this
singularity, which is determined by the imaginary part of the singularity, is zero in the
rotating frame, and the line broadening, real part of the singularity, is also zero if we
neglect relaxation effects induced by the molecule’s random tumbling motions. This
explains the sharp peak at the isotropic resonance frequency in the powder lineshapes
shown in Figure (5.4). From the above discussion, we can generally Conblude that
there will be a sharp peak in the specthim with N-site chemical exchange if and
only if all sites have a constant frequencies at particular orientation of the molecule
- with respect to the laboratory frame. The frequency of the sharp peak is same as

the frequency of all sites. To see this, we assume that all sites have a constant
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frequencies, w,, and then define N = w, — A — (N — 1)x. The new eigenvalues X
therefore are determined only by the matrix #& + [(N — 1)x — A']1 which is obviously
real and symmetric, and its diagonal elements are ). In order to diagonalize this

real symmetric matrix, we use the secular equation.

-k Kk -+ &K
R R - & =N Kk - K
detfwo(Qp) + 7 — A1) =
T Y/
= W=V IN+(N-1x]=0 (5.76)

The solution of Eq.(5.76) is obvious, that is, A\] = —(N — l)nv or A =uwuv, and X, =k
or \; = w,— Nk fori =2,3,---,N. So, we can see that in the first eigenvalue
A1 there is no real part- and we know that the real part corresponds to the line
broadening. If there are two different frequencies for N sites, the situation becomes
very different. Since the linewidths corresponding to the singularities depend on the
exchange rate, the singularities will be smoothed out by this line broadening.
Another exmple which has the same properties as chemical exchange in a tetra-
hedral molecule is jumps on a magic angle cone. Fig.(5.5) shows variations of line-
shapes with different jumping sites and different jumping rates. A sharp peak at
isotropic resonance frequency can still be clearly observed even when the number of
the jumping sites on the magic angle cone is thirty. On the magic angle cone, the

frequency of ith site is

wi(8,8) = 3 dDo(0)d, (B)e™™®+9) py . (5.77)

m
When 6 = 0°, all the elements of the reduced Wigner rotation matrices are zero
except m = 0 term. Mhermore df,?%(@m) = P(cosf,,) = 0 at magic angle 6,, =
54.74°. Thus at § = 0°, the frequencies of all sites on the magic angle cone are zero.
Under this condition, we have a singularity to which the chemical exchange do?s
not contribute to the line broadening. This singularity always exists for any number

v
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- (a) 3 sites (b) 10 sites (c) 30 sites

x (Hz) ' x (Hz)
m0® | 1x10° |
—J

1x10° 1x10° . 1x10°

A

Figure 5.5: Variation of the lineshapes with different exchange rates jumping on a
magic angle cone: (a) three sites, (b) ten sites, and (c) thirty sites. The exchange
rate is in unit of Hertz; the anisotropy of the CSA tensor is woé = 3kHz and its
asymmetry parameter is zero. ’
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of sites on the magic angle cone, only the intensity, determined by the partition in
the whole exchange matrix, decreases as increasing the number of sites. This is the
reason why we can see a singularity in the spectrum even the number of sifes is
thirty. In practice, when we use the strong collision model to simulate a lineshape

for rotational diffusion case, the number of sites therefore has to be large enough.

