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Abstract 

A vortex method is one of the main numerical tools in the study of 
incompressible fluid flow. With a regular three dimensional vortex method, 
one can follow the evolution of a particular part of a vortex tube, but 
can not trace a perturbed wave on a vortex tube unless one uses a large 
amount of computer memory. In this work, we present a three-dimensional 
adaptive vortex method which can be used to trace a wave accurately with 
use of a limited amount of computer memory. A successful application of 
the method to the study of solitons propagation on vortex filaments will 
be shown. 

Introduction 

Vortex methods have been used successfully to simulate various incompressible 
vortex flow phenomena in three dimensional space [6, 15, 13]. The methods follow 
the evolution of a vorticity field in the Lagrangian coordinates. One discretizes a 
vorticity field based on the fact that vortices are concentrated on some regions in 
the three dimensional space. Thus a vortex method follows a particular material 
volume which contains concentrated vortices. 

We are often interested the wave phenomena on a concentrated vortex tube 
or vortex sheet. The studies of those wave phenomena on vorticity field provide 
important information to understand the vortex dynamics. The vortex stretching 
and nonlinear waves such as soliton on vortex line themselves are very interesting 
wave phenomena and have drawn a great attention for scientists whose work 
relates to fluid phenomena. The studies of vortex stretching and nonlinear waves 
on vorticity field are among the frontiers of modern science. A three dimensional 
vortex method is a good candidate to be used for study of the wave phenomena 
on a concentrated vorticity field. However, a wave is usually not confined in a 
given material volume. This is a problem in use of a vortex method for the study 
of wave phenomena on vorticity field. One can solve this problem by considering 
a large region which can guarantee the containment of the studied wave in whole 
computation. That is not always feasible because of the limited machine memory 
of today's computer. 

In this work, we present a three dimensional adaptive wave tracing vortex 
method. Using this method, we are able to study a wave phenomenon on a 
concentrated vortex tube with a great accuracy without use of a large amount of 
computer memory. 

A solitary wave is a nonlinear wave with permanent form whose tails approach 
a constant at infinity. A soliton is a solitary wave that can interact strongly with 
other solitons and retain its identity. A soliton solution was first discovered for the 
KdV equation. We now knew that besides the KdV equation, the Sine-Gordon 
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equation and the nonlinear Schrodinger equation possess soliton solutions. (See 
Lamb [14] and Drazin & Johnson [7].) 

On a vortex filament, Hasimoto first obtained a solitary wave solution for the 
localized induction approximation (LIA) of the Biot-Savart law [10]. He proved 
that the LIA is equivalent to the nonlinear Schrodinger equation. 

However, the Euler equations which describe the motion of Euler flow are 
very different than the LIA in the sense that the LIA does not represent the 
vortex stretching [5]. To answer the question whether there are solitons in the 
Euler flow, physical and numerical experiments have been conducted. In physical 
experiments, Hopfinger, Browand & Gagne [11] and Maxwathy, Hopfinger & 
Redekopp [16] reported the appearance of solitons. The numerical experiments, 
on the other hand, was not very successful [1]. 

Now, using the newly developed adaptive vortex scheme, we attempt again 
to search a solitary wave or solitons on a vortex filament numerically. The result 
is very satisfactory. We have successfully simulated a solitary wave propagation 
on a vortex filament and the strong interaction of two solitons. 

In Section 2, a regular three dimensional vortex filament method is described. 
In Section 3, an adaptive vortex method algorithm is given. A detailed analysis 
and proper treatment of a numerical error that could be generated by the algo­
rithm are also described here. In Section 4, the simulations of a solitary wave 
propagation and the interaction of two solitons on a vortex filaments are demon­
strated. Although the results displayed in this work only for one filament, we 
have tested these simulations on up to five filaments with very similar outputs. 
Finally, Section 5 will be devoted to a summary and further discussion. 

