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Abstract 

Selectivity and resolution of solid-state NMR spectra are determined by the dis­

persion of local magnetic fields originating from relaxation effects and orientation­

dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent 

resonant frequencies can be represented by a set of irreducible tensors. Among these 

tensors, only zero rank tensors (scalar operators) are capable of providing high res­

olution NMR spectra. In this thesis, I present a series of new developments in high 

resolution solid-state NMR concerning the reconstruction of various scalar operators. 

In chapter 1 a new method for calculating zero field NMR spectra is described, 

and the evolution matrices of the density matrix are evaluated. Zero field order 

selective observation, zero-high field correlation spectroscopy, and measurement of 

zero field spin diffusion are then introduced. Order selective observation can be used 

to simplify zero field spectra. Zero-high field correlation spectroscopy results in two­

dimensional spectra from which all information available in zero and high field spin 

interactions can be obtained. The spin diffusion rates in zero field are determined 

by the square of the· dipolar coupling constants and the relative orientations between 

the dipolar and the quadrupolar interactions. 

A general theory of zero field NMR in high field is described in chapter 2. A 

coupled space is introduced in which the high field spin Hamiltonian is expressed as 

irreducible tensors from rank zero to four. The scalar operator in this Hamiltonian 

can be extracted by dynamic angle spinning (DAS) , double rotation (DOR), dynamic 

angle hopping (DAH) , or pulse sequence for performing zero field NMR in high 

field. An analytical solution of these pulse sequence is found, and additional new 

trajectories are also presented. 
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Second order NMR spectroscopy of half integer quadrupolar spin nuclei is de­

scribed in chapter 3. The first order average Hamiltonian is evaluated. The resulting 

powder lineshapes of the central transitions are simulated. The variations of these 

powder lineshapes and the their singularities upon the variable angle sample spinning 

(V ASS) are discussed. The theoretical and experimental aspects of dynamic angle 

spinning (DAS) and double rotation (DOR) are also thoroughly described. Finally, 

a general method for averaging out arbitrary rank tensors appearing in Hamiltonian 

is developed using group theory arguments. 

Chapter 4 presents calculations of MAS, DOR, and DAS sideband intensities. A 

new method of calculating MAS sideband intensities is discussed. These intensities 

can be calculated in real time, and allow eSA parameters to be easily extracted. 

DOR and DAS sidebands are analyzed by moment expansion' and Bessel function 

analysis. The results show that DOR and DAS sideband intensities depend strongly 

on the relative rotor phase and the structure of both DOR and DAS sidebands is 

complicated due to the interference between spinning speeds (in DAS the time ratio 

can be converted to two spinning sp~ds). 

The general theory of chemical exchange processes in solid-state NMR is treated 

in chapter 5. The lineshape changes during the chemical exchange are reviewed and 

discussed. The motion in icosahedral (C60 ) molecules is then analyzed. Lineshape 

changes due to different jump modes occur smoothly, similar to those observed in 

the strong collision limit. Comparing with the experimental results, there are indeed 

different phases in the carbon clusters, and motions in C60 have different correlation 

times within these different phases. 
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Chapter 1 

Zero Field NMR and NQR 
Spectroscopy 

1.1 Introduction 

In the development of nuclear magnetic resonance (NMR) spectroscopy, high sen­

sitivity and resolution are two important goals. In solids, rapid internal random 

motions are absent so that the local fields created by anisotropic spin interactions 

(e.g. chemical shift anisotropy, dipolar coupling and quadrupolar coupling etc.) are 

sensitive to the relative orientations of spins with respect to the external magnetic 

field Ho. For a polycrystalline or amorphous solid sample, such an orientation depen­

dence results in the dispersion of the absorption linein NMR spectra and makes not 

only the interpretation of these spectra difficult[l] (low resolution) but also sensitiv­

ity low. The reason why the resonance frequencies of individual spin nuclei become 

orientation dependent is the truncation of the internal spin interactions by the larger 

Zeeman interaction. One possible solution to eliminate this dispersion is to remove 

the external field such that the local fields of all spin nuclei are equivalent and, 

therefore, orientation independent. This method is commonly used in pure nuclear 

quadrupolar resonance (NQR) [2,3,4,5,6]. 

The major obstacle in obtaining NMR spectra at zero magnetic field is the low 

sensitivity. This sensitivity problem is implied by Faraday's law which states that the 
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voltage induced in an rf coil by an oscillating magnetization in the xy-plane is pro­

portional to both the amplitude and the resonance frequency of the magnetization. 

These two factors are linearly dependent on the strength of the external magnetic 

field, so that the FID signal is proportional the square of the magnetic field. At zero 

field, the FID's intensity is therefore proportional to the square of the strength of 

the local magnetic field which is at least a thousand times smaller than the external 

magnetic field, therefore the sensitivity of the NMR signal is a million times lower 

than in high field. This severe sensitivity problem may be overcome by using either 

SQUID techniques [31,32,33] or bY,the field cycling method proposed by Pound[7], 

used first in pure NQR spectroscopy. The most recent application of the field cycling 

technique is in time-domain zero field NMR and NQR spectroscopy[8]-[12]. In this 

experiment, the solid sample is transferred pneumatically from the high magnetic 

field (4.2T) to an intermediate field with the strength about O.OlT, and the field is 

suddenly turned off. The magnetization then evolves for a length of time t in zero 

field under a scalar spin Hamiltonian (of dipolar or quadrupolar interaction), and is 

stored along the external field by suddenly turning on the intermediate field. The 

sample is transferred back into high field where the z component of the evolved mag­

netization is· observed. The whole FID signal is acquired by increasing the length 

of time evolved in zero field. After the Fourier transformation, a high resolution 

spectrum finally may be obtained. The frequencies of the peaks in the spectrum 

directly determine the principle parameters of the spin interactions involved in zero 

field. This technique combines the advantage of high resolution and high sensitivity 

and has· shown its power in detennining quadrupolar coupling constants of deuterons 

in molecules. 

One would like to advance time-domain zero field NMR and NQR by finding zero 

field analogs to multi-pulse and multi-dimensional methods originating from high 

field NMR[1l]-[18] to simplify the identification of sites, obtain more structural in-
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formation of molecules, study the motions in molecules, and measure exchange rate 

between orders. In most of these new experiments, cumbersome calculations are 

necessary in order to obtain theoretical spectra. In this chapter, a simplified calcu­

lation method based on the irreducible tensor theory and Wigner rotation matrices 

will be described. I then apply this method to discuss the zero field order selective 

observation, zero field and high field correlation spectroscopy, and the measurement 

of spin diffusion in zero field. 

1.2 Calculation of Zero Field NMR and NQR 
Spectra 

One of the differences between zero field and high field NMR is that the eigenvalues· 

of the spin Hamiltonian do not depend on the orientation of the local principal 

axis system of a spin interaction with respect to the laboratory frame[9]. For this 
. . 

reason, zero field NMR spectra usually show high resolutiQn. One can then ask how 

the orientation distribution of a powder sample affects the spectrum. The answer to 

this question is that the eigenvectors of the spin Hamiltonian, and thus the transition 

intensities are orientation dependent. However, for some complicated pulse sequences 

in zero field, the common procedure for taking a powder average is complicated due 

to many integrations over trigonometric functions. In this section, we will describe a 

general method which can greatly simplify the calculation of the zero field NMR and 

NQR spectra by using the irreducible tensor theory and properties of Wigner rotation 

matrices[20, 21, 22, 23, 24]. We will show some particular cases where the theoretical 

spectrum after a particular pulse sequence can be straightforwardly calculated by our 

method without performing any detailed integrations in the powder average. 

We start with the spin Hamiltonian of a quadrupolar interaction in its principle 

axis system, given by[19] 

(1.1) 
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where the T2,ffl are the components of a second-rank irreducible spin tensor defined 

by 

T2,o - _1 (3/2 _ 12) 
v'6 z 

1 
T2,::I::1 - =F"2(Iz / ::l:: + 1::I::/z) 

T2,::I::2 
1 

(1.2) - 2h/::l::' 

and 
1 

1::1:: = =F .J2,(Ix ± tly ). (1.3) 

The P2,ffl are the principal components of the second-rank irreducible spatial tensor 

of the quadrupolar interaction, given by 

P2,O = ~8, P2,::I::1 = 0, and P2,::I::2 = ~877' (1.4) 

where for our case 
e2qQ 

8 = wQ = 2/(21 + 1)' (1.5) 

and Q is the quadrupolar moment of the nucleus , q is the strength o(the electric 

field gradient in the z direction, e is the electron charge, and 1 is the nuclear spin 

value. 

The initial state of the density matrix also can be expressed in terms of the 

irreducible tensors as 

(1.6) 
l,m. 

where al,m is a coefficient which means percentage of total population in the order 

of l1,m given in the initial preparation period. From the normalization property of 

the density matrix, which is equivalent to the energy conservation requirement for 

the whole system, we have 

. t _ 1 
L al,mal,m - C (l I)' 
l,m N , 

(1.7) 
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where CN(l, I) is a normalization constant, which is a function of the rank of the 

irreducible tensor and spin value, given by[21] 

1 l!l!(2! + 1 + I)! 
CN(l,1) = 2l + 1 2l(2l)!(2I-l)! . (1.8) 

In the derivation of Eq.(1. 7) we have used orthogonality properties of the irreducible 

tensors 

(1.9) 

With Eqs.(1.1) and (1.6), the evolution of the density matrix under the quadrupo­

lar Hamiltonian during time t is 

p(t) = e-~1itp(O)e~1it = Lal,m L E:;;,z,m(t)1l"m" (1.10) 
l,m l',m' 

where the E~,,z,m(t) are the elements of the evolution matrices of l-th rank tensor, 

determined by the spin Hamiltonian. Its explicit representation in general depends 

on anisotropic parameters, 0 and "I, of the interaction, the spin operators in the spin 

Hamiltonian, the spin value, and the initial condition of the spin density matrix. If 

the initial order of the density matrix is zero, because the spin Hamiltonian always 

commutes with unit operator the only value of the evolution matrices is one, that is 

(1.11) . 

Another trivial solution is that at time zero it is diagonal. 

(1.12) 

It is obviously orthonormal. 

L E~~l,m(t)E~;'~l t (t) = Ol,l20m,m2' (1.13) 
h,ml 

and the evolution matrix at time tl and t2 is given by 

L E~~l,m(tdE~;l'~l (t2) = E~;,m(tl + t2) (1.14) 
h,ml 
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If the spin operators in the spin Hamiltonian are linear (e.g. the Hamiltonian of Zee­

man interaction, or chemical shift interaction), the matrix elements of the evolution 

matrices are 

"l' ,l (t) 1: 1: Imw,t "m',m = Ul',lum',me , I (1.15) 

where Wi is the strength of i-th interaction. 

Calculating the evolution matrices becomes very difficult when the spin Hamil­

tonian contains bilinear spin operators, and in this case, there is no general solution 

for an arbitrary value of spin. However the matrix representations still can be ob­

tained for small values of the spin on a case by case basis. As a simple example, let 

us consider a spin I = 1 system with a quadrupolar interaction. The highest rank 

irreducible tensor necessary in expansion of the density matrix is two. Thus, the 

zero-, first-, and second-rank tensors provide a complete set of basis operators in the 

evolution of the density matrix. With the properties of the irreducible tensors[20]' 

we can derive the following general commutator relationship: 

[1l1,mll1l2,m2] = l:C(ll,l2,l,mbm2)[I- (-I)h+l2-l]ll,ml+~2· 
l 

(1.16) 

Table (1.1) shows all commutation relationships for spin 1= 1. By Table (1.1), it is 

easy to prove that 

(1.17) 

This last equation allows us to separately derive the evolution matrices for the T2,o, 

and (T2,2 + T2,-2) terms in the Hamiltonian (Eq. 1.1). These two evolution matrices 

are combined to obtain the final matrix elements of the evolution matrices. 

In the next step to calculate the evolution matrices £:;;!,m (t), we need to consider 

a function of operators 

(1.18) 

where A and B could be any two operators. The derivatives of the function f(()) are 

:0 f( ()) - _re-,A8 [A, B]e'A8 
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Table 1.1: Commutation relations for spin I = 1 

[TI ,o,l1,m] = ml1,m 

[TI,l, TI,-I] = -TI,O 

[TI,±I, T2,±I] = =fV2T2,±2 

[TI,±I, T2,=t=I] = =fV3T2,o 

[TI,±l, T2,=t=2] = =fV2T2,=t=1 

[T2,o, T2,±I] = ± fTI,±1 

[T2,1' T2,-I] = -4TI,O 

[T2,±b T2,=t=2] = ±~TI,=t=1 

[T2,2' T2,-2] = TI,o 

[TI,±I, T2,o] = =fV3T2,±1 

Other commutators not shown, are identically equal to zero. 

:O2 1((}) - (-z?e-,AO[A, [A,:8]]e,Ao 

::31((}) - (_z)3e-,Ao[A, [A, [A, :8]]]e,Ao .. 

and the Taylor expansion of the function f((}) is 

(1.19) 

f((}) = :8 - z(}[A,:8] + ~! (-z(})2[A, [A, 13]] + ~! (-z(})3[A, [A, [A,:8]]] + . . . (1.20) 

In OUr example the operator A can be either n,o or T2,2+n,-2, and:8 is the whole 

set of the irreducible tensors from rank zero to.two respectively. From Eq.(1.20) and 

the commutation relationships of the irreducible tensors which are listed in Table 

(1.1), cycling conditioris can be found after the second derivatives of the function 

f((}) for spin I = 1. These cycling conditions are 'tabulated in Table (1.2). From 

the cycling conditions components of the evolution matrices are straightforwardly 

calculated. These components are tabulated in Table (1.3). By following the same 

procedure above, evolution matrices can be tediously derived ope by one for all other 

spin values. 

Next we need to determine the response of the spin system to a dc pulse. It is well 

known that a pulse applied on a spin operator behaves like a rotation operator. In 

order to use the Wigner rotation matrices as a representation of the pulse response, 
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Table 1.2: Cycling conditions for spin I = 1 

e-,81'2,OTI Oe,81'2,O = T lo . . 
e-,81'2,OT2•0e,81'2,O = T 2•0 

e-,OT2,O{T2•2 + T 2._2)e,81'2,O = (T2•2 + T 2.-2) 

e-,81'2,O {T2•2 - T 2._2)e,81'2,O = (T2•2 - T 2.-2) 

d2 [ -,81'2oT: \8T2 0] _ { )2 3T (iij'I e ' 1.±le • - -z 2" I.±I 

~ [e-'81'2,OT2.±le\8T2,O] = (-z)2~T2.±1 
e-\8(T2,2+T2,-2)T2•0e,O(T2,2+T2,-2) = T 2•0 

e-,O(T2,2+T2,-2){T2•2 + T 2._2)e,O(T2,2+T2,-2) = (n.2 + T 2.-2) 

£.. [e-,O(T2,2+T2,-2)T e,O(T2,2+T2,-2)] = (-z )24T d02 1.0 1.0 

~ [e-\8(T2,2+T2,-2)TI.±1 e,O(T2,2+T2,-2)] = (-z )2T1.±1 

~ [e-\8(T2,2+T2,-2)T2.±·le,O(T2,2+T2,-2)] = (-Z)2n.±1 

~ [e-,O(T2,2+T2,-2) (T2•2 - T 2._2)e,O(T2,2+T2,-2)] = (-Z )24{T2•2 - T 2.-2) 

we represent the dc pulse, and equivalently, the rotation operator, according to Euler 

angles, and the spin operators by irreducible tensors. We will call the rotation oper­

ator p(np)'. As an explicit example, the initial density matrix is given by Eq.{1.6) 

in the laboratory frame, but after a dc pulse it becomes 

p(O+) = Lal.mLV~.m(np)ll.m" (1.21) 
l.m m' 

In many cases the initial density matrix is represented in the molecular frame. The 

representation of the pulse therefore has to be transferred into the molecular frame, 

and the response of the spin density matrix to the pulse shows orientation depen­

dence. We use p;:3 m (nM , np ) to be the matrix elements of pulse rotation operator . 
in the molecular frame. This representation ean be related to the Wigner rotation 

matrices in the following way: the spin density matrix is rotated to the laboratory 

frame where it is operated on by the de pulse, and then is rotated back into the 
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Table 1.3: Zero field evolution matrices, e!;f,m(t), for spin 1= 1 

l,m l'm' , 
1;1 1,0 1,-1 2,2. 2,1 2,0 2,-1 2,-2 

1,1 4C+ 0 -Ie 
2 - 0 ~S+ 0 -'S 72 - 0 

1,0 0 Co 0 zSo 0 0 0 -zSo 

1,-1 -Ie 
2 - 0 4C+ 0 ~S_ 0 ~S+ 0 

2,2 0 iSo 0 1 +1Co 2 2 0 0 0 1 _lCo 2 , 2 

2,1 2:hS+ 0 ~S_ 0 4C+ 0 -Ie 
2 - 0 

2,0 0 0 0 0 0 1 0 0 

2,-1 ~S-. 0 ~S+ 0 -Ie 
2 - 0 4C+ 0 

2,-2 0 -, s, 0 l_lCo 0 0 0 1 . 1 
""2 0 -+-Co 2 2 2 2 

molecular frame. After this procedure, the pulse rotation operator is given by 

(1.22) 

Usually a pulse is represented by the pulse length () and the phase cp of the rotation 

axis relative to the x axis of the laboratory frame, (in high field case, of the rotating 

frame). 

Once the initial condition and the evolution rules of the density matrix have 

been determined, we transfer the density matrix from the laboratory frame to the 

principle axis system of the interaction tensor (if there is more than one interaction 

in the Hamiltonian, a molecule frame has to be introduced into the calculation, but 

now we deal only with a single interaction). In the principle axis system, the initial 

densi ty ~atrix is 

pp(O) = Lal,mLV~,m(n)l1,m'. (1.23) 
l,m m' 
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The observable, 0, can also be represented. into the same form as Eq.(1.23). 

o = Lbl,mLV~,m(S1)n,m" (1.24) 
l,m m' 

After inserting Eq.(1.23) into Eq.(1.lO) and with Eq.(1.24), the FID signal will be 

g(t, S1) - Trfp(t) 0] 

L a'1,ml bl,mV~~ml (n)v*~1,m4 (n)E~;"~2Tr{n,mn2,m4}' 
h ,l2,l,ml ,m2,m3,m4 ,m 

(1.25) 

The orthogonal properties of the Wigner rotation matrices and irreducible tensors 

imply that the powder averaged FID signal will be 

(1.26) 

where CN (l,1) is a normalization constant given by Eq.(1.8). As we can see from 

Eq.(1.26), the evolution matrix, the initial condition of the density matrix, the ob­

servable, and Clebsch-Gordan coefficients totally determine the' powder averaged 

spectrum. We do not need to perform any integrations over orientations. Another 

interesting PQint is that the observable is actually determined by the initial order in 

the density matrix, irrespective of what other orders are involved during the evolution 

time under the Hamiltonian. 

As a simple example, let consider the sudden switch experiment for spin 1=1. 

Both the initial state and the observable are represented by Iz = TI,o, and al,O = 

bl,o = 1 in the laboratory frame. From Eq.(1.26) and Table (1.3), the FID signal is 

then 

1 [ (3 -TJ) (3+ TJ )] G(t) = '3 cos (wQTJt) + cos -2-wQt + cos -2-wQt . (1.27) 

Other examples will be given in following sections. It should be pointed out that 

Table (1.3) can also be used for two coupled spins with spin value 1= !. 
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1.3 Order Selective Observation of Zero Field 
Signals 

In zero field NMR and NQR spectroscopy, a single spin I = 1 or pseudo-spin-l 

system has four nuclear transitions. Each transition corresponds to a peak in a 

spectrum. The spectrum will eventually become very complicated as the number of 

spin-l's nuclei in a molecule increases, and if each spin-l nucleus has different value of 

the quadrupolar (or dipolar) coupling constant and the asymmetry parameter. The 

assignment of each peak in the spectrum therefore becomes very difficult. In high 

field NMR, there are several methods to simplify a complicated spectrum [30], one of 

them is multiple quantum transition NMR spectroscopy [25, 26, 27, 28, 30]. In this 

method, a multiple quantum operator (pumping operator in optics) which is a linear 

combination of a set of different rank tensors is created by a particular pulse sequence 

[25]. The n-quantum coherence in the density matrix is then prepared by applying 

the multiple quantum operator to the spin system for length of times, 7, where 

the density matrix starts to evolve under the spin Hamiltonian. At the end of the 

evolution, another multiple quantum operator is applied to observe multiple quantum 

transitions. The second multiple quantum operator is usually the conjugate operator 

of the first multiple quantum operator in order to obtain an in-phase spectrum with 

multiple transitions. The idea of the multiple quantum NMR can also be used 

selectively to observe the zero field signal, and we call this experiment the order 

selective observation. In the order selective observation of zero field NMR signal, we 

must prepare a particular initial order for the density matrix by using a dc pulse 

sequence. This particular order can be completely represented by an irreducible 

tensor. In similar principle, we need another particular order to observe the evolution 

of the density matrix in zero field; The zero field NMR signal therefore depends on 

the selection of the initial order and the observing order. In this section we will show 

four different initial and observable orders. Each of them will yield different signal 
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forms, and the linear combination of these signals can greatly simplify the spectrum. 

The initial density matrix can be represented according to the orders of the 

population distribution and each individual orders (ml) be expressed by the m-th 

components of l-th rank tensors, or their linear combinations. For example in the 

sudden switch experiment, the initial density matrix only contains the first order 

(sometimes is called Zeeman order) for m = 0 which is represented by T1,Q of the 

first-rank irreducible spin tensor, while in the adiabatic demagnetization experiment, 

the initial density matrix has the second order: quadrupolar order (or dipolar order) 

for m = 0 and TJ order for m = ±2, represented by the second rank irreducible tensor, 

T2,Q and T2,2 + T2,-2 respectively. Similarly the observable also has Zeeman order, 

quadrupolar order, and TJ order. The linear combination of the initial preparation and 

the observation of the spin density matrix gives us four different choices to observe 

the zero field NMR signals for a spin I = 1 system. 

Table 1.4: FID signals with different order selective observations in zero field NMR 
and NQR for a powder sample with spin 1=1. 

Initial Observable FID Signal . 
Z Z ~[cos(W'lt) + cos(w_t) + cos(w+t)] 

Q+TJ Z ~(2sin20 + sinO)[a_ sin(w_t) + a+ sin(w+t)] 

Z Q+TJ ~(2 sin 20 + sinO)[a_ sin(w_t) + a+ sin(w+t)] 

Q+TJ Q+TJ ])0(0) + PrJ(O) cos(W'lt) + p_(O) cos(w_t) + p+(O) cos(w+t) 

where Po(O), PrJ(O), p_(O), and p+(O) are given by Eq.(1.28) in text as the 
pulse response. a± = V6a2,Q ± (a2,2 + a2,-2), where a2,Q, a2,2, and a2,-2 are the 
constants to form the quadrupolar order and TJ order in PAS. 

From Eq.(1.8), for an experiment which only consists of the initial preparation and 

free evolution under the quadrupolar Hamiltonian, the FID signal before the powder 

average is given by Eq.(1.25). The powder average depends on the initial order of the 
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Figure 1.1: Initial preparation and observation of the zero field NMR signal in field 
cycling experiment. (a) Sudden switch experiment in which both the initial and 
observable orders are Zeeman order; (b) adiabatic demagnetization experiment in 
which quadrupolar (or dipolar order) and 'f/ order are prepared initial, but the ob­
servable is the Zeeman order; (c) the initial and observable orders of (b) are replaced 
with each other; (d) both the initial and observable orders are quadrupolar and 'f/ 
order, where f) and f)' are dc pulse lengths and experimentally we choose f) = f)' or 
f) = -f)'. 
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density matrix and the order of the observable. For the four configurations shown in 

Figure (1.1), the powder averaged FID signals are listed in Table (1.4). For the case 

in which both the initial density matrix and observable are the quadrupolar and TJ 

orders, the pulse response becomes very complicated and the four coefficients in the 

last row in Table (1.4) are expressed as 

1 4 2 1 . 

- 2" 'Lf,«(}) 'L 'L (-I)ma2,m[(-I)'a2,_mca(221,m,2m') 
l=O m=-2 m'=-I 

Po«(}) 

+ a2,4m'_mC(221, m, -2m')C(22l, 2m', m - 4m')] 
1 4 2 

- 2" 'L f,«(}) 'L L (-I)ma2,m[( -1)'a2,_mca(221, m, 2m') 
l=O m=-2m'=-I,l 

p.q«(}) 

a2,4m'_mC(22l, m" -2m')C(22l, 2m', m - 4m')] 
1 4 2 . 

- 2" 'Lf,«(}) 'L 'L (-I)ma2,m[(-I)'a2,_mC2(221,m,m') 
l=O m=-2m'=-l,l 

+ a2,~m'_mC(221, m, -m')C(221, m', m - 2m')] 
1 4 2 

- 2" 'Lf,«(}) 'L 'L (-I)ma2,m[(-I)'a2,_mca(221,m,m') 
l=O m=-2m'=-l,1 

p-«(}) 

a2,2m'_mC(221, m, -m')C(221, m', m - 2m')] 

f,«(}) - A [1 + 2 t COS(k(})]. (1.28) 
+ 1=1 

If the demagnetization in the experiment is adiabatic, the initial order of the density 

matrix before applying the dc pulse is quadrupolar and in the principle axis system 

the density matrix should be orientation independent and the coefficients a2,m have 

the values a2,O = ..;6/2 and a2,±2 = 1/2. Based on this assumption we have plotted 

the pulse response in Figure (1.2a). For comparison, the pulse response for the 

conjugate quadrupolar order and TJ order, (Q + TJ) t, to obtain an in-phase spectrum 

during detection are plotted in Figure (L2b). 

From Table (1.4) and Figure (1.2), we can conclude the following. When both 

the initial and the observing orders are Zeeman order, there are three peaks with 

. equal intensity in zero field spectra and no non-evolved peak at zero frequency. If 

there is a zero frequency peak, it means that there are some other orders, appearing 

both in the initial density matrix and in the observable, if the speed of turning off 
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the intermediate field is not fast enough. However, when the initial density matrix 

is determined by the quadrupolar and 'T/ orders and the observable is Zeeman order, 

the peaks at W'7 and zero frequency disappear. The transitions with frequency w+ 

and w_ appear in the dispersive mode and have an intensity ratio of 2 : 1. In 

the case where the initial density matrix and observable are both quadrupolar and 'T/ 

orders, the intensity of one or two from total four transitions may be zero by properly 

choosing pulse length. For example, when () = 68°, the w_ transition is zero and w+ 

transition contain more than one quarter of the total intensity, and the 'T/ transition 

is very small. Experimentally, it is therefore possible to edit the above three different 

spectra such that each edited spectrum contains only one kind of transition once the 

pulse length is known. We can also measure the coefficients a2.m of the initial order 

by . varying the pulse length. This experiment will allow us to confirm the· above 

assumption and to assertion the adiabaticity of the demagnetization process. 

Although the order selective observation provides a way to distinguish the differ­

ent transitions by the different pulse response for same kind of spin nuclei, it does 

not identify transitions which come from different kinds of nuclei. In order to sep­

arate transitions which come from different sites in the sample, a two dimensional 

. correlation spectroscopy may be used. The simplest pulse sequence for obtaining a 

two dimensional spectrum consists of a single pulse which is applied at the end of 

the first evolution period. In the principle axis system of the quadrupolar interaction 

tensor, this pulse becomes orientation dependent. Again this orientation dependence 

is given by p;:3 m of Eq.(1.30). Before the pulse is applied the density matrix in the . 
principle axis system is 

peL) = L ah.mlV~~ml (n)£~;l.~2(L)1l2.m3' (1.29) 
h.l2.ml.m2.m3 

After application of the dc pulse, the density matrix becomes 

p(t+) = L ah.mlV~~~ml(n)£~;l.~2(t+)P:4.m3(n,np)Tl2.m4. (1.30) 
h.l2.ml.m2.m3.ffi4 
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Figure 1.2: Pulse responses under the two pulse sequence (see Figure LId) in zero 
field NMR with different pulse length: (a) 0 = 0', (b) 0' = 7r-O or 0' = -0, where Wo, 
w'7' w_, and w+ represent the intensity of transitions corresponding to non-evolved, 
'fJ, quadrupolar orders respectively. 
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Following the same procedure in deriving Eq.(1.8) yields the powder averaged FID 

signal at the end of the second evolution period t2• 

'X C(ll, l2' l4' m2, m6)C(l2' l3, l4' m3, ffi2 + m6 - m3) 

x al lom1 bl3.m3-m2-meV~2.m4 (Op )&~;l.~2(tl)&~~l~ms_m.a.me(t2)' (1.31) 

After two dimension Fourier transformation, a cross peak appears only when the two 

diagonal peaks are the different transitions of same site. Experimental results can 

be seen in reference [11]. 

1.4 Zero Field and High Field Correlation Spec­
trum 

Time-domain zero field NMR and NQR spectroscopy has provided a new method 

for obtaining high resolution spectra of a. polycrystalline or amorphous sample and 

therefore allows us to measure the dipolar coupling or quadrupolar coupling constants 

without the spectral resolution problem [8]-[12]. However, we can observe neither 

isotropic chemical shifts nor chemical shift anisotropies. This is because the chemical 

shifts linearly depend on the external magnetic field if they are measured in unit of 
, 

Hertz. At zero field, the chemical shifts basically are zero. On the other hand, the 

chemical shift information can be crucial for determining the structure or dynamical 

behavior of a molecule. 

In order to increase the sensitivity of the zero field experiments, a spin-locking 

technique has been employed [9] for the high field observation. This spin-locking 

technique effectively disregards the high field spectra and all information contained 

in it. After a moment more thought, we know that the correlations between zero 

field and high field are also destroyed by spin-locking detection. However such a 
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correlation spectrum[18] will lead to a new type of separation of a usual high field 

powder pattern based on the high resolution spectrum in the zero field domain and 

also takes advantage both of zero field and high field after combination with mul­

tiple pulse techniques in high field[19, 114]. In this section, we will provide a brief 

theoretical description of the zero field and high field correlation spectra and show a 

set of simulations which potentially could be verified by some experiments. 

We start with the initial state of the density matrix, Po, in zero field. 

Po = L a',mn,m, 
l,m 

(1.32) 

where the n,m are the components of a l-th rank irreducible tensor, and the a',m 

are the coefficients which represent the initial state of the density matrix prepared 

by switching off the external magnetic field suddenly, or demagnetization to zero 

adiabatically and then initialized by application of a strong dc pulse. After we have 

prepared a suitable initial state in zero field, it is transformed into a molecular frame, 

p~ = L al,mV~,m(OM)n,m" (1.33) 
l,m,m' 

where the V~ m's are the components of Wigner rotation matrices, the OM are the , 

Euler angles between the laboratory frame and the molecular frame, and the n,m' 's 

are the irreducible tensor in the molecular frame. The zero field spin Hamiltonian in 

the molecular frame may be written in general as 

'HZ: = L(-I)m A~,_mT2,m, (1.34) 
m 

where the A~ m's are the components of an interaction tensor responsible for evolution . , 

in zero field (e.g. dipolar, or quadrupolar interaction). With Eq.(1.34), the evolution 

operator in the molecular frame is ~ 

(1.35) 

After evolution in zero field for time, tl, we can use a propagator P to store the 

coherence parts in the density ~atrix as a population distribution which relaxes 
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slowly. The sample is then moved from zero field to high field for further evolution 

with high field spin Hamiltonian which is truncated by the large Zeeman interaction, 

that is, 

(1.36) 
m 

where A~,_m is the components of the interaction tensor in high-field (e.g. chemical 

shift anisotropy). The evolution operator in high-field is then 

(1.37) 

After evolution in high field for a time, t2, the total density matrix can be calculated 

by use of Eqs.(1.33), (1.35), and (1.37). 

Finally the two-dimensional signal is given by 

(1.39) 

For a powder sample, an average over OM has to be performed, and then the FID 

signal is 

(1.40) 

As an illustrative example, we calculated the zero field and high field correlation 

spectra for a spin system I = 1 system which evolves under a quadrupolar Hamilto­

nian in both zero field and high field. The sudden switch pulse scheme is assumed for 

initial evolution in zero field (see Figure 1.1a). The only difference between the zero 

field Hamiltonian and high field Hamiltonian is that the Hamiltonian in high-field 

is the truncated quadrupolar Hamiltonian. In this case we can choose the molecu­

lar frame to coincide with the principle axis system of the quadrupolar interaction 

tensor. The initial state is Iz in the laboratory frame. From Eq.(1.33), the initial 

density matrix in the principle axis system is 

PM(O) = LV~~O(OM)Tl,m. (1.41) 
m 
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As we know the quadrupolar Hamiltonian in the PAS is 

(1.42) 

Under this Hamiltonian, the evolution in the zero field during time tl is completely 

determined by the evolution matrices £(l,l') given in Table (1.3). In the high field 

domain, the truncated Hamiltonian in the rotating frame is 

'HQ,O = LV~~O(nM )P2,mT2,O. (1.43) 
m 

By inserting Eqs.(1.41), (1.42), and (1.43) into Eq.(1.38) we can calculate the density 

matrix for the correlation experiment, 

p(t t 1"'1 ) = ~ '7"\(1) (1"'1 )"I,l (t )e-I1iQ,ot2P"'" p-1e'1iQ,ot2 
I, 2, HM ~ Vm1,O UM "m2,ml 1 l.l,m2 . (1.44) 

l,ml,m2 

For the simplest case, the propagator P first transforms the irreducible tensors from 

PAS to the laboratory frame, projects it on to Iz axis, and finally applies a 900 to it 

along Iy axis in the rotating frame in high field. Using this definition of P implies 

G(tI, t2) = In dnM L v~~,o(n~)v~~,o t (nM)£~!,ml (t l ) cos [A2,o (nM )t2]. (1.45) 
ml,m2 

Using Eq. (1.45) and Table (1.3), we have performed numerical simulations of the 

zero field and high field correlation spectra for spin I = 1 system with quadrupolar 

interaction. Figure (1.3) shows a variation of powder patterns as the asymmetry 

parameter, TJ, changes from 0 to 1. The new type of separation based on the high 

resolution zero field spectra is clearly demonstrated. The complicated powder line­

shape in high field domain decomposes into three (two when TJ = 0) relatively simple 

superimposed lineshapes. Each powder pattern has different shape and corresponds 

to the different orders (e.g. quadrupolar order, or TJ order) present in the zero field 

domain. The separation therefore may be useful for assignment of the zero field NQR 

lines by the superimposed lineshapes, when there are several unequivalent spins in 

the sample. Such tW<.rdimensional correlation spectra have been measured by Zax 

and C<.rworkers[9, 11]. 
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(a) 11=0.0 
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(c) 11=0.4 

(e) 11=0.8 

(b) 11=0·2 

(d) 11=0.6 

(f) 11=1.0 

Figure 1.3: Variation of simulated powder lineshapes in zero field and high field corre­
lation spectra with different asymmetry parameter TJ for spin 1= 1 with quadrupolar 
interactions. The projections of the zero field and high field are shown on the sides 
of the 2-D spectrum respectively. Each superimposed powder lineshape in high field 
domain is related to the order in zero field domain 
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We can generalize the calculation that resulted in Eq. (1:45) to include other 

zero field pulse schemes (see Figure 1.1 b-d). The signal as a function of crystal 

orientation and time in zero field can be shown to be 

9z(tb OM) = L a!n2 ,ml (tl)V~2,ml (OM)' (1.46) 
l,ml,m2 

where the coefficients, a~2,ml (tl) , depend on the evolution in zero field, and the 

sUIIJ.mation over l runs from zero to a finite integer number. In other words, the 

zero field signal can be expressed in a finite number of irreducible representations of 

80(3) group. Similar to Eq.(1.46), the high-field signal can also be expressed as 

9h(t2,OM) = Lb!n(t2)V~0(nM). (1.47) 
l,m 

where the index l now varies from zero to infinity. Two conclusions can be drawn 

from the above discussion. First, in conventional high-field NMR only the identity 

representation of 80(3) in the density matrix contributes a powder lineshape. The 

evolution of the density· matrix in the zero field now allows us to observe the high 

field powder lineshape with different representations of 80(3). In the above example, 

there are total three representations, V(O) , V(I), and V(2) , of 80(3) participated 

in forming the superimposed lineshapes. Second, the orthogonality of the Wigner 

rotation matrices implies that the index m2 for zero field signal has to be zero after 

averaging over the powder average. This reduction makes the calculation easier, 

allowing us to quickly derive the coefficient for Eq. (1.46) for the above example, 

a!n,O(tl) = 2:(-l)mC(l, 1,l,mbm - ml)C(l, 1,l,O,O)E~:_m,ml(tl). (1.48) 
ml 

An interesting application of zero field and high field correlation spectroscopy 

will be when the evolutions in zero field and high field are governed by different spin 
, 

Hamiltonians. An example of particular interest is the case of two dipolar coupled 

spin one half nuclei because in zero field there is only the dipolar interaction of a 

lone spin pair and in high field there is only the chemical shift anisotropy, assuming 
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that the dipolar interaction has been eliminated in high field by applying a multiple 

pulse sequenre (e.g. WAHUHA) [114]. In general, the principle axis systems for 

these interactions are not the same, so we will introduce a molecular frame which 

differs from the principle axis systems. For the simplicity, we continue using the 

same initial density matrix and propagator operator in zero field as before. In order 

to use Eq. (1.44) , we need to add another transformation from the molecular frame 

to the principle axis system. After this has been done, the zero field signal will have 

the same form as Eq.(1.46) with the coefficient given by 

x (1.49) 

where nD is the Euler angles of the transformation from the molecular frame to the 

principle axis system of the dipolar interaction tensor. For the high-field part of the 

experiment, the CSA tensor is 

(1.50) 

where ncs are the Euler angles of the transformation from the molecular frame to 

the principle axis system of the chemical shift anisotropy tensor. At the end of the 

evolution in high field domain, from Eqs.(1.49) and (1.50) the FID signal should be 

(1.51) 

Using Eq.(1.51) and Table (1.3), a variation of powder patterns with different 

asymmetry parameter TJ and relative orientation between the principle axes of the 

dipolar coupling tensor and the chemical shift anisotropy tensor is shown in Figure 

(1.4). In the simulation, we chose the molecular frame to overlap with the principle 

axis system of the dipolar coupling tensor. The superimposed powder lineshapes cor­

responding to zero field peaks Wo and WD are strongly dependent on the relative ori­

entation of the chemical shift anisotropy tensor with respect to the molecular frame. 
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Figure 1.4: Variation of simulated powder lineshapes of dipolar coupling and chem­
ical shift anisotropy correlation spectra with different asymmetry parameter, "I, and 
the relative orientations between two tensors for two spin 1= ! nuclei with dipolar 
interaction in zero field and chemical shift anisotropy interaction in high field, assum- . 
ing that two nuclei are chemical equivalent. Wo and WD are two transition frequencies 
at zero field. Left: "I = 0, middle: "I = 0.5, and right: "I = 1.0. 
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The full information about two interaction tensors, that is, the dipolar coupling con­

stant and the principal values of the chemical shift anisotropy tensor, therefore can 

be obtained from the zero field and high field correlation spectra. These information 

will be very important in the determination of a molecule's structure. 

Although we have only shown two simple examples in the demonstration of the 

zero field and high field correlation spectra, other combinations are readily conceiv­

able with different zero field pulse scheme. It has to be pointed out that in order to 

obtain pure chemical shift anisotropy lineshape for protons, a powerful homonuclear 

decoupling technique has to be applied in high-field. This will make any real experi­

ments of zero field and high field correlation spectrum very difficult. This is also the 

reason why we have not shown suitable experimental data in the second example for 

verification. However, we believe that it can be done in future, and thus this method 

still is potentially very useful. 

1.5 Spin Diffusion in Zero Field NMR 

Time-domain zero field NMR has proven powerful for obtaining high-resolution spec­

tra of polycrystalline or amorphous samples in solids [8]-[18]. The convenience is 

obvious in the assignment of the sites, local symmetry, and even the exchange be­

tween sites from these spectra. In this section we will examine the spin diffusion 

(that is the order exchange) process at zero field. It has been shown in high field 

NMR, that the rate of the spin diffusion relates directly to the distance between two 

spins as well as the orientations of the internuclear vectors[34]. The measurement 

of spin diffusion in solids by means of two dimensional spectroscopy in high field 

NMR[35, 36, 37, 38, 39, 40] is based on the overlap of lines corresponding to different 

sites. In the overlap region, the eigenstates of the spin Hamiltonian are mostly de­

generate, and therefore, the spins can undergo an energy conserving flip-flop process. 