5.5 Jumps with An Icosahedral Symmetry

As we showed in section 5.3, the first step in calculating the lineshape with chemical
exchange through to use group theory is to determine the number of the relevant
representations involved in the molecular symmetry group, G. To find the rele-
vant representations of molecular symmetry group G, we require the local symmetry
group, S, of the CSA tensor. This local symfnetry group, S, is the dihedral group
D, in the case of  # 0, and becomes the D, once the asymmetry parameter of
the CSA tensor is equal zero. If the molecular symmetry group is the icosahedral
group, there are five classes: E (identity), 12Cs, 12C2, 20C3, and 15C, respectively.
The rotation axes of the C? and Cs elements are the vertices, those of the Cj ele-
ments are the centers of the triangles, and those of the C; elements are the centers
of the edges of the icosahedron (see Figure.(5.6b)). The icosahedral group contains
eight different subgroups: T, Ds, D3, D3, Cs, Cso, and C}, and it has five irreducible
representations: A,, Ti, T3, G, and H. The characters of“groups D,, D3, Ds, and -
I are tabulated in Tables (5.2), (5.5), (5.6), and (5.7). From these character tables
and Eq.(5.53), the decomposition of the representations of the icosahedron group
relative to its subgroups Ds, D3, D, is given in Table (5.9). In the decomposition
of the representation of the icosahedral group under the dihedral group Ds, there
is only one relevant representation in addition to the identity representation while
there are two relevant representations under the D3 or D,. Thus, in the case where

the asymmetry parameter, 7, of the CSA tensor is not equal to zero, and the local
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Figure 5.6: Definitions of rotation operators, C3, Cs, and C?, in icosahedral gr_oﬁp I
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Table 5.5: Characters of the dihedral group D;

D3 | E 2C; 3C
Al 1 1
A1 1 -1
El2 -1 0

Table 5.6: Characters of the dihedral group Ds

Ds|E  2Cs 2C2 50,
A1 1 1 1
Ay | 1 1 1 -1
Ei|2 2c0s72° 2cosldd® 0
FEy| 2 2cos144° 2cos72° 0

symmetry is determined only by the dihedral group D, there are two relevant rep-
resentations for a molecule with icosahedral symmetry, and the chemical exchange
processes in such a molecule is determined by only two rate parameters. These two
" rate parameters correspond to the Cs and Cj rotations of the icosahedral group.

In order to calculéte the effect of the chemical exchange on the icosahedral
molecules using Eq.(5.50), we need to calculate the coupling coefficients, ak,, of
Eq.(5.51), and we need to decompose the Wigner rotation matrix elements, D,
which forms the irreducible representations of SO(3) group, into the irreducible rep-
resentations of the icosahedron group I. In order to use Eq.(5.53), we will need the
character of the SO(3) group which is given by
sin(l + 1¢)

sin(¢)

* Since the icosahedral group contains only rotations through angles of 22, where 7 is

XY (¢) = (5.78)
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Table 5.7: Characters of I Group

12Cs 12C? 20C; 15C,

I1|E

Al 1 11 1
Ti|1 s 165 o
T,|1 58 &6 o
Gl4 -1 -1 1 0
H{5 0 0 -1 1

an integer, there is a periodic property of the characters x® ().
27 2r| 2m ,
()] Y= (n—1-1) Y= (mn—-l-1) <" 5.79
KOG = - ) - oyt (519

where m is also an integer. Let us assume that the common fnultiple is N for all ‘
the rotatioﬁs in the icosahedral group I. When [ = N, one character .will be the
sum of the identity representation,v x(E) = g = 60, the order of the icosahedral
groub G, and all other characters will be zero. This corresponds to the regular
representation. For [ = Nm, we obtain the regular representation m times plué the

identity representation. For 1 <k < N, we have
DNm+E) = mlpey + T, | (5.80)
Furthermore, from Eq.(5.79), it can be easily proved that
| I® 4 TNH =T, | (5.81)

where ™ is the k-th representation of the SO(3), given by the linear combination
of the irreducible representations of the icosahedral group. For this reason we only
need to tabuléte the reduction of the representations of SO(3) group, P®, into thé
irreducible representations of I through ! = 14. In this situation, N = 30 and the

regular representation is given by I'yey = A + 3T} + 313 + 4G + 5H.
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Table 5.8: Reduction of D® to irreducible representations of I

l I

0 A

1 T,

2 H

3 T, + G

4 G+H

5 TW+T>+ H

6 A+T+G+H

7 "+T2+G+H

8 T,+G+2H

9 T +T,+2G+H
10 A+TT+T2+G+2H
11 2T+ T, + G+2H
12 A+ T +To+2G +2H
13 T +2T2+2G+2H
14 T +T2+2G+3H
30 |2A+3T1+32+4G+5H =T, + A