2 The Basic 3-D Vortex Methods Scheme 

The velocity field u(x, t) = (u, v, w) of the incompressible, inviscid fluid flows is 
described by the Euler equations 

Du 
Dt 

V·u 

au 
-+(u.V)u= -VP at 
o 

(1) 

(2) 

Where x = (x, y, z) is the position, t time, P pressure and V = (ajax, a/ay, aJaz) 
Define the vorticity w, 

w=Vxu 

Taking curl of equation (1), we have the vorticity transport equation 

aw - + (u . V)w = (w . V)u at 
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From equations (2) and (3), one can find a integral form of velocity u in terms 
of w: 

u = _~ r (x - x') X w(x')dx' 
47r JR3 Ix - x'13 

(4) 

On a vortex filament C, equation (4) can be written as 

U(x, t) = _i. r (x - x') x dl(x') 
47r Jc Ix - x'13 (5) 

where r is the circulation of C, dl is an infinitesimal material line element. This 
is the Biot-Sarvat law. 

We like to evaluate the motion of vortex filament C. Integral equation (5) is 
not suitable for the numerical computation because it diverges with rate 1/lx -
x'12 if x is a point on curve C. 

One can modify integral equation (5), 

U(r(x, t) = _i. r f( Ix - x'l) (x - x') X dl(x') 
47r Jc u Ix - x'13 (6) 

where f is called a core function and u a core size. In this work, we used a fourth 
order core function 

3 
f(r) = tanh r3 + -r3sech2r3 

2 
which was proposed by Beale & Majda[4]. 

For an infinite long vortex filament, we divide it into segments. For the jth 
segment, the two ends are the points Xj and Xj+!. Let blj = Xj+! - Xj. (See 
Figure 1.). 

x . 1 J-

x· J 

01 j+l 
. , 

. I 

X j+l 

Figure 1: The vortex segments 

Integral equation (6) can be written as 

; , 

X j+2 

U(r(x, t) = _i. f r (x - x') x dl(x') f( Ix - x'l) 
47r j=-oo J61 j Ix - x'13 U 

3 

(7) 



We require 161;1 ::; h for all j where h is a predetermined small number. Thus 

where 

f (x - x') x dl(x') f( Ix - x'l) :::::: rj x 61; f(j) 
Jol j Ix - x'13 u rJ u 

r j = x - H Xj+! + Xj) 

rj = Ir;1 

Inserting (8) into (7), we find 

() r ~ rj x 6Ijf(r;) 
U eT x, t = - - L...J 3 

41r j=-oo r; u 

Knowing u.,., we solve the ordinary differential equations 

dx 
dt = u.,.(x, t) 

(8) 

(9) 

(10) 

and we can determine the position ofxj at the next time t+~t. There are various 
numerical methods to solve equation (10), for exampl~, the second-order Heun 
method and the fourth-order Runge-Kutta method. We used the fourth-order 
Runge-Kutta method in this work, 

X~l) _ Xi(t) + ~tU",(Xi' t) 
X~2) Xi(t) + ~tu.,.(xP), t + ~t) 
xP) - Xi(t) + ~tU.,.(X~2), t + ~t) 

Xi(t + ~t) - Xi(t) + ~t[U",(Xi' t) + 2U.,.(X~1), t + ~t) 
+ 2U.,.(X~2), t + ~t) + U.,.(X~3), t + ~t)] 

61; and the amount of vorticity carried by this vortex element grows as the 
vortex filament stretches. In order to maintain the partition fine enough for 
accurate computation, we split a segment 61j into two with equal length if 161; I > 
h. The time step ~t is determined by 

~t max Iujl ::; I< 
3 

where I< is a given constant, u'J = u.,.(Xj(tn), tn), and tn is the time at step n. 
To simulate a thick vortex tube, one has to use several filaments in the com­

putation, say M filaments. (See Qi [19, 18] for the explanation). In this case, we 
can rewrite equation (6) as follows: 

M 

u.,.(x, t) = E r(m) 1 I<.,..,.(x(t) - x'(t)) x dl(t) 
m=l C.,. 
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Notice that for different filament, the circulation and core size may be chosen 
differently. Then the numerical scheme is 

1 M 00 

u(r(x, t) = -4" L rem) L 
7r m=l j=-oo 

r<.m) x 81<.m) r<.m) 
3 (m»): 1(_3_) 

r. U 
3 

(11) 

2 + 2 
where U = U m if x is not on any given filament and u = (m 2 (r, )1/2 or U = 
(Um Ul)1/2 if x is on the lth filament; Um may also be varied with time or with arc 
length and time to conserve volume. 