Furthermore, the flip-flop transition probability increases as the overlap region in-

25 



creases. Because the magnetization evolves under a scalar Hamiltonian in zero field, 

the zero field NMR spectra therefore are highly resolved, leading one to ask whether 

or not the spin diffusion process is possible. FUrthermore, if there is a such process, 

how can we interpret it? The answer of the first question is positive owing to the 

experimental observation Of the spin diffusion process in zero field [17]. The second 

question turns out to be much more difficult to answer properly. 

In Figure (1.5), two pulse schemes for measuring zero field spin diffusion process 

are shown: one is the sudden switch scheme (1.5a) and the other is the adiabatic 

sequence (1.5b). Both schemes are a combination of the pulsed zero field NMR 

and two-dimensional exchange spectroscopy commonly used in high field NMR[41, 

42]. The sample is first polarized in high magnetic field (Ho = 4.2T) and then 

moved pneumatically to an intermediate field with field strength about O.D1T. This 

field then is suddenly turned off in the first pulse scheme. After the magnetization 

processes freely for a length of time tl under the spin Hamiltonian, theJntermediate 

field is turned on to store the spin order along the z-axis in the laboratory frame. The 

stored spin order'is orientation dependent for each individual spin and, therefore, the 

spins are not in an equilibrium state. In the 7'm period, the spin system undergoes a . 
diffusion process among different spin orders. After the intermediate field is turned 

off again, the magnetization evolves for a time t2 under same spin Hamiltonian as 

during the first evolution period, but with the initial state affected by the spin 

diffusion process which occurred during mixing time. Owing to the existence of the 

mixed order among different spin nuclei, cross peaks appear iIi a two-dimensional 

spectrum and the diffusion rates may be measured from the intensities of the cross 

peaks (see Figure 1.5c). The diffusion mechanism in this experiment will be same 

as it in high field[34] and now we will focus on the second pulse scheme, where true 

zero field spin diffusion occurs. 

In the second pulse scheme (Figure 1.5b), the intermediate field is adiabatically 
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Figure 1.5: Two-dimensional spin diffusion experiment in time-domain zero field 
NMR used to observe spin diffusion rate. The mixing time T m is kept constant in one 
experiment. Fourier transfonnation with respect to tl and t2 yields a two-dimensional 
exchange spectrum where! the cross peaks indicate the occurrence of the spin diffusion. 
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Figure 1.6: Experimental spin diffusion spectra of diethylterephthalate-d4 • The 
two-dimensional spectra show only the peaks in the region from 100kHz to 120kH z 
in Figure (1.7). (a) Tm = Imsec, and (b) Tm = 50msec. It can be clearly seen that 
the spin diffusion occurs on a length of time about a few milliseconds. 

28 



reduced to zero. In this process, the Zeeman order of the nuclear spins converts to 

quadrupolar order (that is the magnetization of the spins is quantized in the local 

field) during the level crossing [43 , 44, 45, 46]. A strong dc pulse is then applied to the 

spin system in order to initiate evolution of the density matrix. After the spin system 

evolves for time tl under the spin Hamiltonian, a second dc pulse is applied to project 

the coherence of the density matrix to spin orders along the quadrupolar principle 

axis. In the next Tm time, the spins will be subjected to a diffusion process. The 

populations or spin orders of the individual levels will, therefore, mix with each other 

bringing the states toward the thermal equilibrium. By introducing the second free­

procession period of a length of time t2 generated by the third and fourth dc pulses, 

the mixed order of the individual levels therefore can be separated and allows us to 

measure the rate of the spin diffusion from the cross peaks in the two-dimensional 

spectra by two-dimensional Fourier transformation of the zero field signal g(tI, Tm , t2)' 

Before we dig into the theory of spin diffusion in zero field, we first present the 

experimental results of diethylterephthalate-d4 in Figure (1.6), measured by pulse 

scheme (1.5b). The anisotropic parameters of the quadrupolar interaction for two 

different sites on ethyl group are WQl = 114.825kH Z, 171 = 0.017, WQ2 = 112.35kH Z, 

and'T}2 = 0.013, which are extracted from the zero field spectrum in Figure (1. 7). The 

corresponding energy levels which are dominated by the quadrupolar interactions are 

shown in Figure (1.8). The states are labeled according to the convention given by 

Vega[47]. The energy levels indicated by arrows' are those connected by the dipolar 

coupling operators. The kets are given by the product of two sets of eigenvectors 

of the quadrupolar interactions in the principle axis systems. In general, the spin 

diffusion only occurs among the energy levels that are connected by the dipolar 

coupling operators and have the energy differences that are comparable with the 

amplitude of the dipolar interactions. We therefore expect that spin diffusion only 
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Figure 1.7: Zero field deuterium spectrum of diethylterephthalate-c4. The expanded 
part of the high frequency resonance peaks corresponds to the two-dimensional spec­
tra in Figure (1.6). 
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, 
occurs within two subgroups. Each subgroup consists of four energy levels. From 

Figure (1.6), the experimental results show no cross peaks for short mixing time 

between different sites. At longer times of several milliseconds, cross peaks between 

a and b and between c and d which belong to different sites appear, indicating the 

occurrence of spin diffusion. 

The spin-diffusion process which occurs during the mixing time involves magnetic 

dipolar interactions between spins. The strength of the dipolar interaction is defined 

by the coupling constant which is proportional to the gyromagnetic ratios 'Yl and 'Y2 

of two coupled spins and inverse to the distance between two spins, that is 

'Yl'Y2
1i2 

WD= 3 
Tl,2 

(1.52) 

Obviously the rate of the spin diffusion therefore is dependent on the internuclear 

distance. 

For the two coupled deuterons, the total Hamiltonian of the system can be written 

as 

(1.53) 

where, in the molecular ~ame, the explicit expressions of individual terms are 

1iQi - L (2) .. 
Vm"m(OPJP2,m,~,m' 

m',m 

1iD - L V(2) (0 ) 1,2 r.1,2 
m',m Pl,2 P2,m' 2,m' (1.54) 

m',m 

and OPi are the Euler angles of the transformation from molecular frame to the prin­

ciple axis system of the i-th interaction. The zero order eigenstates which correspond 

to the case that the dipolar coupling constant is zero is just the product of the two set 

of eigenstates of the individual spins; ·and the unitary transformation operator to the 

eigen basis is the product of the two rotation operator, that is, U = Rl (OpJR2(OP2) 

where these two rotation operators commute with each other. 

Because the dipolar interaction is usually very small for deuterons, during free 

precession, we can neglect the dipolar interaction, a,nd the density matrix will evolve 
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Figure 1.8: Schematic energy levels for a two coupled spin system with I = 1 in zero 
field. The two sets of the principle parameters of quadrupolar interactions are of 
similar magnitude. The energy levels indicated by the arrows are connected by the 
elements of the dipolar coupling and do not commute with the main quadrupolar 
Hamiltonian. 
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primarily because of the quadrupolar interactions. After application of the second 

dc pulse, the density matrix in the molecule frame then can be written as 

PM(t1) = L atn(t1yrt,n' (1.55) 
i,l,n 

where terms which do not commute with the main spin Hamiltonian should be 

dropped because the spin diffusion is much slower than the spin-spin relaxation 

during the mixing time. 

In order to explicitly relate the rate of the spin diffusion with the coupling con­

stant, we transfer the Liouville-von Neumann equation (with 1i = 1) 

(1.56) 

into the interaction picture with respect to the zero order Hamiltonian 1iQ1 + 1iQ2 , 

defined by 

(1.57) 

during the mixing time. In the interaction picture, the dipolar Hamiltonian becomes 

time dependent, and the density matrix is determined by 

(1.58) 

The solution of the Eq.(1.58) can be obtained by use of the time dependent pertur­

bation theory, or by iteration which leads to a power-series expansion with respect 

to the dipolar Hamiltonian: 

!p1(t) = -z[1ii;(t), p1(0)] - z fotdT[1ii;(t), [1ii;(t - T), p1(0)]] + ... . (1.59) 

Since the density matrix can be completely represented by a set of irreducible tensors 

of the spin system, the density matrix in the interaction picture also has the form 

p1(t) = L aT,m,p(t)Il,m(P), (1.60) 
l,m,p 
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where p = lilj for all permutations of spins, i, j = 1,2. Inserting Eq. (1.60) into 

Eq.{1.59) leads an equation of motion for the coefficients by multiplying both sides 

with l1,m and using the orthogonal condition of irreducible tensors (see Eq. 1.9). 

dd aT,m,p{t) = C ~l J) [L -taf"m',p'(O)Tr{r7-1I;(t), 11"m,(p')]l1,m(P)} 
tN, l' m'...J , ,I' 

+ L af"m',l"{O) lot drTr{r7-1I;{t), l1,m(p)][7-1I;{t - r), 11"m,(P')J}] , 
l',m',l" 0 

(1.61) 

where C{l, J) is the normalization constant given by Eq. (1.8). 

Similar to the treatment of the density matrix, the dipolar Hamiltonian can also 

be represented by irreducible tensors 

7-lb{t) = :t b[m,p(t)l1,m(P). (1.62) 
l,m,p 

The application of the perturbation theory allows us to extend the integration limit to 

infinity, and to replace the aT,m(O) by aT,m(t) based on the fact that the density matrix . 

relaxes very slowly with respect to the evolution frequency. Inserting Eq.{1.62) into 

Eq.(1.61) yields the evolution equation for the coefficients. 

d T () ~ l' l T ( ) 

dt al,m,p t = L...J Wm:,m,p,p'al',m',p' t, 
l',m',p' 

(1.63) 

l' l where the rate constants W m: m are given by , 

+ L 10
00 

drb~,ml,pl(t)b~,m2''P2(t - r) 
l2,m2,'P2 

X Tr{[111 ,ml (PI), 11,m(p)][Tl2 ,m2(P2), l1',m'(P')]}]. (1.64) 

This formula is in principle same as that given by Suter et al. [34] except we write it 

in forms of irreducible tensors. A further difference is that Eq.(1.64) is derived in the 

molecular frame and therefore it is independent of the orientation of the molecular 
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frame with respect to the laboratory frame. The rates of spin diffusion only depend 

on the relative orientations among the molecular frame and the principle axis systems 

of quadrupolar interactions and dipolar interactions, which are determined by the 

molecular structure. In other words, the spin diffusion rates measured in zero field 

with a powder sample are same as those in high field with single crystal. This is 

the most important advantage to measure spin diffusion rates in zero field. We 

must indicate that the time evolution determined by Eq. (1.63) is still reversible, 

and to make it irreversible we have to restrict the irreducible tensor set {1I,m} to 

a few relevant observables of the system and set aTm(t) = 0 for all other irrelevant , 

irreducible tensors. This procedure assumes that disregarded degrees of freedoms are 

at infinite temperature, irrespective of the transfer order. This assumption differs 

from semi-classical relaxation theory[48, 6]. 

The first term in Eq.(1.64) determines the precession frequency in the double 

principle axis systems. According to our assumption, only the spin orders in the 

density matrix participate in spin diffusion and therefore the first term will be zero. 

We now can see that. the spin diffusion rates in zero field are also proportional to the 

square of the dipolar coupling constants. 

For two coupled deuterons, there are sixty-four components of the coupled ir­

reducible tensors from ranks zero to four, and seventeen additional uncoupled irre­

ducible tensors from rank zero to two. All the components of the coupled irreducible 

tensors are listed in the Tables (1.5) and (1.6). Thus, the coefficients {a[m(t)} will 

form an eighty-one dimensional vector, and the formal solution of Eq.(1.63) can be 

written as 

(1.65) 

where AT(t) = [a6,o(t),··· ,aT,4(t)]. Because the rate matrix W is independent of 

the orientation of the molecular frame with respect to the laboratory frame, the 

diagonalization has to be performed only once. The orientation dependence will 
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be included in the initial density matrix, AT(O). Because we neglect the dipolar 

Hamiltonian during the free procession of the magnetization in the first evolution 

period, there are only uncoupled orders in the density matrix at the beginning of spin 

diffusion, and the explicit form of the coefficients AT(O) as functions of the time and 

the orientation of the molecule frame with respect to the laboratory frame can easily 

be calculated by use of the method of section 1.3. It is possible that the powder 

average be analytically solved at the end of the whole evolution. This property will 

possibly allow us to numerically simulate the spin-diffusion process. 

We now calculate the initial coefficients of AT(O). From the experimental pulse 

scheme (see Figure 1.5b), and assuming that the adiabatic demagnetization is perfect, 

the initial density matrix in the molecular frame is 

PM(O) = L [V~:,m(npl)a~,m(O)Ti,m' + V~:,m(nP2)a~,m(O)Ti.m']' 
m',m 

(1.66) 

where 
. f3 

a;,Q = V2' a;,±l = 0, at±2 = ~, (1.67) 

for i = 1, 2. After the application of the first pulse, the density matrix becomes 

(1.68) 

assuming that the dc pulse is applied along the z axis in the laboratory frame. Now 

the spin system evolves for a length of time tl, and the density matrix is 

x L V~!,m(npJa~,m(0)£~;:m2 (t l , i)T/1,m3' (1.69) 
i=I,2 

Finally applying the second dc pulse yields 

PM(t l ) = L atn(t I YI1,n' (1.70) 
i,L,n 
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where 

(1.71) 

and i = 1, 2 is the spin index. 

The next step is to evaluate the coefficients in Eq.(1.62) of the dipolar Hamil­

tonian in the interaction picture. From Eq.(1.54) and Table (1.5), we are able to 

rewrite the dipolar Hamiltonian in the molecular frame as 

'JiD = L WDV~~~(npl.2)C(1l2, m', m - m')Tl,m,Ti,m_m" (1.72) 
m,m' 

where the C(112, m', m - m') are the Clebsch-Gordan coefficients. This Hamiltonian 

is transferred from the molecular frame to the double principle axis systems of the 

two quadrupolar interactions by the unitary transformatiot:! U = R 1(npJR2 (nl'2), 

and then transferred into the interaction picture by use of the unitary transformation 

e-'(1iQl +1iQ2)t, and finally, transferred back to the molecular frame again. 

'Jib(t) = L b[n(t)1l,n(lt, l2), (1.73) 
l,n 

with 

The matrix representation of the dipolar Hamiltonian in the double principle axis 

systems haS the form in Figure (1.9a). There are thirty-six elements that are not 

zero and no non-zero diagonal terms. Figure (1.9b) shows the matrix elements of 

the flip-flop term in the Hamiltonian which is the origin of spin diffusion in high 

field. According to our discussion at the beginning of this section, there are only 
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Figure 1.9: Schematic matrix representation of the dipolar Hamiltonian in the double 
principle axis systems of two quadrupolar interactions for two coupled spins with. 
I = 1 in zero field. The shaded blocks correspond to non-zero elements in the 
matrix of the dipolar Hamiltonian, which may have the contribution to the spin 
diffusion: (a) representation of the whole dipolar Hamiltonian, (b) representation of 
the flip-flop term, and (c) representation of the matrix which actually contributes to 
spin diffusion. 
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two subgroups in which spin diffusion can possibly occur with total six different rate 

parameters. These six rate parameters are related to the matrix elements of the 

dipolar Hamiltonian in Figure (lo9c) and their explicit expression may be calculated 

from Eq.(1.74). Once this is done, the rate matrix W can be obtained by use of 

Eq.(1.64). The new spin order distribution may be obtained from Eq.(1.65) and the 

density matrix at the end of the mixing time should have same form as Eq.(lo70). 

After the magnetization evolves for another length of time t2 , the FID signal is 

i,l,n,ml .. ··,1n6 

(1.75) 

After two-dimensional Fourier transformation of Eq.(1.75), the intensity of a cross 

peak created during spin diffusion may be calculated and the spin diffusion rate can 

therefore be determined. 

In summary, the measurement of spin diffusion in zero field appears to be po­

tentially useful for structure determination in solid materials where x-ray diffraction 

methods are inapplicable. Experimentally we have observed the spin diffusion pro­

cess in diethylterephthalate-d4, and a brief theory of spin diffusion in zero field has 

been described in this chapter. The results show that the rates of spin diffusion 

depend on the square of the dipolar coupling constant and the relative orientations 

between the molecular frame and the dipolar principle axis system. Interpretation 

of the rate is simpler than it is in high field because the rates are independent of the 

orientation of the molecular fr~e with respect to the laboratory. Unfortunately, the 

numerical simulations have not yet been accomplished and are left for future work. 
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Table 1.5: Irreducible tensors in the coupled system with two spin i = 1 

To,o(ll) = ~[TI,-ITI,1 - T1,oT1,o + T1,IT1,-1] 

T1,o(1l) = ~[TI,ITI,-1 - TI,-ITI,l] 

T1,±1(1l) = ±~[TI,±lTI,O - Tl,oTI,±I] 

T2,o(1l) = )s[TI,-lTl,l + 2TI ,oTI ,o + T1,IT1,-I] 

T2,±1(1l) = ~[Tl,oTI,±1 + T1,±IT1,o] 

T2,±2(1l) = T1,±lTI,±1 

T I ,o(12) = ko[v'3Tl,-IT2,1 - 2T1,oT2,o + v!3Tl,IT2,-I] 

T1,±1(12) = -1w[V6T1,=fIT2,±2 - v!3T1,oT2,±l + T1,±IT2,o] 

T2,o(12) = ~[TI,IT2,-1 - Tl,-IT2,1] 

T2,±1(12) = ±)s[v'3TI,±IT2,o - V2T1,=flT2,±2 - T1,oT2,±I] 

T2,±2(12) = ±fa [T1,±lT2,±1 - V2T1,oT2,±2] 

T3,o(12) = Jg[T1,-lT2,l + v!3T1,oT2,o + T1,IT2,-l] 

T3,±1(12) = k[T1,=f1T2,±2 + V8T1,oT2,±1 + v'6T1,±IT2,o] 

T3,±2(12) = ta [T1,oT2,±2 + y'2Tl,±IT2,±l] 

T3,±3(12) = T I ,±IT2,±2 

T1,o(21) = )w[v'3T2,-IT1,1 - 2T2,oT1,o + v!3T2,IT1,-d 
T1,±1(21) = iw[T2,oT1,±1 - v!3T2,±lT1,o + V6T2,±2TI,=f I] 

T2,o(21) = ~[T2,ITI,-1 - T2,-IT1,1] 

T2,±1(21) = ±fs[T2,±IT1,o + v'2T2,±2TI,=f1 - v!3T2,oT1,±d 

T2,±2(21) = ±ta[v'2T2,±2Tl,O - n,±lT1,±d 

T3,o(21) = Jg[T2,-lT1,l + v!3T2,oT1,o + T2,lT1,-I] 

T3,±1(21) = vh[V6T2,oT1,±1 + V8T2,±IT1,o + T2,±2TI,=fl] 

T3,±2(21) = fa [V2T2,±lT1,±1 +T2,±2Tl,O] 

T3,±3 (21) = T2,±2Tl,±1 
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Table 1.6: Irreducible tensors in the coupled system with two spin i = 1 (continue) 

1 . . 
To,o(22) = 15[n,-2T2,2 - T2,-lT2,l + n,oT2,o - n,lT2,-1 + T2,2T2,-2] 

T1,o(22) =v\o[T2,-lT2,l - 2T2,-2T2,2 - n,lT2,-1 + 2T:,2n,-2] 

T1,:1::1(22) = ±;zio[v'3T2,oT2,±1 - V2T2,=Fln,±2 - v'3T2,±lT2,o + V2T2,±2T2,=Fl] 

n;o(22) = Jh[2T2,-2T2,2 + T2,-lT2,l - 2n,oT2,o +T2,lT2,-1 + 2T2,2T2,-2] 

T2,±1(22) = Jhh/6T2,'=FIT2,±2 - T2,oT2,±1 - T2,±ln,O +V6T2,±2T2,=F1] 

T2,±2(22) = -jr[V2T2,oT2,±2 - v'3T2,±lT2,±1 + V2T2,±2T2,O] . 

T3,o(22) = v\o[2T2,lT2,-1 + 2T2,2T2,-2 - T2,-2T2,2 - 2T2,-lT2,l] 

T3,±1(22) = ±v\o[V2T2,±lT2,o + v'3T2,±2T2,mpl - v'3T2,=FIT2,±2 - V2T2,oT2,±1] 

T3,±2(22) = ±~[T2,±2T2,O - T2,oT2,±2] 

. T3,±3(22) = ±~[T2,±2T2,±1 - T2,±ln,±2] 

T4,o(22) = )ro[T2,-2T2,2 + 4T2,-lT2,l + 6T2,oT2,o + 4T2,lT2,-1 + T2,2T2,-2] 

T4,±1(22) = vk[T2,=F1T2,±2 + v'6T2,oT2,±1 + v'6T2,±lT2,o + T2,±2T2,=Fl] 

n,±2(22) = vh[v'3T2,oT2,±2 + VST2,±lT2,±1 + v'3n,±2T2,O] 

T4,±3(22) = ~[T2,±lT2,±2 + T2,±2T2,±1] 

T4,±4 (22) = T2,±2T2,±2 
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Chapter 2 

Theory of Zero Field NMR 
High Field 

2.1 Introduction 

• In 

It is the dispersion that causes broadened and featureless lineshapes in solid state 

NMR spectra for polycrystalline or amorphous samples in which there are many 

chemically and magnetically different nuclei. One of the origins of the dispersion is 

the anisotropic characters of spin-spin interactions in the samples and is reflected by 

the orientation dependence of the resonance frequency of each crystal with respect to 

the external magnetic field. The extraction of structural and dynamical information 

about the molecules in the sample is then achieved only by applying high resolution 

solid state NMR techniques, for examples, magic angle spinning (MAS) [56,57,58], 

dynamic angle spinning (DAS) [78, 76], double rotation (DOR) [72, 104]' and mul­

tiple pulse (MP) [114]. The principle involved in these methods is the coherently 

motional averaging under which the orientation dependence of the resonance fre­

quency can be completely or partially removed, and the NMR spectra contain only 

the isotr<;>pic chemical shifts. However, the price paid for applying these methods is 

that information about anisotropic interactions is thereby lost. 

Recently, Pines and his coworkers have developed a new method, time domain 

zero field NMR and NQR, which can overcome the above limitations while obtaining 
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high resolution spectra [8]-[12]. In this method, the sample is pneumatically moved 

to an intermediate magnetic field (O.OlT) after it is polarized in a high magnetic 

field (4.7 T). The intermediate field is then suddenly removed completely when the 

magnetization of the sample starts to freely evolve under the zero field spin Hamilto­

nian which is a scalar operator, invariant under a rotation operation to the sample. 

The resonance frequencies of the magnetization are then orientation independent. 

After evolution for length of time,t, the intermediate field is suddenly turned on and 

the sample is transferred back to the high field for detection. FID signals can be 

collected by performing a number of this experiment with a time increment. The 

main feature applied in time domain zero field NMR is the field cycling technique 

[7] commonly used in pure nuclear quadrupolar resonance (NQR). Zero field NMR 

spectra obtained by field cycling technique therefore consist of sharp peaks whose 

frequencies allow us to measure the principal values of the spin interactions. 

The condition involved in time domain zero field NMR and NQR is that the 

samples must have long relaxation times in order to maintain the polarization, ob­

tained in the high field, of the magnetization in the· samples, and the polarization 

changes arising from the zero field evolution before the detection in the high field. 

Furthermore, in zero field, it is difficult to selectively excite a particular nuclear 

species because the Larmor frequencies of all nuclear species are equal to zero in 

the zero field. The main reason of· these two problems is because of the applica­

tion of field cycling technique. The question therefore arises whether it is possible 

to directly obtain zero· field NMR spectra in the high field without ever taking the 

sample out of the magnet. Indeed, in series of studies, Tycko has recently shown 

that this is possible [49, 50, 51]. The possibility originates from the fact that in a 

coupled space, made up of the direct product of spatial and spin coordinates, the 

high field spin Hamiltonian can be represented by a linear combination of irreducible 

tensors from rank zero to four. Among them, the zero rank tensor which carries 
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both of isotropic and anisotropic information about the spin interaction transforms 

like a scalar operator. In other words, the zero rank tensor is exactly equivalent to 

the zero field spin Hamiltonian, and may yield high resolution spectra. Thus the 

strategy to accomplish the zero field NMR in high field experiment is to average out 

the high rank tensors and leaves only the scalar part of the total Hamiltonian. In 

this chapter, I first review the theory of zero field NMR in high field given by Tycko 

[51], based on coherent average Hamiltonian theory[1l5]. The parameters used in 

Tycko's pulse sequence of zero field NMR in high field is then analytically solved. 

These solutions are critical to achieve high quality of the zero field NMR spectra in 

high field. In section 2.4, I present a new trajectory of zero field NMR in high field. 

After that I turn into describing theoretically optimized solutions: dynamic angle 

hopping (DAH), dynamic angle spinning (DAS), and double rotation (DOR) in the 

coupled space for zero field NMR in high field. 

2.2 Reconstructing Scalar Hamiltonian in High 
Field 

A zero field dipolar or quadrupolar spin Hamiltonian can be represented by an inner 

product of two second rank tensors: one reflecting the spatial behavior and the other 

reflecting the spin behavior of the dipolar or quadrupolar interaction,[5]. In terms of 

the irreducible tensors, the spin Hamiltonian can be written as [19] 

2 

11. = L (_l)m A2,-mT2,m, (2.1) 
m=-2 

where T2,m and A2,m are components of a second rank spin and spatial tensor respec­

tively. Although Eq.(2.1) involves orientation dependent terms, the whole expression 

of the Hamiltonian is invariant under a rotation operation. After application of a 

strong external magnetic field along a particular direction (the z-axis) in the labora­

tory frame, all spins prefer to align up along the z-axis and the rotational symmetry 

of the spin Hamiltonian is reduced from 80(3) to Coo (along the z-axis). In other 
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words, because the interaction between the spins and the external magnetic field, 

the Zeeman interaction, is usually so large that the internal spin Hamiltonian can 

be efficiently truncated. To explicitly represent the truncated Hamiltonian, we first 

transform the spin Hamiltonian from the laboratory frame to the rotating frame (that 

is, the interaction picture) by the unitary operator e:.mzt , where 11.z is t~e Zeeman 

Hamiltonian. The spin Hamiltonian in the rotating frame is then time dependent, 

and under the first order perturbation approximation, the time dependent parts are 

ignored and leave only the time independent term of the total spin Hamiltonian. In 

other words, the spin Hamiltonian becomes 

(2.2) 

In order to reconstruct a scalar Hamiltonian from Eq.(2.2), it is possible to rep­

resent the spin Hamiltonian in terms of a single set of irreducible tensors, {.n,m}', 

which are the product tensors of the A2,m and T2,m' This is equivalent to transform 

, the spin Hamiltonian from two separately spaces (spin, and spatial spaces) into the 

coupled spatial-spin space, the product space of the spatial and spin spaces, and 

the {.1l,m} are tensors in the coupled spatial-spin space. Using the multiplication 

properties of two irreducible tensors[20, 116, 117, 118], the product of the A2,m and 

T2,m is given by 

h+l2 

Ah ,ml 1l2 ,m2 = L C(lt, l2, ml, m2).1l,ml+m2' 
l=lh-l21 

(2.3) 

where C(lt, h, ml, m2) are the Clebsch-Gordan coefficients. Inserting Eq. (2.3) into 

Eq.(2.2) yields 

11. = L C(2, 2, l, 0, O).n,o, (2.4) 
l=O,2,4 

where no odd rank tensors appear in the Hamiltonian due to the symmetry properties 

of the spin interaction. The zero order tensor :Fo,o corresponds to the orientally 

invariant component of the internal spin Hamiltonian, i.e., the scalar component 

usually involved in zero field NMR. The Clebsch-Gordan coefficient of :Fo,o is Js, 
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but the :Fl,m tensors are not normalized. After normalization of the :n,m tensors, 

the coefficient of the scalar component should be one fifth. This implies that the 

strength of the spin interaction will be scaled down by a factor of five, and results in 

that the resonance frequencies will be reduced five times in comparison with the zero 

field NM~ spectra obtained by time domain zero field NMR approach. Although 

the remaining terms in Eq.(2.4) are orientation dependent, they can be removed by 

using the motional average techniques in high resolution solid state NMR [19] with 

some necessary modifications, for example, the sample spinning synchrOnized by the 

applied pulse sequence. In the following paragraphs, I discuss how the zero field 

NMR in high field can be achieved. 

A rotation operator in the coupled spatial-spin space can be written as 

'R(n) = R(nR)p(o.p), (2.5) 

where R(nR) represents a mechanical sample rotation and p(np) is a spin rotation 

arising from rf pulses. All rotation operators in Eq.(2.5) are defined by Euler angles: 

a is for the spin angle, f3 for the nutation angle, and 'Y for the precession angle. 

Application of the rotation operator 'R(o.) to the spin Hamiltonian (2.4) yields 

l 

1-£ = L L C(2, 2, l, 0, O)V~o(o.):n,m, (2.6) 
l=O,2,4 m=-l 

where V~o(n) are the components ofWigner rotation matrices. Since in Eq.(2.6) one 

of the two indices of the Wigner rotation matrices is zero, it is possible to disregard 

one, the 'Y, of the three Euler angles involved in the averaging process. However, 

the appearance of Wigner rotation matrices in Eq.(2.6) still provides two freedoms, 

the rotation· angle, a, and the rotation axis angle, f3, in the manipulation of the 

spin Hamiltonian. Furthermore, we can also use a set of rotations in the coupled 

spatial-spin space to average the spin Hamiltonain, so that, 

I N l • 
-_ ~ ~ .~ (l)_ 1i - N L- L- L.J C(, 2, 2, l, 0, O)Vm,O(o.k):Fl,m - u:Fo,o, 

k=ll=O,2,4m=-l 

(2.7) 
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where (j is a scaling factor (its maximum value is ! if Fo,o is normalized), and Ok are 

Euler angles of the k-th rotation. Any choice of N and Ok which satisfies Eq. (2.7) 

will be a trajectory for zero field NMR in high field. However, in order to find the 

trajectories, it is necessary to have a general procedure described as follows. 

In the first step, we assume that a number of rotations, Na , is applied along a 

fixed 'axis inclined at the angle, 13k, with respect to the z-axis in the coupled spatial­

spin space. The average over the Na rotations results in the truncation of the spin 

Hamiltonian (2.6), which is 

(2.8) 

where c4~~«(3k) are the reduced Wigner rotation matrices. 

If the applied rotations are discrete, that is, a rotation with finite sizes of the 

angles is instantaneously applied at particular time, resulting in Eq.(2.8) has to be 

subjected to the condition of 

where the rotation angles are 
27rk' 

~k' = 1 + l' 

if m=O 

if mi=O 
(2.9) 

(2.10) 

and Na = 1 + 1, and 1 is the highest rank of the irreducible tensors in the spin 

Hamiltonian. In our case, 1 = 4 and Na = 5. This means that the rotations involved 

in the truncation of Eq.(2.6) should possess at least a five-fold symmetry. 

If the applied rotations are continuous, that is, it arises from the sample spinning 

with a rate Wr , the average over a whole rotation cycle is 

if m= 0 

if mi=O 

where a = wrt, and Na = 27r /wr, the normalization factor. 
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In the next step, we choose a suitable set of rotation axes, {13k}. The average 

over the rotation axes, {,Bk} can eventually result in the scalar Hamiltonian given in 

Eq.(2.7). If the rotations are discrete, the set of the rotation axis angles, {,Bk}, has 

to satisfy 

1 ~I) _ { q 
N. N, L C(2, 2, l, 0, O)ao,O(,Bk) -

0: f3 k 0 

if l = 0 

if l =f 0 
(2.12) 

where Nf3 is the number of rotation axes. Alternatively, if the time dependence of 

the rotation axes can be made continuous by rotating the sample about two or more 

axes simultaneously, the condition to obtain a scalar Hamiltonian becomes 

1 IT (I) { q N:C(2, 2, l, 0, 0) d{J,O{,Bk) = 
0: k 0 

if l = 0 

if l =f 0 
(2.13) 

where Nf3 is one. Eqs (2.9)-(2.13) present four general conditions for establishing 

trajectories capable of affording zero fie~d NMR spectra in high field. In the next 

sections we discuss five different trajectories recently proposed by Tycko as well as 

by our group. 

2.3 Exact Solutions of Tycko's Pulse Sequence 

The first trajectory for obtaining zero field NMR spectra in high field was proposed 

by Tycko in 1988 on the basis of a numerical computer search [49]. In his original 

experiment[50, 51], the sample rotates around an axis inclined at the angle, ,Br = 75°, 

with respect to the external field and the five-fold symmetry pulse sequence shown 

in Figure (2.1) is applied to the spin Hamiltonian. The five-fold symmetry pulse 

sequence consists of five blocks, and is synchronized with the sample spinning. Each 

block has a phase increment, 72°, and contains two pairs of delta rf pulses. Each 

pair with two pulses forms a discrete spin rotation to the spin operators of the spin 

Hamiltonian. The axes of all spin rotations are in the xy-plane of the rotating frame 

and the phases of the two spin rotation axes in the k-th block are CP2k = 2kcp + 4>1 

and CP2k+l = 2kcp + 4>2 where cP = Wr 7 = 36° and 27 is the length of time involved 
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in each block, and <PI = 0°, <h = - 22°, the initial phases of the two rotation axes 

of the first block. The nutation angles of all spin rotations are {31 = f:h = {3p = 46°. 

This pulse sequence afforded a high resolution zero field NMR spectrum of a 95% 

deuterated solid benzene sample in high field. This spectrum consists of three 'peaks 

whose splitting is equal to the dipole-dipole coupling constant of the two protons in 

benzene, multiplied by a scaling factor of 0.089. In the present section we rederive 

Tycko'spulse sequence within the general description of the method. 

We assume that the sample rotates around a fixed axis oriented at an arbitrary 

angle with respect to the external magnetic field, and consider what kind of pulse 

sequence is needed to make the zeroth order average Hamiltonian a scalar. According 

to group theory [68, 116], five orientations equally distributed on a 21r period can av­

erage out up to fourth rank tensors with the exception of the zero rank tensor which 

is a scalar. The application of the five-fold symmetry to our case is accomplished by , . . 

applying five rotational operations to the spin Hamiltonian in the coupled spatial­

spin space. Each rotation has an increment, 72°, of the spin angle, Ct, relative to the 

previous one. The average over the five-fold symmetry rotation operations removes 
, 

the Ct dependence in the spin Hamiltonian. Practically, this can be implemented 

• in a way that one rotational cycle is divided into five equal arcs separated by 72° 

increment. Within each arc, the pulse sequence shown in Figure (2.1 c) is applied 

to spin operators of the spin Hamiltonian. This sequence consists of four pulses and 
.... _, 

involves two discrete spin rotation operators with fixed rotation axis angles (the nu­

tation angles, (3). Physically, the trajectory of the variation of the spin Hamiltonian 

as the sample continuously rotates depend on not only the spin Hamiltonian and 

spinning speeds but also the initial position of the sample in the laboratory frame. 

According to average Hamiltonian theory [115], we do not care the exact trajectory 

of the variations of the spatial tensors during one spinning period. What is impor­

tant for us is the initial and final values of the spatial tensors in one spinning period, 
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Figure 2.1: Generalized Tycko's trajectory. (A) The rotor cycle, the sample rotates 
at an angle f3r with respect to the external field and an angular velocity Wr = ~. 
(B) The synchronized pulse sequence, each block is phase shifted by 72° from the 
previous one, and (C) details of one pulse sequence block, where f31' f32 are the 
flipping angles with phase CP2k = 2kcp + <PI! CP2k+l = 2kcp + <P2, and cP = Wr'T = 36°. 

50 



and these two values are obviously dependent on both the spinning speed and the 

initial position of the sample. As was described in the last section, in order to form 

a scalar Hamiltonian, the spin tensors should have the same values as those of the 

spatial tensors at the beginning and at the end of a period. This is the reason why 

two discrete rotation operators for the spin operators in the Hamiltonian are needed: 

one is used to control the initial phase and the other determines the final phase of 

the spin tensors in each rotation section. 

The propagator of the pulse sequence applied during k-th rotation arc (block) of 

a period is 

where 

CP2k+1 - 2kcp + </>1 

CP2k - 2kcp + </>2 

(2.14) 

(2.15) 

and </>1 and ¢2 are constant phases for each pulse. The zero order average Hamilto­

nian; 1ik(r) over the sample spinning in the time interval r is 

where 

1ik(r) = l:Bm(r)e-,kmwrT A2,mT2,o, 
m 

for m# 0 

for m = 0 

and f3r is the angle of the rotation axis with respect to the external field. 

(2.16) 

(2.17) 

According to average Hamiltonian theory, by the end of a cycle the total propa-

gator under zero order approximation is 

4 

£(rc) = II £k(r) = e-I1iTe . 
k=O 
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Since 

L e-sk(m+m/)'P = 4 { 0 

k=O 5 

if m+ m' =f. 0 

if m+m' = 0 
(2.19) 

Eqs. (2.14) - (2.17) allow us to write the total zero order average Hamiltonian, 1i, 

as 

1i - ~ L Bmrte-'k(m+m/)'P] [e-'mlt/>ld~},o(,Bl) +e-'(mwrT+mltl>2)J~},o(,B2)]A2,mT2,ml 
Tc m,m' lto 

- ~ L B_m [e-'m</>ld~~o(,Bl) + e-'m(tI>2-wrT)d~~o(,B2)] A2,-mT2,m, (2.20) 
Tc m 

From Eq.(2.20), the zero order average Hamiltonian becomes a scalar operator only 

if 

where (j is a scaling factor. In Eq. (2.21), there are six unknowns ((3r, (31, (32, 4>1, </>2, 

(j) and five complex simultaneous equations for different m. Due to the symmetry 

of Wigner rotation matrices, only three equations are independent, which can be 

written as five real simultaneous equations (for m = 0, the equation is already real). 

Only five unknowns can be determined by these equations, and therefore one out of 

the six unknowns varies as a free variable. By redefining the phase variables as 

4>~ 
1 

- 4>1 - -I.{) 
2 

4>~ 
3 

- 4>2 - 21.{), (2.22) 

where I.{) = WrT = 36°, it is possible to express the five real equations as 

~c4~6((3r) [c4~6((31) + d~:6(fJ2)] = (j 

-~ sin(~4> )d~to((3r) [dl~6((31) cos(4)D + dl~6(f32) cos ( 4>~)] = (j 

2~ sin (4) )J!~,o((3r) [4:6((31) cos(24)~) + d&:6((32) cos(24)~)] = (j (2.23) 

c4~6((31) sin(4)D + c4~6(f32) sin(4)~) = 0 

4~6((31) sin(24)~) + d&~6(fJ2) sin(24)~) = 0 
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Eq.(2.23) can be easily solved in the case of (31 = (32 = (3111 as the solution is deter­

mined by the following quadratic equation 

x2 +Bx+C= 0, (2.24) 

where 

x - tan2((3r) 

B - ~ [~! sin(4)) cos(24)D - 1J C - 2 

C 
16cos2(4)D 

-
COS2(~4» cos2(24)D 

(2.25) 

and 4>~ is a free parameter which can be any value between 0 to 211". After obtain (3r 

from Eqs.(2.24) and (2.25); the other two variables, (3p and 4>~, can be calculated as 

{ 
tan((3r) tan((3p) = ±..jC . 