If we only consider the case in which the asymmetry parameter of the CSA
tensor is zero and the local symmetry is therefore determined by the dihedral group
D, the NMR lineshape of a molecule with icosahedral symmetry under a chemical
exchange process is determined only by one rate parameter. We assume that this
rate parameter corresponds to the jumps generated by the Cs rotations in icosahedral
group since the Cs rotations require the minimum energy, and therefore are the
most favorable jumps in the chemical exchange procesé. The chemical exchange

therefore satisfies strong collision condition and its lineshape can be calculated by
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use of Eq.(5.18).

Table 5.9: Decomposition of the representations of the group I under its subgroup
Ds, D3, and D,

I Ds D, | Do
A A, Ay A
T,| A+ E A+ E B+ B, + B;
T Ay + Ey A+ FE B; + B; + B;

_ G 4 E1.+E2 A+ A +FE A+ By +By+ B;
HlA+E+FE, A +2F 2A1‘+Bl+Bz+B3

The first simulation shows the lineshape of an icosahedral molecule in the strong -
collision limit with an axially symmetric CSA tensor. This situation cofresponds to -
that the local symmetry of the CSA tensor is D. Since the local symmetry group has
toa subgroup of the icosahedral group in order to find the relevant representatlons
we choose the largest subgroup of the icosahedral group, Ds, as the local symmetry
group. From Table (5.9), we can know that there is only one relevant represéntatioh.
Thus, the whole dynamics is determined by a single rate parameter . Figure (5.7)
showé a variation of the lineshapes with different chemical e:tcha.nge fates. At a slow
exchange rate, there are three singularities in the lineshape excluding the original
two singularities which form the two edges of the static lineshape, two of them are at
the left side of the isotropic resonance frequency, and the other one is at right side.
The positions of all singularities depend on the exchange rate. Under fast exchange, -
all sites are degenerate and the spectrum shows a single sharp line at the isotropic
. resonance frequency. In order to understand these singularities, we choosé one of the
12 Cs rotation axes as the Z)s axis and another two of the 15C, rotation axes as
the Xy and Yys axes. With these definitions, one of the two singularities on the left

side of the powder pattern corresponds to the orientation of the icosahedron where
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Figure 5.7: Variation of lineshapes with different exchange rates in icosahedron jumps
with strong collision limit. The exchange rate is in unit of Hertz; the anisotropy of
the CSA tensor is wpé = 3kH z and its asymmetry parameter is zero.
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the Zy axis is along the external magnetic field. The other one on the left side is
generated by the configuration in which the Zy, axis is at an angle of 37.38° with
respect to the external field, that is, the external field coincides with one of the C3
rotation axes. The third configuration which generates singularities is at the posifion
at which the external field coincides with one of the C, rotation axes. In the first two
configurations, all twelve sites degenerate into two different frequencies. Of course,
the values and site numbers corresponding to these two sét freqﬁencies are different.
In the third configuration there three different frequencies. All the frequencies and
number of sites with a particular frequency are tabulated in Table (5.10).

Table 5.10: Orientations at which there are some degree of degeneracy of the reso-
nance frequencies of sites in an icosahedral molecule

| 6 62 65 wi | we |ws [N | No| N3
(degree) | (degree) | (degree) | (8) | (6) | (§)
1| o 63.43 - 1 | -1 -12]|10]-
2| 37.38 | 79.19 - X |-%|-|6|6]-
3| 3172 | 5828 90 B |21l 4|44

Now we consider the chemical exchange in the first two configurations in an
icosahedral molecule. In génera.l, we can assume that there are N different sites in
the molecule but only two distinguishable frequencies ih the spectrum: the first Ny
sites have frequency w,, and the other N, sites have another frequéncy We,- We will
calculate the eigenvalues of the matrix w(Qu) + 7 instead of exactly solving the
dynamical equation for such a system in order to obtain the analytical solution for
the singularity. As was done with tetrahedral jump case .in the last éection, we first

define

A1

A—we, + (N -1k

A2 = A—we+ (N = 1)k (5.82)
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The secular equation for eigenvalues X of the matrix 1(Qy) + 7 becomes