We must truncate the terms far away from the given point x in the schemes 
(9) and (11). Actually, we pick up a large number N replacing the infinity for all 
x in the real computation. In doing this, we compute only a part of an infinite 
long vortex filament. We must carefully deal with points near or at the truncated 
ends. There are two different cases: 

1. the data are periodic; 

2. the data are not periodic. 

The first case is assumed in most of vortex computations, see, for example, Chorin 
[6], Leonard [15] and Knio & Ghoniem [13]. The second case is considered in this 
work because of the nature of physical phenomena which we are attempting to 
simulate. We assume that there is no disturbance at the place far away from the 
part computed. Therefore, we can extend each filament at the truncated ends 
with straight lines. (See Qi [19, 18] for detailed explanation). We can hence think 
of three parts in our computation for both cases. The middle part is evaluated 
and other two parts are determined by the nature of our data and the values of 
the middle part. (See Figure 2.) 

Periodical Data 

The Actual Computed Part The Right Imagine Part 

Straig~t Lines The Left Im\agine Part A \ 
Extens~on 

1 '-+-1 -------+ 

Figure 2: Think of three parts in computation for a long vortex tube 
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We must include the left and the right parts in our computation. Thus the 
scheme we used in our computation is: 

Utr(X, t) = -

+ 

+ 

where 
r' 1 - x - !(Xj+1 + Xj) 
r· 1 - Ie - ) x - '2 Xj+1 + Xj 
r' 1 - x - HXj+1 + Xj) 
r' 1 Irjl 
r' 1 - lijl 
f· J - Irjl 

for the periodic data, 

Xj = ( Xl - (X ~r -X j) ) 

for the straight lines extension, 

( 

2Xj-1 - Xj-2 ) 

Xj = YN+1 

ZN+I 
( 

2Xj_1 - Xj-2 ) 

Xj = YN+1 

ZN+1 

Xl - XN+1 

X2 - 2XN+1 - XN 

Xl - Xl 

X2 2XI - X2 

3 An Adaptive Scheme 

Using the 3-D vortex method described above, we can trace the evolution of a 
particular part of a vortex tube, but we are not able to follow a perturbed wave 
on a vortex tube which often is what people want to do. Therefore we need to 
modify our 3-D vortex scheme so that we can follow a wave propagation on an 
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, , .. 

,.."",\,.. w.~ 

--~~~I~~I~~~ 
The Extented Parts (to be cOll1luted) 

The Extented Imagine Parts 

Figure 3: The partition of initial data. 

infinite long vortex tube. The data are not periodic because we like to see how a 
particular shape of initial perturbed wave evolves along a straight vortex tube. 

We divide a vortex tube to five parts this time. (see Figure 3.) The middle 
part contains the wave to be traced. For this part, we must use smaller length 
for each segment in our computation in order to gain a higher accuracy. We use 
longer length for the two parts next to the middle part. There are three reasons 
for computing these parts: 

1. There are dispersive waves coming from the main wave spreading 
quickly to two sides of the main wave. We can not ignore them when 
they are close to the main part. One will see later the phenomena 
described here. 

2. We need to know the motion outside the main part in order to trace the 
wave motion accurately. It is essential for multi-filaments simulation. 

3. Using longer length, we can, in some sense, smooth out the high fre­
quency dispersive wave. In other words, we can reduce the possible 
stretching on the vortex tube. 