4>~ = -4>~ 
(2.26) 

Moreover, from Eq.(2.25), it results that the coefficients B and Chave a period of 

11" with respect to the 4>~, that is, the values of the coefficients B and C at 4>~ are the 

same as at 4>~ + i. 
We have numerically solved the five simultaneous equations (2.20) for the case 

of (31 =1= {h. by use of computer. However, the results show that the largest scaling 

factor is always found when (31 = {h.. We are, therefore, not interested in the case of 

Figure (2.2) shows (3r, (3p, and (j as functions of 4>~. From the figure it can 

be clearly seen that solutions of (3r, (3p, and (j exist only in the region of 4>~ E 
\ 

(32.69°,147.31°). In principle, solutions of (3r and (3p can be replaced with each 

other. However, for practical convenience, we define the angle of the sample rotation 

axis, (3r, to be in the range of 0° to 90°. The pulse angle (3p has two sets solutions 

varying from -71° to 71° and each set exhibits an inverse symmetry about (3p = 0° 

and 4>' = 90°. The solutions of (3r and (j are symmetric around 4>' == 90°. 
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Figure 2.2: Exact solutions of (3r,(3p((31 = (32 = (3p), and (j as functions of free variable 
¢~ in period [0°, 180°]. The zero order average Hamiltonian is a scalar operator scaled 
down by a factor of (j from the untruncated internal spin Hamiltonian for each set 
of ¢~, (3r, and (3p. 
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The largest absolute value of the scaling factor (j is located at ¢~ = -¢~ = 

32.689°, or ¢1 = 50.689° and ¢2 = 21.311°, with f3r = {3p = 71.064°, and at this 

point (j = 0.117. A more stable solution is found at f3r = 69.505°, {3p = 42.864°, 

and ¢1 = 84.375°, ¢2 = -12.375° where (j = -0.0966. Another stable solution 

corresponds to the magic angle at which (j = O. 

In Figure (2.3a), the static powder patterns for the asymmetry parameter, TJ = 0 

and TJ = 0.5 are presented. Figure (2.3b) shows the corresponding high resolution 

spectra containing the same information. Experimentally, zero field NMR spectra 

in high field can only be achieved when the spinning speed Wr is large compared 

with the internal spin interactions (dipolar or quadrupolar coupling). This will be 

the major obstacle for applying this method to extract the principal values of the 

quadrupolar interactions. However, the experiments performed by Tycko et.al[50, 

51]. have shown the potential applications of the method for studying coupled lone­

pair proton systems in which the dipolar couplings have been scaled down by the 

internal random motions. 

2.4 A New Sequence for Zero Field NMR in High 
Field 

In Tycko's trajectory, a mechanical sample rotation is synchronized with discrete 

.. pulses to obtain an effective scalar Hamiltonian. In this section, I describe an al­

ternative trajectory also based on average Hamiltonian theory, in which both of the 

spatial and spin parts of the spin Hamiltonian are modulated by continuous rota­

tions, but one of the rotations is allowed to suddenly change the orientation of the 

rotation axis, and the phase of the spinning. In practice this feature should be used 

on the spin rotation as it is very difficult to mechanically change the 'spatial sample 

rotation axis. Another feature used in the new trajectory is that the total average 

Hamiltonian is obtained over two rotation cycles. This feature may affect the effi-
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Figure 2.3: Computer simulated (a) powder patterns for 'f/ = 0 and 'f/ = 0.5, and (b) 
"zero field" spectra in rotating frame by applying synchronized rotation and pulse 
sequence (</>1 = 84.375, {3r = 69.505, {3p = 42.864, and (j = -0.0966) for 'f/ = 0 and 
'f/ = 0.5. 
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ciency of the sample spinning in terms of a single spin interaction in the spin system. 

However, if the chemical shift anisotropic (CSA) interaction is considered, Tycko's 

trajectory is also needed two cycles in order to apply a 7r pulse between the two 

cycles to eliminate the CSA interaction. 

We start with the rotating frame spin Hamiltonian given by Eq.(2.2}. Application 

of spatial and spin rotations to this Hamiltonian yields 

where Wr and. wp are the spinning speeds of the spatial and spin rotations respec­

.tively, cpr and CPP are the initial phase of the rotations, and (Jr and (Jp are the angles 

of the rotation axes with respect to the external field. In order to obtain a scalar 

Hamiltonian, the indices of the spatial and spin tensors have to satisfy the relation­

ship given in Eq.(2.1): m2 = -ml = m. The spinning speeds of the two rotations 

therefore have to be equal, that is, Wr = wp = Wb, and the resulting zero order average 

Hamiitonian is given by 

(2.28) 
m 

It could be proved that for single pair of rotations, around fixed axes it is impossible 

to obtain the zero field scalar Hamiltonian given by Eq.(2.1}. The next step is to 

consider whether two pairs of rotations can extract the scalar operator from the total 

spin Hamiltonian in high field. As in the preceding section, we choose to keep the 

angle of the spatial rotation axis with respect to the external field constant and allow 

to change the phase and axis of the spin rotation. After application of the average 

Hamiltonian theory over two rotation cycles, the problem is reduced to finding the 

solution of the following equation: 

d(2) (R }[e-tmlPP1d(2) (R ) + e-tmrpJ'2i2) (R )] = (-l}m(J -m,O fJr m,O fJPl m,O fJP2 , (2.29) 
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where we already set CPr = o. 
Looking for the simplest solutions of Eq.(2.29) , we set CPPi = CPP2 = O. Eq.(2.29) 

is then simplified to the following set of three simultaneous equations: 

~~6 (,Br ) [d&~6 (,BpJ + ~~6 (,BP2)] = u 

tfj.o(,Br)[c4~6(,BPi) + dl~6(,BP2)] = -u . 

d~J.o(,Br)[t4~6(,BPi) + t4~6(,BP2)] = U 

(2.30) 

Compared with Eq.(2.23), Eq.(2.30) not only looks simpler but also there are only 

four unknown variables, arid since one of them is independent, it can be chosen as a 

free variable. 

The dependence of the solutions of Eq. (2.30), (,BP2' ,BPll u) with respect to the 

free variable ,BPi are shown in Figure (2.4). As can be seen from the figure, at magic 

angle spinning the scaling factor is zero. The maximum scaling factor that can be , 
obtained from this trajectory is 0.17, but consider the average in the two rotation 

cycles the actual maximum scaling factor is only about 0.085, smaller than 0.117 in 

Tycko's trajectory. Nevertheless, this trajectory possess the advantage that the pulse 

sequence is very simple and that the point with maximum scaling factor is stable. 

The most interesting solution of this trajectory is at ,BPi = 0° with maximum scaling 

factor. At this point we need not to apply any rf field in the first period because the 

rotation around the z-axis in the rotating frame commutes with the spin Hamiltonian 

and no effect to the spin parts of the spin Hamiltonian happens during this rotation. 

As in the case of Tycko's trajectory, the mechanical rotation has to be synchronized 

with rf field, not only the phase but also the amplitude. Experimentally, the axes and 

rates of the spin rotation may be adjustable by change the offset and the amplitude 

of the rf field [71] , like the magic angle spinning experiment in rotating frame by Lee 

and Goldberg in 1965[119]. 
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Figure 2.4: Exact solutions of (3r, (3P2' and a as functions of the free variable (3Pl in 
the [0°, 180°] period. The zero order average Hamiltonian is a scalar operator scaled 
by a factor (J from the untruncated internal spin Hamiltonian for each set of (3Pl' (3P2' 
and (3,.. 
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2.5 Optimized Solutions 

Three solutions are readily obtained from Eqs.{2.12) and (2.13). These solutions 

coincides with the trajectories used in dynamic angle spinning (DAS) [76, 78], double 

rotation (DOR)[72, 104], and dynamic angle hopping (DAH) , which are used to elim­

inate the second order line broadenings of the central transitions in spin half integer 

quadrupolar nuclei. The similarity arises because the second order line broadenings 

are detennined by both the second and the fourth rank spatial tensors of the first 

order average Hamiltonian in the rotating frame. The theory behind these trajecto­

ries are also similar, the main difference being that all the rotations applied in zero 

field NMR in high field experiment are perfonned in the coupled spatial-spin space. 

We briefly show here some of the results. 

2.5.1 Dynamic Angle Hopping (DAH) 

The first set of trajectories can be obtained by directly solving Eqs.(2.9) and (2.12) 

using discrete rotations. These solutions consist in a series of "hops" of the z-axis 

of the coupled spatial-spin space on paths given by two cones. On each cone, the 

solutions consist of five points separated by equal increments of 72°. Ten hops are 

therefore needed. Experimentally, these sudden changes can be implemented by hop­

ping the quantization axes of the spin interaction in the coupled spatial-spin space 

Simultaneously. Although the hoppings in spin space can be made quickly by apply­

ing rf pulses, it is much more difficult to mechanically hop the sample. Practically 

the hopping of the sample can be implemented by storing the magnetization along 

the external magnetic field (where the magnetization relaxes very slowly), changing 

the orientation of the sample in the laboratory frame, and then bringing back the 

magnetization to the xy-plane for further evolution. The problem involved in the 

storing-hopping experiment is that only one component of the magnetization in the· 

xy-plane can be stored each times. It is therefore necessary to design the experiment 
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FigUre 2.5: Dynamic angle hopping (DAR) trajectory:an icosahedron. The half apex 
angle of the first cone (indicated by the vertical arrow), {)(1) = 00

, and the half apex 
angle of the second cone (shaded cone), {)(2) = 63.430 with respect to the external 
field. 

61 



with minimum number of hops. The solution that minimizes the number of hops is 

a path defined by the vertices of an icosahedron ( Figure (2.5)). 

In this experiment which we call dynamic angle hopping (DAH), the half apex 

angle () is zero for the first cone. For the second cone, the half apex angle () is 

63.430 for the second cone. In a DAH cycle, the sample and the magnetization will 

hop through six vertices on the icosahedron with the the magnetization evolving 

for a time i (where T is the length of a cycle) under the spin Hamiltonian given by 

Eq.(2.6). When the sample and the magnetization have traced a closed path through 

all six vertices of the icosahedron, the average Hamiltonian has become a scalar. In 

this scalar, the coupling constants 8). of quadrupolar or dipolar interactions will be 

scaled down by a factor of five (that is, U = ~). 

2.5.2 Dynamic Angle Spinning (DAS) for Zero Field NMR 
in High Field 

Instead of using discrete rotat~ons (hops), the z-axis of the coupled spatial-spin space 

may travel continuously on the two cocentric cones that we have introduced. On the 

first cone spins will evolve for a time tl while on the second cone they evolve for a 

time t2 under the Hamiltonian in Eq.(2.6). The half apex angles of the two cones 

depend on the ratio of the two evolution times ~. If the ratio is 1, the first half-apex 

angle PI = ()(l) = 37.380 and the second half-apex angle fl2 = (}(2) = 79.19°. This 

trajectory possess a dodecahedral symmetry (see Figure (2.6)). Five vertices of the 

dodecahedron are located on the cone with half apex angle ()(l), while other five 

vertices of the polyhedron are located on the cone with half apex angle (}(2). We call 

this trajectory dynamic angle spinning (DAS) [76] for zero field NMR in high field, 

and, as in DAH, yields the coupling constants 8). scaled down by a factor of five (that 

is, U = ~). 
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Figure 2.6: Dynamic angle spinning (DAS) trajectory:a dodecahedron. The half apex 
angle of the first cone (top shaded cone), 0(1) = 37.38°, and the half apex angle of 
the second cone (the bottom shaded cone), 0(2) = 79.19° with respect to the external 
field. 
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Figure 2.7: Double rotation (DOR) trajectory. The first rotation axis is tilted at 
(J(2) = 54.740

, the magic angle of the second order Legendre polynomial, with respect 
to the external field, and the second rotation axis is at (J(4) = 30.560

, one of magic 
angles of the fourth order Legendre polynoinial, relative to the first rotation axis. 
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2.5.3 Double Rotation (DOR) for Zero Field NMR in High 
Field 

In the previous two trajectories, discrete rotations (hops) or continuous rotations 

applied to ,the z-axis of the coupled spatial-spin space occur at different times. Ac­

cording to Eq.(2.13), a zero field spin Hamiltonian can also be achieved by rotating 

the z-axis of the coupled spatial-spin space around two or more axes simultaneously 

A scalar· Hamiltonian results when the one of the axes of the two continuous rota­

tions is tilted .at (31 = (}(2) = 54.74°, the 'magic' angle of the second order Legendre 

polynomial, with respect to the static magnetic field Ho, and the second axis of the 

rotations is at (32 = (}(4) =30.56°, one of the 'magic' angles of the fourth order Leg­

endre polynomial, relative to the first axis (see Fig. (2.7». We call this trajectory 

the double rotation (DOR) [72] for zero field NMR in high field. The scaling factor 

of the coupling constants (8,,) with DOR trajectory is again a = t. 
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Chapter 3 

Second Order NMR Spectroscopy 

3.1 Introduction 

The dispersion of local magnetic fields - the spread of resonant frequencies inher­

ent even in the simplest systems - determines selectivity and resolution in NMR 

spectroscopy[5, 59]. The local fields among a group of coupled nuclei, for example, 

may be rendered nonstationary owing to spin flip-flops, or spin diffusion, and the 

associated resonance can acquire a certain width as a result. This kind of linewidth 

usually is classified as a relaxation effect. Another source of frequency dispersion 

arises from the dependence of most spin interactions on the orientation of the external 

magnetic field relative to each nucleus. Thus both the spin and spatial dependence 

of the magnetic interactions must be addressed if one is to realize full spectroscopic 

control in NMR. 

Local fields are manifested in different ways in solids and liquids, and spectro­

scopic methods need to be tailored accordingly. At one extreme there is the case of an 

isotropic liquid where, in the presence of rapid and random molecular reorientation, 

spatial anisotropy is averaged largely to zero. For sufficiently rapid tumbling, only 

the isotropic components of the spin interactions remain and so it becomes possible 

to achieve truly high resolution. In solids, however, restrictions on molecular motion 

prevent the spins from sampling a spherically symmetric set of orientations. Here, 

there are two general solutions: either remove the. field altogether, and by so doing 
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eliminate the very notion of directionality as in zero-field NMR [9] as mentioned 

. in chapter 1 and 2. Alternatively, one can impose an artificial macroscopic motion 

on the spins to create the equivalent of a spherically symmetric environment. This 

latter option, that of supplying the motion externally, was inherent in the spin echo 

experiment[52J and its generalizations [53] in which the spin angular momenta are 

perturbed while leaving the molecules in place; and in the sample-spinning exper­

iments of Anderson [54], in which the sample is rotated. Averaging in spin space 

has progressed from simple spin echoes to the prolonged trains introduced by Waugh 

and later workers for solids [55]. Averaging in spatial space was extended to solids by 

magic-angle spinning (MAS) [56, 57,58] which is a routine feature of solid state NMR. 

In this chapter we consider some new approaches that extend motional averaging in 

solid-state NMR, with particular emphasis on the NMR of systems governed by elec­

tric quadrupole interactions. These approaches are called dynamic angle spinning 

(DAS)[73, 76] and double rotation (DOR)[72, 104, 78]. 

3.2 The First Order Average Hamiltonian with 
a Quadrupolar Interaction 

We consider a spin system subjected to a quadrupolar interaction in the existence of 

a strong static external magnetic field. Its spin Hamiltonian in the laboratory frame 

(LAB) is[19] 
2 

11. =wolz +wQ L (-1)mA2_mT2m, (3.1) 
m=-2 

where Wo is Larmor frequency, and wQ is the quadrupolar coupling constant, given 

by 

WQ = 21(21 + 1)/i' 
(3.2) 

A2.m and T2,m are the elements of the second rank irreducible spatial and spin tensors 

respectively. The definition of T2,m for quadrupolar interaction is given by Eq.(1.33), 
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and A2,m is 

(3.3) 
m' 

where the P2,m are the principal values of the quadrupolar interaction tensor as listed 

in Eq.(1.4), the V~} m(n) are the components of Wigner rotation matrices, and n , 

is the set of Euler angles for the transformation from the laboratory frame to the 

principle axis system (PAS) of the quadrupolar interaction. 

The quadrupolar coupling constant appearing in Eq. (3.1) can be relate to the 

electrical-field-gradient (EFG) which is determined by the stereo-structure of the 

distribution of electrons around a particular nucleus in the molecule being studied. 

Measurement of the quadrupolar coupling constant therefore provides a method of 

obtaining the EFG information. In order to extract this information, we need to 

know the evolution rules of the density matrix under the existing of the quadrupolar 

spin Hamiltonian. Following the routine procedure, the total spin Hamiltonian in 

Eq.(3.1) is transformed from the LAB frame into the rotating frame (or interactive 

representation) . 

1i(t) _ etwolzt1iQe-twolzt 

2 

- WQ L (-1)mA2_mT2me'fnWot. 
m=-2 

(3.4) 

This rotating frame spin Hamiltonian is modulated by the Larmor frequency and its 

harmonics. According to coherent average Hamiltonian theory [109 , 115], the zero 

order and the first order average Hamiltonian of Eq.(3.4) are given by 

(3.5) 

where Tc = 27r /omwgao, the time length of a cycle Larmor oscillation. 

For most internal spin interactions the zero order average Hamiltonian is already 

a very good approximation to the time dependent Hamiltonian given in Eq.(3.4) as 
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the Zeeman term is usually large enough to truncate the internal spin interactions. 

However, for spin half integer qudrupolar nuclei, the quadrupolar coupling constants 

are usually so large that the Zeeman field cannot effectively truncate the quadrupolar 

interaction, similar to the situation discussed by VanderHart [60] in the low magnetic 

field for chemical shift anisotropic interaction. In such cases, the higher order effects 

have to be taken into account when transforming' the total Hamiltonian from the 

LAB frame to the rotating frame. Inserting Eq.(3.4) into Eq.(3.5) yields the total 

average Hamiltonian up to the first order approximation in the rotating frame as 

. w~' 1 
1-l = A20T20 + -2 L -(A2mA2-m[T2m, T2- m] + A2mA20[T2m' T20 ]) , (3.6) 

Wo m#om 

where, and from now on, the same symbol as in the LAB frame is used to express 

the Hamiltonian in the rotating frame. 

The first term in Eq.(3.6) is same as the first order correction given by pertur­

bation theory. The second term includes two parts: a secular (commutes with the 

Zeeman Hamiltonian) and a non-secular (does not commute with the Zeeman Hamil­

tonain). As will be discussed later, the secular part in the second term corresponds 

to the second order correction of the eigenvalues. The presence of the non-secular 

term in the total Hamiltonian raises three questions. The first question is why there 

is a non-secular term in the first order average Hamiltonian. Next question is what 

contribution does the non-secular term make in the evolution of the spin system, 

and the final question is how to handle this non-secular term during the evolution 

of the density matrix. The answers of these questions are related to the original 

assumption of coherent average Hamiltonian theory. According, to the fundamental 

rules in quantum mechanics[61], once the eigenstates and eigenvalues of the total 

Hamiltonian for a particular system are determined, all physical properties about 

the system are calculable. For example, the transition frequencies for a particular 

observable 6 are given by the differences of the eigenvalues and the intensity of a 

particular transition is determined by the eigenfunctions of the initial and final eigen-
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state, that is, < '11101'11' >. In practice, to solve the eigenvalues and eigenstates of 

the total Hamiltonian for a complicated system usually is very difficulty and in many 

~es it is impossible. In perturbation theory, the eigenvalues and eigenfunctions of 

the total Hamiltonian are gradually approached by adding higher order corrections 

to the energy levels and the eigensfunctions of the total Hamiltonian. On the other 

hand, in average Hamiltonian theory, we first transform the total Hamiltonian from 

the Schrodinger representation to the interactive representation based on Zeeman 

Hamiltonian. The total Hamiltonian in the interactive representation becomes a pe­

riodic function of time with period Tc = 27r /amegao. We then assume that we are 

only interested in the behavior of the density matrix at times nTc during the evo­

lution. The value of the density matrix at these periodic points are approximately 

given by an average Hamiltonian which is time independent and discards the exact 

evolution during a cycle. In other words, the average Hamiltonian theory[109, 115] 

gives a stroboscopic description of the time evolution of the density matrix under 

the total Hamiltonian for a system. The average Hamiltonian can be approached by 

adding the higher order corrections which are functions of multiple time integrals over 

the products of the time dependent Hamiltonian, and includes all the contributions 

from fast to slow variation of the density matrix. Thus the average Hamiltonian in 

general is not diagonal. If we only interested in the slowest variation of the density 

matrix in the n-th order correction, we simply drop the non-secular part. Such a 

treatment of the average Hamiltonian corresponds to secular averaging Hamiltonian 

theory[19, 63, 64, 65]. 

We now go back to continue the derivation of the first order average Hamiltonian. 

For half integer spin (I > !) only the central transition (-~ ~ ~) can be observed 

in the NMR experiments. Since the first order perturbation term in the Hamiltonian 

does not alter this transition frequency it can be ignored, and therefore from now on 

we need only focus on the secular part of the first order average Hamiltonian. Using 
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the product properties of two irreducible tensors[20, 21], the secular part of the first 

order average Hamiltonian may be rewritten as: 

4 

1-£(1) = L L ow Am'lh. (3.7) 
l'=1,3l=0 

The Am,1io terms in Eq (3.7) are spatial and spin parts of I-th irreducible tensors 

arising from the direct product of two second order irreducible tensors respectively; 

its explicit expression can be found in Tables (1.5) and (1.6), and ow represent the 

couplmg constants of the second order quadrupolar interaction arising from higher 

order approximation, and are given by 

where 

and 

l' , 5w~ < IIT211 >2 
(-1) W(2,2,I,Ijl ,I) liT! II . 

. Wo< l' > 

L ~C(2, 2, 1, m, -m, 0)C(2, 2, I', m, -m, 0), 
m#om 

_ I [ . (21 + 1 + I)! ]2 
< 111iII >-1. 2'(21 + 1)(21)!(21 -I)! ; 

< ImlTlqllm' >=< II1i1l > J~~: ~ C(I,I,I;m,q,m'). 

(3.8) 

(3.9) 

(3.10) 

In Eq. (3.8), C(Zt, 12, Ij mb m2, m) are Clebsch-Gordan coefficients, W(2, 2, I, Ij I', I) 

are 6 - j symbols, I is spin value, and 1, [' are the tensor ranks. Values of < 111iII >, 

W(2, 2,1, Ij 1',1), and ow for spin ~, ~, and ~ are listed in Tables (3.1), (3.2), and 

(3.3) respectively. 

Because the quadrupolar coupling tensor is a real symmetric operator, the odd 

rank irreducible tensors Azo are zero. Thus only the Aoo , A20 , and A40 terms remain 

in Eq. (3.8), among which only the A20 and A40 depend on orientations. Their 

principal values are given by 

_ 62(3+'72). 
PoO- 2.j5 

62~7rt) 0 ~ ~2 P20 = - 14 ' P2±1 = , P2±2 = V -::;TJu (3.11) 
2 

6
2
(9+!1j) 3 ~2 0 1 ( 1:)2 

P40 = J70 ' P4±1 = 0, P4±2 = 2T7TJu , P4±3 = , P4±4 = 4 TJu 
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Table 3.1: Values of < 111111 >. 

l = 1 l=2 l=3 

I=~ J5 J6 3V2 

I=~ /¥ 2V14 9V2 

I=~ J42 6.;7 3J165 

Table 3.2: Value of W(2, 2, I, I, l, I) coefficients. 

I=~ 1- 5 
-"2 I=~ 

l = 1 1 1 1 
-572 -5J7 -2Ji(i5 

l = 3 1 9 IJ¥s 572 70Ji 14 15 

where 8 is the anisotropy (for our case it is always set to one) and TJ is the asymmetry 

parameter of the quadrupolar interaction. The orientation dependence of the spatial 

irreducible tensor Al,m can therefore be explicitly represented by using the Wigner 

rotation matrices V~,m (Ct, /3, "y) and the principal values as 

l 

Alm = L V~,m(a.,/3"Y)Plm" (3.12) 
m'=-l 

where Ct, /3, "y are the three Euler angles relating the laboratory frame and the prin­

ciple axis system of the quadrupolar interaction. 

Table 3.3: Values of (jll', 

ll' 21 23 41 43 

I=~ 6 6 18 17 
-SVl4 ffs SV7Q 5J7 

I=~ 16 6 48 17 
-SVl4 v"3s SV7Q 571 

I=~ 6 6 18 17 
-Vl4 v"3s V7Q 5fi 

72 



3.3 Static Powder Lineshapes 

Second order frequency shifts of the central transitions in half integer spin quadrupo­

lar nuclei possessing a quadrupolar interaction can be calculated by use of Eq. (3.7) 

and Tables (3.1-3.3). These frequency shifts are orientation dependent. Such an 

orientation dependence results in characteristic powder patterns when dealing with 

polycrystalline or amorphous samples. These powder patterns are in general different 

from the ones originating from first order contribution of the spin interactions [19]. 

In this section we describe these properties of the powder lineshapes under various 

circumstances. 

We start by presenting an alternative method for evaluating the frequency shifts of 

the central transition in the presence of quadrupolar interactions by use of the second 

order perturbation theory in Eq.(3.1). From the properties of the spin operators (Ix, 

, I y , and I z ), the matrix representations of the spin operators 1+, L, and 10 can be 

obtained in the Zeeman basis functions. 

< mlIolm' > - < mlIzlm >= m8m ,ml 

1 . . . 
< mII±lm' > - 2 < mlIx ± zIylm >= V'(I =F m)(I ± m + 1)8m ,m/±b (3.13) 

where m runs from -I to I, I being the spin value. The relationships between the 

irreducible spin tensors and the spherical spin operators are given by 

T1,o - 10 

1 
T1,±1 - =F .j2I±. (3.14) 

Inserting Eqs.(3.13) and (3.14) into Eqs. (1.33) and (1.34) yields the matrix repre-

sentations of the components of the second rank irreducible spin tensor as 

<mIT2,olm' > _~[3m2 - I(I + 1)]8m ,ml 

< mIT2,±llm' > - =F~(2m ± 1h/(I =F m)(I ± m + 1)8m ,m/±1 
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< mIT2,±2Im' > - ~v'(I =F m)(/ ± m + 1)(/ =F m - 1)(/ ± m + 2)8m ,m/±2. 

(3.15) 

The matrix representation of the total spin Hamiltonian can be obtained by inserting 

Eq.(3.15) into Eq.(3.1). In this matrix representation of the spin Hamiltonian in the 

Zeeman basis functions, only the elements of five central diagonals are different from 

zero. Using perturbation theory, the second order corrections of the eigenvalues of 

the spin states m = ± ~ are 

11i1 .212 11i1 ~ 12 11i1 _112 11i1 _~ 12 
E~2) _ 2' 2 _ 2' 2 + 2' 2 + 2' 2 

2 2Wo. Wo Wo 2wo 
11i_1 ~12 11i_1112 11i_1_~12 11i_1_.212 

E(2~ _ 2'2 _ 2'2 + 2' 2 + 2' 2 

-2 2wo Wo Wo 2wo' 
(3.16) 

, 
and therefore the second order frequency shifts of the central transitions are 

11i1 ~ 12 11i_1 _~ 12 11i1 .212 11i_1 _.212 
2'2 2' 2 2'2 2' 2 

Wo Wo 2wo 2wo 
(3.17) 

As can be seen from this expression in the matrix representation of the spin 

Hamiltonian the first off-diagonal column is related to A2,±1 and the second off­

diagonal column arises from A2,±2. 

After some simple algebra, the second order frequency shifts of central transitions 

owing to the quadrupolar interactions can be written as 
2 . 

(2) WQ 1 3 ' 2 . 2] 
Wl 1 = -(I - -)(1 + -)[IA2 21 - 21A211 . 

2+-+-2 Wo 2 2' , 
(3.18) 

From the properties of the irreducible tensor again we have that 

(3.19) 

Inserting Eq.(3.19) into Eq.(3.18), and then applying Eq.(3.4) yields the total second 

order frequency shifts of central transitions expressing in the basis set of irreducible 

tensors from rank zero to four, 

(2) _ w~ 1 3 '" 
W1+-+_1 - -(1 - -2)(1 + -2) L, [C(2, 2, l, 2, -2) + 2C(2, 2, l, 1, -1)]Al ,o, 

2 2 Wo l=O,2,4 
(3.20) 
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where C(ll, l2' l, mb m2) are the Clebsch-Gordan coefficients and A"a are the coupled 

tensor elements. The reason of the explosion of odd numbers of index l in Eq.(3.20) 

is that the quadrupolar interaction is symmetric and the perturbation approximation 

does not change this symmetry property. Among the three coupled tensors appearing 

in Eq.(3.20), Ao,a is the only scalar under rotation operations to the sample. This 

term creates an isotropic frequency shift to the peak in NMR spectra. Applying 

Eq.(3.12) and the principal values of the coupled tensors A, given by Eq.(3.11) into 

Eq.(3.20), we can derive this second order isotropic shift as 

W~2) = (3 + 1]2)W~ (J _ .!.) (J + ~) 
lSO IOWa 2 2 . (3.21) 

As can be seen, the second order isotropic shift of the quadrupolar interaction is 

proportional to the square of the quadrupolar coupling constant and inversely pro­

portional to the Larmor frequency. Therefore as higher magnetic field are applied, 

the second order isotropic quadrupolar shifts become less important. 

The remaining terms in Eq.(3.20) are orientation dependent. The lineshape ob­

served in the solid-state NMR arising from a powder sample is therefore determined 

by both the second rank and fourth rank tensors simultaneously. This static line­

shape can be obtained by performing a powder average in the frequency domain 

of the transition frequencies determined by Eq.(3.20) , weighted by the transition 

probabilities P = sin (3. Figure (3.1) shows a set of simulated static powder patterns 

varying with respect to the asymmetry parameters 1]. As can be seen from Eq.(3.20), 

the ratio of the second rank tensor and fourth rank tensor is independent of the spin 

values. The lineshape therefore is also independent of the spin values, and thus the 

lineshapes shown in Figure (3.1) can be expected for the central transitions of any 

half integer spin nuclei. 

. Practically important in the analysis of powder patterns is the positions of the 

singularities appearing in the powder lineshapes, and these singularities can be de-
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Figure 3.1: Variation of simulated powder patterns of the central transitions for half 
integer spin nuclei subjected to quadrupolar interactions with different asymmetry 
parameters 7}. 
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rived from the relationships [19, 115] 

a (2) 
a{jW~+-+-~ = 0, 

a .(2) 
and -a WI 1 = O. a '2+-+-'2 (3.22) 

The solution of Eq.(3.22) can be found using the explicit representation of the 

second order shift w12~_1 in terms of trigonometric functions. By use of Eqs. (3.11), 
2 2 

(3.12) and the representation of Wigner rotation matrices, this second order shift 

can be written as 

- wg) [- 3 ~ ",2 (3 cos2 {j - 1) + ~'" sin2 {j cos 2a + :2 ",2 sin4 {j cos 4a 

9(9 + 1",2) 27 
+ 56~ (3 - 30 cos2 {j + 35 cos4 {j) + 56",(7 cos2 {j - 1) sin2 {j cos 2a] , 

(3.23) 

where wg) can be thought fictitiously as a second order quadrupolar coupling con­

stant with the definition of 

(2) w~ 1 3 
wQ = -(J - -)(J + -). 

Wo 2 2 
(3~24) 

Inserting Eq(3.23) into Eq.(3.22) yields the singularities of a powder lineshape, 

listed in Table (3.4). As will be discussed later, the singularities listed in this table 

are also for the powder lineshapes under variable angle sample spinning (V ASS) . The 

second order Legendre polynomial P2 and· the fourth order Legendre polynomial P4 

are used to represent the scaling factors of the lineshapes under VASS. For static 

powder lineshapes, both of P2 and P4 are simply set to unity. One of the six singu­

larities only shows up when '" ~ 19P~lt:P21 = k. When the asymmetry parameter is 

zero, the second and third singularities will degenerate. 

-Figure (3.2) shows the frequency variation of the singularities in the powder 

lineshapes arising from second order effects as a function of the asymmetry param-
\. 

eter. In the figure, two of the six lines represent the sharp peaks of the lineshape, 

WPI = ~(69 - 30", + 13",2)wg) for 0 ~ '" ~ ~, or WPI = ~(2 - ",2) for i ~ '" ~ 1, 

and WP2 = ~(-7 + 10", + ",2)wg) for 0 ~ '" ~ 1. other two are the shoulders, 
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-1.5 

Figure 3.2: Frequency Variation of the singularities observed in powder lineshapes 
arising from second order effects of the quadrupolar interactions in half integer spin 
nuclear systems as the symmetry parameter 17 changes. 
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Table 3.4: Singularities appearing in second order powder patterns 

{3 

o any 

o 
11" 11" 

2" 2" 
11" 

2" 

o 

11" 

2" 

162P4-120P2+(40P2+9P4),.,2 
140 

243P4+240P2-(480~-270P4),.,"';'(80~-I71P4),.,2 
256 

243P4+240P2+(480~-270P4),.,-(80P2-171P4),.,2 
256 

_ 8oPi-195~P4-81Pj+(35~P4+63Pj),.,2 
245 

4OP1+60P2P4+243Pj+( 4OPi-80P2P4 _9Pj),.,2 
490 

+ (80pi-300~P4-270Pj),., 
490 

_ 4OPi+60P2P4+243Pj+(40Pi-80P2P4-9Pj),.,2 
490 

_ (80pi-300P2P4-270Pj),., 
490 

where a± = ±2161] - 451]2 - 243, b± = 24(3 - 1]2 ± 21]), and c± = 7(±451]-
91]2 - 81). P2 and P4 are the second and fourth order Legendre polynomials. 

WS1 = ~ (69 - 301] + 131]2)wg) for 0 ~ 1] ~ ~ and WS2 = ~ (6 + 71]2) for 0 < 1] ~ 1 

while the flanks of the powder lineshapes are given by maximum and minimum fre­

quencies, Wmin = 1~ (-7 - 101] + 1]2) and Wmax = ~ (69 + 301] + 131]2) for 0 ~ 1] ~ 1. 

3.4 Powder Lineshapes under VASS 

To discuss the behavior of second order effects of the quadrupolar interaction upon 

rotation along an axis forming a variable angle with respect to the external field, 

which is called variable angle sample spinning (VASS) [103,88], we have to introduce 

a relationship between the laboratory frame, the sample-fixed coordinates frame 

(SFC), and the principle axis system (PAS) in Figure (3.3). Because the sample 

rotation only affects the spatial part of the spin Hamiltonian, implying that the spin 

Hamiltonian commutes with itself at all times. Henceforth, the eigenvectors are not 

mixed with each other, and only the eigenvalues of the spin Hamiltonian oscillate 

periodically during the sample spinning. The time dependent resonance frequencies 
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Figure 3.3: Two successive sets of Euler angles, nSFC and nPAS , determine the 
direction of the magnetic field relative to the principle axis system at each nuclear 
site. 
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of the nuclear spin resulting from this process can be written as 

W(2) = ~ ~ C V(l) (OSFC(t»A 
1 ..... _1 L....J L....J l m,O l,m, 
2 2 l=O,2,4 m 

(3.25) 

where 

Cl = wg)[C(2, 2, l, 2, -2) + 2C(2, 2, l, 1, -1)]. (3.26) 

Under the fast spinning condition, where the spinning speed is much larger than 

the amplitude of the second order qUadrupolar interaction, the fast oscillating time 

dependent terms are averaged out in the time scale of experimental measurement. 

Under these circumstances, powder lineshapes are only determined by the time inde­

pendent part in Eq.(3.25). Figure (3.4) shows the variation of the simulated powder 

lineshapes with different asymmetry parameters .17 of the quadrupolar interaction, 

and different angles of the sample spinning axis with respect to the external field. 

; The singularities of the powder patterns are given in Table (3.4), where the second, 

and fourth order Legendre polynomials, P2(COS(}) and P4(COS(}), depend on the angle 

() of the rotation axis with respect to external field. When () = 30.56°, or () = 70.12°, 
, 

the magic angles of the fourth order Legendre polynomial, the equations in last three 

rows in Table (3.4) are no longer valid because the right side of the equations tends to 

diverge at P4 = o. Therefore, near the region of the magic angles of the fourth order 

Legendre polynomial only three singularities appear and the total powder lineshapes 

become similar to the ones arising from the chemical shift anisotropy effect (see 

Figure 3.4). The boundary condition tor the singularities can be actually found 

from the valid solutions of a and (3 in Table (3.4). These results are represented 

graphically in Figure (3.5). As can be seen that there are two gaps around the 
r 

magic angles of the fourth order Legendre polynomial, whose widths depend on the 

asymmetry parameter. The fourth singularity does no longer exist when the angles 

of the rotation axis are larger than 62°. 

Figure (3.6) shows three-dimensional graphs of the frequency variations of the 

singularities observed in second order powder lineshapes for different asymmetry 
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a 11=0.0 0.3 0.5 0.7 1.0 
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Figure 3.4: Variation of the powder lineshapes with different asymmetry parame­
ters TJ and different angles of the sample rotation axis with respect to the external 
field in VASS under fast spinning condition. 0° (icosahedral angle), 30.56° (root of 
P4(COS ,8(4»), 37.38° (icosahedral angle), 54.74° (root of P2(cos ,8(2»),63.430 (icosahe­
dral angle), 70.12° (root of P4(cos,8(4»), 79.19° (icosahedral angle), 90° (icosahedral 
angle) . 
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Figure 3.5: Variations of the boundary conditions of the singularities with the angle, 
(), of the sample spinning axis in VASS. The shaded areas represent the existence of 

. singularities for a particular angle and asymmetry parameters, 'TJ. Two gaps around 
the magic angles, 30.56° and 70.12°, of the fourth order Legendre polynomial can be 
clearly seen in the singularities, W4, Ws, and W6. When the sample spins in anyone of 
these two gaps, there are only three singularities and the resulting powder lineshapes 
are similar to the ones arising from chemical shift anisotropy interactions (eSA). 
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Figure 3.6: Three-dimensional graphs for the representation of the frequency varia­
tions of the singularities as angles of the rotation axis, (), and the asymmetry param­
eters, TI, change. 
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Figure 3.7: Variation of the frequencies of the singularities with different asymmetry 
parameters, 'f/, as the angle of the rotation axis, 0 increases from 0° to 90°. From the 
top to the bottom, the asymmetry parameter is 0, 0.3, 0.5, 0.7, and 1.0 respectively. 
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parameters and angles of the rotation axis. The surfaces of the first three singularities 

are very smooth, the other three exhibit some discontinuous regions around the 

magic angle of the fourth order Legendre polynomial. For the fourth singularity, this 

region is very small. Figure (3.7) presents tw~dimensional schemes of the frequency 

variations of the singularities with different asymmetry parameters as a function of 

the sample spinning axis angles. From the flanks of the figure it can be clearly seen 

that the most narrow widths of the powder lineshapes under VASS should appear 

between 60° and 70°. 

3.5 Dynamic Angle Spinning (DAS) 

Using the lineshape analysis methods to obtain the principal values of quadrupolar 

interactions will not in general work in the case of many sites in the molecule being 

studied. This is because of the overlap among the lineshapes arising from different 

sites possessing different quadrupolar interactions in the molecule. In order to extract 

useful information (for instance the isotropic chemical shifts and the second order 

isotropic shifts arising from quadrupolar interactions), it is necessary to have a high 

resolution spectra consisting of isotropic shifts by eliminating the anisotropic broad­

enings owing to second order effects of the quadrupolar interactions in the central 

transitions with half integer spin nuclei. The first order inhomogeneous broaden­

ing which originates from this spin Hamiltonian can be efficiently averaged to zero 

by using magic angle spinning (MAS)[56, 58]. However after applying MAS to a 

powder sample originating in second order quadrupolar interactions, the linewidth 

is only reduced by about a factor of three. Even under VASS, there is no solution 

to completely eliminate second order broadenings (~ee Figure 3.4). This is because 

second order lineshapes are determined by both the second and fourth rank tensors 

simultaneously. Under the fast spinning condition, the coefficients of the second and 

fourth rank tensors are second and fourth order Legendre polynomial, P2(cosB) and 
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P4 (COS 0). In the interval of [0°,90°], the node of P2 is 0(2) = 54.74°, and nodes of 

P4 are 0~4) = 30.56° and 0~4) = 70.12°. There is no common node for P2 and P4 

(see Figure 3.8) and therefore the sample spinning with only a single fixed rotation 

axis inclined at any angle with respect to the external field cannot eliminate all the 

anisotropic broadenings in the second order lineshapes. 

According to Eq.(3.20), the second order frequency shifts of the central transi­

tions are inversely proportional to the Larmor frequency Woo In other words, the 

second order broadenings of powder samples will decrease as increasing the external 

magnetic field. As an example, let's consider a quadrupolar nucleus with coupling 

constant wQ = 100kHz which is a typical value for a spin.~ nucleus. In order to reach 

one hertz resolution of the spectrum, the Larmor frequency,wo, of the spin nucleus 

has to be in the order of w~ = lOCH z, corresponding to a magnetic fiel4 between 

103T to 104T for various gyromagnetic ratios. It is obviously impossible to obtain 

such high magnetic field with the modern technology , and therefore to eliminate the 

second order broadening by increasing the external magnetic field is not realistic. 