Al K K K K
K A\ K K K
K K Al K K
K K K A K
n K . e n K * o A2

= (Al - K)NI_I(AQ - K)Nz—l[/\y\z + (N1 - i)KAl + (N2 - 1)’6/\2 b (N1 + N2 - 1)&2]
= 0. (5.83)

The solutions of Eq.(5.83) into which Eq.(5.82) is inserted is also obvious: the first

two eigenvalues are

Wwe, +we,) + N £ \/[Nrc — Ywe, + Wep)|? + dwe,we, + 2w, N1 + we, N2)K]
12 = :
’ 2

(5.84)
Next N, — 1 eigenvalues are degenerate and they have a value A\; = we, — Nk for
i=3,---,N; + 1. The final N, — 1 eigenvalues are also degenerate with the value
A=y, — Nefori= N +2,---, N. Obviously for these N — 2 eigenvalues, the
| frequencies corresponding to the imaginary parts of the eigenvalues do not change
with the variation of the exchange rate r;,. but the linewidths of the peaks increase
as the exponential of —Nk. On the other hand, for the first two eigenvalues, the
behavior is similar to the two site jump. The only difference is that once total
- number of sites are larger than two there is a imaginary part in the square root.
This imaginary part introduces an additional phase factor which mixes the resonance

frequencies with the exchange rate «,

1 0
Wi = -2-(&)61 + We, F \/Esin ‘2—)

Kig = %(-—Nn + v/C cos g), : (5.85)
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where

_ VETE
1 B

A
= [(N "3)2 — (we; — wcz)z]

= tan

W x a Q

= 26N ey +Wes) = 2Ny + Noweo). (5.86)

Eq.(5.83) can be generalized to the situation in which there are only M different

frequencies in a molecule with N (> M) different sites. Now we define
M=w;—(N-1)k—-)\, for i=1,2,---,M (5.87)

where w; is the ith frequency. There are N; such sites in the molecule. The solution

of the secular equation for the matrix «o () + 7 is

detid(Q) + 7] = [J(N — )TN = (N; = )Y, (5.88)
. i=1
where
. o Ni_ (,&-1)2
i i-1_ i-1
X = A‘_ X1+ (N — Dsi=t
; (I - &THe! |
: . —, 5.
| © T T+ W DR 559
with
X=X
K’ = K. < (5.90)

The first M eigenvalues can only be obtained by solving an M order polynomial

equation. The other N — M eigenvalues are
A=w;— Nk, for i=M+1,---,N. (5.91)

For example, when M = 3, we assume that the three different frequencies are w;, ws,

w3 corresponding to Ny, Na, and Nj sites respectively. The first three eigenvalues
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therefore are determined by a cubic equation.
N —cA—c=0, (5.92)
where

&6 = wiHw+ws—2Nk

2 = Nr&(w+wz+ws) — (Nk)® + k(Nwi + Naws + Naws)
—(wiws + waws + wyws)

ca = Nk (N + Nows + Naws) + wiwows

—n[(Nl + Nz)wlwz + (Nz + N3)UJ2W3 + (N1 + N3)w1w3]. (5.93)

For the first configuration of an icosahedral molecule shown in Table (5.10), the -
total number of jumping sites is twelvé, N; = 10 and N, = 2. After these numbers
are inserted into Eq.(5.86), the variation of the frequencies and the linewidths with
the chemical exchange rate x was calculated and the results are shown in Figure (5.8).
Fbr the first eigénva.lue, the resonance frequency decreases from 6 to 0.86 while the
exponent, of the linewidth «; increases according to —12k, obtained from Eq.(5.91)
with N = 12. In other words, one of the edges of the static lineshal;e will be smooths
immediately as the exchange rate increases from zero. For the second eigenvalue, the
behavior is quite different. At x = 0, the resonance frequency is —36. When the

exchange rate increases to the value of 0.46, the resonance frequency shifts alniost
to zero. The exponent of the linewidth changes even more dramatically. At very

small exchange rate, it increases with  and reaches the maximum value at around

é

l‘€=’13,

then decreases with x to zero. Obviously this point forms a singularity in
the powder lineshape. |