With finer partition on a line, we can capture waves with short wave length. 
However, the finer partition is, the bigger relative numerical truncation error for 
computing the length of each segment. That is, without increasing precision of 
floating point, finer partition may not necessarily give better solution. This is 
particularly true in the numerical simulation of waves with short wave length on a 
vortex tube because of the stretching and instability of a vortex tube. Therefore 
we should give not only the upper limit for the length of a segment but also the 
lower limit according to the floating point precision. 
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From our computational experiments, we observed that the waves with short 
wave length generally travels faster than the waves with long wave length on a 
vortex filament. If those short length waves are not main object to be traced, 
they will move out from the main part. Those, moving towards the direction 
which the traced wave goes, are important because their residue will effect our 
computation later. However, at this direction, when the main part moves, we 
glue several shorter segments to a long segment. This procedure gives us freedom 
to smooth out the high frequency waves (or waves with short wave length) by 
properly choosing new node for the long segment. 

The length difference can also produces numerical error. The perturbed waves 
introduced by this error most likely form so-called hairpin structure at later time 
step computation. Such structure is the cause of the blow-up for most of turbulent 
How computation. Therefore, proper control of the length of segments may reduce 
the hairpin structure in the computation, and may provide more accurate result. 
To understand the reason, we give detailed analysis for an infinite long straight 
vortex tube. We use M filaments simulate the tube. Divide each filament to 
equal length segments. For simplicity, we assume r(m) /47r = 1, m = 1,···, M, 
and define g( r) = f(;;) / r3. We use three different schemes computing the velocity 
field at point x = (x, y, z): 

Scheme 1. 

Scheme 2. 

U~')( x, t) = - f; l};oo r;~m) x ~;~m) g( r;~m) + t. rim) x 61;m) g(r;m) 1 
Scheme 3. 

where 

hl<.m) = x<.m+
1
) _ x<.m) 

I 3 3' 
cl(m) _ (m) (m) 
o 2j - x2(j+1) - X 2j , 
cl"(m) _ (m) (m) 
o 2j - X 2(j+l) - X 2j 

r<.m) = x _ !(x<.m) + x<.m») I 2 3+1 3 , 
(m) _ 1 ( (m) (m») 

r 2j - x - '2 X 2(j+l) + x2j , 

"(m) _ 1 ( (m) (m») 
r 2j - x - '2 X 2(j+l) + X 2j , 

Scheme 1 and scheme 3 have equal length segments. The length of segments for 
the third scheme is twice of the length for segments used in the first scheme. 
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Scheme 2 has two type of segments with different lengths. The length for the left 
side segments from point Xo is twice of the length for the right ones. 

Since all hl~m)s have equal length and are parallel each other, we can 'Write 

where hi is a constant vector. Consequently, 

hl~~m) = hl~}m) = 2hl. 

The schemes can be re-written as follows, 

Scheme 1. 

Scheme 2. 

ul'l(x, t) = - [J; (2 i;~ r;~mlg(r;~ml) + f. rjmlg(rlml))] X h1 

Scheme 3. 

u~21(x,t) = -2 [J; Lt~ r;~mlg(r;~ml) + f.r;jmlg(r;jml))] X 6\ 

Let us compute uO'(x, t) - U~2)(X, t) and uO'(x, t) - U~l)(X, t), 

U. (x, t) - u~21( x, t) = {f, [2 Ct~ r;~ml g( r;~ml) + f. r;jml g( T;jml) ) 

-Ct~ rl
ml 

g( rjml) + f. rjml g( T;ml)) ] } X 61 

u. (x, t) - u~'I( x, t) = {f, [2 jt~ r;~ml g( r;~ml) - jt~ rjml g( Tlml )] } x 6\ 