However it is still useful (and sometimes necessary) to measure the lineshape at dif-

, ferent magnetic fields in order to distinguish the chemical shifts and the quadrupolar 

interactions. The lineshapes of second order quadrupolar interactions as a function 

of magnetic field strength can be seen more clearly in Figure (3.9). 

Figure (3.10) shows the variation of the second order shifts of the central transi­

tions of each individual crystals as the angle 0 of the sample spinning axis changes 

with respect to the external field. In Figure (3. 10 a) , each line corresponds to a 

particular crystal orientation chosen randomly in SFC. As can be seen, the second 

order frequency shifts of each individual crystals oscillate with different frequencies 

and different initial phases as the sample spinning axis angle changes from 0° to 90°. 

However, if each line in (3.1Oa) is divided by the value of its first point (corresponding 

to 0 = 0°), all lines dramatically refocus at two points: one is at 0 = 0° and the other • 
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Figure 3.8: Plot of second and fourth order Legendre polynomial, P2(cos 0) and 
P4(cos8) versus the angle of the rotation axis in VASS. (a) Plot in polar coordinates, 
(b) in Cartesian coordinates. The nodes of P2 and P4 are indicated by the dashed 
line. 
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Figure 3.9: Variation of the second order powder lineshapes of the central transitions 
with a quadrupolar interaction as the magnetic field Ho increases. The quadrupolar 
coupling constant, wQ is 100KHz, and 1] = 0.5. The spectrum will be high resolution 
once the Larmor frequency is in the order of 10GH z. 
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is at (} = 63.43°. This feature tells us that although the second order shifts of the 

central transitions of differently oriented crystals in SFC vary differently with the 

sample spinning axis angle (}, there are two positions, (} = 0° and (} = 63.43°, of the 

sample spinning axis, at which the second order shifts of the central transitions are 

proportional each other. Even more interesting is that the proportional coefficient 

is a negative number. If a spin starts to process with a particular frequency deter­

mined by the orientation of the spin with respect to SFC at the first position (assume 

(} = 0°), all spins will reverse the orientations of the procession after the sample spin­

ning axis transfers from the first position to the second position ((} = 63.43°). The 

only difference is that the procession frequency are changed by a factor of five {see 

(3.10b». This scaling factor can be compensated by extending the evolution times of 

the spins at the second position five times. In other words, by properly setting up the 

experiment, the anisotropic broadening can be completely refocus by spinning the 

sample at two different axes during different evolution times. For the above example, 

the spins evolve for time tl during which the sample is rotating around the Z L axis, 

(}l = 0°, in the LAB frame and for time t2 after the rotation axis is suddenly flipped 

to the angle of (}2 = 63.43° with respect to the external field. When t2 = 5tl, all 

the anisotropic shifts will completely refocus, and an echo will appear. We call this 

echo the dynamic angle spinning (DAS) echo. In fact, such a behavior will happens 

if each line is divided by other positions of the sample spinning axis. (3.10c) shows 

another pair of angles of the sample spinning axis, (}l = 37.38° and (}2 = 79.19°, in 

which the scaling factor is one. 

In order to apply the feature that the second order shifts of the central transitions 

change proportionally after the sample spinning axis transfers from one angle to 

another with respect to the external field, let us consider an ideal experiment in 

which the sample is spinning at an angle (}l during evolution time ~tl and at another 

angle (}2 during ~t2 achieved by suddenly flipping the rotation axis of the sample 
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Figure 3.10: variation of the second order shifts with· different angles of the sample 
spinning axis with respect to the external field. (a) Frequency dependence with 
the sample spinning axis angle, and each line corresponds to a particular crystal 
orientation chosen randomly in SFC. (b) After each line in (a) is divided by its first 
point corresponding to () = 0°, all shifts refocus at ()I = 0° and ()2 = 63.43° and 
WI = -5W2. (c), same as (b) but divided by the value at ()I = 37.38°, all lines then 
refocus at ()2 = 79.19° and WI = -W2 for all spins. 
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between (h and ()2. This experiment is called dynamic angle spinning (DAS). For 

simplicity we assume that the sample rotation satisfies the fast spinning condition. 

The accumulated phases of the spin during evolution time ~tl and ~t2 with spin 

Hamiltonian 11.1 and 11.2 are 

l=2,4 

rp(()2) - L Cl4~&(()2)Al,o~t2' (3.27) 
l=2,4 

where the second order isotropic shift is not included because it is orientation inde­

pendent. Since 11.1 and 11.2 commute with each other, the total phase at the end of 

the experiment is the sum of CP(()I) and CP(()2), that is 

rp(()I, ()2) = rp(()I) + CP(()2) = L Cl[4~&(()I)~tl + 4~&(()2)~t2]Al,o. (3.28) 
l=2,4 

If we choose the total phase to be zero, it is necessary to satisfy the condition 

P2(COS()I)~tl + P2(COS ()2)~t2 - 0 

P4(COS()I)~tl + P4(cos ()2)~t2 - 0, (3.29) 

where we replace d~~& by Legendre polynomial Pt since c4~& = Pt. The two pairs 

of angles shown in Figure (3.10b) and (3.10c) exactly satisfied the simultaneous 

Eqs.(3.29). Other solutions are schematically shown in Figure (3.11). In (a), ()1 and ()2 

are plotted as function of the time ratio k = ~ separately; in (b), a parametric graph 

with the time ratio, k, shows that there two regions in which Eq.(3.29) has solutions: 

one is related to k and the other to 11k. The analytical solution corresponding to 

the curves in Figure (3.11) are 

2 1( 2 1) cos (()1) = 3 1 =t= -15 vfk 

COS
2

(()2) = ~ (1 ± ~ v!f) (3.30) 

Each pair of rotation axis angles given by Eqs.(3.30) are called DAS complementary 

angles. 
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Figure 3.11: Graphic representation of DAS complementary angles resulting from of 
Eqs.{3.30) as a function of the time ratio k =~. (a) Individual plots of fh and ()2 

versus k. (b) Parametric plot of the DAS angles with the time ratio k shows the two 
sets of solutions of ()l and ()2: one is related to k and the other to *, which are mirror 
image with each other about the diagonal line. 
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Figure (3.12) shows simulated spectra for several pairs of DAS complementary 

angles with different asymmetry parameters. Each pair of the lineshapes in each box 

is mirror imaged about the isotropic shift. The first pair corresponds to the maximum 

scaling factor, k = 5, which will lead the shortest time spun at 81• The second pair 

is the solution of the magic angles of the fourth order Legendre polynomial P4 (cos 8) 

where k = 1.87. The third pair is choice actually used in the DAS experiment with 

k = 1. One of the final pair is 82 = 90°, at which the maximum sensitivity of the 

signal can be received experimentally with k = 0.8. The difference of the linewidths 

between two sets of spectra therefore is determined uniquely by the scaling factor 

. k =~. For example, when ~tl = ~t2, k is equal to unity and the solution is 

81 = 37.38° and 82 = 79.19°. This pair leads that the two sets of spectra has same 

linewidth. 

It is well known that the MAS trajectory can be thought in a way that the 

magnetic field traverses on a'cone in an octahedron in the SFC frame. The circle of 

the cone passes three vertices of the octahedron and the point of the cone is at the 

center of the octahedron (see Figure 3.13). Similarly the DAS trajectory with k :- 1 

can also be thought in a way of that·the magnetic field traverses on two cones whose' 

circles pass the vertices of a dodecahedron and the points of the cones are the center 

of the dodecahedron in the SFC frame. Other solutions of the DAS trajectory also 

relate to a dodecahedron or an icosahedron. Later, we will show that the symmetry 

of the DAS trajectory is actually determined by the icosahedral group. For this 

reason, we list some of the angles in an icosahedron and a dodecahedron in Table 

(3.5): 

The isotropic part in the spin Hamiltonian obviously will not be effected by the 

flippings of the rotation axis at the middle of the whole evolution. Experimentally, 

the data is acquired at the top of a DAS echo. The amplitude of the echo will therefore 

be modulated by the isotropic resonance frequencies of the spin nuclei. After Fourier 

94 



e 11=0.0 0.3 0.5 0.7 1.0 

70.12~JL~~ 

Figure 3.12: Calculated second-order powder patterns of the central transition with 
a spin-~ nuclei after motional averaging with a single rotation axis at various DAS 
complementary angles. The first pair,Ooand 63.43°, is the icosahedral angles corre­
sponding to the shortest time at (it and k = 5. The second pair, 30.56° and 70.12°, is 
the magic angles of the fourth order Legendre polynomial, P4(COS(J) with k = 1.87, 
while the third pair is the dodecahedral angles and also the experimentally demon­
strated k = 1 case. The final pair, 39.23° and 90°, has k = 0.8, where the maximum 
sensitivity of the rf coil may be obtained. 
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Figure 3.13: The external magnetic field, viewed in SFC, actually traverses on one or 
two cones in MAS and DAS. (top) The magic angle cone crosses three vertices of an 
octahedron in MAS. (middle) Two DAS cones cross ten vertices of a dodecahedron 
in k = 1 case, while (bottom) is the DAS trajectory on an icosahedron. V is used 
to label a vertex, P for pentagon, T for triangle, and E for edge of the symmetry 
geometry, and C to label center and Latin letters in the indices to distinguish different 
centers 
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Table 3.5: Angles in an icosahedron or a dodecahedron 

Label Dodecahedron Icosahedron Value cos2 () P2(()) P4 (()) 

ozol-2 OZOTC'J 
OZOZ OZOZ 

OZOV 

OZo.Eca OZOEca 

37.38° ~~ 
3v'5 

79.190 '-"5-2 3V5 
00.00° 1 

90.00° 

43.81° 

54.74° 

1 
"5 

'-"5+1 
2J5 
'-"5-1 
W5 
o 
5 
'9 
1 
'9 
1 
"3 

-1 
7s 
1 

-1 
""5 
~ 

. """4V5 

1 
"3 

o 

1 

-1 
""5 

_3-v'5 
16 

_3t'-"5 
16 

3 
"8 

10 
-27 

1 
81 

7 
-18 

where 0 is the center, V is the vertices of the dodecahedron and icosa­
hedron, and Ec is the centers of the edges, Tc is centers of the triangles, 
and. Pc is the centers of the pentagons. Latin letters in the indices are 
used to distinguish different centers (see Figure 3.13). 

transfonnation of the amplitude of the DAS echo, a high resolution spectrum can be 

obtained. The details about the DAS experiment[80] will be described in next section 

and the physical insight about I?AS also will be theoretically thoroughly treated in 

the final section of this chapter. 

3.6 DAS Experiments 

Preliminary experiments were perfonned on Bruker AM-400 spectrometer. The mag­

netic field is 9.4 T and the resonance frequency for sodium-23 nuclei is 105.84M H z. 

The whole DAS experimental setup is shown in Figure (3.14). It consists of a DAS 

probe, a step motor with the intelligent motor controller (IMC), and an IBM-PC 

computer [81]. In the DAS experime~t, the fiippingable probehead is driven by the 
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step motor which is instructed by IMC. The functions of the step motors are pro­

gramed by use of IBM-PC computer and their codes are then loaded into IMC. All 

instructions of IMC are triggered by TTL pulses from the AM-400 spectrometer in 

order to synchronize with the pulse sequence. The motor is coupled to the flipping 

probehead via a Kevlar string. The reason we choose Kevlar string is that it has 

very small stretch under large force such that the vibration during flipping can be 

minimized in reaching the fastest flipping. The probehead is similar to the common 

cylindrical MAS probehead additionally suppled a puller which allows the probehead 

is flippingable. The coil is wrapped around the sleeve of the spinner in order to have 

maximum filling factor. The rf pulse is input via two pins which function as the 

flipping axis of the. probehead. With controller feedback from an encoder attached 

to the motor, precise movement during the hop and reproducible values of initial and 

final positions for the experiment are accomplished. 

In calibration of two angles (h and (}2, we first set the magic angle () = 54.74° by 

maximizing the rotational echoes in a bromine-81 FID from solid KBr(in some cases 

we also used 'deuterated hexamethylbenzene (HMB) to adjust the magic angle[83]), 

which was packed in the sample spinner along with a sodium-23 powder sample. The 

reason we choose KBr to assign the magic angle is that the resonanCe of the bromine-

81 nuclei is close to that of sodium-23, and the quadrupolar coupling constant of the 

bromine-81 nuclei is not extremely large so that the rotational echoes in an FID 

signal arising from the first order contribution of the quadrupolar interaction can be 

clearly seen once the sample is spinning at magic angle. Mter setting the spinning 

axis to the magic angle, the probehead is moved to ()l by stepping the motor, and the 

number of steps can be calculated from the motor resolution of 0.36° obtained using 

a thousand step incremental encoder and a hundred step motor with one sixteenth of 

a step capability, leading to comparable angular resolution in the probehead position 

due to a 1: 1 coupling ratio between the step motor and the probehead. 
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Figure 3.14: DAS experimental setup. The flippingable probehead is driven by a 
step motor which is fully programmable via a IBM-PC and the code then is loaded 
into the intelligent motor controller (1M C) and finally its function is triggered by 
TTL pulse from AM-400 to synchronize the pulse sequence. 
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Figure 3.15: Pulse sequence applied in DAS experiment. All three pulse are 90° for 
the central transition, and their phases are tabulated in Table (3.6). 
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Figure (3.15) shows ,the pulse sequence and the spinner positions. Since the 

quadrupolar coupling constant is much larger than the strength of the rf field for 

half integer spin nuclei, the response of the magnetization for central transition to 

a rf pulse is same as a selective pulse to the pair of energy levels with m = ±! 
[84, 85, 86]. The length of a 90° pulse is scaled by a factor of 2/ (21 + 1) in comparison 

with the one measured in liquid sample with same rf field. For sodium-23 nuclei with 

large quadrupolar interaction, the 90° pulse length is 6.2 J.Lsec at (h = 37.38° and 

4.1J.Lsec at (}2 = 79.19° while that of NaCl, whose EFG is zero due to high symmetry 

molecule structure, doubles the above values. 

One important concept used in the DAS pulse sequence is the storage of a mag­

netization. It relates to the fact that the relaxation of a magnetization is inhomo­

geneous. For example in solids the transverse relaxation is usually much faster than 

the longitudinal relaxation. If the transverse component is transferred to the longi­

tudinal component, it can therefore relax in much longer times than in the transverse 

plane. We called this the storage of the magnetization, first used in the magic angle 

hopping experiments[87, 88]. 

The magnetization of samples with large quadrupolar interactions and chemical 

shift anisotropies is brought into xy plane by applying a 90° pulse along the x-axis 

in the rotating frame, where it evolves for a length of time h. The density matrix at 

the end of the evolution time tl is 

(3.31) 

where 

w~((}) = L Clc4~~((})Al.o, 
l 

1 -1 1 -1 

and UT and I~T are the fictitious operators for central transitions [84,85,86]. The 
1 -1 

second pulse along x axis rotates I~T component of the density matrix to along the 

external magnetic field where the'evolved density matrix is stored during flipping the 
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sample spinning axis from (It to (}2. After this flipping, the stored magnetization is 

rotated back into the xy plane by the third pulse along the x axis. After the density 

matrix evolves for a length of time t2, it becomes 

1 [ «2) () (2) ( )) ( (2) () (2) ( ) )] ! :/ pet}, t2) - '2 cos WQ (}1 tl + WQ (}2 t2 + cos WQ (}1 tl - WQ (}2 t2 Iy 

+ ~[sin(wg) «(}I)tl + wg) «(}2)t2) - sin(wg) «(}I)tl - wg) «(}2)t2)]d :}. 

(3.33) 

According to Eq.(3.29), when t2 = kt l , a DAS echo forms with two residual com-
, 

ponents: the relaxed magnetization during flipping which are ignored in the present 

derivation, and the double precession magnetization. These residual components can 

be eliminate experimentally by use of the phase cycling listed in Table (3.6). 

Table 3.6: Phase cycling in DAS experiment 

<PI ¢>2 <P3 <Pr <Pi Real Imaginary 

X X X Y X C++C_ 8+-8_ 

X X X Y X C++C_ 8+-8_ 

X X X Y X C++C_ 8+-8_ 

X X X Y X C++C_ 8+-8_ 

Y X X X Y C+-C_ 8++8_ 

Y X X X Y C+-C_ 8++8_ 

Y X X X Y C+-C_ 8++8_ 

Y X X X Y C+-C_ 8++8_ 

sum 8C+ 88+ 

in this table <PI, <P2 and <P3 are the phases of the first, second and the third 
pulse respectively, and <Pr (<Pi) is the real (imaginary) buffer detection phase. 
d± = ~ cos (wg) «(}I)t1 ± wg) «(}2)t2) and 8± = ~ sin (wg) «(}I)t l ± wg) (82)t2). 

Consider the experiment illustrated in Figure (3.15) with the phases of the pulses 

assigned in Table (3.6) with a sample of polycrystalline sodium sulfate (N a2804) 
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using an axis flip from (h = 37.380 to 62 = 79.190 and the evolution times tl = 

t2 = 1.5msec. The quadrupolar coupling constant of sodium nuclei in the sample 

is e2Qq/h = 2.6M H z and the asymmetry parameter is Tf = 0.6. After the first 

pulse, while the sample is spinning at 61 with respect to the external field, the 

magnetization evolves at the frequencies wg)(61). An oscilloscope trace of the decay 

of the signal is shown in Figure (3.16a). After 1.5msec, a second pulse is applied to 

store a component of the magnetization and then the spinner is performed a flip to 62• 

Following the third pulse which brings the evolved· magnetization into the xy plane 

again, the evolution frequencies of the each individual spins are wg)(62 ), opposite to 

the previous precessing frequencies. All the magnetization therefore refocuses after 

1.5msec and a full echo may be reconstructed after eight experiments, as shown 

in Figure (3.16b). At the center of the echo, only the evolution of the isotropic 

component remains (in this experiment, isotropic shift had been set to zero). The 

echo clearly indicates the refocusing of the chemical shift anisotropy and of the second 

order quadrupolar broadenings. Other broadenings with bilinear spin operators in 

the spin interaction Hamiltonian (e.g. the dipolar interaction) cannot be effectively 

refocused because the other orthogonal components in the density matrix represented 

by the bilinear spin operators cannot be efficiently stored .. The amplitudes of the 

echoes are therefore smaller than the initial value. Another reason why the echo 

amplitudes decrease is due to the effects of relaxation and spin diffusion happened 

during the storage time. Nevertheless, DAS is applicable to dilute spin nuclei, such 

as 170. 

The DAS experiment with k = 1 is performed by increasing tl in steps of ~t, in 

the order of 10 to 100 microseconds. The effective bandwidth in the high resolution 

spectrum is 1/2D.t. Sodium-23 results have been obtained on both Na2S04 and 

Na2C20 4 , and they are presented in Figures (3.17) and (3.18). In Figure (3.17), 

the DAS echo amplitudes of sodium sulfate (Na2S04) were acquired in quadrature 
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Figure 3.16: Demonstration of forming a rotational echo in a DAS experiment of 
polycrystalline sodium sulfate (Na2S04). (a) The FID signal of the central tran­
sitions after applying a 90° pulse decays in time of 500 J.Lsec. (b) An echo of the 
transverse magnetization occurs at tl = 1.5msec after the third pulse in the DAS 
experiment. Experimental parameters is same as in (a). 
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and the resulting FID in tl was Fourier transfonned to produce the one-dimensional 

spectrum of Figure (3.17c). This high resolution spectrum contains one isotropic 

peak, shown at 0 Hz in the frequency domain, with a linewidth of 575 Hz. The 

sideband pattern has a spacing of l.64kH z, which is one-half of the spinning speed 

. of the sample. The appearance of the sidebands at half of the spinning speed can 

be expected since the evolution is divided into two periods with a storage or the 

magnetization between them (see next chapter for details). The linewidth of the 

central peak is narrowed bya factor of about seven in comparison with the MAS 

results in Figure (3.17b), and the isotropic frequency can easily be identified from 

the maximum of the symmetric central peak. 

A two-dimensional DAS power spectrum for sodium-23 in polycrystalline N a2C20 4 

is presented in Figure (3.18). The quadrupolar coupling- constant of sodium nuclei 

is wQ = 403kH z and the asymmetry parameter is TJ = 0.72 .. Data were collected 

as a series of complex FIDs in two dimensions. The tl domain shows the evolution 

of the magnetization under spinning at the angle of ()l which modulates the FID in 

the t2 domain ,acquired when the sample is spinning at the angle ()2. After a two­

dimensional Fourier transfonnation is perfonned on the FID signals, a correlation 

spectrum between spinning at ()l and ()2 may be obtained. The projection on the PI 

domain shows the powder lineshape spinning at the ()l while the projection on the 

F2 domain produces the lineshape spinning at the ()2. From the figure, it can be seen 

that the projection along the diagonal axis yields the high resolution DAS spectrum 

(Figure (3.17c)). 

The residual linewidth is detennined by the dipolar coupling between the spins. 

To prove this we have perfonned a Hahn echo experiment with N a2S04 when the 

sample spins around the axis tilted at ()2; the decay of this echo is determined by 

the dipolar coupling between sodium nuclei scaled down by a factor of P2 (cos ()2). It 

has been pointed out above that the DAS experiment only stores two linear orthog-
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Figure 3.17: Demonstration of DAS experiment with polycrystalline sodium sulfate 
(Na2S04), where wQ = 433.3kHz and TJ = 0.6. (a) Static powder pattern, (b) MAS 
result, (c) DAS result. The sidebands in the DAS spectrum appears at half of the 
spinning speed (3.36K Hz in this experiment). 
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Figure 3.18: (A) Two-dimensional DAS spectrum of polycrystalline sodium oxalate 
(Na'iC204), where wQ = 403kHz and TJ = 0.72. The projection on the FI domain 
shows the lineshape spinning at (h while the projection on F2 domain produces the 
lineshape spinning at (}2, and (B), the two projected spectra are mirror image with 
each other. The DAS spectrum yields from the projection along the axis at the angle 
of tan- l k = 45° with respect to the F2 axis. Spinning speed is about 5.5kH z. 
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1 -1 1 -1 

onal components, U2 and IJ2 in the density matrix. The other components are 

therefore lost and this leads to broadenings of the signals in the spectra. Indeed, the 

dipolar Hamiltonian is represented by bilinear spin operators and therefore produces 

many orders of coherences' in the density matrix. Although in principle there is a 

way to store all these orders in the density matrix, this is just too compliCated to 

implement it experimentally. Another fact is that the rf pulse is actually equivalent 

to a selective pulse due to the large first order quadrupolar interaction in the Hamil­

toruan, and therefore can affect only the energy levels corresponding to m = ±4. 
After the dipolar Hamiltonian is expanded according to the fictitious spin operators, 

1 -1 1-1 

there is a scalar term with the form IlTIJT which can not be canceled by any 

pulse sequences. This may result in the dipolar broadenings in the DAS signals that 

cannot be eliminated in any way. 

For other DAS complementary angles, the experimental set up is same as the 

one used in Figure (3.14) and the pulse sequence shown in Figure (3.15). The DAS 

spectrum may then be obtained from the projection along an axis inclined at an 

angle of tan-1 k with respect to F2 axis in the frequency domain. 

3.7 Powder Lineshape in A Multi-Dimensional 
Space 

We discuss here the two dimensionallineshapes of the central transitions obtained by 

flipping the sample between two arbitrary angles. Figure (3.19) shows the variations 

of the two dimensional powder lineshapes with different flipping angles and different 

asymmetry parameters. As can be seen, these two dimensionallineshapes consist of 

a ridge when the asymmetry parameter is zero. This high resolution feature of the 

powder lineshapes observed in two dimensional space raises a fundamental question 

whether any powder lineshapes will be highly resolved in a high dimensional space. 

To discuss this question, let's consider the lineshapes arising from the chemical 
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Figure 3.19: Two dimensionallineshapes of central transition with half integer spin 
nuclei show high resolution features, especially for the TJ = 0 case. ()2 is 70.12° for all 
six graphs, and thetal is, ()l = 200(top row), 30.56° (middle), and 54.74° (bottom) 
for TJ = 0 (left column) and 0.5 (right column), where wQ = 400kHz, Wo = 100M H z, 
and I =~. 
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shift anisotropy interaction. It is well known that the resonance frequency with a 

chemical shift anisotropy interaction (CSA) for any spin nuclei can be represented 

as 

(3.34) 

where We is the anisotropy of the CSA tensor, and "Ie is the asymmetry parameter. 

After the sample is subjected to a fast spinning around a fixed axis inclined at the 

angle, 8, with respect to the external field, Wes is scaled down by a factor of P2(COS 8), 

that is 

wes(8) = P2(cos 8)wes(0). (3.35) 

Consider a DAS-type experiment involving only CSA interactions, in which the sam­

ple rotates around an axis inclined at 81 during the evolution time tl and then flips to 

the second angle 82 during evolution time t2. After implementing a two-dimensional 

Fourier transformation on the FID signals, the relationship of the frequencies between 

the first and the second domain is 

(3.36) 

where Wiso is the isotropic shift. Eq.(3.36) tells us that after the powder lineshape 

determined by Eq.(3.34) is represented in two dimensional space, the contour of the 

lineshape will be a straight line. The slope of the line is dete~ned by the ratio 

of P2(82)/ P2(81). The center of the line is given by the isotropic shift multiplied by 

[1 - ~~=:~n, and the length of the line relates to the strength of the CSA tensor. 

Spectra with different isotropic chemical shift will be separated with each other in this 

two dimensional space, and high resolution one dimensional spectra can therefore be 

obtained from these projection along the axis at the angle oftan-l[~~:~~1 with respect 

to the it domain. The chemical shift measured by the projection spectra obviously is 

scaled according to the slope of the contour line, and the anisotropy and asymmetry 

parameter of the CSA tensor may be obtained from the lineshape along the contour 
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line. Another way to obtain two-dimensional spectra is to redefine g (cos O)t as a new 

variable and then to linearize this variable by properly choosing the sample spinning 

axis angle. The two-dimensional FID signal becomes a function of t and P2 ( cos O)t, 

that is G(t, P2 (cos O))t. After two-dimensional Fourier tr~nsformation, one dimension 

will be high resolution spectra'whose peaks correspond to isotropic chemical shifts, 

and the other dimension shows eSA powder lineshapes. This experiment is called 

MYDAS proposed by L. Frydman and his co-workers [89]. 

In the case of the second order effects of the quadrupolar interactions, the two­

dimensional powder lineshapes of the central transitions become ambiguous as can 

be seen from Figure (3.19). Only for TJ = 0, the contour of the lineshape keeps the 

high resolution structure in two dimensional space and only when the two angles 

satisfies condition Eq.(3.25), the contour line is straight (of course this case is still 

true for any asymmetry parameter). For other angles, powder lineshapes show a 

smooth curve. From Eq.(3.29), under the fast spinning condition around an axis 

inclined at the angle of 0 with respect to the external field, the second order shift for 

central transition is 

(3.37) 

where Cl is given in Eq.(3.28) and P,,(O) is the 'l-th order Legendre polynomial. From 

Eq. (3.13), the angular dependence of Al,o is only determined by the Legendre 

polynomials, that is, 

Al,o = P"({3)Pl,O, (3.38) 

where Pl,O is given in Eq.(3.12). The contour of the two dimensionallineshapes of 

the central transition is therefore determined by the solution of the following two 

simultaneous equations. 

WI - C2P2,OP2(OI)P2({3) + C4P4,OP4(OI)P4({3) 

W2 - C2P2,OP2(02)P2({3) + C4P4,OP4(02)P4({3). 
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The solution of this equation is 

W2 - B + kWI + AJC + DWI for Wmin $ WI $ Wmid 

W2 - B + kWI - A J C + DWI for Wmin $ WI $ Wmax (3.40) 

where 

k 
P4(02) 

-
P4(OI) 

k' 
C2P2,OP2(OI)·· 

-
C4P4,OP4(OI) 

A 
3 

- 35 C2P2,O [P2(02) - P2(OI)k] 

B - ~(5 - 9k')A 
3 

C - 30 - 10k' + 9k12 

D 
70 

-
C4P4,OP4(Ot} 
1 9k12 

Wmin - 7[C2P2,OP2(OI) - 3C4P4,OP4(Ot}] + D + CoPo,o 

1 3 
Wmid - -2C2P2,OP2(Ot} + gC4P4,OP4(OI) + CoPo,o 

Wmax - CoPo,o + C2P2,OP2(OI) + C4P4,OP4(OI). (3.41) 

In the above equations, we assume the isotropic frequency is zero; otherwise the 

frequency variables have to be replaced by Wi - Wiso. In Eq.(3.40}, W2 is double-

valued only in the region Wmin $ WI $ Wmid, where the Wmin, Wmid, and Wmax are the 

frequencies of the singularities observed in the one dimensional powder lineshapes 

(see Figure (3.2) and Table (3.4)). The curvature of the contour may be obtained 

from the derivative of Eq.(3.40). Since the coefficient D depends on the anisotropy 

of the quadrupolar tensor, the curvature of the contour will in general depend on 

the anisotropy except when A = 0, which is again the DAS trajectory. This means 

that although the lineshape of the central transition with 1/ = 0 is highly resolved in 

two dimensional space, it is not easy to obtain a projection spectrum in which the 

position of peaks only relates to the isotropic shift of the spin nuclei. However the 
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extraction of the anisotropic information still may be implemented by simulating the 

two dimensional contour line by use of Eq.(3.40). 

To overcome the ambiguity of these two dimensional lineshapes of the central 

transitions, it is necessary to extend the dimensionality of the observing space. As 

we will see, the lineshapes will, indeed, become resolved planes in three dimensional 

space. Actually, from Eq. (3.37), the resonance frequencies including isotropic shifts 

in tree dimensional space are 

WI - Wiso - C2P2(OI)A2,o + C4P4(OI)~,O 

W2 - Wiso - C2P2(02)A2,o + C4P4(02)A4,o 

W3 - Wiso - C2P2(03)A2,o + C4P4(03)A4,o. 

It is easy to obtain the solution of Eq.(3.42) which is 

where 

WI = A' W2 + B' W3 + (1 - A' - B')Wiso, 

A' -

B' -

P2«(}I)P4(03) - P2«(}1)P4«(}1) 
P2«(}2)P4 «(}3) - P2(03)P4«(}2) 
P2«(}2)P4«(}1) - P2«(}1)P4«(}2) 
P2«(}2)P4«(}3) - P2«(}3)P4(02)· 

(3.42) 

(3.43) 

(3.44) 

Eq.(3.43) defines a plane in the three dimensional space, and the coefficients, A' and 

B', are related only to the angles of the three sample spinning axes. The center of 

the plane is determined by the isotropic shift multiplied by a factor of (1 - A' - B') 

and the area of the plane is related to the strength of the quadrupolar interaction. 

3.8 Double Rotation (DOR) 

In the sections 3.5 and 3.6, we have described the principles and the experiments of 

the dynamic angle spinning (DAS). Now we turn to discuss another main method for 

obtaining high resolution spectra for central transition with qUadrupolar interaction, 
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named double rotation (DOR). After applying a rotation around a fixed axis at 

a particular angle with respect to the external field to, the Hamiltonian will 'be 

truncated along the rotation axis if the spinning speed is fast enough. The residual 

parts then are determined by the Legendre polynomiall1( cos 8) (in our case, l = 2,4). 

For example, if the applied rotation is MAS, the residual lineshape of the central 

transition for a powder sample is uniquely determined by the fourth order Legendre 

polynomial, P4(cos8). The linewidth of the lineshape will be scaled down by a factor 

of 1/P4(cos8~») = 2.57 where 8~) = 54.74°, the magic angle of the second order 

Legendre polynomial P2(cos8). In the variations of P2(cos8) and P4(cos8) with 8, 

there is no cross point at which the values of P2(cos8) and P4(cos8) are equal to 

zero simultaneously (see Figure 3.8). However, the linewidth of the powder pattern 

for.a powder sample varies as the angle of the rotation axis changes, (see Figure 

3.9), and can be further narrowed by applying another rotation relative to the first 

rotation. In other words, the linewidths of the powder patterns can be continuously 

narrowed to any degree by properly applying several rotations in same time. A trivial 

solution can be found to eliminate completely the second order broadening with two 

rotations. This corresponds to the double rotation (DOR) method: the first rotation 

is performed along the magic angle 8~) with respect to the external magnetic field 

while the second rotation occurs at one of the magic angles 8~) of the fO!lrth order 

Legendre polynomial P4 (cos 8). 

After applying two rotations to Eq.(3.20) and by using Eq.(3.12) twice, the tran­

sition frequency between two central levels (m = ±4) becomes 

(3.45) 

where Ct is given by Eq.(3.26) and Orl (t), Or2(t) are two sets of Euler angles which 

define the transformations from the laboratory frame to the outer rotor frame (ORF) 

(the first rotor frame) and from the outer rotor frame to the inner rotor frame (IRF) 

(the second rotor frame) respectively. We assume that the spinning speeds of the 
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outer and inner rotors are Wn and Wr2 , the first rotation axis angle is {3rl with respect 

to the external field while the second rotation axis is at the angle of {3r2 relative to 

the first rotation axis. The initial phases of the first and second rotations are 'Yrl and 

'Yr2 respectively. The explicit expression of the two sets of Euler angle are therefore 

given by 

{ 
Or1 = (Wr1 t + qr1' {3rl' 'YrJ (3.46) 

nr2 = (Wr2t + ar2 , (3r2' 'Yr2)· 

As in MAS, all spins have cylindrical symmetry around the external magnetic field 

Ho so that 'Yrl can be set to zero. For a powder sample, the absolute orientation 

of individual spin in the IRF is not important because spins have equal probability 

to be at each orientation. Thus we can also set a r2 to zero. Finally, a r1 and 'Yr2 

determine the relative phase 'Yr between outer and inner rotors (saY'Yr = a r1 + 'Yr2' 

see Figure (3.20)). 

After expanding Eq.(3.45), three terms result: the first term (1 = 0) is a scalar, 

independent of the orientation and of time; the second term is only time indepen­

dent; and the third part depends on both orientation and time. Furthermore since 

the Hamiltonian commutes with itself at all time, the total phase evolved after ap­

plication of a 90° pulse is 

cp(t) = GoAo,ot + L G,W,t + L G,CP,(t) (3.47) 
1=2,4 1=2,4 

where 

(3.48) 

and 

(3.49) 

and N = ~wr. The first term in Eq.(3.49) corresponds to the isotropic shift, the r2 

second term determines the linewidth and also the lineshape for powder samples, 

and the third term generates a set of sidebands. 
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Figure 3.20: Scheme of the coordinate transformation among the laboratory frame, 
the outer rotor frame, and the inner rotor frame. The rotation axis of the outer rotor 
is titled at the magic angle, (J~) = 54.74°, of the second order Legendre polynomial, 
while the inner rotor spins around (J~) = 30.56°, one of the magic angles of the fourth 
order Legendre polynomial. 
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If we ssume that the spinning speeds· of both rotations are much larger than the 

amplitudes of the spin Hamiltonian 'H.(I) of the central transition, the third term in 

Eq.(3.49) , CPl(t), becomes small enough to be neglected at all time. Since from the 

properties of Wigner rotation matrices, ~~~(J3) = Pt(cos(.B)), the anisotropic shift in 

Eq.(3.49) Wl' can be eliminated if 

{ 
P2 ( cos (3rl) P2 (COS (3r2) = 0 

P4 (cos {3rJ P4 (COS (3r2) = 0 
(3.50) 

and N = ~ is not an integer less than five. The solution of Eq.(3.50) is (3rl = 

(J(2) = 54.74° and f3r2 = (J(4) = 30.56° , 70.12°, or vice versa. If N is an integer, the 

residual broadening cannot be totally suppressed due to the interference between two 

spinning speeds. Figure (3.21) shows the variation of the residual line broadenings 

in the central transition of a powder sample after application of DOR, for different 

ratios N. From this figure it can be seen that when the two spinning speeds are equal, 

N = 1, the linewidth of centerband is about one tenth of the static linewidth, . and 

will narrow with increasing ratios between the two spinning speeds. The linewidth 

. reaches the order of the relaxation broadening, or of high order residual broadenings 

when the ratio between the two spinning speed is larger than three. This means that 

the condition we gave at the beginning is not very crucial and therefore the design 

of a double-rotor probe should concentrate on increasing the spinning speed of. the 

outer rotor. When the ratio between the two spinning speeds are not an integer, the 

lineshapes shown in Figure (3.21) will be the envelop of the sidebands which come 

from the interference between the two spinning speeds. 

3.9 DOR Experiments 

DOR experiments were carried out on Bruker AM-400MHz spectrometer with a 

homemade DOR probe[79, 104]. The static magnetic field was shimmed using the 

deuterium resonance of D20j linewidths are below 10Hz. 
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Figure 3.21: Residual lineshapes of the centerband of the central transition with 
quadrupolar coupling constant 2.6M H Z of spin I = ~ nuclei after double rotation 
(DOR) varying with the ratio of the two spinning speeds, ~, and the asymmetry 

Wrl 

parameter TJ. 
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In the DOR probe [79 , 104], the sample is contained in a small rotor which is 

embedded in the body of a l~ge rotor spinning at the magic angle /31 = 54.74° 

of the second order Legendre polynomial with respect to the static magnetic field. 

Henceforth, the small rotor is named inner rotor and the large rotor as outer rotor. 

The angle f32 between the spinning axes of the inner and outer rotors is 30.56°, 

one of the magic angles of the fourth order Legendre polynomial. To design an 

efficient double-rotor many of the requirements for a conventional high performance 

MAS system have to be met[91]. A further complication with double-rotor systems 

arises from the fact that a spinning object, like the inner rotor, has a tendency 

to maintain its spinning orientation unless a torque is exerted on it. Torque is 

obviously not desirable here because it imposes an extra burden on the limited load 

capacity of bearing system; Fortunately, as will be illustrated below, the torque can 

be reduced to a tolerably small value when the ratio of the two spinning speeds, 

W2/Wl, approaches a certain fixed value that depends on the structure of the inner 

rotor. As illustrated in Figure (3.22), the motion of the inner rotor can be visualized 

as the motion of a. rigid cylinder with a fixed point, in this case the cross-point of 

the two rotation axes; the pattern of the motion is the well-known precession motion 

but without nutation. The equation relevant. to such mption is 

dJ 
-=T 
dt 

(3.51) 

where J is the angular momentum of the inner-rotor and T is the torque applied to 

the inner rotor through the bearing. The angular momentum can be expressed in 

terms of the spinning speed w as 

(3.52) 

where i,j and k are the unit vec~ors ofthe principal axis system (x,y,z) ofthe moment 

of inertia tensor of the inner-rotor with principal values Ix, Iy and Iz. In our case 

this tensor is symmetric, Ix = Iy. There are two contributions to the inner-rotor 
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Figure 3.22: By adjusting the ratio of moments of inertia (Iy/lz ) , the addition of 
the two vector components of the angular momentum along the inner-rotor axis z 
and the y axis can be made to point along the outer-rotor axis Z, so that spinning 
the outer-rotor will not affect the orientation of the total angular momentum of the 
inner-rotor. 
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spinning speed, the spinning speed of the inner-rotor, W2, spinning around its own 

axis and the spinning speed WI imposed by the outer-rotor. This second contribution 

can be decomposed into two components, WI cos (32 along the z-axis, the spinning axis 

of the inner-rotor, and WI sin fh along the y-axis which is chosen to be in the plane, 

zZ, where the Z direction is along the outer-rotor spinning axis. Thus we have 

(3.53) 

Viewed from the laboratory frame, the only way to make J time-independent (i.e. 

zero torque) is to design the system in such a way that J points along the Z-axis as 

depicted in Figure (3.22). This can be achieved if 

(3.54) 

or 

(3.55) 

Clearly, from this equation, for a fixed ratio of Iy/lz , determined by the dimensions 

of the inner-rotor, the ratio W2/WI is fixed for torque-free conditions. 