For the second configuration of the icosahedral molecule, inserting the numbers
-in Table (5.10) into Eq.(5.86) yields the variation of the frequencies, w;, and the

exponential factors, «;, responsible for the linewidths with the chemical exchange
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Figure 5.8: Variations of the first two eigenvalues of the matrix «» + & with the
chemical exchange rate « in an icosahedral molecule whose Z)s axis (one of the Cs
rotation axes) is along the external magnetic field and therefore 6, = 0°, 8, = 63.43°,
w1 =0, wp = _—%6, N; =2 and N, = 10 with § = 1. Left: frequencies, and right:
line broadening factors. _
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rate k. This variation is graphically shown in Figure (5.9). The behavior of the
eigenvalues in this figure are similar to the first case. However, there is one obviously
discontinuous point at Kk = 436. At this point, the frequencies'of the two eigenvalues
are zero exactly and one of the exponential factors, k2, responsible for the linewidths
changes its variation from increasing to decreasing with fhe exchange rate, x, at
this point too. Before this point, the exponential factor k, increases according to
—6k with the exchange rate k. The other exponential factor of the linewidth is still
roughly increases according to 12« v;rith the exchange rate k except there are a slight
changes in very small exchange rate region.

In the third configuration, the variation of the eigenvalues with the chemical
exchange rate « is shown in Figure (5.10), resulting from Eqgs.(5.92) and (5.93) into
which the numbers listed in the third row of Table (5.10) are inserted. The first and
third eigenvalues vary with the exchange rate « in manner éimila.r to the above two
cases. The resonance frequency of the first eigenvalue decreases from 45 536 to about
0.36, while the frequency of the third eigenvalue increases from —14 to about —0.35
as the exchange rate « varies from zero to infinity. The linewidth of the both peaks
however always increase 'with an exponent of —12«x. The resonance frequency of the
second eigenvalue first decreases from 34&\/‘;’6 to about —0.26 and then increases to
zero after the turning point, x = 16, as the exchange rate changes from the zero
to infinity. Its line broadening factor also first increases according to 6x and then
decreases to zero. These featufes can also be seen in Figure (5.7), the singularity
at about w = 36 on the right side of the spectra, which corresponds to the first
eigenvalue here, is much more broadened than the singularities at left side in the
spectra. _

At the beginning of this section, we used group theory to prove that chemical
exchange in an icosahedral molecule satisfies the sfrong collision condition. Now

we can further examine this conclusion by numerical simulations of the chemical
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Figure 5.9: Variations of the first two eigenvalues of the matrix «o + @ with the
exchange rate k in an icosahedral molecule. The Z,, axis, one of the Cj axes, is along
the external field and 6;, w;, and N; are given in Table (5. 10) Left: frequencies, and
nght line broadening factors with 6 = 1.
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Figure 5.10: Variations of the first two eigenvalues of the matrix 1@ + # with the
exchange rate k in an icosahedral molecule. The Z) axis, one of the C; axes, is along
the external field and 6;, w;, and N; are given in Table (5.10). Left: frequencies, and
right: line broadening factors with § = 1.
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kM) @G (b) Cs ©C

Figure 5.11: Variation of lineshapes with different exchange rates in icosahedron
jumps: (a) C3 jump mode, (b) Cs jump mode, and (c) C2 jump mode. The exchange
rate is in unit of Hertz; the anisotropy of the CSA tensor is woé = 3kHz, and its
asymmetry parameter is zero; spectrum width is SW = 6kHz.

