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ABSTRACT 

A new method is developed to study the electronic ., 

'(-;... 
density of states of infinite networks of atoms. The 

'ol 

method involves treating part of the system exactly as 

a cluster and simulating the·effects of the rest of the 
' 

environment by connecting a ~ethe lattice (Cayley tree) 

to the surface of the cluster. Calculations show that 

the local ring~like topologies of ~ach atom are of prim-

ary importance in determining structure in the electronic 

density of states. The densities of states of the dia-

mond, BC-8 and ST-12 structures are studied ln detail 

using this method. These calculations are in excellent 

agreement with the exact results. Because of this, the 

method is used to obtain the density of states of the 
·' 

Polk and Connell random network models. These 

models give the same radial distribution functions but 

exhibit striking differences in their densities of states 

• which are interpreted in terms of topology . 

I. Introduction 

There are many theoretical problems ln solid state 

physics which defy the use of simplifications found in 
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treating systems with complete periodicity. The fields 

of surfaces and amorphous solids are certainly two very 

large areas involved with problems of this type. This is 

particularly true in the study of amorphous solids where 

Bloch's theorem is no longer, valid. One is thus presented 

with a severe obstacle in trying to formulate any type of 

realistic theory, a realistic theory b~ing one which can be 

readily compared with experiment. 

Recently the study of amorphous semiconductors (e.g., 

Ge, Si, GaAs, etc.) has been 'concerned to a large ext-ent with 

the structural nature of the amorphous phase and with the 

effects of disorder on the electronic density of states 

(DOS). The DOS is a particularly useful tool 1n studying 

the structural nature of amorphous systems because it is a 

simple, well defined function and is quite sensitive to dis-

order and topology. Experimentally, information about the 

DOS can be obtained from ultra-violet (UPS)~and X-ray 

(XPSYVphotoemission spectroscopy as well as from X-ray 

emission and absorption measurements~. In the case of Ge 

and Si these experiments reveal that the DOS 1n the amor­

phous phase consists of a smoothed blue-shifted peak rela-

tive to the crystal phase at the top of the valence band 

("p-like" states) and a seemingly large broad peak at the 

bottom of the valence band ("s-like" states). This is 1n 

contrast to the two strong peaks found in the "s-like" reg1on 

.. 

" 
' 
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of the DOS of the crystalline phase~ 

There have been many theoretical approaches in the study 

of the amorphous problem. A very fruitful approachWhas 

been to discern ·information about the amorphous phase by study­

ing various complex crystalline metastable phases (e.g., the 

BC-8 and ST-12 structures ) which contain many atoms in a 

primitive cell. These calculations.have revealed the impor-

tance of short range disorder in accounting for the behavior 

of the amorphous spectra. Other approaches have been to 

study finite clusters of atoms where long-range order has 

been eliminated completely. One approach't/is to calculate 

the DOS by using moments obtained by counting paths deter­

mined by the type of Hamiltonian one is using. This method 

is quite interesting but it is of limited use because of 

the large number of moments needed before any structure in 

the DOS can be believed. Another ~pproac~is to cal­

culate the DOS for a finite cluster of atoms with some type 

of boundary condition to take care of the surface atoms. 

The problem here is that again one needs to go to large 

clusters of atoms because of the difficulty in applying 

reasonable boundary conditions without getting spurious 

results. Yet another approach'e/has been to study simple 

models without periodicity which (for some simple Hamil-
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tonians) are exactly soluble.like the Bethe lattice~ 
(Cayley tree) and the Husumi cactiV. The DOS of these 

models however are·relatively featureless so that taken 

alone they provide little new insight into the problem. 

In this paper, we present a new method~to obtain 

the DOS of.an infinite connected network of atoms in terms 

of the local density of states (LDOS) of each atom at the 

center of a small cluster of this system. The method es­

~entially entails treating part of the system·exactly (i.e. 

as i cluster ) and replacing the rest of the environment by 

an appropriate Bethe lattice. The details are discussed 

in Section II. 