For a ratio W2/WI of 5, when the outer rotor speed reaches 1kHz, tbe inner-rotor 

speed must be 5kHzi this is not hard to achieve with current techniques. Since the 

inner rotor is inclined at an angle inside the outer-rotor, the dimensions of the inner 

rotor (both the length and the diameter) will determine the eventual diameter of the 
I 

outer rotor which is a crucial factor in obtaining high outer rotor speeds. With the 

goal of producing higher speeds for both the inner andouterrotors, we have designed 

a new double-rotor[104] with a reduced diameter of the outer rotor and a turbine 

system for the inner rotor with parameters recommended for MAS operation[91]i the 

driving jets are placed at both ends of the inner rotor. 

An illustrative sketch of the double-rotor probe is shown in Figure (3.23). For 

the purpose of detailed studies of the inner rotor behavior, we used a two-port air 
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Figure 3.23: New double-rotor probe designs. (1) inner rotor with flutes at both ends; 
(2 and 2') building blocks of the double rotor held together through the axles (13) 
with the matched counter parts (13'), and the step-shoulder (14) with the matched 
counter parts (14'); (3) and (4) air channels and holes for bearing and drive system 
of the inner rotor; (5) pins to hold the inner rotor in place; (6) and (7) bearing and 
drive system for the outer rotor; (8) air exhaust holes for the outer rotor; (9) pins 
to hold the outer rotor in place; (10) air passage for the inner rotor which fits into 
(10') with small clearance; (11) space for rf coil; (12) air exhaust holes for the inner' 
rotor; (15) caps holding inner-rotor in place and allowing air escape for the inner 
rotor system; (16) flutes for outer rotor; (17) flutes for inner rotor. 
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injection system similar to that used in the original design[79]. The new double­

rotor is machined in three pieces held together with the axle (part 13) and the step­

shoulders (part 14) on the center piece (part 2) by press-fitting into the matched 

counter parts (parts 13' and 14') on the end pieces (part 2'). This structure has 

several advantages. The cylindrical structure of the center piece allows efficient 

use of the available space within the outer rotor. Moreover, the cylindrical shape 

also prevents structural deformations; deviations less than O.015mm can be made 

over the whole length of the outer rotor. In addition, we can now also use more 

fragile ceramic materials for the rotor body because a tight press-fit of the matching 

pieces is not necessary here; we can use clamp buttons screwed on top of the axles 

(part 13) to hold the three pieces together as well. The new structure also prevents 

any air leakages through mismatched fits. As a _result of these modifications, and 

reducing the inner rotor diameter to 4.6mm, we were able to reduce -the outer-rotor 

to a diameter of 13mm and a length of 46mm. A further reduction of length and 

diameter is possible with an one-port air injection system feeding both the bearing 

and the drive of the inner rotor; The outer rotor described above is able to reach 

a spinning speed of 2kHz after careful balancing under conditions of single rotation; 

a spinning inner rotor has no appreciable influence on the outer-rotor performance 

when the outer-rotor is spinning below 1kHz. 

To operate the double rotor, we start spinning the inner rotor first and then the 

outer rotor. Initially, the ratio W2/Wl is usually too high to satisfy the torque free 

condition discussed above. Consequently, a torque is generated, and the friction on 

the inner rotor from the bearing system slows down the spinning of the inner rotor; at 

the same tiIIlee, the ratio W2/Wl decreases and with it the torque and friction, finally 

stabilizing the inner rotor spinning speed at a lower value that depends on the bearing 

and drive system. As the outer rotor speed increases, the inner rotor speed must 

also increase in order to adapt itself to the torque-free condition. In fact, precisely 
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at the torque free condition the system is not stable, since any accidental slow-down 

of the inner rotor can trigger a torque avalanche. To be more specific, any decrease 

of W2 increases the torque when the ratio W2/Wl is at the torque free condition; this 

in turn further decreases W2 implying a further increase of the torque and leading 

finally to a crash of the inner rotor. motion; the outer rotor system is too large for 

WI to adapt itself quickly to any change of the inner rotor motion. On the contrary, 

the system is in a stable state when the ratio W2/ Wl is close, but higher than the 

torque free condition, as long as the weak torque generated can be tolerated by the 

bearing system of the inner rotor. Any accidental slow-down of the inner rotor will 

now decrease the torque and friction, bringing W2 up again; .similarly, any accidental 

speed-up of the inner rotor will increase the torque bringing W2 back down' again. 

This self adjusting mechanism protects the inner rotor against any instabilities. It 

can be shown[92] that under the influence of a torque the relationship between W2 

and Wl can be written as 

-(3.56) 

which reduces to Eq.(3.55), the torque free condition, when 7(the absolute magnitude 

of'T in Eq.(3.51)) or LlW2 is set to zero. 

Both the inner and outer rotor spinning speeds can be measured experimentally 

from the sideband positions of 23Na in sodium chloride where the line is broadened 

by dipole-dipole interactions. The sidebands resulting from motions of the inner and 

the outer rotors can be clearly distinguished owing to the large W2/Wl ratio which 

adiabatically decouples the NMR effects of the two rotors. Figure (3.24) is a plot of 

V2 = W2/27r versus Vl = wd27r obtained for two different inner rotors; A is 13.3mm 

long and B is 15.2mm long with k values of 4.5 and 5.1 respectively. The different 

specific gravities of Vespel and sodium chloride have been taken into account in 

the calculation of k. Points in Figure (3.24) represented by the same kind of solid 

symbols are obtained under the same conditions for the inner rotor, i.e. the same 
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vf1 (Hz) 

Figure 3.24: The inner rotor spinning speed 111 is plotted versus the outer rotor 
spinning speed 112. The symbols D., 0 and V represent data for inner-rotor A (see 
text) obtained with air pressures of 25, 30 and 35 psi respectively. Line 1 is a linear 
fit for all of these data with k = 4.9 and ~Vl = 573Hz (see Eq.(3.56)). The arrows 
indicate the highest 112 speeds before the motion of the inner-rotor crashes. The 
symbols 0, • and 0 represent data for inner-rotor B (see text) for which. were 
obtained with an air pressure of 30 psi and 0 with an air pressure of 35 psi; 0 were 
obtained with variable air pressures. Line 2 is a linear fitting for. with k = 5.3 and 
~Vl = 1.4kHzj line 3 is a linear fit for 0 with k = 5.4 and ~Vl = 1.2kHz. 
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bearing and drive air pressures. The plot shows that the inner rotor speed depends 

linearly on the outer rotor speed over a wide range of II}, but tends to deviate from 

it when 111 comes closer to the point where the motion of the inner rotor crashes. 

The experimental slope k obtained from the linear fitting is 4.9 for rotor A and is 

5.4 for rotor B and does not depend on the air pressure used; moreover, these values 

are quite close to the calculated values. According to Eq.{3.56), this implies that 

the torque exerted on the inner rotor through the bearing adjusts itself with w} until 

it can no longer be tolerated by the bearing system. The intercept of 112 at II} = 0 

is not zero and is larger for rotor B which makes the deviation from the linearity 

more significant when Ll1l2 = LlW2/27r starts to change. The nonzero positive value 

of Ll1l2 is in agreement with our argument discussed above based on the stability 

requirement that 112 must be slightly exceed the value dictated by the torque-free 

condition. The relationship between ~1I2 and the air pressure used to operate the 

inner rotor depends on the details of the inner rotor bearing and drive system; as 

seen in Figure (3.24), the inner rotor A has a smaller Ll1l2 value than B for the same 

air pressure and is less sensitive on the air pressure used. 

Figure (3.25) shows 23Na spectra of a sample containing a mixture of sodium 

sulfate and sodium oxalate of which the molar ratio of sodium atoms is 2: 1. The 

static spectrum shown in Figure (3.25a) is 10kHz wide. Under MAS at 5. 7kHz 

(Figure (3. 25b)), the linewidth is reduced to 2.5kHz and some structure is visible. 

Under DOR (Figure (3.25c)), the line collapses into sharp lines and the two-peak 

structure is clearly revealed; the intensity ratio of the two components is 2:1 just as 

expected and the linewidth is 80Hz (O.8ppm) for both lines. 

In the above sections, we have described two new methods, DAS and DOR. Both 

of them can effectively average out second order broadenings in the central transi­

tions of spin half integer nuclei with large quadrupolar interactions; high resolution 

spectra can therefore be obtained with them. More applications to other spin half 
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Figure 3.25: NMR spectra of 23Na central transition in a 2:1 polycrystalline mixture 
of sodium sulfate and sodium oxalate. (a) is the static spectrum and (b) is the 
MAS spectrum with rotor spinning speed of 5.7kHz. (c) is the DOR spectrum with 
1I2 = 970Hz clearly revealing the two line structure. (d) is a expanded version of (c) 
showing the centerband peaks originating from the two components of the mixture. 
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integer nuclei, especially for 170, can be found in reference [90]. We now turn to the 

description of the generalization of the DAS and DOR methods. 

3.10 Iterative Averaging of Tensorial Interactions 

In designing suitable averaging techniques, one should realize first that it is often 

unnecessary to implement full spherical symmetry. Since the anisotropy of the spin 

interactions is well defined, only a subset of the full rotation group is needed for . 
efficient averaging. The problem then becomes one of determining which trajectories 

are both adequate and also feasible to implement through bulk macroscopic motions. 

The orientational dependence ofa nuclear or. electronic dipolar transition fre­

quency can be formally represented as a sum of components, each one irreducible 

under the rotation group SO(3): 

W = L Wl (3.57) 
l 

The contribution of each component Wl depends on' the 2l + 1 values of the corre-

sponding tensor Al,m (see Eq.(3.20)), which forms the basis ofthe representation D(l) 

of SO(3). It also depends on the orientation n SFC ' (a, (3, "y) of the magnetic field 

in a sample-fixed coordinate (SFC) system (see Figure 3.3); namely from Eq.(3.25) 

Wl = L ClAl,mV~o(nSFC), (3.58) 
m 

where V~o is an element of the associated Wigner rotation matrix (which is also a 

representation of the full rotation group) and Cl is a constant given by Eq.(3.26). 

The particles in a heterogeneous sample are randomly oriented, and hence exhibit 

different sets of values Alm , 

Al,m = L Pl,m' V~ ,m (nPAS) , (3.59) 
m' 

where the pl,m' denote principal tensor components of rank l. For example, the prin­

cipal components of a quadrupolar interaction tensor are given in Eq.(1.35) while 
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the second order tensor of the quadrupolar interaction in the existing of a Zeeman 

interaction are given by Eq.(3.11). Dispersion in the Euler angles nPAS , reflecting 

different orientations of the sample-fixed coordinate frame relative to the local princi­

pal axis system (PAS), is the formal reason behind inhomogeneous line-broadening in 

NMR (or modulation of the intensity in optical spectroscopy or NQR). The isotropic 

part of the frequency in (3.57), Wo, is the same for each particle in the sample and 

thus is potentially measurable with the highest analytical resolution. 

Spectroscopic measurement always requires a finite time to establish the differ­

ences between energy levels, during which the system continues to evolve and during 

which one can change the relative direction of the fields and of the sample. The 

orientation of the SFC, in general, is a function of time, and its motion imposes a 

time dependence upon the transition frequency. The observed phase of the signal, 

at some instant T, is proportional to 

CPI(T) = rT 
dt Wl(t) = C'LA'm r

T 
dt 'D~o(nSFC(t)). Jo m ' Jo ' (3.60) 

which reflects the cumulative effects of the changing resonant frequency. Stroboscopic 

measurement with a sampling period of T, followed by a Fourier transformation, gives 

the average frequency of the transition over the interval. The simplest anisotropic 

term in the expansion of w, the dipolar term WI, can be eliminated by summation over 

two opposite directions, nfFC and n~FC, to give a net phase of zero at the sampling 

point. More generally, the anisotropy described by tensor components A,m¥o for 

a particular l can be averaged away by directing the field at N = l + 1 or more 

directions to form a cone (Figure 3.26), that is, 

(3.61) 

because 
N 
~ V(l) (nSFC ) = N d(l) (f.l)8 
~ m,O k m,O JJ mO (3.62) 
k=I 
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Figure 3.26: A basic succession of field directions that eliminates anisotropy due to 
a tensor of rank I. The magnetic field scans 1+1 directions, forming a cone with 
opening 2{3(l). 
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in Eq.(3.60). The remaining term, proportional to Al,O , then can be eliminated by a 

suitable choice of the apex angle (3(l) 

(3.63) 

Values of (3(l) for tensors up to rank l = 10 are given in Table (3.7). In real space this 

Table 3.7: Roots of Legendre polynomials of Pt(cos(3(l»). 

l (3~l) 

1 90.00 

2 54.74 

3 39.23 90.00 

4 30.56 70.12 

5 25.02 57.42 90.00 

6 21.18 48.61 76.19 

7 18.36 42.14 66.06 90.00 

8 16.20 37.19 58.30 79.43 

9 14.50 33.28 52.17· 71.08 90.00 

10 13.12 30.11 47.20 64.32 81.44 

approach has been· demonstrated in experiments involving the averaging of chemical 

shift anisotropy l = 2 [87]. In this work, the sample was mounted on a goniometer 

and reoriented so that the magnetic field assumed three orthogonal directions during 

the experiment. As the reorientation process was relatively slow, the magnetization 

was stored along the field direction during the reorientation. Magic angle spinning 

can be regarded as a continuous version of this (cubic) symmetry, in which the 

magnetic field traces out the continuous circle on the sphere, with the apex angle 

of the underlying cone determined by (3.63). This trajectory forms the basis of the 

MAS technique. 
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Frequently, however, anisotropic interactions are determined by more than a sin­

gle rank tensor, for example, the second order effect of the quadrupolar interaction 

in a magnetic field which is not strong enough to truncate the quadrupolar interac­

tion. Under these condition the line broadening caused by combining several tensors 

simultaneously cannot be suppressed by rotation about a single axis, but rather only 

scaled and altered. For example, the lineshape of the central transition for half in­

teger spin quadrupole nucleus is determined by the second- and fourth-rank tensors 

that describe the second order effect of the quadrupolar interaction. Figure (3.4) 

shows various calculated powder patterns of the central transition for spin (1 = ~) 

in a sample spinning around a single axis at different angles. Figure (3.27) shows an 

experimental example of the central transition of N a - 23 nuclei in sodium oxalate 

at 105.8M H z under VASS. For standard MAS, the powder pattern is determined 

by the fourth rank tensor (Figure 3.27c). Spinning at either one of the magic angles 

of the fourth rank tensor results in spectra with lineshapes characteristic of the sec­

ond rank tensor (Figure 3.27b and 3.27d) while other possibilities give mixed results 

with some variation in linewidth (Figure 3.4)[103]. It is clear that the anisotropy 

due to more than one tensorial rank demands a better approximation to spherical 

symmetry. As an initial possibility we consider point subgroups r of SO(3). 

Owing to the high symmetries involved, the effect on the spectral components 

(3.57) can be conveniently analyzed with group theory. We are interested in the 

average value of each frequency component over all N rotational operations R of the 

symmetry group G which obviously is a subgroup of the three dimensional rotation 

group 80(3), 

.,.....,..G ""' A v· (l) Wl = ~ l,m m,O, (3.64) 
m 

where 

V(l) = ~ ""' V(l) (0 ). 
m,O N L m,O R 

REG 

·(3.65) 

132 



I 
50 

I 
o 

I 
-50 

Chemical Shift (ppm) 

~(l) =0.00 

70.12° 

I 
-100 

Figure 3.27: NMR spectrum of the central transition of Na-23 in sodium oxalate at 
108 MHz. a) Static sample, b) Sample spinning around axis at 30.56°, c) Sample 
spinning around axis at 54.74°, d) Sample spinning around axis at 70.12°. 
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The representations of the group 80(3) reduce under subgroup G as 

V~,m(OR) = L a(lr)V~~!m(OR). (3.66) 
r 

The average of the transformation matrices (3.65) and also the averaged frequencies 

w{ can be different from zero only if expansion (3.66) contains the totally symmetric 

representation AI. This follows directly from general orthogonality properties with 

respect to summation over/group elements [68], namely from orthogonality with the 

symmetric identity representation , while 

(3.67) 

The multiplicity a(lr) of any irreducible representation r can be evaluated from the 

general expression for traces 

(3.68) 

and the characters calculated from 

(l)(R) = "" VO) (OR) = sin~l + !)(R, 
X L.J m,m sm !( 

m 2R 
(3.69) 

where (R is an angle of rotation of the corresponding symmetry operation, related 

to Euler angles by 

( _ 2 -I[ {3R (aR + 'YR)] 
R- cos cos 2 cos 2 ' (3.70) 

and the characters of the identity representation are 

(3.71) 

In Table (3.8) are shoWn characters of reducible V~"m for all physically different 

. symmetry operations (classes) of the most symmetrical, icosahedral finite rotation 

group G = I. In the last column we give the multiplicity of the symmetric repre­

sentation Al after reduction of the original representation V~ m. Of the first ten , 

anisotropic spectral components, only two (I = 6 and 1 = 10) survive averaging under 
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Table 3.8: Characters of D~n representations of the group 80(3) after decomposition 
by the icosahedral group. 

R E 12C5 12C£ 20C3 15C2 

(R 0 72 144 120 180 

l alA1 

-
0 1 1 1 1 1 1 

1 3 r r 0 -1 0 

2 5 0 0 -1 1 0 

3 7 -r -r 1 -1 0 

4 9 -1 -1 0 1 0 

5 11 1 1 -1 -1 0 

6 13 r r 1 1 1 

7 15 0 0 0 -1 0 

8 17 -r -r -1 1 0 

9 19 -1 -1 1 -1 0 

10 21 1 1 0 1 1 

where r = It;S, and r = 1-
2
.(5. 

icosahedral symmetry. A summary of the averaging of the tensor components under 

subgroups of 80(3) is shown in Figure (3.28). Although icosahedral symmetry is 

very powerful, it has not yet found any widespread use in NMR except as a special 

case of dynamic angle spinning (DAS), a point to which we have discussed in section 

3.4 and will return later for more. 

Selective averaging of interactions with different ranks can be recon~tructed iter­

atively .. Given a certain set of directions n~ of the magnetic field in the sample-fixed 

coordinate (SFC) system, an additional splitting of directions around the original 
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Tetrahedral (T) 
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Rotation (SO(3) 

Figure 3.28: Averaging of spherical harmonics under subgroups, (for our interest, 
symmetry point groups), D4 , T, 0, J) of SO(3). 
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ones, as shown in Figure (3.29) will give a stroboscopic phase of 

N' Nil 

CPI(T) = N~11 L A1,m' L:V~,m(n~) L:V~o(nj),. 
m',m k j 

(3.72) 

After averaging over the first set, n~, this can be expanded as 

(3.73) 

where the last two sums disappear if the multiplicity of the first splitting is N' > 1. 

A tensor of any rank I thus can be averaged if either (3' or (3" = p(l), and if 

the multiplicity of both splittings exceeds the rank, N'," > 1. Two possibilities for 

selecting p allow for simultaneous averaging of two tensors of different ranks. As can 

be seen from (3.73), the multiplicity of the first splitting can be reduced to It + 1 if 

h is the lowest of the two ranks. In that case the ordering of the apex angles also 

becomes important: (3" = (3(12), otherwise terms AI,m,:V~~~o«(3(12»):V~~~)«(3(11»), where 

m' = -12, -12 + 1, .. , - N', N', .. , 12, will not be averaged. Extension of this iterative 

procedure to further terms of different rank is obvious. 

Straightforward extension of the multiple splitting to a continuous trajectory, 

involving multiple rotations, would also require multiple time dimensions. The am­

biguity of the phase parameters '1' in (3.72), however offers possibilities for a one­

dimensional trajectory. Introducing a time dependence 

(3.74) 

we can replace (3.72) by its continuous counterpart 
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Figure 3.29: . Tensor interactions of two ranks, II and l2' can be eliminated with an 
additional, or secondary splitting, of the field directions under which·the interactions 
are averaged. The symmetry axes of the new cones retain the original symmetry of 
the primary splitting. 
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If 

wrT(m'N + m) = k27r, k = 1,2, ... (3.76) 

then expression (3.75) reduces to 

'Phh(T) = T L Al.O~l.b({3<ll))dg.b({3(l2)) = 0, (3.77) 
l 

which describes a rotation of the field direction with a slow change in the rotation 

axis (Figure 3.30). Vertices of polygons with opening 2{3(l2) exactly fit this trajectory, 

while the symmetry axes of the polygons trace out a cone with opening angle 2{3(h). 

The iterative geometry described above was first applied to the averaging of 

second and third rank interactions in spin space, using double modulation of the CW 

irradiation [71]. In real space, applications based on an iterative scheme were used to 

average second order quadrupole line-broadening [72, 104]. The fast reorientation is 

performed with a double rotor assembly (DOR), in which a powder sample is placed 

in a small rotor (inner rotor), spinning inside a larger rotor (out~r rotor) (see Figure 

3.23)[79]. The spinning axis is inclined at the angle (3(l4) relative to the symmetry 

axis of the outer rotor, which is itself spinning at (3(l2) relative to the magnetic field 

direction. 

The third (and probably most general) averaging scheme, dubbed dynamic angle 

spinning (DAS) [76] , is suggested by the patterns in Figure 3.27. Note that two of the 

lineshapes (Figure 3.27h an 3.27d) are in fact mirror images with different scaling 

factors. The reflection symmetry about an isotropic shift value is caused by a sign 

inversion of P2 ( cos (3< 4»), and the scaling ratio is given by 

p. ( (3(4») 
I 2 cos 1 4 I = 1.87, 

P2 (cos (3~ ) 
(3.78) 

where (3i4) = 30.56° and (3~4) = 70.12°, respectively. Since the shift reflection occurs 

with the same scaling ratio for each particle in the sample , it is possible to rephase 

the signal of all particles simultaneously at some time T. If evolution for a period 
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Figure 3.30: A continuous one-dimensional trajectory to eliminate two tensors. A 
complementary set of points (commensurate with the basic splitting) can be found 
at every point on the trajectory, to average one of the tensors. Such a set is shown 
here as a pentagon. The centers of the pentagons form a continuous cone with apex 
angle such that another tensor will be averaged. 
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TT proceeds at the angle {3b and subsequently for a period (1 - T)T at {32, the 

accumulated anisotropic phase will be 

¢(T) = loT w({3(t))dt = (W({31)T + w(f32)(1 - T))T. (3.79) 

The modulation (3.79) disappears for each interaction of rank n if 

(3.80) 

which results in ¢(T) = o. A signal recorded at constant intervals of time T, 2T, 3T, .. , . 

then will be independent of all anisotropic terms, and carry information only about 

the available isotropic shifts. 

Many variations of this approach are possible because motion of the spinning axis 

is not limited to discrete positions and equal probability. Any function of time {3(t), 

satisfying the condition 

faT w({3(t))p(t)dt = 0 (3.81) 

where p(t) is a weight function, will periodically refocus the phase. For example, 

linear sweep of the spinning axis between the angles 19.05° and 99.19° is a solution 

to (3.81). Similarly, the above DOR trajectory can be understood as 

cos[{3(t)] = COS({3(2») COS({3(4») + sin({3(2») sin({3(4») COS(wrt) (3.82) 

and p(t) = 1, where Wr is the spinning speed of the outer spinner, and {3(2) and 

f3( 4) are the magic angles of the Legendre polynomials P2 (cos {3) and P4 (cos {3). The 

DAS trajectories cap also follow the symmetry of regular polyhedra. The solutions 

of (3.80) generally describe surfaces in three dimensions space ({3b f32, T), as shown 

in Figure (3.31). Since the spinning angles can be interchanged, the surfaces exhibit 

inversion symmetry. A simultaneous solution for two equations of the form (3.80) is 

obtained at any point on a crossing line of two surfaces (Figure 3.31). Two solutions, 

(37.38°,79.19°,1/2) and (0°,63.43°,1/6), describe circles which traverse the vertices 

of an icosahedron (Figure 3.32) and thus present continuous extensions of icosahedral 
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Figure 3;32: Icosahedral symmetry can be implemented with just two continuous 
trajectories in cases where tensors of rank two and four are to be eliminated. In 
the laboratory frame, this appears as a fast rotation of the sample at two different 
angles in succession. Time spent along one particular trajectory is proportional to 
the number of vertices. In top the vertices are those of an icosahedron, the two 
spinning axes are (3~l) = 0° and (3~l) = 63.43° and the ratio of times spinning at the 
two angles is 1:5. In bottom the vertices are those of either an icosahedron or a 
dodecahedron, the angles are (3~l) = 37.38° and (3~l) = 79.12° and the ratio of times 
spinning at the two angles is 1: 1. 
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point symmetry. One of the solutions may be converted to the other just by inversion 

of one direction. Equation (3.79) also can be extended to give solutions for averaging 

three or more tensors, with the addition of controlled time delays and spinning angles. 

Such experiments will be successful if the motion of the spinning axis is fast compared 

to the transverse relaxation rate, or if the transient magnetization can be stored along 

the polarizing field. The latter method was actuallr used in dynamic angle spinning 

(DAS) experiments to remove second order quadrupole line broadening in spectra 

of 0-17 [78]. We close by mentioning that averaging by icosahedral symmetry (or 

double rotation) in both spin and spatial coordinates simultaneously is an optimal 

solution for zero-field NMR in high field (see chapter 3)['50]. 
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Chapter 4 

Calculation of Sideband 
Intensities in MAS, DAS, and 
DORNMR 

4.1 An Approximate Method of MAS Sideband 
Intensity Calculation 

4.1.1 Introduction 

Magic angle spinning (MAS) in solid-state NMR as a powerful method for eliminat­

ing the dispersion in spectra causedby the orientation distribution of the resonance 

frequencies of the magnetization in polycrystalline or amorphous samples is obtain­

ing more and more applications for studying inolecular structure and dynamics. In 

contrast to the high resolution spectra in liquid NMR which results from the averag­

ing under rapid incoherent tumbling of particles, the Zeeman transition frequencies 

of spin nuclei in the polycrystalline or amorphous samples are severely broadened 

owing to the lack of these random motions [5,59]. Such motions, where present, act 

to average anisotropic interactions (for example, chemical shift anisotropy (CSA), 

dipolar, and quadrupolar couplings between spin nuclei) to zero. ·Where the neces­

sary averaging over the internal random motions of a spin system does not occur, 

macroscopic motions which are, in most of cases, coherent, have to be applied to the 

sample to improve spectral resolution. MAS, in which the sample rotates around an 
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axis inclined at the magic angle (8m = 54.74°) with respect to the external static 

magnetic field Ho is today one of the most common methods used for this purpose. 

This technique was first proposed by Andrew and Lowe in the late 1950s to suppress 

homogeneous broadening due to the dipolar interaction[56, 57, 58]. Later, Schaefer 

and Stejskal showed that eSA also can be averaged to zero at relative low fields [93]. 

In the extreme where the spinning speed far exceeds the breadth of the anisotropy, 

MAS yields the isotropic shift at the expense of any information concerning the 

anisotropy. This condition must be met for homogeneous broadening, for example, 

which is caused by homonuclear dipolar interactions. However, for inhomogeneous 

broadening (e.g. eSA and the first order quadrupolar interaction) sidebands develop 

around the isotropic peak if the spinning speed is smaller than the anisotropy[94]. 

Maricq and Waugh[95] subsequently proposed that the free induction decay (FID) 

signal be expanded as a series of moments in order to extract the anisotropic informa­

tion from the sidebands. Herzfeld and Berger[96] also developed a general method, 

involving Bessel functions, to calculate sideband intensities. The anisotropic infor­

mation is extracted by time-consuming simulations of the intensities of the individual 

sidebands. In this section we propose a new method to calculate approximate side­

band intensities, in real time without using a large data base which is necessary 

in Herzfeld and Berger's method for time efficiency. The new method involves ex­

panding the FID signal in a basis of irreducible spatial tensors in such a way, when 

averaged over all orientations, only zero rank irreducible tensors (scalar operators) 

contribute to the sideband intensities.· Symmetry properties of the sidebands can 

be seen clearly in this expansion, and an approximate formula up to ninth-rank ir­

reducible tensors is obtained by truncating the series. The dependence of sideband 

intensities on anisotropic parameters (8, TJ) can then be expressed explicitly. With 

least square fitting programs, the extraction of the principal values of the chemical 

shift anisotropy from the sideband intensities obtained from MAS spectra can be 
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quickly and easily performed. 

4~1.2 Theory 

We start with a rare spin nuclear system (such as 13C) in which nuclear spins in­

teract with the external static magnetic field H 0 via anisotropic chemical shielding. 

According to the notation and conventions given by Mehri~g[19], we can represent 

the spin Hamiltonian as 

2 

1i = Wolz + WoO" Iz + Wo L (_l)m A2- mT2m, (4.1) 
m=-2 

where the Wo is the Lannor frequency of the spin nuclear species involved, 0" is the 

isotropic chemical shielding, Iz is the spin operator, and A2- m and T2m are the 

components of the second rank irreducible spatial and spin tensors respectively. In 

Eq.(4.1), the first term represents the Zeeman interaction, and the second term is 

the isotropic chemical shift while the third term the chemical shift anisotropy (CSA). 

The principal values, P2m, of the CSA tensor is given by 

P±l = o. (4.2) 

By using the properties of the irreducible tensors and the Wigner rotation matrices, 

the A2,m in Eq.(4.1), reflecting orientation dependence of the CSA Hamiltonian, can 

be expressed as 
2 

A2m = L D~m(n)p2m1' (4.3) 
mI=-2 

where D~1m(n) are the Wigner rotation matrices and n = n(a, (3, '1') are Euler angles. 

After the spin Hamiltonian given in Eq.(4.1) is transformed into the rotating 

frame by the unitary operator e-iwolzt, the time dependent terms in the total Hamil­

tonian can be neglected under the first order perturbation approximation, and the 

total Hamiltonian becomes 

(4.4) 

assuming that the isotropic chemical shift (woO') is zero in this particular case. 
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After the sample rotates around a fixed axis inclined at an angle, (J, with respect 

to the external magnetic field, viewed in the rotor frame fixed on the sample, the mag­

netic field, Ho, actually journeys on a cone with half apex angle (J (see Figure 3.13)). 

In order words, the magnetization 'traverses the spinning. trajectory of the sample, 

and the local fields determined by the eSA tensor change periodically. Henceforth, 

the component of the second rank irreducible spatial tensor, A20, becomes time de­

pendent. By using the Wigner rotation matrices, the spin Hamiltonian in the rotating 

frame becomes 
2 

1-£ = "(T20 L: D~~o(Or)A2m' (4.5) 
m=-2 

where f2r = Or(O, (J, Wrt) , (J is the angle between the rotor axis and Ho, and wrt 

is the azimuth of the x-axis of the rotor frame with respect to Ho. In Eq. (4.5), 

the time-independent part, corresponding to m = 0, disappears when (J = (Jm, the 

magic angle of the second order Legendre polynomial. The remaining components 

in Eq. (4.5) are time dependent. Since the sample spinning is only applied on the 

spatial parts of the spin Hamiltonian, the spin Hamiltonian always commutes with 

itself at all times. This means that the eigenvectors of the spin Hamiltonian remain 

unchanged at all times, but the eigenvalues are modulated by a set of harmonics. 

Hence the resonance frequency becomes time dependent, and the FID signal for a 

spin I = ~ system can be written as 

get) = exp {-i<p(t)}, (4.6) 

where 

(4.7) 

and 

4>m = (exp {-imwrt} - 1). (4.8) 

In general, Eq. (4.6) describes a phase-modulated signal with the associated 

Fourier spectrum showing a band structure. Each oriented single crystal contributes 
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a particular sideband pattern, and what we see is the average over all orientations 

for a powder sample. Such an averaged sideband pattern is not related simply to the 

anisotropies and asymmetry parameters of the eSA tensors, however. In order to 

extract these parameters from the experimental results obtained under MAS, Mar­

icq and Waugh expanded Eq. (4.6) in a multiple moment series, and found that the 

second and third moments of the MAS NMR spectra are indeed related fairly simply 

to 6 and 'TJ. In practical applications of the moment analysis method, the second and 

third moments are first calculated from the sideband intensities and the spinning 

speeds of the sample obtained from the experimental MAS NMR spectra, and then, 

using the relationships between the moments and the principal values of the eSA 

tensors, the anisotropies and asymmetry parameters, can be calculated. Since the 

intensity of the N -th order sideband, in general, decays, but the frequency increases 

as the order of the sideband, N" increases, the contribution of small sideband inten­

sity to the moments can not be ignored, and therefore, this method requires very 

accurate measurement of all sideband intensities, which is difficult to do. Moreover, 

the method fails when sidebands originating from different site in a spin system 

overlap. To overcome these problems, Herzfeld and Berger first expanded Eq. (4.6) 

using Bessel functions and subsequently converted it to a Fourier series. The N -th 

coefficient in the Fourier expansion then corresponds to the N-th sideband intensity. 

Nevertheless, the intensity of each sideband has a very complicated dependence on 

the anisotropic parameters, and the problem can be inverted only by time-consuming 

numerical simulations. 

The dependence of the intensities on, anisotropic parameters is complicated be­

cause the integrals over all orientations in Eq. (4.6) cannot be solved analytically. 

Here, instead, we will expand the FID signal into a Taylor series. By virtue of the 

properties of the products of two irreducible tensors, the FID signal is recast in a 

basis of irreducible tensors from rank zero to rank infinity. The rotational transfor-
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mation properties of irreducible tensors yield analytical solutions for the integrals up 

to any order. 

The first step in this new method is to expand Eq. (4.6) into a Taylor series to 

obtain 
1 

get) = ~ k! [cp(t)]k. (4.9) 

Substituting Eq. (4.7) into (4.9), we then have 

1 /2w08 k 
get) = ~ k!(V3~) !k(t) (4.10) 

where 

!k(t) = 2: 2: ... 2: B(mI, ffl2, . .. , mk)<Pml <Pm2 ... <PmkA2,ml A2,m2 ... A2,mk 
ml #0 m2#0 mk#O 

(4.11) 

and 

(4.12) 

Later, we will see that the function !k(t) only depends on the asymmetry parameter 

'fl. 

In the next step, we introduce the product of two irreducible tensors given by[20] 

h+l2 
Ah ,ml Al2,m2 = 2: C(lt,l2,l;ml,ffl2,mI +m2)At,ml+m2' (4.13) 

l=lll-l21 

where C (li , h, l, ml, m2, ml +m2) are the Clebsch-Gordan coefficients. Iterating using 

Eq. (4.13), we can represent the product of k second-rank irreducible tensors as 

4 ll+2 lk-2+2 
A2,ml A2,m2··· A2,mk = 2: 2: ... 2: C(2,2,h,mI,ffl2) 

h=Ol2=lh-21 lk-l=llk-2-21 
k-I 

C(lt, 2, l2, ml + m2, m3) ... C(lk-2, 2, lk-b ti 'Tni, mk)Alk_1,L::=1 mo· (4.14) 

With the orientation dependence expressed in terms of the Wigner rotation ma­

trices, the average of the l-th rank irreducible spatial tensor over all orientations 

is 

otherwise 
(4.15) 

- {Ao,o(h, ... , lk-3) 
Al m = , 0 

if l = 0 and m = 0 
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Hence after the powder average, only the scalar part in Eq. (4.11) remains: 
2 

Ao,Q ( tt, ... , lle-3) = L 
Ie-I Ie-I 

C(2, 2, 0, L ni, - L ni)P2,n1P2,n2 ... P2,nk-1P2,_ ,,£~:ln; (4.16) 
i=1 i=1 >-1 

In this equation, the product of 'k components P2,no (i = 1 ... k) is of order 81e, and 

will cancel with the 81e in coefficient B of Eq. (4.11). Thus fle(t) is only a function 

of the asymmetry factor TJ. From Eq. (4.2), the power of the asymmetry factor in 

/Ie (t) is determined by 

(4.17) 

The result of the square-brackets, representing the truncation of each individual term 

in Eq. (4.17), is an integer with the value zero or one. Since from Eq.(4.3), Pno are 

not equal zero only if ni = 0, ±2, and since the sum over all indices, Ef=1 ni, has 

to be zero after the powder average according to Eq.(4.15), the number of indices 

which has value 2 must equal the number of indices with value -2. Thus Eq: (4.17) 

can only result in an even integer number. This means that the power of TJ must 

be even and, consequently, the sideband intensities are not sensitive to the sign of 

the asymmetry factor. This feature follows, then, that the sample rotation does not 

change the symmetry of the spin system, in agreement with the relationship between 

the static powder lineshapes and the asymmetry parameters TJ, (usually we can take 

° ~ TJ ~ 1.). 

The symmetry property of coefficients B can be easily found after the powder 

average by use of the properties of reduced Wigner rotation matrices: 

(4.18) 

In the final step, from Eqs. (4.14) and (4.15) we have mle = "£tl mi. Inserting 

this condition into Eq. (4.11), we thus obtain 

1 + (_1)1e Ie n Ie Ie 

</>m1 ... </>mk-1 </> _ "£:::11 m, = 2 + 2 L ( -1) ~.... ~ 
n=1 31=1 3,.=3,.-1+1 
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{ 
COS[(mjl + ... + mj,.)wrt] 

. isin[(mil + ... + mjJwrt] 

for even k 

for odd k. 

(4.19) 

In Eq. (4.19), when k is an even number, the product of k functions <Pi(i = 1 ... k) 

is also an even function about NWrt; otherwise, it is an odd. This means that 

even order tenns in the Taylor expansion symmetrically correct the intensities of 

sidebands whereas the odd terms result in the differences of sideband intensities 

about the centerband. Because the odd tenns are antisymmetric, they make no 

contribution to the centerband. 

With substitution of Eqs. (4.15),(4.16), and (4.19) into Eq.(4.11), fk(t) can be 

expressed by 
2N N 

/fe(t) = L L I k•m •n 'T/2n exp( -imwrt) 

where N = [k/2] and 

k 

h.m.n == L(-l)j L 

m=-2Nn=0 

k-l 

B'(ml,·· ·,mk-l,- Lmi) 
j=O 11.···.1/c-3 mlo···.m/c-l #,0 nlo···.n/c-l i=l 

k-l k-l 

(4.20) 

xC(2, 2, h; mb m2)C(h, 2, l2; ml + m2, m3)··· C(2, 2, 0, L mi, - L mi) 
i=l .i=l 

k-l k-l 

xC(2, 2, ll; nI, n2)C(h, 2, l2; nl + n2, n3)··· C(2, 2, 0, L~' - L~) 
i=l i=l 

and B' = 8k B, and P~m are equal to P2.m with 8 = land 'T/ = 1 given in Eq.(4.3), 

that is, they are no longer functions of 8 and 'T/. 

4.1.3 Results 

In the last section, we have solved the powder average up to infinitive order in the 

Taylor expansion of the FID signal. After substitution of Eqs. (4.11), (4.16), and 
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(4.17) into (4.9), however, the FID signal can be represented as a Fourier series 

again (see Eq. (4.20)) and the sideband intensities can be obtained by evaluating 

the Fourier coefficients. As the order in the Taylor expansion increases, the number 

of summations over all Clebsch-Gordan coefficients also increases as (k - 3), where 

k is the k-th order in the expansion. Using a computer, it is easy to determine the 

coefficients of the first ten orders in the Taylor expansion, but calculation of higher­

order coefficients becomes very time consuming. Fortunately, though, in practice the 

spinning speed is not much smaller than· the CSA (especially for 13C), and in these 

circumstances the approximation up to ninth order, as we will see, is already very 

good for the calculation of sideband intensities. 

Here we only list the coefficients of the first four orders in the Taylor expansion 

and use them to draw some general properties of the sideband intensities under MAS. 

All other coefficients can be obtained from Eqs. (4.11), (4.14), (4.16), and (4.19). 

Thus, 

fo(t) - 1 

fl(t) - o 
1 232 ( 1 . 