239



exchange process in the icosahedral molecule in the weak collision limit. If we assume
the atoms in the icosahedral molécule are set on the vertices of an icosahedron, the Z
axis in the principle axis system of the CSA tensor will coincide with the Cs rotation
~ axis. If the asymmetric factor n of the CSA tensor is zero, the local symmetry
of the CSA tensor, as we know, is determined by D.. However, there are four
physically different classes of rotations. Each class of rotations corresponds to one
jumping mode in the icosahedral molecules with a rate parameter x,. We assume
that these rate parameters independently form the lineshape under the chemical
exchange. We can then examine the effects of each individual jumping mode on the
lineshape. Figure (5.11) shows variations of the lineshapes with different exchange
rates under the weak collision condition and different jumping modes: (a) Cs jump
- mode, (b) Cs jump mode, and (¢) CZ jump mode. C; jumps are not considered
because they require large amounts of energy, and thus do not happen often. All
simulated lineshapes are very much same as those obtained in the strong collision
limit. The oniy observable difference between the lineshapes in the strong and weak
collision limits is tha;c the linewidths of the peaks in the strong collision liﬁﬁt narrow
at different speeds with different jumping modes. Such a difference will disappear if
we redefine the exchange rate because each jump mode can be impleménted by the
linear combinatioh of another jump modes. If we properly normalize these difference
can be elimina,ﬁed, and all lineshapes are exactly seme as those in.the strong collision
limit.

Another Iexa.mple is chemical exchange in a dodecahedral molecule. In the do-
decahedral molecule, there are twenty sites, each on the vertices of a dodecahedron..
Tile molecule symmetry also has the icosahedral 'syrnmetry. The local symmetry of
the CSA tensor for each site is determined by the dihedral subgroup, Ds, of I for
the case of n = 0, and, therefore, chemical exchange in a dodecahedral molecule

also satisfies the strong collision condition. Figure (5.12) shows the variations of the
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Figure 5.12: Variation of lineshapes with different exchange rates in dodecahe-
dron jumps with strong collision limit. The exchange rate is in unit of Hertz; the
anisotropy of the CSA tensor is woé = 3kHz and'its asymmetry parameter is zero;
the spectrum width is sw = 10kH z.
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lineshapes in a dodecahedral molecule with different exchange rates. At slow rates,
three singularities are clearly seen in the figure. The positions of the singularities are
more or less sa.rhe as those in the lineshape of an icosahedral molecule. One differ-
ence is that the overall linewidth decreases much faster than in the icosahedral case.
These singularities correspond to three different configurations of the dodecahedral
molecule relative to the external magnetic field. In the first configuration, one of
the Cs rotation axis coincides with the external field, and all twenty sites form two
different groups. Each group has ten equivalent sites and a frequency w; for i = 1,2.
In the second configuration, one of the Cj rotation is along the external field, and
therefore the twenty sites are divided into three different groups. The first group
with two equivalent sites on the Z)s axis has the frequency 6. The second group
has six sites in which three of them are equally distributed on a cone with half apex
angle of 41.81° with respect to the external ﬁeld and the other three sites are on a
cone which is the mirror imager of the first cone about the X3,Yys plane. The twelve
sites left, which form the third group, are distributed on a cone with half apex angle
of 70.55° in a way same as the second group. In the third configuration, in which one
of the C> rotation axes aligns on the external field, there are four different groups.
The first group forms a cone with the half apex angel 20.09°, and the second group
with 54.74°, the third group with 58.28° and the fourth group are distributed on the
equator. All geometnca.l and magnetic properties of the three conﬁguratlons of the
dodecahedral molecule are summarized in the Table (5.11).