For x = (X2k, y, z), k = ±1, ±2, ... , y and z are arbitrary value, by symmetry, 

'(m) _ I/(m) (m) _ (m) 
r -2(j+1)+2k - r 2j+2k , r -j-1+2k - rj+2k 

d b h '(m) I/(m) d (m) (m) 
an ot r -2(j+l)+2k + r 2j+2k an r -j-1+2k + rj+2k have zero x components. Thus 
uO'(x, t) - U~2)(X, t) does not depend on x component of x. Therefore, the velocity 
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difference between scheme 1 and scheme 3 are uniform on whole line C = {x = 
(x, Yc, zc) : -00 < x < 00, Yc and Zc are constants} which is parallel to the 
vortex tube. However, uD'(x, t) - U~l)(X, t) does depend on the x component of x. 
Thus using scheme 2, one will get slight disturbance for the computed velocity 
field on the line C at or near the boundary of two different regions at each step. 
The accumulation of the local error gives us a big trouble for our numerical 
computation. Figure 4 shows an example that perturbed waves generated at 
boundaries of different regions by Scheme 2. In this example, we used four 
filaments to simulate an infinite long vortex tube. There are three computed 
parts. The middle part consists of segments with half length of the segments at 
two sides parts. The problem was solved in our computation by following means: 
using cubic spline interpolation, at or near a boundary of two regions, we divide 
those long segments to smaller ones with lengths approximately equal to those 
original short segments. Then we compute velocities at end points of the original 
segments with the newly generated short segments. For points far away from the 
boundaries, we use original segments to compute their velocity. The treatment 
is based on the locality of the problem. The result is satisfactory. 

The adaptive and wave tracing vortex filament method algorithm is 
given as follows: 

Step 1. Compute the initial data, i.e., chop the vortex tube to segments with 
different length according to where a segment locates. 

Step 2. Compute velocity at the two end points of each segment. Here we must 
carefully deal with the points at or near the boundaries of different regions. 

Step 3. Solve the ordinary differential equation ~ = u to determine the posi­
tion at next time step for each segment. 

Step 4. Measure the motion of traced wave, i.e., determine the direction and 
length of the wave motion by comparing the new position of the wave to 
the position of the wave at the previous time step. 

Step 5. Move the main part in where the traced wave is included, so that the 
traced wave stays in the middle of the newly detennined main part. 
Method to move the main part: 
We want to keep the original segments on main part as much as possible 
because they are more accurate. That means we only want to add or delete 
some segments at two ends of the main part according to the measurement 
made at previous step. (See Figure 5.) 

Step 6. We also need to add or drop segments at the ends of two parts next to 
main part according to the measurement made at step 4. (See Figure 5.) 

10 
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The direction wave travels 
• 

time8lep =n 

time step = n+ 1 

a large one 

drop this segment 
at n+l 

" divide a large segment to three smaller ones 
add this segment at n+l 

Figure 5: Trace the wave. 

Step 7. Go to Step 2. 

4 Solitons on a vortex tube - an application 

The initial motivation of the development of the method described above was to 
study the solitary wave propagation on vortex tube. 

A solitary wave solution on a vortex filament was found analytically for the 
localized induction approximation (LIA) of the Biot-Sarvat law (5) by Hasimoto 
[10, 1972]. 

The localized induction approximation 

ax = rll:[ln L]b 
at 471" e (12) 

is the leading order induction term for the Biot-Sarvat law (5). This approxima­
tion was derived by Arms and Hama. (See Hama [8, 9] and Arms & Hama [2]. 
See also Batchelor [3, p.509] for detailed derivation.) Here x = x(s, t) is a point 
near the filament as a function of arc length s and time t, II: the curvature of the 
filament, b the unit binormal vector, L the length of the part whose contribu­
tion to the induced velocity is considered, and e the distance between x and the 
filament. The approximation is correct only if b. --+ 00 

Q 

Assuming ~ a constant and rescaling the time t, equation (12) becomes 

(13) 

By use of the transformation 
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Hasimoto proved that the LIA (13) is equivalent to the nonlinear Schrodinger 
equation 

~: = ~:~ + ~tP(ltPI2 + A) (14) 

and obtained a curvature function of a solitary wave 

K(S, t) = 2,8sech[,8(s - ct)] (15) 

for constant torsion T =' c/2, where ,8 = 4/2. 
Hasimoto reconstructed the space curve from equation (15) by solving a lli­

catti equation derived with the knowledge of K and T. The space curve is de­
scribed as 

( 

S - 21! tanh7] ) 
x = 2~ sech7] cos e 

2 ~ sech7] sin 8 
(16) 

where 7] = ,8(s - ct), J-l = 1/(1 + T2), T = T /,8 and 8 = T7] + (,82 + T 2)t. Figure 
6 shows the perspective view of a curve described by solution (16) with t = 0,' 
T = 7.0 and ,8 = 2.0. 