- ·5(3 + 1} )[-4 + 3 cos wrt) + 12 cos(2wrt)] 

- -: Jf (-1 + 172)[2 sin(w.t) - sin(2w.t)] (4.22) 

First, it can be seen from Eq. (4.22) that the zero order term is always equal one 

while the first order term is zero. This implies that the first order term has no 

correction to the first order (±1) sidebands due to the asymmetry parameter. This 

explains that once the spinning speed is in the regime of the linewidth of the static 

powder pattern the sideband intensities measured experimentally become more or 

less symmetric around the centerband. Such a distribution of the sideband intensities 

is no longer sensitive to the asymmetry parameter and therefore cannot be used to 

extract the anisotropic information. Second, when 1} = 1, the value of h(t) is zero. 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

rooo/Olr 

Figure 4.1: Variation of sideband intensities with the ratio of chemical shift 
anisotropy (Wob') to spinning speed (wr ), computed for the case ", = 0.5. Solid 
lines are calculated by numerically integrating Eq. (6) over oIl orientations, and 
dashed lines are obtained by our approximate method (up to the ninth order). (a) 
Centerband intensities. (b) First-order sidebands (±1). (c) Second-order sidebands 
(±2). 
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This conclusion can be extended to all odd terms in accordance with the symmetry 

properties of odd and even orders in the Taylor expansion as discussed at the end of 

the last section. Intuitively, the powder pattern is symmetric around the isotropic 

frequency once 'TJ = 1. Thus the sidebands should also be symmetric around the 

centerband. Third, the sum of all coefficients of sidebands in !k(t) is always zero 

except for k = O. This means that the correction of each order just redistributes 

each sideband intensity over the whole set of sidebands, and the FID signal is always 

normalized. 

In order to see how good the approximate method is, we have to evaluate the 

sideband intensities exactly from Eq. (4.6). According to the result given by Herzfeld 

and Berger[96], the intensity o(the Nth sideband is 

1 107l'1o27l' 1027l' IN = -6 4 sin({3)d{3d"( I exp -i[NO + 7J1(O)]dOI 2 

17r 0 0 0 
(4.23) 

where 

,,'.(ll) J[ Wo ~ d~~o(Om) A (. ·ll) 
If' U = --. - ~ 2,mexP -zmu . 

3-zwr m=-2 m 
(4.24) 

Composite ten-point Gaussian (Gauss-Legendre) quadruture has been used to eval­

uate the three-dimensional integral in Eq. (4.24). To calculate the intensities of 

a set of sidebands between one half and five minutes on Micro VAX II depending 

on the accuracy needed. Figure (4.1) shows that a comparison of sideband inten­

sities computed through the first ten orders of the Taylor expansion (dashed line) 

and the exact solution (solid line) obtained by numerical simulation[96]. Since the 

ratio of the number of multiplications involved in the numerical integration of the 

exact solution given in Eq.(4.23) to that in the approximate method is at least in 

the order of ten thousands, the computing time reduces from about six hours for 

the exact result to a few seconds for the approximate method. Both results are very 

close when the ratio of the anisotropy to the spinning speed, ~, is smaller than 

three. For ~ > 3, the sideband intensities calculated by the approximate method, 
Wr 

. however, tend to diverge. Figure (4.2) shows the convergence under approximations 
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Figure 4.2: Variation of sideband intensities with the ratio of chemical shift 
anisotropy (Wo8) to spinning speed (wr ) under the approximate method, with first 
four (dotted lines), six (short dashed lines), eight (long dashed lines), and ten (solid 
lines) orders. 77 = 0.5. (a,e) Second-order sideband. (b,d) First-order sideband. (c) 
centerband. 
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of different order. We see that the sideband intensities converge at higher orders, 

and that the rate of convergence is much the same as for the sinusoidal functions. 

The total intensity obtained from the sum over all sideband intensities is always one, 

even though each sideband itself diverges. This is because the higher order sideband 

intensities are given by redistributing the lower order sideband intensities and keep­

ing the whole intensity of the spectrum at unity. So, the divergence comes from the 

incorrect intensity partition of each sideband for large value of ~. 
Wr 

In order to extract anisotropic information, the experimental sideband intensi­

ties have to be normalized for comparison with the theoretical values. Experimental 

signal-to-noise therefore must be good enough to permit accurate measurement and 

summation of all sideband intensities. To overcome this requirement, Herzfeld and 

Berger proposed an alternative method in which the anisotropic information is ex­

tracted by measuring the ratios of the sideband intensities to the centerband intensity. 

Furthermore, as mentioned above, the differences of sideband intensities around the 

centerband are relatively sensitive to the asymmetry factor (TJ), whereas the aver­

ages of these sideband intensities are sensitive only to the anisotropy (6)(see Figure 

4.3). Although there is a maximum difference of the N-th order sideband intensi­

ties around centerband, the change of the difference is the minimum at axial and -

near-axial situations. This method therefore is only slightly better than the method 

used by Herzfeld and Berger. We use the ratios of the differences (averages) to the 

centerband intensity to extract the anisotropic parameters by least squares fitting. 

In the fitting program (MASFIT), the initial values of the anisotropic parameters 

are calculated by Eq. (4.22), and then by use of the Davidon-Fletcher-Powell (DFP) 

algorithm [98] , the anisotropic parameters can be extracted in a few seconds. Figure 

(4.4) shows contours of the surface used in the fitting program. We can clearly see 

that there does exist a unique minimum, but that the surface is very smooth in the 

dimension of the asymmetry factor TJ. As a result, the determination of TJ is relatively 
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Figure 4.3: Variation of ratios of the differences and averages of the sideband in­
tensities to the centerband intensity with the ratio of the anisotropy (6) to spinning 
speed, ~, and the asymmetry factor (17). The four curves correspond to 17 = 0 (solid 
line), 17 = 0.3 (long dashed line), 17 = 0.7 (short dashed line), and 17 = 1.0 (dotted 
line). 
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less accurate than that of the anisotropy 8. 

The overall quality of the fitting can be seen in Table (4.1).- One severe problem 

appears when the asymmetry factor TJ is very small (that is, in the near-axial regime). 

Here the differences of the sideband intensities for different TJ are so small (see also 

Table 4.1: Results of sideband analysis 

8 (ppm) TJ 

Lead Nitrate (PbN03) (207 Pb) 

Reported 35.4 ± 3 0.0 ± 0.16 

Powder Lineshape 35.9 ± 5 0.0 

Sideband 34.6 ± 5 0.08 ± 0.1 

Benzoic Acid(l3C) 

Reported 71.0 ± 4 0.6 ± 0.12 

Sideband 63.4 ± 5 0.8 ± 0.1 

Phoshous Pentaoxidee1 P) 

Reported 218.0 ± 20 0.0 ± 0.18 

Sideband 190.6 ± 5 0.06 ± 0.1 

Powder Lineshape 193.0 ± 5 0.0 

Figure 4.3) that extraction of TJ becomes quite difficult. Such a problem exists both 

for moment analysis and powder lineshape simulation[97] methods. 

This approximate method also can be applied to calculate the centerband in­

tensity after all sidebands are suppressed by a TOSS pulse sequence[99]. The FID 

signal of a spectrum with sidebands contains a series of rotational echoes. Moreover 

the rotational ~cho results from the periodicity of the phase, which runs from 0 to 

27r over time. After TOSS, however, this period no longer exists[lOO]' and then Eq. 

(4.8) must be replaced by 

(4.25) 
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Figure 4.4: Contour of the 8 - TJ surface used in the least square fitting program, 
varying with the ratio of the anisotropy (8) to spinning speed, !!:!ll§., and the asymmetry 

Wr 

factor (TJ). The minimum corresponds to !!:!ll§. = 2.5, and TJ = 0.5. 
Wr 
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Figure 4.5: Variation of centerband intensity with the ratio of the anisotropy (6) to 
spinning speed, ~, at TJ = 0.5 after application of a TOSS pulse sequence. 
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This expression becomes 4>ml4>m2 ... 4>mk = exp( ml + m2 + ... + mk) = 1 after the 

powder average. Thus !k(t) becomes time independent, and g(t) gives the intensity 

of the centerband. From Eq. (4.18) and the properties of the Clebsch-Gordan coeffi­

cients, it can be found that !k(t) are zero if k is odd number. Figure (4.5) shows the 

variation of the centerband intensity with the ratio of the anisotropy to the spinning 

speed, ~, at ", = 0.5 in a TOSS experiment. It can be seen that, after TOSS, the 

centerband intensity converges much faster than MAS centerband intensity. 

4.1.4 Conclusions 

We have shown that the FID signal under MAS can be expanded into a Taylor 

series which contains products of k irreducible spatial tensors (k = 0 ... 00). The 

properties of irreducible tensors permit the integrals over all orientations to be solved 

analytically. The FID signal then becomes an expansion in a set of basis scalar 

operators, which are uniquely determined by the anisotropic parameters of the CSA 

tensors, and the coefficients in the expansion are given by a series of Clebsch-Gordan 

coefficients. After all the coefficients and the scalar operators are evaluated, the 

sideband intensities are functions of ",2, and the total pattern of sidebands can be 

understood as a sum of symmetric and antisymmetric parts about the centerband. 

The odd terms in the expansion determine the antisymmetric pattern, and make 

no contribution to the centerband intensity, while the even terms contribute to the 

symmetric part. After manipulation of the Clebsch-Gordan coefficients, we obtain an 

approximate formula up to the ninth order in the Taylor expansion of the FID signal. 

Sideband intensities can be easily calculated within real time using this formula even 

for the spectra consisting of many deferent sites whose sidebands overlap with each 

other. The results are in satisfactory agreement with the exact solution obtained 

by numerical simulation if the ratio of the anisotropy to the spinning speed, ~, 
Wr 

is smaller than three. The anisotropic parameters can be extracted very efficiently 

using this method combining with least-squares fitting methods. We also apply this 
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method to calculate the centerband intensity after eliminating the sidebands using 

TOSS pulse sequence in MAS. The results show that the centerband intensity after 

TOSS converges to the exact value much faster than MAS center band intensity. This 

approximate method also can be applied to sideband intensity calculation in double 

rotation (DOR)[72, 104, 105], and dynamical angle spinning (DAS)[76] NMR 

4.2 Sidebands in Double Rotation (DOR) NMR 

4.2.1 Introduction 

For half integer spin nuclei, the dispersion of the central transitions (! +-+ -!) for a 

polycrystalline or amorphous sample mainly comes from the second order effects of 

the quadrupolar interactions[101, 102, 103]. Such a dispersion makes NMR spectra 

featureless owing to the overlap of lineshapes resulting from different sites in the 

sample, leading to a major obstacle in the applications of high resolution solid state 

NMR to a large class of these nuclei. TheoretiCally the dispersion of a particular 

nuclear transition is determined by the orientation-dependent resonance frequencies 

of the magnetization with respect to the external magnetic field. The orientation 

dependence of the central transition frequencies arising from the second order ef­

fects of the quadrupolar interactions cab be described by the linear combination of 

a second- and a fourth-rank spatial tensor (see Eq. 3.8 or 3.20), and thus cannot be 

removed completely by the conventional magic angle spinning (MAS) method[56, 58] 

(see Figure 3.4). Recently, it has been proven experimentally that double rotation 

(DOR)[72, 78, 104] as well as dynamical angle spinning (DAS)[76, 73] are the right 

solutions to suppress the second-order anisotropic broadening and yield high resolu­

tion spectra. In DOR, a small inner rotor is embedded in a large outer rotor (see 

Figure 3.23). The outer rotor spin around an axis inclined at 0(2) = 54.740 (the magic 

angle of the second-order Legendre polynomial) with respect to the external mag­

netic field while the inner rotor rotates around another axis tilted at 0(4) = 30.560 
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(one of the magic angles of the fourth-order Legendre polynomial) relative to the 

rotation axis of the outer-rotor. 

From section 3.8, all the anisotropies of the interactions can be effectively aver­

aged to zero by DOR if the ratio of the inner rotor spinning speed to outer rotor 

spinning speed is larger than four, and if the spinning speeds of both rotations are 

much larger than the amplitude of the internal anisotropic .interactions (chemical 

shift anisotropy, quadrupole, and dipole). However, owing to the mechanical lim­

itation of sample spinning system, the typical spinning speed of the outer rotor is 

about one kilo-Herz or less while the spinning speed of the inner rotor reaches five 

kilo-Herz. It is obvious that the spinning speeds of both the inner and outer rotors 

are not in the fast spinning region. Since the second order quadrupolar broadening 

is still inhomogeneous, using DOR will, therefore, yield high resolution spectra ac­

companied by a train of sidebands. Although the appearance of the DOR sidebands 

makes the assignment of the spectra difficult, a cheap way to extract anisotropic 

information from the DOR sidebands is provided through the analysis of the DOR 

sideband intensities[96, 106]. 

In this section, the sidebands in the DOR spectra are analyzed by the moment 

method proposed by Maricq and Waugh and also the Bessel function method used by 

Herzfeld and Berger in MAS sideband analysis. General formulae for the calculations 

of the moments and sideband intensities are derived. Unlike in MAS, the sideband 

intensities depend on not only the anisotropic parameters (8 and TJ) and the spinning 

speed of the outer rotor, but also the ratio of spinning speeds of the inner rotor to the 

outer rotor as well as the relative rotor phase between the inner and outer rotors. The 

sideband patterns with a particular rotor phase is more sensitive than the average 

over the rotor phases, similar to the difference between the sidebands arising from 

a single crystal and those from a powder sample. Finally, numerical simulations are 

implemented and shown to agree with experimental results. Anisotropy information 
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of the quadrupolar interaction therefore can be recovered by simulating the sideband 

intensities or the rotor phase dependence of the sideband intensities. 

4.2.2 Experimental Results 

Figure (4.6) shows the experimental spectra of sodium-23 nuclei in sodium oxalate 

with quadrupolar coupling constant 2.43 MHz and asymmetry parameter 0.72 under 

DOR. It can be clearly seen that the spectra consist of high-resolution isotropic 

peaks accompanied with a train of sidebands like those under MAS. However the 

envelop of sidebands does not mimic the static powder pattern (a feature observed 

in a MAS spectra under slow spinning condition). This can be explained as follows. 

The envelop of sidebands of the first rotation spinning at the magic angle ()(2), forms 

a P4 lineshape meanwhile the envelop of sidebands of the second rotation spinning 

at (}(4) forms a P2 lineshape. The total envelop of all sidebands is the convolution 

of these two lineshapes. When the inner rotor does not spin fast enough, the total 

envelop will be severely distorted. 

In addition, the frequency difference between two nearest sidebands in a MAS 

spectrum is uniquely determined by the spinning speed Wr of the sample. However 

in DOR spectra there are total eighty-one different sets of sidebands in principle. 

Each of them has the frequency difference of mlWrl + m2Wr2 corresponding to a 

particular pair of ml, m2 values from -4 to 4. All sets of sidebands overlap each 

other and make the pattern of sidebands complicated. Experimentally, since the 

inner-rotor spins much faster than the outer rotor, the intensity of sidebands are 

mainly determined by the outer rotor spinning speed. 

4.2.3 FID Signal under DOR 

After applying two simultaneous rotations to the sample with half integer spin nuclei, 

the time dependence of the central transition frequencies arising from the second 
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Figure 4.6: Variation of sidebands measured experimentally in sodium-23 spectra 
of sodium oxalate with different spinning speed under double rotation (DOR). The 
quadrupolar coupling constant is wQ = 405 kHz, the asymmetry parameter, Tj, is 
0.72, and the Larmor frequency of the sodium nuclei is 105.8 MHz. 
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order effects of the quadrupolar interactions is given by Eq.(3.45) or 

l 

w12~_1 (t) = L Cl L V~l,O(nrl (t))V~2,ml (nr2 (t))Alm2' 
2 2 1=0,2,4 ml,m2=-l 

(4.26) 

where Cl is given by Eq.(3.26) and nr1(t) and !1r2(t) are two sets of Euler angles 

defined by Eq.(3.46). If we assume an on-resonance condition, the total phase of the 

magnetization at time t after applying a 90° pulse is 

4 

cp(t) = L (4.27) 

where 

(4.28) 

and the Euler angles, (a, /3, 1'), are used to describe the orientation dependence of a 

single spin nucleus in the inner-rotor frame. The FID signal therefore can be simply 

written as 

g(t) = e-tcp(t). (4.29) 

For a powder sample, the average over all orientations may be implemented by 

performing a three-dimensional integral over Euler angles, that is 

1 f27r f27r f7r 
G(t) = 87r2 10 da 10 d1' 10 sin/3d/3 g(t). (4.30) 

It maybe worthwhile to point out that the 7r symmetry for a integral and half 7r 

symmetry for /3 integral are totally destroyed here due to incomplete truncation of 

the sample rotation. 

4.2.4 Moment Analysis of DOR Sidebands 

Moment analysis method was first proposed by van Vleck[107] in order to characterize 

powder lineshapes in NMR spectra arising from homogeneous spin interactions, for 

example, the dipolar couplings between like-spin nuclei. Later Maricq and Waugh [95] 

had applied this method to analyze the sidebands in MAS spectra. The moments 
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calculated from the sideband intensities and the spinning speeds in MAS spectra can 

then be used to extract the chemical shift anisotropy parameters 0 and TJ. Here we 

can also adapt this moment analysis method to analy.ze the DOR sidebands, and to 

extract, if possible, the anisotropic parameters of the quadrupolar interactions. We 

first introduce the definition of the n-th moment given by 

Mn = 100 

~wnG(w) = f: w'NIN, 
-00 N=-oo 

(4.31) 

where WN is the resonance frequency of the N -th sidebands , IN is the intensity, and 

G(w) is the spectrum given by G(w) = LN INo(w-wN), resulting from Fourier trans­

formation of the FID signal G(t) without relaxation broadenings. Once the spectrum 

is measured experimentally, the moments can be calculated by use of Eq.(4.31}. 

In order to relate the moments with the anisotropic parameters of the quadrupolar 

interaction, it is possible to derive a relationship between the FID signal and the 

moments given by [5] 

G(t) = f (_z~)n Mn. 
n=O n. 

(4.32) 

The inverse expression of Eq.(4.32) gives the n-th moment 

Mn = zn:; G(t)lt=o. (4.33) 

Inserting Eq.(4.30) into Eq.(4.33) and then taking an average over all Euler angles 

yield the first few moments. In order to represent the complicated equations, we first 

introduce following definition: 

PCC[Pk-3(L)Pk(l)Pk-l(m)] = C(hl2LI, ml, m2)C(L1hL2, ml + m2, m3)··· 
k-2 k-l k-l 

xC(Lk_3, lk-b lk, L Tni, mk_I)C(lklkO, L mi, - L mi) 
i=l i=l i=l 

(4.34) 

where C(hl2l3, mlm2) are the Clebsch-Gordan coefficients. The first four moment 

can now be written as 

Mo = 1 
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Ml - 0 

M2 - L a2~(l)]pOOrP2(l)] 
P2(l) 

M3 - L a3~(l)]pOOrP2(l)] + L a3rP3(l)]POO[P3(l)] 
P2(l) P3(l) 

M4 - L a4~(l)]pOOrP2(l)] + L a4rP3(l)]POO[P3(l)] 
P2(l) P3(l) 

+ L a4rPl (L )P4(l)]poo [PI (L )p4(l)] , (4.35) 
Pl(L)p4(l) 

where Pk(l) = ltl2·· ·lk. The scalar operators (or zero rank irreducible tensors), 

Poo[Pk(l)] , arising from the product of k spatial irreducible tensors, A4,mo for i = 

1 ... k, are given by 

Poo[Pk-3(L), Pk(l)] = L PCGrPk-z(L)Pk(l)Pk-l(m)]Phml··· Plk-lmk-1Plk ,_ 2:::11mo' 
. Pk-l(m) 

(4.36) 

and Pl,m are the principal values of the second order quadrupolar coupling tensors 

shown in Eq.(3.12). The coefficients of the scalar operators in the moment expansion 

can be expressed as 

a4rP2(l)] = L [4(mlWrl + nlwr2 ) + 3(ffi2Wrl - nlwr2 )]d2rP2(l)P2(m)Pl(n)] 
P2(m)Pl(n) 

a4rP3(l)] -: L 6[m3Wrl - (nl + n2)wr2 ]d3rP3(l)P3(m)P2(n)] 
P3(m)p2(n) . 

dkrPk-3(L)Pk(l)Pk(m)Pk-l(n)] = Ch ... Clkd<;;:!,O«()l) ... d~~,O«()l) 

xd~:~ml «()2)··· d~:~mk«()2)PCGrPk-3(L)pk(l)pk-l(n)] 
k 

nk= Lnk. (4.37) 
i=l 

As can be seen from Eqs.(4.35), the n-th moment is represented in a set of 

zero rank irreducible tensors (or scalar operators), POO[Pk-3(L)Pk(l)], for k = 2··· n. 

Each scalar operator arises from the product of k second order quadrupolar coupling 
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tensors, Pl"fni' for i = 2··· k. Actually, the representation of the n-th moment in 

the set of scalar operator given in Eqs.(4.35) is also true for the static situation, but 

the n-th moment is only related to a single scalar operator which is the product of 

n second order quadrupolar coupling tensors. The sample spinning therefore results 

in the mixing between the static moments with the sample spinning speeds. 

The anisotropic parameters 8 and "I of the quadrupolar interaction are encoded 

in the zero rank tensors. From the definition of the principal values of the second 

order quadrupolar coupling tensors given by Eq.(3.12), the zero rank tensor can be 

expanded into 

where 

Pk-l(n),Pk(m) 

X C(22lk, mk, nk - mk)P2,mlP2,nl-ml .•. P2,mkP2,nk-m k' 

with the conditions of 

k-l 

nk - - L:n; 
;=1 

k 

2i = L:(lm;1 + In; - miD, 
;=1 

(4.38) 

(4.39) 

(4.40) 

and P2,m are principal values of the quadrupolar coupling tensor with 8 = 1 and 

"1=1. 

The fourth and higher moments do not contain any new information which is not 

already available from the second and third moments. The anisotropic parameters 

therefore may be calculated from Eqs.(4.38) after the second and the third moments 

are obtained from the experimental DOR spectra. It. has been shown by Maricq 

and Waugh [95] that the second and the third moments obtained from the MAS 

spectra are independent of the spinning speed and the fourth and higher moments 

increases with. Wr • However in the DOR case, only the second or lower moments 
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are independent of the spinning speeds and the third or higher moments increase 

with Wr1 and Wr2 • This explains why the envelop of the sidebands does not mimic 

the static powder lineshape and changes with the spinning speeds because the third 

moment determines the asymmetry properties around the isotropic frequencies of 

the lineshapes. In the MAS case, the parameter J.L = M4/ Mi, which characterizes 

the lineshapes, increases with w;, leading to quasi-Lorentzian lines of decreasing 

halfwidth of the envelop. In the DO R case, the parameter J.L increases with the 

spinning speeds Wr1 and Wr2 linearly and bilinearly. This means that the halfwidth 

of the envelop of the DOR sidebands decreases according to quasi-super-Lorenrzian 

lines. This feature can be seen from Figure (4.6). 

It is general that all moments except the zero and first moments are depen­

dent on the relative rotor phase 'Yr. Introduction of this phase dependence in the 

moment calculation does not bring any new information and makes the whole ex­

pression more complicated. Experimentally by randomly taking the relative phase 

at different times, the relative phase effect may be averaged out. This averaging 

process is equivalent to taking an integral over the relative phase in Eqs.(4.38) to 

yield ~f=l 'Tni = o. 

4.2.5 Bessel analysis of DOR sidebands 

The moment analysis may have severe problem in practical cases since in principle 

an infinite number of sidebands has to be taken into account or else the short time 

behavior of the rotational spin echoes has to be analyzed very accurately. The 

solution to overcome this problem is to use Bessel function analysis of the sideband 

intensities developed first by Herzfield and Berger. 

From the properties of Bessel functions {A (z) }, we can derive 

e-lZe-·e = L ..7(z)e-,k9, 
k 
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where 

..7k(Z) = L( _Z)k
l 

Jk'(Z)Jk-k' ( -ZZ), 
k' 

and Z is a complex number. The inverse transformation of Eq. (4.41) is 

(4.42) 

(4.43) 

Now, by use of Eq. (4.41) FID signal arising from the central transitions can be 

expressed 

get) - {IT L L ..7K!r.l.m2 (Bmltm2)..7K~1.m2 (-Bmltm2)} 
ml,m2=-4 K!r.l.m2 K~1.m2 

X e-I{(Nr1 Wrl +N~W~)t+'Yr(N:l +N;l )+cr(N:2+N;2)} (4.44) 

where 

{ 
N:l = 2:mlom2 m 1K:n lom2 

N:2 = 2:ml,m2 m2K:nltm2' 

(4.45) 

for i = 1,2. 

Averaging of Eq. (4.44) over a and then using of the inverse transformation in 

Eq.(4.43) yields 

(4.46) 

where 

(4.47) 

and 

1 10211" 1211" 4 FNr1 ,Nr2 = (2 )2 dfh dB2 exp{ -z[Nr1B1 +Nr2B2+ L Bml,m2e-I(ml(h+m2/h)]} 
7r 0 0 ml,m2=-4 

(4.48) 

From Eq. (4.47) and (4.48), it can be seen that the phase of sidebands is deter­

mined by the relative rotor-phase between two applied rotations. Such a property is 

different from the MAS case where all sidebands are in phase after averaged over the 

Euler angle a. However the sidebands in DO R spectra will be in phase only after 
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averaging Eq.( 4.44) over the relative rotor-phase. Experimentally this can be done 

by accumulating FID signal without synchronizing the outer-rotor. The FID signal 

under DOR then becomes 

(4.49) 

where the overline of the G(t) indicates the average over the relative rotor-phase. 

In the limit that the inner rotor spins infinity fast, the coefficients Bm1 ,m2 given 

in Eq. (4.28) are not equal zero only if m2 = 0. This feature leads to the fact that 

the integration of Eq.(4.48) over ()2 is equal zero except for Nr2 = 0, and that the 

number of integrations of F reduces to one. 

Sideband intensities have been evaluated by numerical integrations of Eqs. (4.46), 

(4.49), for various cases. Composite ten-point Gaussian (Gauss-Legendre) quadru­

ture has t~ been used to.approximate all integrals over a, /3, 'Y. Owing to complicated 

orientation dependence (compared with the MAS case), the simulations of sideband 

intensities are much more time consuming than ones in the MAS case. To overcome 

such a problem, linear interpolation technique may be adapted [111]. Figure (4.7) 

shows how the sideband intensities varies with the spinning speed of the outer rotor 

with different ratio of two spinning speeds after averaging over the relative rotor 
I 

phase. 

4.2.6 Symmetry Properties of DOR Sidebands 

Both the intensities and the phases of the sidebands in DOR spectra depend on 

the relative rotor phase 'Yr between the outer rotor and the inner rotor. From the 

experimental results and simulations, even when the relative rotor phase is zero, 

there are still phase differences among each individual sidebands. Figure (4.8) shows 

the variation of the sideband intensities, 1Nl,N2 for N2 = 0, and Nl = 0, ±1, ±2 with 

the relative phase 'Yr. As can be seen from the figure, both the intensities and the 

phases of all sidebands vary with 'Yr. The intensities of real components of the even 
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Figure 4.7: Schematic variation of simulated sideband intensities as the spinning 
speed of the ourter rotor, Wr1 , changes with different ratio between the two spinning 
speeds of the inner and the outer rotors, ~, after average over the relative phase 'Yr, 

Wrl 

where we use the quadrupolar coupling constant and the asymmetry parameter of 
the sodium-23 nucleus in the sodium oxalate sample, WQ = 405kHz, 7] = 0.72, and 
Wo =105;8M Hz. 
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coupling constant and asymmetry parameter are wQ = 405kHz and TJ = 0.72, from 
the sodium oxalate. Larmor frequency is Wo = 105.8M Hz, and the outer rotor 
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order sidebands (Nl = 0, ±2,etc. ) are always positive while the odd order sidebands 

are oscillating around zero. Especially interesting are the intensities of the odd order 

sidebands which at 'Yr = 0° is just opposite to those at 'Yr = 180°. The exact 

variations of the sideband intensities with the relative rotor phase are determined 

the anisotropic parameters, 6 and TI, of the quadrupolar interaction as well as the two 

spinning speeds of the inner and outer rotor. In practice, these variations can be used 

to extract the anisotropic information by comparing the simulated and experimental 

results. As an example, Figure (4.9) shows the experimental results of the sideband 

intensities of the sodium oxalate varying with the relative phase under DOR, in 

agreement with the simulated results shown in Figure (4.8). The, experiment was 

implemented by synchronizing the outer rotor using a laser sensor. The optical 

signal detected from the sensor is transferred to TTL pulses using a logical circuit, 

and then the TTL pulses are used to trigger the pulse program of the spectrometer. 

By changing the triggering times, we are able to vary the rotor phase from 0° to 

360°. Actually the extraction of the principal values of the quadrupolar interactions 

can be fulfilled by fitting only the variation of the centerband intensities with the 

relative rotor phase. The advantage of this method is that the centerband usually 

contains most of the intensity of the. central transition which is necessary to obtain 
I 

the best accuracy of the fitting between simulations and the experimental results. 

Figure (4.10) shows the parametric plots of the relative phase 'Yr dependence of the 

centerband intensities with different asymmetry parameters, TI, of the quadrupolar 

interactions. 

The most interesting feature observed from the variations of the sideband inten­

sities with the relative rotor phase is that near the centerband, odd sidebands have 

inverse symmetry about. the relative phase 'Yr = 0 and 'Yr = 7r. Practically, such an 

inverse symmetry can be used to eliminate the odd sidebands and then to improve· 

the spectral resolution. To fulfil that, the outer rotor has to be synchronized at 

177 



0.4 

0.3 0.20 

0.2 

0.1 0.10 

0.0 

-0.1 0.00 

-0.2 

-0.3 -0.10 

0.10 0.20 0.30 0.40 0.15 0.25 0.35 0.45 

0.15 0.20 

0.10 
0.10 

0.05 

0.00 
0.00 

-0.05 Real -0.10 

0.20 0.30 0.40 0.15 0.25 0.35 

0.15 

0.10 

0.05 ~ 
.S 
~ 

0.00 II 

-0.05 

-0.10 11=1.0 Real 

0.1 0.2 0.3 
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178 



'Yr = 0° and 'Yr = 180°. After adding the two spectra together, the odd sidebands 

near the renterband can be totally suppressed [112, 104]. Figure (4.11) show the 

experimental result of sodium oxalate. 

In order to see this inverse symmetry from Eq. (4.46), we extend to the ultimate 

case in which the spinning speed of the inner rotor is much larger than the second 

order of the quadrupolar interaction. Hence, all terms relative to the Wr2 in Eq. 

(4.27) can be ignored, yielding the phase of the magnetization evolved at time t as 

4 

rp(t) = L BmO[sin m{"tr + WrIt) - sin m'Yr]. (4.50) 
m=I 

Now, we can define rpe and rpo by 

{ 
rpe(t,'Yr) = Em=2,4 Bmo[sinm{"tr + WrIt) - sinm'Yr] 

rpo(t, 'Yr) = Em=I,3 Bmo[sin mbr + WrIt) - sin m'Yr]. 
(4.51) 

Substitute 'Yr = 0° and 'Yr = 180° into Eq (4.51), the observing phase can be repre~ 

sented as 

{ 
rp(t, 'Yr = 0°) = rpe(t, 'Yr = 0°) + rp(t, 'Yr = 0°) 

rp(t, 'Yr = 180°) =rpe(t, 'Yr = 0°) - rp(t, 'Yr = 0°) 
(4.52) 

If we average the FID signal generated by Eq. (4.52), the total FID for central 

transition is 

Using the property of Bessel function, the FID can be written in a series of Bessel 

function 

In Eq. (4.54), the rpe only contributes to even sidebands because the basic harmonic 

frequency is 2Wri. The odd sidebands are then determined by the second part. When 

N is odd number, the intensities of all odd order harmonics are zero. 
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4.2.7 Conclusions 

Double rotation (DOR) can efficiently suppress the second order broadenings arising 

from the quadrupolar interactions under the fast spinning speed condition and only if 

the ratio of the two spinning speeds larger than four. Under slow spinning speed con­

dition, the br:oadenings still can be narrowed with companion of sidebands. Through 

the moment analysis of the DOR sidebands, only the second or lower moments are 

independent of the sample spinning speeds. The dependence of the third moment 

on the sample spinning speed explains why the envelop of the DOR sidebands does 

not mimic the static powder lineshape and changes with the sample spinning speeds. 

The lineshape characteristic parameter J.L = M4/m~ increases linearly and bilinearly 

with the sample spinning speeds, The change of the envelop of the DOR sidebands is 

according to the quasi-supper-Lorentzian. From Bessel function analysis of the DOR 

sidebands, the variations of the sideband intensities are determined by the sample 

spinning speeds, anisotropies of the quadrupolar interaction, and the relative rotor 

phase between the outer and inner rotors. The existence of the inverse symmetry of 

the odd number. sidebands for the relative rotor phase at 'Yr'= 0 and at 'Yr = 'Tr.allows 

us to ,completely suppress the odd number sidebands by adding the two spectra and 
, 

thus to improve the spectral resolution. By the use of average Hamiltonian theory, 

properties of irreducible tensors, and Bessel functions, the sideband intensities can be 

. exactly evaluated (see Eqs. (4.43), (4.46), and (4.49)). Computer simulations reveal 

all of the above properties of the sidebands in DOR spectra and results are satisfied 

with experiment8J. results. Based on these simulations, the anisotropic information 

. of quadrupolar interactions can be extracted. 
\ 

All of the above results can be applied to any other inhomogeneous interactions. 

For homogeneous interaction, if Wr2 is much larger than the amplitude of the inter­

action, we can average over second rotation first, reorienting spins along the rotation 

axis. The broadening then becomes approximately inhomogeneous. By applying the 

181 



first rotation without the condition of fast spinning, the broadened line will split to a 

set of sidebands and the spectral resolution will be much higher than those resulting 

from the MAS even with the same spinning speed. 

4.3 Sidebands in DAS NMR Experiments 

In the last chapter we described the general principles of the dynamic angle spinning 

(DAS) based on the assumption that the spinning speed of the sample during the 

experiment is much larger than the amplitude of the first order average Hamiltonian 

with the quadrupolar interactions of half integer spin nuclei. In practice, owing to 
\ . 

the mechanical properties of the spinning system, the spinning speed usually cannot 

satisfy the fast spinning condition. Under this circumstance, the time modulated 

spin Hamiltonian will develop a train of sidebands in DAS spectra like those in MAS 

spectra. This is because the first order average Hamiltonian of the quadrupolar in­

teraction is still inhomogeneous. In this section we present the general treatment 

of the DAS sidebands based on the moment analysis and Bessel function analysis 

methods described in last section. Using these methods, the sideband intensities 

are numerically evaluated. The results show that the intensities of the DAS side-' 

bands are dependent not only on the spinning.speed and the principal values of the 

quadrupolar tensors, but also on the relative rotor phase and the time ratio between 

the first and the second evolutions. Both the intensities and the phases of the side­

bands vary with the relative phase, but no inverse symmetry like that in DOR has 

be found in the variations of the sideband intensities with the relative phase in DAS 

spectra. The dependence on the time ratio between the two evolutions in the DAS 

experiments results complicated DAS sideband structure. Additional sidebands be­

tween one rotational cycle appears, and the number of the additional sidebands in 

one rotation cycle is determined by the time ratio, kt = ~. For example, in the case 

of k = 1, there are two sidebands: one is at wr /2 and the other is at Wr , where Wr is 
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the sample spinning speed. 

4.3.1 FID Signal of DAS NMR 

In DAS experiments (see Figure (3.15)), the sample rotates around an axis inclined 

at the angle of (Jl with respect to the external magnetic field Ho during evolution 

time t1 , and at another angle of (J2 during evolution time t2. The time dependence 

of the central transition frequencies with quadrupolar interactions in a half integer 

spin nuclear system is given by Eq.(3.25), or 

(4.55) 

where Cl is given by Eq.(3.26). At the end of the second evolution time of t 2 , the 

total evolved phase of the magnetization under the first order average Hamiltonian 

with the quadrupolar interaction is 

Two sets of Euler angles are defined by 

{ 

f!,.1 (t) = O(Wrt + </>1, (Jl, ,on) 

Or2(t) = O(Wrt + </>2, (J2, 12), 

(4.56) 

(4.57) 

where we have assumed that the spinning speeds during different evolution times are 

same, </>1 and </>2 are the initial phases of the azimuth angle at the beginning of the 

two evolution times, and II and 12 are the initial phases of the rotation axis relevant 

to the laboratory frame. Owing to the cylindrical symmetry of the magnetization 

around the external field Ho, II and 12 may be set to zero. If we acquire the data at 

the DAS echo tops, t2 = kth (kt is same as k in chapter 3) where k ::; kt ::; 5 from 

Eq.(3.30). Thus using the representation of the Wigner rotation matrices, inserting 

Eqs.(4.55) and (4.57) into Eq.(4.56) yields the FID signal in the DAS experiment. 

g(t) = exp { L e-uno[Bm«(J2)e-,m(tP+Wrt)"p( -ktt) - Bm«(Jl)"p(t)]}, (4.58) 
m:;i:O 

183 



where 

Iml ::; 1 

1/J(t) (4.59) 

and t = tl +t2. In Eq.(4.58) we have assumed that the magnetization is on resonance, 

the m = 0 term is zero by the requirement of DAS condition and thus should not be 

included. The powder averagedFID signal may be obtained by inserting Eq.(4.58) 

into Eq.(4.30). The initial phase </>1 becomes unimportant and therefore is set to zero 

4.3.2 Moment Analysis of DAS FID signal 

The moment analysis method has been described in the last section. After inserting 

Eq.(4.58) into Eq.(4.30) and then applying Eq.(4.33), the expressions ofthe moments 

ofDAS NMR spectra are same as those of DOR spectra given in Eqs.(4.35). Of 

course, the coefficients of the scalar operators are different, given by 

ak fpk-a (L )Pk(l)] - L dkfpk-a(L)Pk(l)Pk-l (m), 2] 
Pk-l(m) 

aa~(l)] - L mlwrdk~(l)Pl (m), 3] 
PI(m) 

a4[pa(l)] - L (ml + m2)wrdk[pa(l)P2(m),3] 
J12(m) 

a4~(l)] - L mlwrdk~(l)pl(m),4] 
PI(m) 

dk fpk-a (L)pk (l)Pk-l (m), n] - Gli ••• G lk Pccfpk-a(L)Pk(l)Pk-l (m)] 

x E(2) ... E(2) E(n) k I (4.60) h.ml lk-l.mk-l lk - 2:- - mo 
, ~=l 

where 

E[~ = (1 + ~t)n-l [(2n
-

1 
- 1)ktd';!.o((}2)e-un

4> + d~.o(81)], (4.61) 

and Poo (k) is the zero rank tensor arising from the product of k second order quadrupo­

lar coupling tensors, defined by Eq. (4.36). The anisotropic parameters 8 and TJ of the 
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quadrupolar interaction are encoded in the zero rank tensors which can be explicitly 

seen in Eq.(4.38). From an experimental spectrum under DAS, the second and third 

moments may be calculated by using Eq.(4.31) and Eq.(4.60), 8 and TJ may then be 

extracted in a very manner if we know the initial phase of the ration at the begin­

ning of the second evolution time of t2. If the DAS experiment is performed without 

synchronization of the sample rotation, the average over the initial phase if> has to 

be implemented in Eq.(4.60) in order to obtain correct moments. 

The fourth and higher order moments do not contain any new information which 

is not already available from the second and third moments. In the moments of the 

MAS spectra, both the second and third moments are independent of the spinning 

speed wr • However in the moments of the DAS FID signal only the second moment 

is motion independent and the third and higher moments increases with the spinning 

speed wr . This means that the shape of the envelop of the DAS sidebands will change 

with Wr which is quite different from the MAS case in which only the halfwidth of the 

envelop of the MAS sidebands decreases as increasing Wr • In addition, the parameter 

J1. = M4/Mi. increases with both Wr and w~ leading to quasi-super-Lorentzian lines· 

of the envelop of the DAS sidebands. 

4.3.3 Bessel Analysis of DAS Sidebands 

Bessel function analysis method of the sidebands also had been introduced in the 

last section. From the properties of Bessel functions Jk(z) given by Eqs.(4.42) to 

(4.44), FID signal can be expressed as 

get) = {ll t=t: Et=.JimIBm(O')].JjmI-Bm(O')].1 .... IBm(Ol)].1 .... I-Bm(Ol)]} 

x exp {-z[Naa + NlPif> + (Nr1 + 1 ~ k
t 
Nr2)Wrt]} , (4.62) 

where 

4 

Na - L m(im+jm+km+lm) 
m=-4 
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4 

NiP - E m(im + jm) 
m=-4 

4 

Nrl - E mim 
m=-4 

4 

Nf'2 - E m(km+jm) 
m=-4 

After averaging Eq.(4.62) over a, the FID signal becomes 

where 

get) = L gl'lq,(fh, t)g-Nq,((}2, t)e-1Nq,iP, 
Nq, 

(4.63) 

(4.64) 

gNq,((}, t) = II EE3im[Bm((})]J;m[-Bm((})]e-,Nrwrt (4.65) 
m#O im jm 

and 

N. _ { l~kt Em mim = l~kt [NiP - Em mjm] . for () = (}1 (4.66) 

r - Em m(im + l~ktjm) = l~kt [kt Em mim + NiP] for () = (}2. 