Figure (5.13) shows variations of the lineshapes in a dodecahedron molecule with'
different exchange rates under the weak collision condition and different jumping
modes. (a) corresponds to C3 jump mode, (b) Cs jump mode, and (c) C? jump
mode. The lineshape variations with different jump modes are similar to those in
icosahedral molecules. The difference of the linewidths arising from different jump -

modes will be disappears if we redefine the jumping rate for each jump mode.
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Figure 5.13: Variation of lineshapes with different exchange rates in dodecahedron
jumps with weak collision limit: (a) C; jump mode, (b) Cs jump mode, and (c) C?
jump mode. The exchange rate is in unit of Hertz; the anisotropy of the CSA tensor

is woé = 3kHz and its asymmetry parameter is zero.
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Table 5.11: Orientations at which there are some degree of degeneracy of the reso-
nance frequencies of sites in a dodecahedral molecule

01 02 03 04 wh [7%)) w3 Wy 'Nl N2 N3 N4 !

degree (6)
1 -1
1037387919 | - |- | # || - [-|6]6]|~]|~
2| 0 |4181|7053 |~ 1 | 3| F |-[2]6]12]-
-3 | -
3[20.91 (5474|5828 90 |5 | o |42 |14 | 8|44

5.6 Motions in Solid Cg

Study of carbon clusters was ignited in the 1960s by the observation with microwave
spectroscopy of polyyne, (HCsN), in space by Townes and his co-workers[120]. Since
then, many different sizes, up to 190 carbons have been observed [121, 122, 123,
126]. Among these results, the most interesting was shown by Rohlfing and co-
workers[126]. They used the carbon cluster-beam method and observed carbon clus-
ters larger than 33-atoms. ‘This experiment resulted in the first experimental observa-
tion of the Cgy molecule. From their spectra, the Cg molecule was always produced
in greater intensities than the other clusters. Later, Kroto and co-workers|124] re-
peated Rohlfing’s experiment. After applying purifying techniques to the experiment,
they observed an even stronger signal of Cgo clusters in the mass spectra, with the
Ceo cluster eventually dominating the whole spectrum. In order to understand the
dominance of the Cg in the carbon cluster-beam experiment, Kroto and co-workers
thought that the behavior could result from the stabilization by the closure of the
graphitic net into a hollow chicken-wire cage similar to the geodesic domes of Buck-
minster Fuller. This molecule would have a truncated-icosahedral structure or a
soccer ball type structure (see Figure 5.14)[124]. |

More recently, success in synthesizing Ceo molecules in macroscopic amounts[127]

has stimulated intense interest and activity. The study of the physical properties
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Figure 5.14: A truncated icosahedral structure, or a soccer ball type Buckminster
Fuller, of a _C’so molecule.
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of Cgo molecules in the solid state has clearly demonstrated its conductivity and
superconductivity upon doping with alkali metal atoms (potassium or rubidium)[132,
133]. The crystal structure adopted by Ce molecules shows that the mass center of
each Cg molecule is positioned in a fcc lattice, and the whole molecule behaves like
a single large atom. Meanwhile, a number of spectroscopic studies, especially the
infrared, vibrational Raman spectra, and liquid NMR speétra, have confirmed that
the molecular symmetry is indeed icosahedral[134, 135, 136].

The pseudosphericé.l symmetry of the Cg molecules implies that the motion of the
molecules is probably isotropic in the solid state. The solid-state NMR spectroscopy
therefore provides a unique probe of this kind of molecular motion. The *C NMR
spectra of solid Cg have shown unequivocally that each individual Cg molecule
reorients rapidly and isotropically in the solid state at room temperature [137, 139,
140, 138] because there is only one sharp, liquid-like isotropic peak at 143ppm in
spectra. As the temperature decreases, the random reorientation process of the
molecule will, as expected, slow down and a characteristic CSA powder pattern with
principal values bf o = 220ppm, ga = 186ppm, o33 = 33ppm at temperature
T = 77K was obtained. The lineshape of the powder spectrum of Cso also changes
and the intensity of the sharp peak decreases as the temperature is lowered. Such a
result may be explained by the growth of a phase in which cluster rotation is inhibited
or by a distribution of rotational correlation times and a concomitant distribution of
motional barries.