A Space Curve of Solitary Wave 

Z 
0.2 

-yO--
0 

-0.2 0.2 

-8 -4 0 4 -0.2 Y 
X 8 

Figure 6: Perspective view of a space curve describing a solitary wave on a vortex 
filament 

However, the question - whether there is a solitary wave solution on vortex 
filament in the Euler flow - remains. Because the LIA only describes the local 
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behavior of a vortex filament, and is lack of stretching - an important phe­
nomenon of vortex dynamics (see Buttke [5]). A series of physical experiments 
was done by Hopfinger, Browand & Gagne [11], Maxworthy, Mory & Hopfinger 
[17] and Maxworthy, Hopfinger & Redekopp [16]. They reported the appearance 
of solitons on vortex core in their experiments. Aref & Flinchem attempted to 
answer this question numerically in their 1984 paper [1]. They concluded that 'in 
a shear, solitons cannot exist, but solitary waves can'. In their study, a solitary 
wave did not survive for long. 

Now, with the help of the method described above, we indeed see the existence 
of solitons on vortex core in the Euler How in our numerical experiments. 

The initial data are generated from solution (16). The torsion T in (16) and 
the core size u for our numerical scheme are two very important facts for the 
simulation of solitons on a vortex tube. 

Our numerical experiments show that for core size u < 0.1, a computation 
becomes very unstable. That may be caused by the truncation error during the 
computation because for smaller u, the exp function produces large value which 
may cause inaccuracy. Clearly u should not be too large. (For more discussion 
about core size u, one should see Qi [19, 18].) 

We chose the value of u between 0.1 and 0.5. For each fixed value of u in 
[0.1, 0.5], there are certain values of T at which we obtained stable results, that 
is, an initial solitary wave propagates along a vortex tube for a long time. 

Figure 7 shows the motion of a soliton on a vortex filament. We only plot 
the middle part of our computation in these pictures. The perspective view 
of the initial data are shown in Figure 6. We used u = 0.3 in our numerical 
computation. We computed 500 steps. From the last picture of Figure 7, we 
can see that the initial shape is very well preserved in spite of some dispersive 
waves. The solitary wave travels towards to the negative direction of x-axis. At 
the beginning, the center of the wave is at x = o. After 500 steps computation, 
the wave center went somewhere near x = -27. We make two remarks for the 
simulation: 

(1) With the same parameters we adopted for the initial data we used in our 
simulation, the solitary wave actually travels towards to the positive direc­
tion of x-axis in equation (16) which is a solution for the LIA. Therefore 
our numerical simulation can not match up the solution for the LIA quan­
titatively. As a matter of fact, the direction of the wave travels in our 
simulation can be changed for different choice of the parameters T and u. 

(2) In Figure 7, the pictures at steps 40 and 50 shows an interesting phenomenon, 
i.e., the short length waves displayed in step 40 disappears at step 50. The 
long length wave such as the main wave we traced in our simulation is also 
stable. All the waves appeared in Figure 7 have the helical shape. Thus, 
the results of our numerical experiment disagree with the existing stability 
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Figure 7: A solitary wave propagation on a vortex filament. 
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To confirm the wave motion shown in Figure 7 indeed a soliton, we should 
study the interaction of these waves. Figure 8 demonstrates the strong interaction 
(head on collision) of two mirror identical waves. The right wave IS the same 
wave that we used in above simulation. From the pictures, one can clearly see 
that two waves collide together at step 110, then move away each other without 
'scratching'. The strong interaction demonstrated here may not occur for some 
choices of T and u although for such choices, the shape can be preserved. 
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Figure 8: Collision of two solitons on a vortex filament_ 
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5 Summary and discussion 

We have described a three dimensional adaptive wave tracing vortex method. 
The adaptive wave tracing scheme is only for lines in this work. It should be 
easily extended to surfaces in three dimensional space, and be used for other 
particle methods as well. 