Using Eq.(4.43), the FID signal becomes 

get) = L L INl ((}dIN1-Nq, ((}1)IN2((}2)IN2_N.c(}2)e-,[Nq,iP+(N1Wrl +N2wr2 )t1, (4.67) 
Nq, Nl,N2 

where 

(4.68) 

and 

(4.69) 

After averaging Eq.(4.67) over a powder sample, the total FID signal is given by 

where 

G(t) = E IN1.N2e-I(Nlwrl t+N2Wr2)t, 
N1.N2 
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Figure 4.12: Variations of the simulated DAS sideband intensities, 1Nl,N2' as the 
relative phase,¢> changes for the case that k = 1, (h= 37.38° and ()2 = 79.19°. 
The quadrupolar coupling constant is wQ = 405kHz, its asymmetry parameter is 
TJ = 0.72, from sodium oxalate; the sample spinning speed is Wr = 3KHz, and the 
Larmor frequency is Wo= 105.8M H z. 
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What we can conclude from Eq.(4.64) is that the overall sideband pattern under 

DAS is sum over a set of the convolutions of two individual sets of sidebands due 

to the evolution during times tl and t2 respectively. After 9N.p «(), t) is expanded into 

a Fourier series, the coefficients (intensities) of each individual 4armonic is depen­

dent on all parameters during the whole evolution. The effect of the relative phase 

¢ is also dependent on the parameters and in general cannot be used to edit the 

spectra obtained with different relative phase such that some of the sidebands can 

be suppressed. This feature can also be seen from Eq.(4.59), the symmetry of the 

coefficients, Bm is dependent on the symmetry of Am, unlike in the DOR case which 

Al,m is truncated by the inner rotor spinning. Thus the accumulated phase of the 

magnetization given by Eq.(4.58) cannot be represented as the form of Eq.(4.51) 

when ¢ = 0 and ¢ = 1r. Furthermore, from the numerical simualtions of the vari­

ations of the intensities and the phases of the DAS sidebands as the relative phase 

¢ changes from 0° to 360° shown in Figure (4.12), the real components of the DAS 

sidebands are always positiveJor tJ1e case of kt = 1, corresponding to ()l = 37.38° 

and ()2 = 79.19°, and the spinning speed is Wr = 2kHz or higher, where we assume 

that the quadrupolar coupling constant is wQ = 405 kHz, the asymmetry parameter 

is TJ = 0.72, and the Larmor frequency of the nuclear species involved is 105.8 MHz. 

Experimentally if the rotor is not synchronized during spinning the relative phase 

is a random variable for different acquisitions. This is equivalent to taking an average 
, I 

over the relative initial phase, resulting in NI/> = O. Using Eq.(4.44), the sideband 

intensity becomes 

(4.72) 

Using Eq.(4.72), we have evaluated the sideband intensities varying with the sample 

spinning speed, Wr , shown in Figure (4.13). In the simulations, we used composite 

ten-point Gaussian (Gauss-Legendre) quadruture to integrate over a, (3, 'Y. The pa-
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Figure 4.13: Variations of the simulated DAS sideband intensities, I NloN2 , with the 
sample spinning speed for the case that k = 1, corresponding to 01 = 37.38° and 
O2 = 79.19°, and N2 = 0, Nl = 0,±1,±2, where the quadrupolar coupling constant 
of the sodium-23 nucleus wQ = 405kHz, its asymmetry parameter is 7J = 0.72, and 
the Larmor frequency is Wo = 105.8MHz. 
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rameters used in the simulations are WQ = 405kHz, 'TI = 0.72, and Wo = 105.8M H z. 

As can be seen from the figure, the sideband intensities around the centerband dis­

tribute more symmetric than those in MAS. This feature leads to the sideband in­

tensities are not very sensitive to the asymmetry parameter, 'TI. 

The structure of the sidebands in DAS NMR spectra can be interpreted as follows. 

If we assume that k t = ~ where kl and k2 are two integers, the maximum number of 

sidebands isk1 +k2 in one rotor cycle Wr • Of course the intensities of the sidebands are 

different. In general those corresponding to small Nl and N2 have larger intensities 

and therefore there are three main sidebands in one cycle whose frequencies are Wr1 , 

Wr2 , and Wr respectively. In the case of kt = 1, two sidebands in the middle will 

overlap together and the whole pattern is uniquely determined by the frequency 

wr /2. Figure (4.14) shows the simulated spectra of polycrystalline sodium oxalate 

using same parameters as in Figure (3.29). The other simplest solution is for kt = 5. 

In this case one of the rotation axis is aligned on the external magnetic field Ho, 

that is, fh = 0, and then the coefficients of Bm(O) = 0 when m =f o. In Eq.(4.72) the 

number of summations furthermore reduces to one. The frequency difference between 

two nearest sidebands is Wr2 • In other words, the maximum spectral resolution can 

be obtained under this situation. 

4.4 Conclusion 

In this section we described the general theories of the DAS sidebands based on the 

moment analysis and Bessel function analysis methods. From the moment analysis of 

the DAS NMR spectra, the third and higher moments increase with Wr, and the en­

velop of the DAS sidebands changes according to a quasi-super-Lorentzian lineshape 

as the sample spinning speed increases. Using Bessel function analysis of the DAS 

sidebands, the structure of the sidebands are a sum over a set of convolutions of two 

individual sets of sidebands involved in the evolution times of tl and t2 respectively, 
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Figure 4.14: Simulated DAS spectra using same parameters in DAS experiment of 
sodium oxalate, that is" the quadrupolar coupling constant of the sodium-23 nucleus 
wQ = 405kHz, its asymmetry parameter is 'TJ = 0.72, and the Larmor frequency is 
Wo = 105.8MHz. (a) Static powder lineshape; (b) residuallineshape after MAS; (c) 
DAS spectrum obtained with Wr = 3.36kH z 
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and the sideband intensities are numerically evaluated. The results show that the 

intensities of the DAS sidebands are dependent not only on the spinning speed and 

the principal values of the quadrupolar tensors, but also on the relative phase and 

the time ratio between the first and the second evolutions. Both the intensities and 

the phases of the sidebands vary with the relative phase, but no inverse symmetry 

like that in DOR has be found in the variations of the sideband intensities with the 

relative phase in DAS NMR spectra. After averaging the sideband intensities over 

the relative phase, the sideband intensities become more or less symmetric around 

the centerband, especially when the sample spinning speed is in the fast region, and 

thus, they not very sensitive to the asymmetry parameter, TJ. The dependence on 

the time ratio between the two evolutions in the DAS experiments results in that 

the structure of the DAS sidebands becomes very complicated. Additional sidebands 

between one rotation cycle appears, and the number of the additional sidebands in 

one rotation cycle is kl + k2' assuming the time ratio is kt = ~, where kl are k2 are 

integers. For example, in the case of kt = 1, leading to kl = k2 = 1, there are three 

sidenabds: two are at wr /2 and the other is at Wr , where Wr is the sample spinning 

speed. We also show the possibility of the extraction of the principal values of the 

quadrupolar interactions by simulating the sideband intensities. 
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Chapter 5 

Motions in Solid C60 

5.1 Introduction 

A sixty carbon (Coo) molecule having a molecular structure with icosahedral sym­

metry, was first proposed theoretically by Kroto and his coworkers in the early 

1980s[125, 124], and has been n~ed buckminsterfullerene. Subsequent to the early 

mass spectroscopy experiments, some micro-quantities of this molecule was obtained 

in cluster beam experiments by use of a polarized laser to vaporize the graphite 

[126]. More recently, macroscopic amounts of Coo molecules [127] have been synthe­

sized, stimulating intense interest and activity. A number of spectroscopic studies 

of this molecule have been carried out confirming to the icosahedral symmetry of 

Coo molecules [135, 136]. Further studies reveal that materials arising from the 

Coo molecules intercalated with alkali metal atoms to form the 'fullerides' Az:Coo 

become superconductors [128] below the critical temperatures Te. The critical tem­

peratures' Te depend on the alkali metal atoms used in the intercalation, and for 

A = K[130, 129] Te = 18K, while Te = 28K when A = Rb [131]. 

NMR spectroscopy experiments of Coo molecules were performed first by Tycko 

and his co~orkers[137] as well as Yannoni and his coworkers [139, 140]. The spec­

tra obtained from their variable temperature solid-state NMR experiments showed 

some interesting lineshapes. These lineshapes consist of a sharp peak at the center 

indicating the isotropic chemical shift, and a CSA-type powder pattern. Based on 
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these spetra, they concluded that the sharp peaks are due to some residual carbon 

clusters whose motions are relatively fast when compared to the G60 molecules. In 

this chapter, we assume that the motions of G60 molecules in the solid state consist 

of icosahedral jumps. By assuming this model, we have been able to simulate the 

powder lineshapes measured by Tycko and Yannoni et al. The results show that 

the samples of solid G60 are indeed not homogenous, resulting the sharp peak which 

indicates that the carbon clusters have different motions from the G60 molecules. 

We will use a chemical exchange model to study the jump motions (molecular 

reorientations) in G60 molecules. The random jump motion of the G60 molecules is 

physically different from a chemical exchange process. Chemical exchange is defined 

by migration of atoms or groups of atoms from one molecule to another or from one 

part of a molecule to another which can be distinguished by the different resonance 

frequencies. Such exchanges can happen in both inter- and intra-molecule. In the G60 

molecules, atoms are relatively fixed and cannot move around physically. Since the 

molecules themselves have very high symmetry, there are sitting in potential barriers 

which are determined by the crystal symmetry. The motions of the G60 molecules 

from one configuration to another have to be very quick, and look like sudden jumps 

from one configuration to 'another. Thus, the jumps of the atoms in a molecule is 

via the jumps of the molecule itself. For this reason, the chemical exchange theory 

will be reviewed in the first few sections. However, we do not just restrict ourself to 

the literature, but will emphasize the lineshape changes for different cases based on 

our own simulation results. 

5.2 Theory of Chemical Exchange 

As a simple example, let us first Consider a chemical exchange process of twcrsite 

jumps. We assume that the jump from one frequency to another is a stationary 

Markov process[5, 142]. From this assumption, one can conclude that the jumping 
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rate from one site to another is time independent. Then from the modified Bloch 

equation, the evolution of the magnetization at two sites is determined by 

(5.1) 

where MI and M2 are the magnetizations, WI and W2 are the frequencies at site 1 

and 2 respectively, and K, is the jumping rate from site 1 to site 2 or vice visa. By 

use of the standard method for solving a linear, first order differential equations. we 

find the solution of Eq. (5.1) to be 

where 

and 

MI(t) - c1+e~+t + CI_e~-t 

M2(t) - c2+e~+t + c2_eLt , 

Ci± = ± (A± - 'lWi)Mi(O) + K,[MI (0) + M2(0)] 
A+ - A_ . . 

for i = 1,2 and Mi(O) is the initial magnitization of the i-th site. 

(5.2) 

(5.3) 

(5.4) 

As can be seen from Eq.(5.3), the frequency difference of two sites decreases, and 

the lineWidths of two separated peaks are uniquely determined by the exchange rate 

K, as it increases, but satisfies the condition that K, < (WI - w2)/2. On the other 

hand, when K, > (WI - w2)/2, the two peaks coalesce, but the linewidth decreases 

according to two exponential functions as the exchange increases. The width of the 

component corresponding to eigenvalue A+ decreases to zero as K, increases, and the 

other component becomes very broad (see Fig. (5.1)) while its amplitude tends to 

zero .. After Fourier transforming Eq.(5.2), the lineshape of the spectrum can be 

represented as 

M(w) = ~ K,(WI - W2)2 . 
2 [(w - WI)(W - W2))2 + K,2[2w - (WI - W2))2 

(5.5) 
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Figure 5.1: Dependences of the resonance frequencies and the line widths with the 
exchange rate, K, in two-site jump model: (a) frequency dependence; (b) linewidth 
dependence 
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Fig.(5.2) shows variation of the lineshapes of the two-site jump model with exchange 

rate, K,. 

In order to generalize chemical exchange theory to n-site jumps, we introduce the 

exchange rate matrix 1r whose elements /'i,;,j represent the exchange rate from site i 

to j. By the population conservation, we have 

L/'i,;,j = o. 
ij 

(5.6) 

. Similarly, we define the magnetization vector as M = (MI, M2 ,···, Mn ), and the 

frequency matrix with diagonal elements W = (WI, W2, •.. ,Wn ). Now the dynamical 

equation of magnetization for n-site jumps can be written as 

! M(t) == [zw + 1r] . M(t) (5.7) 

The formal solution of Eq.(5.7) is 

(5.8) 

or in frequency domain, 

M(w) =1· A-l(w)· M(O), (5.9) 

where A(w) . wi - zw + 1r, 1 = (1,1,··· , 1),and i is a unit matrix. 

For a general chemical exchange process, it is very difficult to solve Eq.(5.8) or 

(5.9). The general solution also gives very little physical insight. For most cases, one 

only considers two extreme situations: (i) Nearest neighbor exchange, also called the 

weak collision approximation, in which K,i,i+l = K,i,i-l = K, and K,i,i = -2. (ii) All 

site exchange, the strong collision approximation, with equal rates for all exchanges. 

The analytical solution for the strong collision limit was first obtained by Alexan­

der and his coworkers[144] in 1977 by use of representation theory of the symmetry 

groups. Later, Wemmer et al.[145, 146] applied matrix manipulation to invert the 
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Figure 5.2: Variation of the lineshapes in twcrsite jumps with different jumping rates, 
K, where WI = -W2 = .200H Z, and K is in unit of Hertz. 
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matrix A. Based on this matrix manipulation method, we solve the chemical ex­

change process in strong collision limit following the convention given by Mehring 

[19]. 

According to the strong collision limit, the exchange rate matrix * has the form 

-(N -1) 

1 

1 

1 1 

-(N -1) 1 

1 

1 

-(N -1) 

(5.10) 

where i consists of only ones. For convenience, we define a diagonal matrix 13 as 

13 = (lW + NK)i - zw, (5.11) 

and a regular matrix C as 

(5.12) 

Then the matrix A in the formal solution, Eq.(5.9), of chemical exchange becomes 

(5.13) 

In order to calculate the inverse matrix orA, we expand A-I into Taylor series 

A_I 

A-I = A BA A = I:(-lt(B-ICt. 
1 +B- I C n 

Now we realize that the matrices 13 and C have the property, 

where 

L-I: 1 
- j z( W - Wj) + 1/T2j + N K • 

Insert Eqs.(5.15) and (5.16) into Eq.(5.14), and we obtain 

A-I = B-1 [i + CS-
l

] . 
1- KL 
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Finally, if we assume that the magnetization at each site is equal, that is bf M(O) = 

t, (1, ... , 1), the Im:eshape after chemical exchange can be written as 

- IlL 
M (w) = 1 . A - . M(O) = N 1 _ KL (5.18) 

Here we assume that all sites have same initial magnetization and N is number of 

sites. 

So far, we have only delt with different isotropic sites or one specific orienta­

tion of a molecule with respect to the laboratory frame. In solid, we usually need 

to consider the chemical exchange process, or molecular reorientation, in a powder 

sample, which was first studied by Spiess [148, 149, 150] in NMR although the line­

shape analysis methods were first demonstrated in ESR spectroscopy by Sillescu and 

co-worders[151, 152]. Each site is frequently subjected to at least one anisotropic in­

teraction (e.g. chemical anisotropy, dipolar coupling between sites, and quadrupolar 

coupling if the spin of each site is larger than 1/2, etc.). We are particularly inter­

ested in the chemical exchange process in molecules with chemical shift anisotropies. 

In this case, the resqnance frequencies which label the sites in molecules are deter­

mined by the orientations of the principle axis systems with respect to the molecular 

frame, the principal values of chemical shift anisotropy, and the orientations of the 

molecule frames with respect to the laboratory frame. The transformations between 

the laboratory frame (LAB) and the molecule frame (MOL), and between the MOL 

frame and the principle axis system (PAS) are illustrated by Fig.(3.3). We now can 

represent the frequency of j-th site as 

2 

Wj = L V~~O(nM)Wj,m(nj), (5.19) 
m=-2 

where 

(5.20) 
m' 

and the OJ are the three Euler angles from the MOL frame to the PAS and the OM 

from the LAB frame to the MOL frame, V~~o are the components ofWigner rotation 
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matrix. The P2,m are the principal values of the chemical shift anisotropy with values 

[3 1 
P2,O = Y 2"8, P2,±1 = 0, P2,±2 = 2"TJ8, (5.21) 

where 8 is the anisotropy and TJ is asymmetry factor. We have assumed that the 

principal values are same for all sites. 

After chemical exchange, the lineshape given by Eq.(5.9) will be similar to liquid 

situation except for the orientation dependence of the molecules in the laboratory 

frame. For a powder sample, the overalilineshape is given by 

M(w) = ~JM(w,nM)sinf)df)d¢. 
411" 

(5.22) 

This lineshape is more complicated than in liquids and also more interesting. As ,a 

simple example let us first consider two-site jumps of a water molecule (H20) in a 

hydrate sample. From the measurement of the lineshape of ice with a chemical shift 

anisotropy by multi-pulse technique [153], it was shown that the proton shielding 

tensor is axially symmetric about the bond direction. The angle between two bonds 

is 109.5°. The two protons of the water molecule are assumed to perform' 180° jumps 

about an axis which bisects the bonding angle. Fig. (5.3) shows the lineshapes with 

different exchange rates. In the very slow motion limit, the lineshape is almost same 

as the axial-symmetric lineshape while at fast motion limit, it becomes completely 

asymmetric. Between these two extremes, the lineshapes are distorted. One thing 

we can see is that as the exchange rate increases two additional singularities appear 

and gradually dominate the features of the lineshape. 

From the standard method [115] of lineshape analysis, the singularities ofa pow­

der lineshape are given by 

8w(f), ¢) = 0 8w(O, ¢) = 0 
8f) '8¢ , (5.23) 

where w(O, ¢) is the resonance frequency of the magnetization. Applied to our case, 

the resonance frequencies have to replaced by the eigenvalues of the evolution matrix 
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Figure 5.3: Variation of the powder lineshapes with different jumping rate in two-site 
jumps on a magic angle cone (e.g. two protons jump in H20 in solid state). In 
simulation, the spectrum width is SW = 10kHz, and the principal values of the 
chemical shift anisotropy are DWo = 3kH z, and TJ = O. 
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('£W + *). For two-site jumps, the eigenvalues are given by Eq.(5.3) in which the 

resonance frequencies of the magnetizations of site 1 and 2 in rigid state are 

WI (0, ¢) - L: d~~o(O)e-17rnI>4~~(O(2»)p2,O 
m 

W2(O,4» - L:( _1)me~o(O)e-17rnI>4~~(O(2»)p2,o, (5.24) 
m 

where the d~)ml are the components of reduced Wigner rotation matrix, and 0(2) = , 

54.74°, the so-called magic angle. Ins~rting Eq.(5.24) into Eq.(5.3) yields 

Substitutes Eq.(5.25) into Eq.(5.23), four singularities can be obtained in agreement 

with the simulated lineshapes shown in Figure (5.3). These four singularities are 

given in Table (5.1). In each of the first three singularities, there are two components 

with same imaginary values (resonance frequencies):. one does not disperse and the 

other disperses according to the rate 2x; during the chemical exchange. The last 

singularity only exists in the region 0 ~ x; ~ ~p2,O. The two components in this 

singularity have their own frequencies but with common line broadening factor. The 

variations of the frequencies of the two components with the exchange rate is same 

as in Figure (5.1). 

Table 5.1: Singularities in a powder lineshape of spin nuclei with chemical anisotropic 
interaction under two-site jumping 

0, ¢ Apm 

0 any ¢ -x; ± x; 

11" 0 M ZP2,O - 2x; ± 2x;j "2 
11" 11" ![-ZP2,O - 2x;± 2x;j "2 "2 

cos2(20) = 
41t2+2~,o 
I8p~ 0 

0 ~ (P2,O ± .j p~,o - 2X;2) - x; 
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5.3 Symmetry Properties of Discrete Jumps 

So far we have not considered symmetry effects in the chemical exchange process. 

In many cases, a molecule has a symmetric shape. This symmetry will dominate 

all the physical process in the molecule if there are no external perturbations to 

destroy it. Discrete jumps from site to site are therefore restricted by the molecular 

symmetry. In this section, we briefly summarize the effects of molecular symmetry on 

the chemical exchange process, using symmetry group theory proposed by Alexander 

and his coworkers [143]. 

We first assume that the local symmetry group of an undestorted molecule is 

G. All jumping sites ~(i = 1,2,···, N) are then related by the elements of the 

symmetry group. The magnetization at site j for fixed orientation f2M forms the 

basis of the representation (reducible) of the group G, that is 

(5.26) 

where R is an element of the group G. Thus each element KiJ of the exchange rate 

matrix * can be associated with a definite element of the group, KiJ = K(R) because 

f2j = Rni . Moreover since K(R) is uniquely determined by the group operation R, 

the jumping rates corresponding to all equivalent elements, that is those belonging 

to the same class C in the symmetry group G, are same. Furthermore, from detailed 

balance, Eq.(5.7), we also have K(R) = K(R-1) so that the conjugate classes always 

have the same jumping rate K. Occasionally R and R -1 will not belong to the same 

class. In this case, there should be a higher symmetry group than G, and we can use 

the larger symmetry group to handle the exchange rate matrix. We assume below 

that this transformation has already been done. 

The exchange rate matrix * can also be used as an operator, and its i-th com­

ponent, after it has been applied to the i-th magnetization, can be written 

(5.27) 
j C QEc 
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where "'i = (Ki,l! Ki,2,··· ,Ki,N), and Kc is the jumping rate for the class C of the 

symmetry group G. Now we assume that the basis functions for the irreducible rep­

resentation of the symmetry group G are 'l!~(nM) where A means the A-th irreducible 

representation, and J.£ is an index of the row in a multi-dimensional representation. 

These basis functions still depend on the orientations of the molecule frames relative 

to the LAB frame because all orientations of the molecules have equal probability 

in a powder sample. This symmetry is determined by the group, SO(3), and is not 

relevant to the current problem. The magnetization at site i then can be expanded 

in terms of the basis functions of G. 

M(ni,nM) = La;'~'l1;(nM). (5.28) 
)..~ 

The coefficients at", are uniquely determined by the symmetry group G, e.g. in 

terms of the projection operators onto the group elements. From the theory of 

representations of a symmetry group, we have 

(5.29) 

where nc is the order of the class C, X~ is the character, an:d II).. is the dimensionality 

of the A irreducible representation of the groupG. Applying Eq.(5.29) to Eq.(5.27) 

yields 

KiM(ni,nM) = - LK)..La;'",'l1;, (5.30) 
).. ~ 

where 

K).. = L ncKc (1 _ x~) . 
c 1/).. 

(5.31) 

Now we wish to apply these results of group theory to find the steady state 

solution of Eq.(5.17). The first step is to transform Eq.(5.7) from the time domain 

into the frequency domain by use of the Fourier transformation. Each component of 

the magnetization vector M satisfies 

(5.32) 
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From Eqs.(5.30) and (5.28), we have 

where 

L [z(w - Wi) - ~,\] Mi,,\ = zMi(O), 
,\ 

Mi ,,\ = L ar,1S w;. 
IS 

(5.33) 

(5.34) 

The lineshape observed experimentally is actually determined by the totally sym-

metric representation (AI) of the group G because only the Al representation is 

orientation independent. Therefore we only need to find the projection of the to­

tal magnetization onto the totally symmetric representation, that is MAl. To solve 

Eq.(5.33) for MAl is still very complicated because the left side of Eq.(5.33) is not, in 

general, block diagonal in the basis of the irreducible representations of the group G. 

This point will be seen more clearly later. However, in many cases, the frequency Wi 

of the i-th site has its own local symmetry properties. For example, the eSA tensor 

of the chemical interaction always has a D2 symmetry. Once the local symmetry 

group S for each site is a subgroup of the molecular symmetry group G, the calcu­

lation of MAl from Eq.(5.33) can possibly be simplified. This simplification occurs 

is because we need to consider only those irreducible representations which contain 

the totally symmetric representation of the subgroup S. These representations are' 

called the relevant representations, and all others are irrelevant. The restriction to 

the relevant representations often considerably simplifies the whole calculation. If 

S contains just the identity of G then no simplification can be done. On the other 

hand, if S is same as G, then the spectrum is totally invariant to the motion, and 

no parameters are needed because ~AI = 0 always. 

As a simple example to illustrate the above statements, let us consider that only 

one relevant representation in Mi beyond the identity representation (AI)' that is 

(5.35) 
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After we find the relevant representation Mi ,>., and insert it into Eq.{5.33), we have 

(5.36) 

or 

(5.37) 

The the total magnetization is 

and we may finally obtain a solution identical to Eq.{5.18) which was obtained by 

using matrix manipulations in the strong collision limit. As can be seen, this proce­

dure is much simpler than the matrix manipulation. Moreover, in many cases, even 

if there are more than one relevant representation, a group theoretical treatment can 

still simplify the calculation of the chemical exchange process. 

In order to demonstrate the above statements more clearly, we now derive an 

explicit general equation for MAl that eventually will results in the lineshape of 

a powder sample. We follow the expansion method given by Freed, Bruno and 

Polnaszek (FBP)[154], but use our own notation. According to FBP theory, we can 

explicitly represent the orientation dependence of the i-th magnetization Mi{Oi, OM) 

by using a complete set of Wigner rotation matrix elements. 

_ ~ (2l + I)! l,i (I) 
Mi{Oi, OM) - L...J, 87T2 Am,m,'Dm,m,{nM), 

l,m,m 
(5.39) 

where A!;! m' is function of Wi and its value is given by the inverse transformation. , 

(5.40) 

The exchange rate matrix oft then couples the A!;: m'. This procedure does not take , 

into account the symmetry of the problem. For N different sites, there will be a 

total of N{2l + 1) equations for each l. In order to take advantage of the symmetry 

properties of the problem, we notice thatOi and OJ are related by the jump ~j from 
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site ito j. Such a process can also be implemented by rotating the molecular frame 

from nM to ~ .. ;tnM. In other words, Euler angles ~ themselves are determined by 

the orientation of the molecular frame with respect to the laboratory frame, that is 

~ = ~(nM). Now we can expand the ith magnetization Mi(ni,nM) in terms of 

(5.41) 

Obviously 

(5.42) 
mil 

Substituting it in Eq.(5.26) gives 

(5.43) 

We now expand the V!::,m'(~) in the basis function w~:~(ni) of the group G. 

-n(l) (r"I) _ ~ A,l .TrA,1 (n.) vm,m' ~'i - ~ al-',m 'J.' I-',m' H, • (5.44) 
A,I-' 

Inserting Eq.(5.44) into Eq.(5.43) and using of Eq.(5.29) gives 

(n ) ~ ~ (2l + 1)~ I [~A I X~ A,l () (I) ( )] K;,Mi i,nM = ~ncK,c ~ 8 2 Am,m' ~al-':m-;;-Wl-',m' ni -Vm,m' ~ . 
c l,m,m' 7r A,I-' A 

(5.45) 

The coefficients, a~:~ are the coupling coefficients between two sets of representations 

(like those between product space and coupled space in the quantum mechanics of 

angular momentum), and they satisfy orthogonality condition. From Eq.(5.44), we 

have 

.TrA,1 (n.) _ ~ A,l t-n(l) (n.) 
'J.' lJ.,m' ~" - ~ al-',m Vm,m' ~'\ . (5.46) 

m 

Furthermore, the frequency of the i-th site can also be expanded in terms of Wigner 

rotation matrices. 

Wi(ni ) = L P2,mV~~o(~), (5.47) 
m 
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and 

l,m,m',m" 
. From the product properties of.two Wigner rotation matrices, we have 

h+12 

V~l,nl V:2,n2 = L C(h, l2, l, mI, m2)C(ll, l2, l, nI, n2)Vm1 +m2,nl+n2' 
1=llt~hl 

(5.48) 

(5.49) 

where C(lI, l2' l, ml'~) is Clebsch-Gordan coefficients. By use of equations from 

(5.45) to (5.49), Eq.(5.32) becomes 

( 1 I '"' I A' '"' 1,1' I' _ ( . zw + To )A!n,m' + ~ K,k,m,m' k,m' + ~ Bm-m",m'~-m",m' - Mi 0)6(l), 
2 k l',m" 

where 

and 

B;:~m",m' = P2,m"C(2, I', I, m", m - m")C(2, l', l, m', 0). 

(5.50) 

(5.51) 

(5.52) 

In the left side of Eq.(5.50), thefirst and second terms are obviously diagonal, and 

the second term, which contains the chemical exchange rates, mixes with different 

elements in the same irreducible representation. The third terms are no longer di­

agonal and mix different irreducible representations because of the coupling between 

magnetization and its resonance frequency. If the~e is no local symmetry group for 

each site, Eq.(5.50) cannot be reduced further to diagonal or block diagonal form 

because the basis functions are already irreducible. On the other hand, if the local 

symmetry group is a subgroup of the group G, Eq.(5.50) can be rewritten in the basis 

functions of the subgroup S. We assume that this has already been done before the 

derivation of the Eq.(5.50), and therefore, A!n,m' can be found from this equation. 

In other words, in the Eq.(5.50), the summation over A is only for the relevant rep­

resentations. Furthermore, one more relevant representation can be removed after 

rearranging the jump term .. As it can be seen from Eq.(5.50), there is no index to 

specify a particular site. This tells us that the information about the jumps is com­

pletely contained in the coefficients a~:!n. In practice, these coefficients therefore have 
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to be explicitly computed. Moreover, the lineshapes observed in the NMR spectra 

are proportional to Ag,o. This quantity can be calculated from Eq.(5.50) by trun­

cating the series at some suitable value of l [154]. On the one hand, the accuracy of 

the calculation of Ag 0 will increases as l increases while the number of mixing terms , 

A~ m' is increases roughly by l2. However, the size of the diagonal jump terms does , 

not increase with l so they do not effect convergence. To obtain good convergence it 

is necessary to have some non-zero rate (e.g. T2) for the molecular tumbling. 

In practical applications of the above procedure for calculating the effects of the 

chemical exchange, we have to determine the group G and its subgroup S. It is 

relatively easy to assign group G if we know the symmetry of a molecule. For the 

chemical shift anisotropy (CSA) tensor with a nonzero asymmetry parameter 7J the 

local symmetry is the D2 group as can be seen from the fact that the CSA tensor 

does not change after applications of 7r rotations around three orthogonal axes (x, 

y, z) in the PAS. If the asymmetry parameter is zero, the local symmetry therefore 

is determined by product group of D2 and Coo(z) , that is, D2 ® Coo(z) at least. 

The group S then should be a subgroup of both the local symmetry group and the 

molecule symmetry group G. However, sometimes, the group S is determined by the 

symmetry of the orientations along which the molecule is distorted by the discrete 

jumps[143]. Once we know the molecular symmetry group .0, and the subgroup S 

under which the Hamiltonian is an invariant, the next step is to find out the relevant 

representations. This can be obtained from the orthogonality theorem of group 

theory. The number of an irreducible representation of the subgroup S, contained in 

an irreducible representation of the group G is given by 

a).,I' = L Xr(R)~(R) (5.53) 
ReS 

If a).,Al is larger than zero, representation A of G is relevant, otherwise it is irrelevant. 

Once we know the number, Nr , of the relevant representations of G, the number of 

rate parameters in the chemical exchange process is also determined, that is Nr - 1 
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since ~Al = 0 always. 

The third step is to detennine the coupling coefficients a~:!n. Physically, the 

coupling coefficients represent the projections of the elements v~ m' of the Wigner 
• 

rotation matrices, which are the irreducible representations of SO(3) group, along 

the basis functions, W~:~" of the irreducible representations of the group G. In 

principle, once we known the basis functions of all irreducible representations of G it is 

straightforward to calculate the coupling coefficients from the inverse transfonnation 

of Eq.(5.46). Multiplying both sides of Eq.(5.46) by V~::~,(ni)' and then summing 

over all possible orientations and all m' yields 

. ~.l _ ~ ~ (rI.)lT,~.1 (rI.) a",.m - L...., vm,m' ~ G, '*' ""m' ~ G, , (5.54) 
m',i 

where the orthogonality condition for the basis functions of the group has been used. 

(5.55) 

For the Al representation, it is extremely simple to calculate ~:;: because that the 

basis functions are equal ones. Thus W~~~(ni) is proportional to spherical hannonics, 

that is 

a~:;: = BN L(-1)mY~(Oi,(/>i), (5.56) 
i 

where BN is a nonnalization constant, and summation is over all possible operations 

of the group G. 

However for other representations of G, it is difficult to have a complete set of ba-, 

sis functions. Fortunately, for most simple symmetry groups, all the representations 

are listed in text books on group theory[68, 156]. A general procedure, introduced by 

Golding [161], for determining these coefficients with double valued groups is based 

on the Clebsch-Gordan series for the product of two irreducible representations of a 

group and the correspondence between the angular momentum and the irreducible 

representations. We briefly summarize this procedure here. First we realize that the 

coupling coefficients a~:!n fonn the transfonnation from the I representation V;:J,m of 
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80(3) to the A representation of the group G. It will be seen that the coupling coef­

ficients are related to the Clebsch-Gordan coefficients or the V coefficients between 

the coupling of two irreducible representation of the group G. In order to compare 

our results with those of Golding, we use a ket I A/-t > to represent the basis function 

w~ of the irreducible representation A of the group G. In order to be general, IA/-t > 

is usually defined by a complex function. 

Now we define the relationship between IA/-t > and Ilm > for a specific 1 value as 

11A/-t >= L: a;:!nllm > . (5.57) 
m 

Since we have defined IA/-t > to be complex, the coupling coefficients can be chosen 

to be real numbers which depend only on l, m, A, and /-t, and which satisfy the 

orthogonality conditions. 

~ A,l A',l 1: 1: 
L..J ap.,map.',m = UA,A'Umu,mu', '(5.58) 
m 

and 

(5.59) 

The inverse form of Eq.(5.57) is 

Ilm >= L:a;:!nIIA/-t > . (5.60) 
A,P. 

As it is well known that the coupling between two angular momentum Ll and L2 to 

form the third angular momentum L3 is defined by Ll + L2 = L. Correspondingly 

the relationship among kets Ihml >, Ihm2 >, and Ihhlm > is given by 

and 

Ilbml> Il2,m2 >= L:C(lt,l2,I,mb m2)l l lhlm >, 
l 

Ihhlm >= L: C(h,12,I,ml,m2)lh,ml > 112,m2 >, 
mlom 2 
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where C(lt, l2' l, ml, m2) are Clebsch-Gordan coefficients. It will then follow by sub­

stituting the appropriate expressions of the form of Eqs.(5.57) and (5.60) into (5.62) 

that 

IlAJ.L >= L a;:~a;~:~1a;;:~2C(lt,l2,l,ml,ffl2)lltAlJ.Ll> Il2A2J.L2 >. 
m,m1,m2,>'1 ,>'2,#,1 ,#'2 

(5.63) 

However, the l related function ItAJ.L > itself is a linear combination of IAlA2AJ.L >, 

that is 

IlAJ.L >= L C~~1:'~IAlA2AJ.L >, (5.64) 
>'1,>'2 

h ffi · t C>'1o>'2 d d III l \ d \ Th d f \ were coe Clen s hh,l epen on y on 1, 2, ,AI, an A2. e or er 0 AI, 

A2 is important in the C~~i:'~ coefficients. Furthermore, the coupling between two 

irreducible representation is given by . 

and 

IAJ.L >= L C(Al,A2,A,J.Ll,J.L2,J.L)IAlJ.Ll > IA2J.L2 >, 
#'lo#'2 

IAlJ.Ll > IA2J.L2 >= L C(Ab A2, A, J.Ll, J.L2, J.L) IAJ.L >, 
>. 

(5.65) 

(5.66) 

where the coefficients C(Al' A2, A, J.Lb J.L2, J1.) are still formally Clebsch-Gordan coeffi­

cients, coupling two irreducible representations of the group G. The values of these 

coefficients depend on the particular group and are tabulated in reference[160, 156] 

for most symmetry groups. These coefficients have all the properties of the common 

Clebsch-Gordan coefficients. Inserting Eq.(5.65) into (5.64) yields 

IlAJ1. >= L C~~;:'~C(Al' A2,A, J1.l, J1.2, J1.)I AlJ.Ll > IA2mu2 > . (5.67) 
>'1,>'2,#'1,#'2 

Comparing the coefficients in Eqs.(5.63) and (5.67) yields 

(5.68) 

with the condition 

L I C(Al' A2, A, J1.l, J1.2, J.L) 12= l. (5.69) 
#'1,#,2 
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Hence, the coefficients a;:~, C(AlJ A2, A, J.tl, J.t2,JJ), and C~~i~~ are all related by 

Eq.(5.68). If we know all the coupling coefficients C(AI, A2, A, J.tl, J.t2, J.t) for a group 

G, and all the a;:~ coefficients for specific h and l2' the Cl~~i~~ and a;:~ coefficients 

for a specific l value can be determined by using the triangle condition, LI + L2 = L 

of the Clebsch-Gordan coefficients. If, on the other hand, all the coefficients a;:~ for 

l1, l2, and l are known, we may determine all the C~!l;'~ and C(AI,·A2,A,J.tbJ.t2,J.t) 

coefficients. The coupling coefficients C(AI, A2, A, J.tl, J.t2, J.t) will, in general, .depend 

on how the irreducible representationS of the group G are defined. 

One representation of the coupling coefficients between two irreducible represen­

tation are the V coefficients[157, 158, 159] which are similar to Racah's V. In order to 

let V coefficients possess properties analogous to Racah's V coefficients, its definition 

with Clebsch-Gordan coefficients C(AI, A2, A, J.tl, J.t2, J.t) is given by Golding as 

( -1 )2'\2+'\+1-' 
V(AI, A2, A, J.tt, J.t2, J.t) = ..;nr C(AI, A2, A, J.tt, J.t2, J.t), (5.70) 

where n'\ is the dimension of the irreducible representation A of the group G. Now· 

we can apply the properties of Racah's coefficients to this V(AI, A2, A, J.tb J.t2,J.t) sym­

metry coupling coefficients, namely: 

(a) it is unchanged by an even permutation of the indices, 

(b) for an odd permutation, the V(AI, A2, A, J.tl, J.t2, J.t) coefficients are changed by 

a factor (-1),\1 +A2+\ 

(c) for a change of sign of subindices J.t1,J.t2, and J.t, the V coefficients are changed 

by a factor (_I)A1+A2+A. 

V (AI, A2, A3, J.tl, J.t2, J.t3) - (-1 )A1+'\2+A3 V (A2' AI, A, J.t2, J.tI, J.t) 

- (_1}"1+A2+AV(A3, A2, AI, J.t3, J.t2, J.td 

- (_I)A1+A2+A3V(AI, A2, A3, -J.tl, -J.t2, -J.t3). (5.71) 

From the procedure outlined in above, in principle, all the coupling coefficients, 

a;:~ may be calculated one by one with the tables of Clebsch-Gordan coefficients 
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between irreducible representations of groups, which are listed in most of text books 

of group theory[68, 156, 160]. However, since the icosahedral group is complicated 

and has very few applications, the coupling coefficients have not been calculated. We 

consider it beyond the range of this work to do so, and leave it as a future project. 

5.4 Computational Approaches and Examples 

In the last two sections, we have described the general theories for calculating chemi­

cal exchange processes. In practice, we usually deal with a chemical exchange process 

with more than two sites and in many cases more than one rate parameter. It is often 

very difficult to produce· an analytical solution for these general chemical exchange 

problems, and we have to solve them by numerical methods. 

We have written a program called CESC (Chemical Exchange with Strong Colli­

sion limit) which solve the general chemical exchange problems in the strong collision 

limit based on the Eqs.(5.18) and (5.22). CESC has versions of FORTRAN 77, VAX 

PASCAL, and THINK PASCAL for the Macintosh. The orientation of each site 

is input from the parameter file, and the powder average is done by the Simplex 

method. 