We have performed numerical simulations by assuming that the Cg molecules
randomly and discretely jumps on an icosahedron at low temperature. We first as-
sume that the asymmétry parameter of the local CSA tensor is zero. According to
the discussion in last section, the local symmetry of the CSA tensor is determined
by the D, group in which D, .D3, and Ds are also the subgroups of the icosahedral
group. If we choose the highest dihedral gr(;up, Ds, as the local symmetry group, the
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(a) Strong Collision (b) C; Jumps (b) C5 Jumps (b) C2 Jumps

Figure 5.15: Variation of simulated powder lineshapes of Cgo molecules in the solid
state with different jumping rates, x, and with different jumping modes in the
case that the asymmetry parameter of the CSA tensor is zero, the anisotropy is
wob = 3kH z, and the spectrum width is 6kHz. (a) In the strong colhs1on limit, (b)
Cs jumps, (¢) Cs jumps, and (d) C? jumps in the Cg molecules.
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Figure 5.16: Variation of simulated powder lineshapes of Cg molecules in the solid
state with different jumping rates, , and with different jumping modes in the case
that the asymmetry parameter of the CSA tensor is 0.312, obtained from the ex-
perimental results given in reference [140], the anisotropy is woé = 3kHz, and the
spectrum width is 6.8kHz. (a) In the strong collision limit, (b) Cs jumps, and (c)
C3 jumps in the Cgo molecules.
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number of relevant representations is one from Table (5.9) except the identity repre-
sentation. The molecular reorientation process therefore satisfies the strong collision
condition. Figure (5.15) shows the variations of the simulated powder lineshapes of
Ceo molecules with different excha.n_ge rates K, using different jumping modes. In Fig-
ure (5.15a), the spectra are calculated in the strong collision model while in Figure
(5.15b), (5.15¢), and (5.15d), by assuming that the Ceo molecules undergo random
jumps around the Cs, Cs, and C? rotation axes in the weak collision limit respec-
tively. The lineshapes in the strong collision limit naﬁow the fastest, and those in
the Cs and C? jumping modes narrow the slowest. This difference will disappear -
if we redefine the jumping rate. The lineshapes in the Cs jumping mode are exact

same as those in the C? jumping mode.

Figure (5.16) shows the variations of the lineshapes of the Cso molecules in the
solid state with different jumping rates, using different jurhping modes for the case
that the asymmetry parameter of the CSA tensor is 7 = 0.312, obtained from the
experimental results given in reference [140]: As can be seen, the variations of the
lineshapes are similar to those shown in Figure (5.15). The linewidth of the lineshape
arising from the strong collision limit narrows the fastest, and then the one with
Cs jump mode while the linewidth narrows the slowest with Cs jump mode. The
lineshapes vary largely same. This result seems in contrast to the conclusion from
the group theoretical discussion which says that two exchange rate parameters are
- necessary to determine the lineshape during chemical exchange if the local symmetry
of the CSA tensor is D,. One reason could be that the asymmetry parameter is
still too small to see the difference of the lineshape between different jump modes.
From these simulated powder lineshapes with chemical.exchange, two things may be
concluded. First, the rate change is very small from the rigid static structure to the
state in which the molecules tumble isotropically and locally. This means that the
molecules require a very small amount of kinetic energy to be in the isotropically
tumbling state. In this state, the crystal structure may still be well defined because
the molecules only tumble locally. This may explains the difference between the
NMR and x-ray diffraction results. The NMR results showed that the spectra at
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the temperature above 200K contain only an isotropic narrow peak while the x-
ray results indicated a phase transition at about 250K in solid Ceo[141]. Secondly,
because the powder lineshape changes smoothly and there is no singularity in the
spectra as the exchange rate changes, the conclusion given by Tycko and Yannoni
and co-workers are consistent. During the process of lowering temperature, there is
either a phase in which the carbon cluster rotation is inhibited or a distribution qf the
rotational correlation times. These conclusions are further supported by the NMR

relaxation measurement of Cg in the solid state by Tycko and co-workers[138].
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