We have given a detailed explanation for the numerical error introduced by 
choosing different lengths in different regions. Understanding such error and 
proper dealing with it are essential for accurate implementation of our scheme. 
The analysis also provides a hint for eliminating non physical stretching in a 
vortex computation. 

As an application of the numerical scheme, we demonstrated a numerical sim­
ulation of a soliton propagating on a vortex filament and of the strong interaction 
of two mirror identical solitons. It is the first time, as author's knowledge, re­
ported the successful numerical simulation of solitons on a vortex filament in the 
Euler How. It indicates the possible integrable solutions for the Euler equations. 
Some of chaos phenomena and vortex stretching phenomenon are being studied 
and the results will be reported in a future paper. 

Acknowledgments 

The computation was carried out at the Lawrence Berkeley Laboratory. This 
work was supported in part by the Applied Mathematics Sciences subprogram of 
the Office of Energy Research, U.S. Department of Energy, under contract DE­
AC03-76SF-00098, and in part by the National Science Foundation under grant 
number DMS89-19074. 

References 

[1] H. Aref and E.P. Flinchem. Dynamics of a vortex in a shear How. J. Fluid 
Mech., 148:477-497, 1984. 

[2] R.J. Arms and F.R. Hama. Localized-induction concept on a curved vortex 
and motion of an elliptic vortex ring. Phys. Fluids, 8:553-59, 1965. 

[3] G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University 
Press, 1967. 

[4] J.T. Beale and A. Majda. High order accurate vortex methods with explicit 
velocity kernels. J. Comput. Math. Phys., 58:188-208, 1985. 

[5] T.F. Buttke. A numerical study of superHuid turbulence in the Self­
Induction Approximation. J. Comput. Math. Phys., 76:301-326, 1988. 

19 



[6] A.J. Chorin. The evolution of a turbulent vortex. Commun. Math. Phys., 
83:517-535, 1982. 

[7] P. G. Drazin and R. S. Johnson. Solitons: An Introduction. Cambridge 
University Press, 1989. 

[8] F.R. Hama. Progressive deformation of a curved vortex filament by its own " 
induction. Phys. Fluids, 5{10}:1156-62, 1962. 

[9] F.R. Hama. Progressive deformation of a perturbed line vortex filament. 
Phys. Fluids, 6(4):526-34, 1962. 

[10] H. Hasimoto. A soliton on a vortex filament. J. Fluid Mech., 51(3):387-98, 
1972. 

[11] E.J. Hopfinger, F.K. Browand, and Y. Gagne. Turbulence and waves in a 
rotating tank. J. Fluid Mech., 125:505-534, 1982. 

[12] S. Kida. Stability of steady vortex filament. J. Phys. Soc. Japan, 51:1655-
1662, 1982. 

[13] O.M. Knio and A.F. Ghoniem. Numerical study of a three-dimensional 
vortex method. J. Comput. Math. Phys., 86:75-106, 1988. 

[14] G.L. Lamb, Jr. Elements of Soliton Theory. John Wiley and Sons, 1980. 

[15] A. Leonard. Computing three-dimensional incompressible flow with vortex 
elements. Ann. Rev. Fluid Mech., 17:523-59, 1985. 

[16] T. Maxworthy, E.J. Hopfinger, and L.G. Redekopp. Wave motions on vortex 
cores. J. Fluid Mech., 151:141-165, 1985. 

[17] T. Maxworthy, M. Mory, and E.J. Hopfinger. Waves on vortex cores and 
their relation to vortex breakdown. In Proc. AGARD Conf. on Aerodynamics 
of Vertical Type Flows in Three-Dimensions. AGARD CP 342, 1983. paper 
29. 

[18] A. Qi. Numerical studies of wave propagation on vortex filaments. submitted 
to J. Compo Phys. 

[19] A. Qi. Three dimensional vortex methods for the analysis of wave propagation 
on vortex filaments. PhD thesis, University of California at Berkeley, 1991. 

[20] S. E. Widnall. The stability of a helical vortex filament. J. Fluid Mech., 
54:641-663, 1972. 

20 



LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
1ECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

'""- -_.;,....... 