For the problems in the weak collision limit, another program named CEWCIM 

(Chemical Exchange with Weak Collision by Inverting Matrix) was written and is 

based on Eqs.(5.9) and (5.22). Again the powder average is done by the Simplex 

method, and matrix inversion is performed by the LU decomposition method. The 

advantage of using matrix inversion method to calculate the lineshapes under the 

chemical exchanges is that its algorithm is simple, and the accuracy is relatively 

easy to be controlled by using double precision numbers throughout the numerical 

calculations. The simulated results are stable. The disadvantage of this method is 

that one matrix inversion must be done for each value of the frequency. In order 

to obtain a spectrum, np (np > 100 usually) points has to be taken. In other 
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words, each spectrum is obtained by performing np matrix inversions. For a powder 

sample, we need to take Na x Nb orientations (Na is number of steps for 4> and 

Nb for .f}) to have a powder average. Furthermore, each matrix inversion requires 

N3 multiplications. Thus total number of multiplications for a powder averaged 

spectrum is np x Na x Nb X N3. The program therefore is very slow, but with the 

recent advances in computer technology, spectra can be simulated on work-station 

computer for up to 60 sites and 10,000 orientations for a powder sample. 

In order to bypass the time consuming matrix inversions, Gordon and McGinnis[162] 

proposed a procedure in which a QR transformation is first applied to diagonal the 

non-Hermitian exchange matrix zW(f2M) + ir. 

(5.72) 

where the S(nM) is the transformation matrix and ~(f2M) is the diagonal matrix of 

the non-Hermitian matrix zW(f2M)+ir. Notice that none of the matrices in Eq.(5.72) 

depend on the frequency. After Fourier transformation of Eq.(5.8), the spectrum is 

then given by 

(5.73) 

which can be evaluated to yield 

(5.74) 

. 
Thus the whole lineshape of N sites is reduced to a single summation over the N sites 

once the diagonalization and the inversion of the transformation matrix have been 

performed. Now the number of the multiplications is reduced to approximately 2Na x 

Nb x N3 + 3np x N 2 for a powder averaged spectrum. Based on the above algorithm 

and the QR algorithm in EISPACK, we have written a program called CEWC. The 

main problem with this program is that the accuracy of the diagonalization of a 

matrix becomes very bad once the dimension of the matrix is larger than 20 even 
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when the calculation is carried out using double precision numbers. I think a better 

program for matrix diagonalization now exists, such as the QZ algorithm. 

An alternative method is the group theoretical treatment of the chemical exchange 

process. From what we showed previously, Eq. (5.50) can be used to approximately 

calculate the lineshapes by truncating the series at some suitable I value. As it has 

be mentioned in the last section, to do that ";e need to know the coefficients a;;!n. At 

the end of the last section, we. have shown a general procedure for calculating these 

coefficients, but still we have to know the coupling coefficients V (Ab A2, A, JLl, JL2, JL) 

which depend on the properties of the symmetry group G and its irreducible repre­

sentations. Examples to illustrate application of this procedure can be found in the 

references [144, 161, 145] etc. 

In many cases, we need "to compare the lineshapes owing to rotational diffusion 

and due to discrete jumps in order to study the motions of a molecule. The lineshape 

with rotational diffusion may not be calculated exactly with the exchange matrix 

formalism because its dimension is infinite. However, we can use two methods to yield 

an approximate lineshape. One is based on the theory proposed by Freed, Bruno, 

and Polnaszek[l54]. The other is that using a very large humber of discrete sites to 

form an exchange matrix whose off-diagonal elements are all equal, that is same as 

strong collision model. This matrix then can be used to approximately replace the 

infinite dimension chemical exchange matrix. Thus we can use our program CESC 

to calculate the lineshapes for rotational diffusion model. Both methods are very 

good at lineshape sirrlUlations. The second method was first used by Wemmer[145]. 

In order to calibrate the above three programs (CESC, CEWCIM, and CEWC), 

let us consider chemical exchange process in a molecule with tetrahedron sym­

metry. Both the experimental and theoretical investigations were first done by 

Spiess[148, 149, 150] in solid white phosphorus in the ,B-phase at various temper­

atures. Unfortunately the simulated lineshapes shown in his first paper [149] and 
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also in Mehring's book[19] are wrong due to errors in the powder averaging. Later, 

Wemmer et al studied the dynamical processes in ice. Based on their results, they 

concluded that the water molecules bond together according to tetrahedral symmetry 

to form ice. 

The CSA tensor in a tetrahedral molecule has a local D2 symmetry and the 

characters of the D2 group is tabulated in Table (5.2). Since the CSA tensor of 

Table 5.2: Characters of the dihedral group D2 

D2 E C2{z) C2 {x) C2{Y) 

A 1 1 1 1 

BI 1 1 -1 -1 

B2 1 -1 1 -1 

B3 1 -1 -1 1 

protons in ice has an asymmetry parameter of", = 0, the CSA tensor has even 

higher symmetry. This new symmetry group is Doo. In the tetrahedron group Td, 

there are two subgroups: D2 , C3 • The characters of Td are listed in Table (5.3). From 

2". 
Table 5.3: Characters of the tetrahedral group T, f = e~3 

Td E 4C3 4Ci 3C2 

A 1 1 1 1 

E 1 f f* 1 

1 f* € 1 

T 3 0 0 -1 

the Tables (5.2) and (5.3), the decomposition of each individual representations of 

tetrahedral group under its subgroup D2 can be performed by use of Eq. (5.53), 

and is tabulated in Table (5.4). It can be seen that there is only one relevant 
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Table 5.4: Decomposition of the representations of the tetrahedral group T under 
the dihedral group D2 

I D2 

A Al 

E 2AI 

T BI +B2+B3 

representation beyond the identity representation in the Td group if the subgroup is 

D2 • The lineshape during chemical exchange therefore is uniquely determined bya 

single rate parameter .. This rate parameter corresponds to the jumping rates of all 

C3 and C2 rotations in the tetrahedral group. Thus, the chemical exchange process 

satisfies strong collision condition. 

Fig.(5.4) shows variations of the lineshapes calculated by CESC, CEWCIM, and 

CEWC respectively with different rates. At slow exchange rates, the amplitude of 

the real part in exchange matrix is very small , and the imaginary part dominates the 

behavior of the diagonalization. In this case, the matrix is in its most un Hermitian 

form, and the accuracy of the diagonalization procedure is the worst. This behavior 

explains why the lineshape simUlated by CEWC is not very smooth at low exchange 

rates. Otherwise, all the lineshapes simulated with different programs are quite 

similar, indicating all the programs work well. 

In the variation of the lineshapes shown in Figure (5.4) for a tetrahedral molecule, 

th~re are two singularities beyond the original two singularities of a powder pattern 

with a CSA interaction in which the asymmetry parameter is zero. One is always 

at isotropic frequency with its amplitude, neither the linewidth nor the frequency, 

depending upon the exchange rate. Both the frequency and the linewidth of the 

other singularity depend on the exchange rate. In the very slow exchange region, 

the position of this singularity is at ~ and the peak is very sharp. As the exchange 
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Figure 5.4: Variation of the lineshapes with different exchange rates in a tetrahedron 
molecule simulated: (a) by CESC, (b) by CEWC, and (c) by CEWCIM programs 
respectively. The exchange rate is in unit of Hertz; the anisotropy of the CSA tensor 
is Wo8 = 3kH z and its asymmetry parameter is zero. 
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rate increases, the position of the singularity reduces to the isotropic frequency and 

its linewidth increases. In the fast exchange region, there is only one single sharp 

peak in the spectrum. All these properties of the lineshape with exchange rate can 

be explained by use of the singularity analysis method described in chapter 3 and 

also of section 5.2. 

In the molecular frame, if we choose the three C2 rotation axes as the XM,YM, 

and ZM axes, the frequencies of four sites are 

wl(B, ¢) - L d(2) (B)42) (B )e-,m(i+cf» P m,O ,m m 2,0 
m 

W2(B, ¢) - L d(2) (B)42) (B )e-sm(s: +cf» P m,O ,m m 2,0 
m 

w3(B, ¢) - L d'2) (B)42) (11" _ () )e-sm(3: +cf» P m,O ,m m 2,0 
m 

w4(B, ¢) - L J'!~0(B)4::n(11" - Bm)e-sm
(7: +cf» P2,0, (5.75) . 

m 

where Bm is the magic angle, Bm = 54.74°. Once the ZM axis becomes aligned with 

the direction of the external magnetic field, B = 0°, the frequencies of all four sites are 

zero. The ~atrix w(nM ) + * is therefore reduced to a real symmetric matrix whose 

\ diagonal elements are equal. It will be seen later that one of the four eigenvalues for 

this 4 x 4 matrix is actually zero. Thus thIS particular orientation corresponds to one 

of the singularities of the lineshapes during chemical exchange. The frequency of this 

singularity, which is determined/by the imaginary part of the singularity, is zero in the 

rotating frame, and the line broadening, real part of the Singularity, is also zero if we 

neglect relaxation effects induced by the molecule's random tumbling motions. This 

explains the sharp peak at the isotropic resonance frequency in the powder lineshapes 

shown in Figure (5.4). From the above discussion, we can generally conclude that 

there will be a sharp peak in the spectrum with N~site chemical exchange if and 

only if all sites have a constant frequencies at particul,ar orientation of the molecule 

. with respect to the laboratory frame. The frequency of the sharp peak is same as 

the frequency of all sites. To see this, we assume that all sites have a constant 
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frequencies, We, and then define N = 'tWe - A - (N - l)Ic The new eigenvalues A' 

therefore are determined only by the matrix * + [(N - l)x: - A1i which is obviously 

real and symmetric, and its diagonal elements are N. In order to diagonalize this 

real symmetric matrix, we use the secular equation. 

det [zW (OM ) + *" - Ai] -
x: -N x: 

-N 
(5.76) 

The solution of Eq.(5.76) is obvious, that is, A~ = -(N -l)x: or A = 1,We , and ~ = K 

or Ai = 'tWe - N x: for i = 2,3,··· ,N. So, we can see that in the first eigenvalue 

Al there is no real part and we know that the real part corresponds to the line 

broadening. If there are two different frequencies for N sites, the situation becomes 

very different. Since the linewidths corresponding to the singularities depend on the 

exchange rate, the singularities will be smoothed out by this line broadening. 

Another example which has the same properties as chemical exchange in a tetra­

hedral molecule is jumps on a magic angle cone. Fig.(5.5) shows variations of line­

shapes with different jumping sites and different jumping rates. A sharp peak at 

isotropic resonance frequency can still be clearly o~served even when the number of 

the jumping sites on the magic angle cone is thirty. On the magic angle cone, the 

frequency of ith site is 

w.(8 "i,) = ~ i2) (8) .J!2) (8 )e-lmCt!>i+t!»p . 
l , 'P L-, m,O ao,m m 2,0 (5.77) 

m 

When 8 = 0°, all the elements of the reduced Wigner rotation matrices are zero 

except m = 0 term. Furthermore ~~6(8m) = P2(cos8m ) = 0 at magic angle 8m = 

54.74°. Thus at 8 = 0°, the frequencies of all sites on the magic angle cone are zero. 

Under this condition, we have a singularity to which the chemical exchange does 
• 

not contribute to the line broadening. This singularity always exists for any number 
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(a) 3 sites (b) 10 sites (c) 30 sites 

1C (Hz) 1C (Hz) 1C (Hz) 

lxl<f lxl<f 

Figure 5.5: Variation of the lineshapes with different exchange rates jumping on a 
magic angle cone: (a) three sites, (b) ten sites, and (c) thirty sites. The exchange 
rate is in unit of Hertz; the anisotropy of the eSA tensor is wo8 = 3kHz and its 
asymmetry parameter is zero. 
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of sites on the magic angle cone, only the intensity, determined by the partition in 

the whole exchange matrix, decreases as increasing the number of sites. This is the 

reason why we can see a singularity in the spectrum even the number of sites is 

thirty. In practice, when we use the strong collision model to simulate a lineshape 

for rotational diffusion case, the number of sites therefore has to be large enough. 

5.5 Jumps with An Icosahedral Symmetry 

As we showed in section 5.3, the first step in calculating the lineshape with chemical 

exchange through to use group theory is to determine the number of the relevant 

representations involved in the molecular symmetry group, G. To find the rele­

vant representations of molecular symmetry group G, we require the local symmetry 

group, S, of the eSA tensor. This local symmetry group, S, is the dihedral group 

D2 in the case of TJ =I 0, and becomes the Doo once the asymmetry parameter of 

the eSA tensor is equal zero. If the molecular symmetry group is the icosahedral 

group, there are five classes: E (identity), 12Cs, 12C;, 20C3 , and 15C2 respectively. 

The rotation axes of the ~ and Cs elements are the vertices, those of the C3 ele­

ments are the centers of the triangles, and those of the C2 elements are the centers 

of the edges of the icosahedron (see Figure.(5.6b)). The icosahedral group contains 

eight different subgroups: T, Ds, D3 , D2, C3 , C2, and C I , and it has five irreducible 

representations: AI, TI, T2, G, and H. The characters of groups D2, D3 , Ds, and 

I are tabulated in Tables (5.2), (5.5), (5.6), and (5.7). From these character tables 

and Eq. (5.53) , the decomposition of the representations of the icosahedron group 

relative to its subgroups Ds, D3 , D2 is given in Table (5.9). In the decomposition. 

of the representation of the icosahedral group under the dihedral group Ds , there 

is only one relevant representation in addition to the identity representation while 

there are two relevant representations under the D3 or D2• Thus, in the case where 

the asymmetry parameter, TJ, of the eSA tensor is not equal to zero, and the local 
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(a) 

(b) 

Figure 5.6: Definitions of rotation operators, C3 , Cs, and Cl, in icosahedral group I 
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Table 5.5: Characters of the dihedral group Da 

Da E 2Ca 3C2 

Al 1 1 1 

A2 1 1 -1 

E 2 -1 0 

Table 5.6: Characters of the dihedral group Ds 

Ds E 2Cs 2C2 
S 5C2 

Al 1 1 1 1 

A2 1 1 1 -1 

EI 2 2 cos 72° 2 cos 1440 0 

E2 2 2 cos 1440 2 cos 720 0 

symmetry is determined only by the dihedral group D2 , there are two relevant rep­

resentations for a molecule with icosahedral symmetry, and the chemical exchange 

processes in such a molecule is determined by only two rate parameters. These two 

. rate parameters correspond to the Cs and Ca rotations of the icosahedral group. 

In order to calculate the effect of the chemical exchange on the ioosahedral 

molecules using Eq.(5.50), we need to calculate the coupling coefficients, a!:?:I-" of 

Eq.(5.51), and we need to decompose the Wigner rotation matrix elements, VC!), 

which forms the irreducible representations of 80(3) group, into the irreducible rep­

resentations of the icosahedron group I. In order to use Eq.(5.53), we will need the 

character of the 80(3) group which is given by 

(l)(</» _ sin(l + 4</» 
X - sine</»~ . (5.78) 

. Since the icosahedral group contains only rotations through angles of 2: , where n is 

226 



Table 5.7: Characters of I Group 

I E 12C5 12~ 20C3 15C2 

A 1 1 1 1 1 

Tl 1 1.±lG 1-# 0 -1 2 2 

T2 1 1-# 1+v'5 0 -1 2 -2-

G 4 -1 -1 1 0 

H 5 0 0 -1 1 

an integer, there is a periodic property of the characters X(l)e;). 

(l)(27r) _ (n-l-l) (27r)' _ (mn-l-l) (27r) X - - -X - - -X - , 
n n· n 

(5.79) 

where m is also an integer. Let us assume that the common multiple is N for all 

the rotations in the icosahedral group I. When I = N, one character will be the 

sum of the identity representation, X(E) = 9 = 60, the order of the icosahedral 

group G, and all other characters will be zero. This corresponds ~o the regular 

representation. For I = N m, we obtain the regular representation m times plus the 

identity representation. For 1 < k < N, we have 

(5.80) 

Furthermore, from EQ:(5.79), it can be easily proved that 

r (k) + r· (N-k) - r 
- reg, (5.81) 

where r(k) is the k-th representation of the SO(3), given by the linear combination 

of the irreducible representations of the icosahedral group. For this reason we only 

need to tabulate the reduction of the representations of SO(3) group, 'DO), into the 

irreducible representations of I through I = 14. In this situation, N = 30 and the 

regular representation is given by rreg = A + 3T1 + 3n + 4G + 5H. 
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Table 5.8: Reduction of '[)(l) to irreducible representations of I 

l I 

0 A 

1 Tl 

2 H 

3 T2+G 

4 G+H 

5 Tl+T2+H 

6 A+Tl+G+H 

7 Tl +T2+G+H 

8 T2+G+2H 

9 Tl +T2+2G+H 

10 . A + Tl + T2 + G + 2H 

11 2Tl +T2 + G+2H 

12 A + Tl + T2 + 2G + 2H 

13 Tl + 2T2 + 2G + 2H 

14 Tl + T2 + 2G + 3H 

30 2A + 3T1 + 3T2 + 4G + 5H = r reg + A 

If we only consider the case in which the asymmetry parameter of the CSA 

tensor is zero and the local symmetry is therefore determined by the dihedral group 

Doo , the NMR lineshape of a molecule with icosahedral symmetry under a chemical 

exchange process is determined only by one rate parameter. We assume that this 

rate parameter corresponds to the jumps generated by the Cs rotations in icosahedral 

group since the Cs rotations require the minimum energy, and therefore are the 

most favorable jumps in the chemical exchange process. The chemical exchange 

therefore satisfies strong collision condition and its lineshape can be calculated by 
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use of Eq.(5.18). 

Table 5.9: Decomposition of the representations of the group I under its subgroup 
Ds, D3, and D2 

I Ds D3 D2 

A Al Al Al 

TI A2+EI A2+E BI +B2+B3 

T2 A2+E2 A2+E BI +B2+B3 

G EI+~ Al + A2 + E Al + BI + B2 + B3 

H Al +EI +E2 A1 +2E 2A I + Bl + B2 + B3 

The first simulation shows the lineshape of an icosahedral molecule in the strong 

collision limit with an axially symmetric eSA tensor. This situatio,n corresponds to . 

that the local symmetry of the eSA tensor is Doc. Since the local symmetry group has 

to a subgroup of the icosahedral group in order to find the relevant representations, 

we choose the largest subgroup of the icosahedral group, Ds, as the local symmetry 

group. From Table (5.9), we can know that there is only one relevant representation. 

Thus, the whole dynamics is determined by a single rate parameter K. Figure (5.7) 

shows a variation of the line shapes with different chemical exchange rates. At a slow 

exchange rate, there are three singularities in the lineshape excluding the original 

two singularities which form the two edges of the static lineshape, two of them are at 

the left side of the isotropic resonance frequency, and the other one is at right side. 

The positions of all singularities depend on the exchange rate. Under fast exchange, 

all sites are degenerate and the spectrum shows a single sharp line at the isotropic 

resonance frequency. In order to understand these singularities, we choose one of the 

12 Cs rotation axes as the ZM axis and another two of the 15C2 rotation axes as 

the X M and YM axes. With these definitions, one of the two singularities on the left 

side of the powder pattern corresponds to the orientation of the icosahedron where 
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k=10 Hz 

50 

100 

·100000 

Figure 5.7: Variation of lineshapes with different exchange rates in icosahedron jumps 
with strong collision limit. The exchange rate is in unit of Hertz; the anisotropy of 
the CSA tensor is wo8 = 3kH z and its asymmetry parameter is zero. 
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the Z M axis is along the external magnetic field. The other one on the left side is 

generated by the configuration in which the ZM axis is at an angle of 37.38° with 

respect to the external field, that is, the external field coincides with one of the C3 

rotation axes. The third configuration which generates singularities is at the position 

at which the external field coincides with one of the C2 rotation axes. In the first two 

configurations, all twelve sites degenerate into two different frequencies. Of course, 

the values and site numbers corresponding to these two set frequencies are different. 

In the third configuration there three different frequencies. All the frequencies and 

number of sites with a particular frequency are tabulated in Table (5.10). 

Table 5.10: Orientations at which there are some degree of degeneracy of the reso­
nance frequencies of sites in an icosahedral molecule 

(h (}2 (}3 WI W2 W3 NI N2 N3 

(degree) (degree) (degree) (8) (8) (8) 
1 0 63.43 - 1 I - 2 10 --5 

2 37.38c 79.19 1 1 6 6 ~ - 15 -75 -

3 31.72 58.28 90 ¥Ts £5:;l· 1 4 4 4 4 5 4 5 -'2 

Now we consider the chemical exchange in the first two configurations in an 

icosahedral molecule. In general, we can assume that there are N different sites in 

the molecule but only two distinguishable frequencies in the spectrum: the first NI 

sites have frequency WCl and the other N2 sites have another frequency wC2 • We will 

calculate the eigenvalues of the matrix zW(nM ) + * instead of exactly solving the 

dynamical equation for such a system in order to obtain the analytical solution for 

the singularity. As was done wi~h tetrahedral jump case in the last section, we first 

define 

Al - A - 'lWCl + (N - I)K 

A2 - A - 'lWC2 + (N - I)K. 
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The secular equation for eigenvalues A of the matrix iW (OM) + '* becomes 

K, K, ... K, 

K, K, . . . Al K, . . . K, 

K, K, . . . K, A2 K, 

K, K, . . . K, K, . .. A2 

- (AI - K,)Nl-l(A2 - K,)N2-l [AlA2 + (Nl - l)K,Al + (N2 - 1)K,A2 - (Nl + N2 - 1)K,2] 

- o. (5.83) 

The solutions of Eq.(5.83) into which Eq.(5.82) is inserted is also obvious: the first 

two eigenvalues are 

Next Nl - 1 eigenvalues are degenerate and they have a value Ai = ZWC1 - N K, for 

i = 3, ... ,Nl + 1. The final N2 - 1 eigenvalues are also degenerate with the value 

Ai = ZWC2 - N K, for i = Nl + 2,· .. , N. Obviously for these N - 2 eigenvalues, the 

frequencies corresponding to the imaginary parts of the eigenvalues do not change 

with the variation of the exchange rate K" but the linewidths of the peaks increase 

as the exponential of -N K,. On the other hand, for the first two eigenvalues, the 

behavior is similar to the two site jump. The only difference is that once total 
\ 

number of sites are larger than two there is a imaginary part in the square root. 

This imaginary part introduces an additional phase factor which mixes the resonance 

frequencies with the exchange rate K" 

Wl,2 - ~(WCl + WC2 1= VCsin~) 
1 () 

- -(-NK,± VCcos-) 
2 2' 

(5.85) ""1,2 
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where 

C - v'A2 +B2 

8 t -1 B - an -
A 

A - [(N K)2 - (WCI - WC2)2] 

B - 2K[N(wC1 + WC2 ) - 2(NI wC1 + N2wC2 )]. (5.86) 

Eq.(5.83) can be generalized to the situation in which there are only M different 

frequencies in a molecule with N (> M) different sites. Now we define 

~ = 1.Wi - (N - l)K - A, for i = 1 2 ... M " , (5.87) 

where Wi is the ith frequency. There are Ni such sites in the molecule. The solution 

of the secular equation for the matrix 1.W (n M) + * is 
M 

det[1.w(nM ) + *] = II(Ai - K)Ni-l(~-I - (Ni - 1)Ki - 1), (5.88) 
i=1 

where 

(5.89) 

with 

(5.90) 

The first M eigenvalues can only be obtained by solving an M order polynomial 

equation. The other N - M eigenvalues are 

A=1.Wi-NK, for i=M+1,···,N. (5.91) 

For example, when M = 3, we assume that the three different frequencies are WI, W2, 

W3 corresponding to NI , N2, and N3 sites respectively. The first three eigenvalues 
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therefore are determined by a cubic equation. 

where 

Cl - WI + W2 + W3 - 2N '" 

C2 - N "'(WI + W2 + W3) - (N K)2 + K(NIWI + N 2w2 + N3W3) 

-(WIW2 + W2W3 + WIW3) 

C3 - N K2(NIWl + N2W2 + N3W3) + WIW2W3 

-",[(N1 + N 2 )WIW'l + (N2 + N3)W2W3 + (Nl + N 3)WIW3]. (5.93) 

For the first configuration of an icosahedral molecule shown in Table (5.10), the 

total number of jumping sites is twelve, Nl = 10 and N2 = 2. After these numbers 

are inserted into Eq.(5.86), the variation of the frequencies and the linewidths with 

the chemical exchange rate K was calculated and the results are shown in Figure (5.8). 

For the first eigenvalue, the resonance frequency decreases from 8 to 0.88 while the 

exponent of the linewidth Kl increases according to -12"" obtained from Eq.(5.91) 

with N = 12. In other words, one of the edges of the static lineshape will be smooths 

immediately as the exchange rate increases from zero. For the second eigenvalue, the 

behavior is quite different. At '" = 0, the resonance frequency is -~8. When the 

exchange rate increases to the value of 0.48, the resonance frequency shifts almost 

to zero. The exponent of the linewidth changes even more dramatically. At very 

small exchange rate, it increases with", and reaches the maximum value at around 

'" = l~' then decreases with K to zero. Obviously this point forms a singularity in 

the powder lineshape. 

For the second configuration of the icosahedral molecule, inserting the numbers 

. in Table (5.10) into Eq.(5.86) yields the variation of the frequencies, Wi, and the 

exponential factors, "'i, responsible for the linewidths with the chemical exchange 
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Figure 5.8: Variations of the first two eigenvalues of the matrix zW + * with the 
chemical exchange rate K in an icosahedral molecule whose Z Maxis (one of the Cs 
rotation axes) is along the external magnetic field and therefore {)l = 0°, {)2 = 63.43°, 
WI = 0, W2 = -io, NI = 2 and N2 = 10 with ° = 1. Left: frequencies, and right: 
line broadening factors. 
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rate K. This variation is graphically shown in Figure (5.9). The behavior of the 

eigenvalues in this figure are similar to the first case. However, there is one obviously 

discontinuous point at K = i6. At this point, the frequencies of the two eigenvalues 

are zero exactly arid one of the exponential factors, K2, responsible for the linewidths 

changes its variation from increasing to decreasing with the exchange rate, K, at 

this point too. Before this point, the exponential factor K2 increases according to 

-6K with the exchange rate K. The other exponential factor of the linewidth is still 

roughly increases according to 12K with the exchange rate K except there are a slight 

changes in very small exchange rate region. 

In the third configuration, the variation of the eigenvalues with the chemical 

exchange rate K is shown in Figure (5.10), resulting from Eqs.(5.92) and (5.93) into 

which the numbers listed in the third row of Table (5.10) are inserted. The first and 

third eigenvalues vary with the exchange rate K in manner similar to the above two 

cases. The resonance frequency of the first eigenvalue decreases from '{S;l6 to about 

0.36, while the frequency of the third eigenvalue increases from -46 to about -0.36 

as the exchange rate K varies from zero to infinity. The linewidth of the both peaks 

however always increase with an exponent of -12K. The resonance frequency of the 

second eigenvalue first decreases from 1;i6 to about-0.26 and the~ increases to 

zero after the turning point, K . 46, as the exchange rate changes from the zero 

to infinity. Its line broadening factor also first increases according to 6K and then 

decreases to zero. These features can also be seen in Figure (5.7), the singularity 

at about w = 46 on the right side of the spectra, which corresponds to the first 

eigenvalue here, is much more broadened than the singularities at left side. in the 

spectra. 

At the beginning of this section, we used group theory to prove that chemical 

exchange in an icosahedral molecule satisfies the strong collision condition. Now 

we can further examine this conclusion by numerical simulations of the chemical 
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Figure 5.9: Variations of the first two eigenvalues of the matrix zW + * with the 
exchange rate K, in an icosahedral molecule. The ZM axis, one of the C3 axes, is along 
the e?'ternal field and Oi' Wi, and Ni are given in Table (5.10). Left: frequencies, and 
right: line broadening factors with 8 = 1. 
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Figure 5.10: Variations of the first two eigenvalues of the matrix zw + 7r with the 
exchange rate /'i, in an icosahedral molecule. The Z M axis, one of the C2 axes, is along 
the external field and Oi, Wi, and Ni are given in Table (5.10). Left: frequencies, and 
right: line broadening factors with 8 = 1. 
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Figure 5.11: Variation of lineshapes with different exchange rates in icosahedron 
jumps: (a) C3 jump mode, (b) Cs jump mode, and (c) Ci jump mode. The exchange 
rate is in unit of Hertz; the anisotropy of the eSA tensor is WoD = 3kHz, and its 
asymmetry parameter is zero; spectrum width is SW = 6kHz. 
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exchange process in the icosahedral molecule in the weak collision limit. If we assume 

the atoms in the icosahedral molecule are set on the vertices of an icosahedron, the Z 

axis in the principle axis system of the eSA tensor will coincide with the Cs rotation 

axis. If the asymmetric factor TJ of the eSA tensor is zero, the local symmetry 

of the eSA tensor, as we know, is determined by Doo. However, there are four 

physically different classes of rotations. Each class of rotations corresponds to one 

jur:nping mode in the icosahedral molecules with a rate parameter K.r • We assume 

that these rate parameters independently form the lineshape under the chemical 

exchange. We can then examine the effects of each individual jumping mode on the 

lineshape. Figure (5.11) shows variations of the lineshapes with different exchange 

rates under the weak collision condition and different jumping modes: (a) C3 jump 

mode, (b) Cs jump mode, and (c) Cl jump mode. C2 jumps are not considered 

because they require large amounts of energy, and thus do not happen often. All 

simulated lineshapes are very much same as those obtained in the strong collision 

limit. The only observable difference between the lineshapes in the strong and weak 

collision limits is that the linewidths of the peaks in the strong collision limit narrow 

at different speeds with different jumping modes. Such a difference will disappear if 

we redefine the exchange rate because each jump mode can be implemented by the 

linear combination of another jump modes. If we properly normalize these difference 

can be eliminated, and alilineshapes are exactly same as those in the strong collision 

limit. 

Another example is chemical exchange in a dodecahedral molecule. In the do­

decahedral molecule, there are twenty sites, each on the vertices of a dodecahedron. 

The molecule symmetry also has the icosahedral symmetry. The local symmetry of 

the eSA tensor for each site is determined by the dihedral subgroup, Ds, of I for 

the case of TJ = 0, and, therefore, chemical exchange in a dodecahedral molecule· 

also satisfies the strong collision condition. Figure (5.12) shows the variations of the 
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Figure 5.12: Variation of lineshapes with different exchange rates in dodecahe­
dron jumps with strong collision limit. The exchange rate is in unit of Hertz; the 
anisotropy of the eSA tensor is woO = 3kHz andl. its asymmetry parameter is zero; 
the spectrum width is 8W = 10kHz. 
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lineshapes in a dodecahedral molecule with different exchange rates. At slow rates, 

three singularities are clearly seen in the figure. The positions of the singularities are 

more or less same as those in the lineshape of an icosahedral molecule. One differ­

ence is that the overall linewidth decreases much faster than in the icosahedral case. 

These singularities correspond to three different configurations of the dodecahedral 

molecule relative to the external magnetic field. In the first configuration, one of 

the Cs rotation axis coincides with the external field, and all twenty sites form two 

different groups. Each group has ten equivalent sites and a frequency Wi for i = 1, 2. 

In the second configuration, one of the C3 rotation is along the external field, and 

therefore the twenty sites are divided into three different groups. The first group 

with two equivalent sites on the ZM axis has the frequency 6. The second group 

has six sites in which three of them are equally distributed on a cone with half apex 

angle of 41.81° with respect to the external field and the other three sites are on a 

cone which is the mirror imager of the first cone about the X M YM plane. The twelve 

sites left, which form the third group, are distributed on a cone with half apex angle 

of 70.55° in a way same as the sec<?nd group. In the third configuration, in which one 

of the C2 rotation axes aligns on the external field, there are four different groups. 

The first group forms a cone with the half apex angel 20.09°, and the second group 

with 54.74°, the third group with 58.28° and the fourth group are distributed on the 

equator. All geometrical and magnetic properties of the three configurations of the 

dodecahedral molecule are summarized in the Table (5.11). 

Figure (5.13) shows variations of the lineshapes in a dodecahedron molecule with· 

different exchange rates under the weak collision condition and different jumping 

modes. (a) corresponds to C3 jump mode, (b) Cs jump mode, and (c) Cl jump 

mode. The lineshape variations with different jump modes are similar to those in 

icosahedral molecules. The difference of the linewidths arising from different jump . 

modes will be disappears if we redefine the jumping rate for each jump mode. 
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Figure 5.13: Variation of lineshapes with different exchange rates in dodecahedron 
jumps with weak collision limit: (a) C3 jump mode, (b) Cs jump mode, and (c) ~ 
jump mode. The exchange rate is in unit of Hertz; the anisotropy of the CSA tensor 
is 1iJo8 = 3kHz and its asymmetry parameter is zero. 
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Table 5.11: Orientations at which there are some degree of degeneracy of the reso­
nance frequencies of sites in a dodecahedral molecule 

fh (}2 (}3 (}4 WI W2 W3 W4 Nl N2 N3 N4 

degree (6) 

1 37.38 79.19 - 1 -1 - 6 6 - -- 7s 7s -
2 0 41.81 70.53 - 1 1 -1 - 2 6 12 -"3 "3 

3 20.91 54.74 58.28 90 ~ 0 1Ts -1 4 8 4 4 4 4 5 T 

5.6 Motions in Solid C60 

Study of carbon clusters was ignited in the 1960s by the observation with microwave 

spectroscopy ofpolyyne, (HC5N), in space by Townes and his co-workers[120]. Since 

then, many different sizes, up to 190 carbons have been observed [121, 122, 123, 
. 

126]. Among these results, the most interesting was shown by Rohlfing and co-

workers[126]. They used the carbon cluster-beam method and observed carbon clus­

ters larger than 33-atoms. This experiment resulted in the first experimental observa­

tion of the C60 molecule. From their spectra, the Coo molecule was always produced 

in greater intensities than the other clusters. Later, Kroto and c<.rworkers[124] re­

peated Rohlfing's experiment. After applying purifying techniques to the experiment, 

they observed an even stronger signal of C60 clusters in the mass spectra, with the 

C60 cluster eventually dominating the whole spectrum. In order to understand the 

dominance of the C60 in the carbon cluster-beam experiment, Kroto and c<.rworkers 

thought that the behavior could result from the stabilization by the closure of the 

graphitic net into a hollow chicken-wire cage similar to the geodesic domes of Buck­

minster Fuller. This molecule would have a truncated . icosahedral structure or a 

soccer ball type structure (see Figure 5.14)[124]. 

More recently, success in synthesizing C60 molecules in macroscopic amounts[127] 

has stimulated intense interest and activity. The study of the physical properties 

244 



Figure 5.14: A truncated icosahedral structure, or a soccer ball type Buckminster 
Fuller, of a Cso molecule. 
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of C60 molecules in the solid state has clearly demonstrated its conductivity and 

superconductivity upon doping with alkali metal atoms (potassium or rubidium) [132, 

133]. The crystal structure adopted by Coo molecules shows that the mass center of 

each C60 molecule is positioned in a fcc lattice, and the whole molecule behaves like 

a single large atom. Meanwhile, a number of spectroscopic studies, especially the 

infrared, vibrational Raman spectra, and liquid NMR spectra, have confirmed that 

the molecular symmetry is indeed icosahedral[l34, 135, 136]. 

The pseudospherical symmetry of the Coo molecules implies that the motion of the 

molecules is probably isotropic in the solid state. The solid-state NMR spectroscopy 

therefore provides a unique probe of this kind of molecular motion. The 13C NMR 

spectra of solid Coo have shown unequivocally that each individual Coo molecule 

reorients rapidly and isotropically in the solid state at room temperature [137, 139, 

140, 138] because there is only one sharp, liquid-like isotropic peak at 143ppm in 

spectra. As the temperature decreases, the random reorientation process of the 

molecule will, as expected, slow down and a characteristic eSA powder pattern with 

principal values of O"ll = 220ppm, 0"22 = 186ppm, 0"33 = 33ppm at temperature 

T = 77 K was obtained. The lineshape of the powder spectrum of C60 also changes 

and the intensity of the sharp peak decreases as the temperature is lowered. Such a 

result may be explained by the growth of a phase in which cluster rotation is inhibited 

or by a distribution of rotational correlation times and a concomitant distribution of 

motional barries. 

We have performed numerical simulations by assuming that the Coo molecules 

randomly and discretely jumps on an icosahedron at low temperature. We first as­

sume that the asymmetry parameter of the local eSA tensor is zero. According to 

the discussion in last section, the local symmetry of the eSA tensor is determined 

by the Doo group in which D2 , D3 , and Ds are also the subgroups of the icosahedral 

group. If we choose the highest dihedral group, Ds, as the local symmetry group, the 
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Figure 5.15: Variation of simulated powder lineshapes of C60 molecules in the solid 
state with different jumping rates, K, and with different jumping modes in the 
case that the asymmetry parameter of the CSA tensor is zero, the anisotropy is 
wob = 3kHz, and the spectrum width is 6kHz. (a) In the strong collision limit, (b) 
C3 jumps, (c) Cs jumps, and (d) C; jumps in the Coo molecules. 
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Figure 5.16: Variation of simulated powder lineshapes of C60 molecules in the solid 
state with differ~nt jumping rates, Yi., and with different jumping modes in the case 
that the asymmetry parameter of the eSA tensor is 0.312, obtained from the ex­
perimental results given in reference [140], the anisotropy is WoD = 3kHz, and the 
spectrum width is 6.8kHz. (a) In the strong collision limit, (b) Cs jumps, and (c) 
C3 jumps in the C60 molecules. 
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number of relevant representations is one from Table (5.9) except the identity repre­

sentation. The molecular reorientation process therefore satisfies the strong collision 

condition. Figure (5.15) shows the variations of the simulated powder lineshapes of 

C60 molecules with different exchange rates K, using different jumping modes. In Fig­

ure (5.15a), the spectra are calculated in the strong collision model while in Figure 

(5.15b), (5.15c), and (5.15d), by assuming that the Coo molecules undergo random 

jumps around the Ca, Cs, and G rotation axes in the weak collision limit respec­

tively. The lineshapes in the strong collision limit narrow the fastest, and those in 

the Cs and G jumping modes narrow the slowest. This difference will disappear 

if we redefine the jumping rate. The lineshapes in the Cs jumping mode are exact 

same as those in the cg jumping mode. 

Figure (5.16) shows the variations of the lineshapes of the C60 molecules in the 

solid state with different jumping rates, using different jumping modes for the case 

that the asymmetry parameter of the eSA tensor is TJ = 0.312, obtained from the 

experimental results given in reference [140]. As can be seen, the variations of the 

lineshapes are similar to those shown in Figure (5.15). The linewidth of the lineshape 

arising from the strong collision limit narrows the fastest, and then the one with 

Ca jump mode while the linewidth narrows the slowest with Cs jump mode. The 

lineshapes vary largely same. This result seems in contrast to the conclusion from 

the group theoretical discussion which says that two exchange rate parameters are 

necessary to determine the lineshape during chemical exchange if the local symmetry 

of the eSA tensor is D2 • One reason could be that the asymmetry parameter is 

still too small to see the difference of the lineshape .between different jump modes. 

From these simulated powder lineshapes with chemical exchange, two things may be 

concluded. First, the rate change is very small from the rigid static structure to the 

state in which the molecules tumble isotropically and locally. This means that the 

molecules require a very small amount of kinetic energy to be in the isotropically 

tumbling state. In this state, the crystal structure may still be well defined because 

the molecules only tumble locally. This may explains the difference between the 

NMR and x-ray diffraction results. The NMR results showed that the spectra at 
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the temperature above 200K contain only an isotropic narrow peak while the x­

ray results indicated a phase transition at about 250K in solid C60 [141]. Secondly, 

because the powder lineshape changes smoothly and there is no singularity in the 

spectra as the exchange rate changes, the conclusion given by Tycko and Yannoni 

and co-workers are consistent. During the process of lowering temperature, there is 

either a phase in which the carbon cluster rotation is inhibited or a distribution of the 

rotational correlation times. These conclusions are further supported by the NMR 

relaxation measurement of Coo in the solid state by Tycko and co-workers[138]. 
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