The Hamiltonian that we will be using lS of the form 

H :: V L: 
i,i' 

I i><i I I (1) 

where li> represents an "s-like" orbital on atom i and 

V is the interaction between nearest neighbor orbitals. 

This Hamiltonian is used because of its simplicity and 

and because its ~igenvalues are related by an analytic 

transfo~mationy;to the "s-like" states of a four-orbital 

Hamiltonian where one places four sp 3-like orbitals on each 

atom and takes two types of interactions into account~. 
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These interactions consist of V
1 

between different 

orbitals on the same atom and v2 between orbitals on 

different atoms but along the same pond. This four~ 

orbital Hamiltonian is very useful since it gives a 

reasonably good description of the "s-like" states of 

more realistic Hamiltonians. Moreover, the one-orbital 

( eq. l) and four~orbital Ha~iltonians allow us to cal­

culate the LDOS of an atom in a "cluster-Bethe" system 

exactly. 

The format of the paper is as follows. In Section 

II we discuss· the details of our method. This includes 

the way of choosing a clus~er and the physical and math­

ematical reasons for using the Bethe lattice to simulate 

the effects of an infinite system. We then apply our 

method with some simple examples w~ich reveal the importance 

of local topologies in determining the type of structure 

found in the "s-like" region of the DOS. In particular we 

are able to show decisively that this structure is intimately 

related to the numbers and types of rings of bonds in the 

vicinity of and passing through each atom. In Section III 

we test our method as a calculational tool by applying it 

to the BC-8 and ST-12 structures. We then examine two popular 

structural models (the Polk '01 and Connell'\)/ models) 
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·which g1ve very similar radial distribution functions'V' 

but differ in·that the Polk model contains even and odd 

membered rings of bonds whereas the Connell model contains 

only·even membered rings of bonds. Next in Section IV 

we discuss the properties of finite clusters and th~ ef-

fects of the Bethe lattice on the bahd edges. ·· Finally, in 

Section V we make some concluding remarks. 

II. The "Cluster-Bethe" Method 

In this section we describe and discuss the method 

used 1n obtaining the DOS. The idea is the following. 

We consider any infinite connected network of atoms with. 

four-f6ld coordination and we chdose one atom as a refer~ 

ence point. We then remove a small cluster surrounding 

and including this atom ~rofu the system. The.cluster is 

chosen such that every atom in the cluster is part of at ' 

least one ring passsing through the central or reference atom. 

A B~the lattice i~ now introduced and connected to the sur­

face atoms to simulate the effects of the rest of the origin-

al system. The Bethe lattice is an infinite connected net­

work of atoms with four-fold coordination but with no rings 

of bonds. If we now use the one-orbital or four-orbital 

•· 
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Hamiltonian (described in the Introduction) we can 

solve for the LDOS of the central atom in the"cluster-

Bethe" system analytically. 

The reasons for using the Bethe lattice as a boun­

dary condition.are threefold. Firstly, from a mathe-

matical point of view we can solve the system exactly. 

Secondly, from a physical point of view we preserve the 

connectivity of the system and we maintain the four-fold 

coordination. And finally, the DOS of the Bethe lattice 

is smooth and featureless. Consequently, any structure 

found in the LDOS of an atom in the "cluster-Bethe" system 

is very closely associated with the local environment of 

this atom. 

The calculational procedure 1s as follows. The DOS 

1n a Green function formalism is given simply by 

n(E) l - Im[TrG(E)] 
1T 

( 2) 

and ~e are interested in obtaining the diagonal matrix 

elements of G(E). 

We can write G(E) as a Dyson equation 

l 
G = = E-H 

l + !_ HG 
E E 

( 3) 

so that by taking matrix elements between a basis set 
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' {li>} we obtain 

E <iiGij> = 6 .. + E <i~Hin><niGij> lJ 

The LDOS n.(E) of the ith atom is then given by 
l 

and 

:n.<E) = 
l 

n(E) = 

!_ Im <iiGii> 
1T 

En.(E) , 
l 

.l 

where n(E) is the total density of states. 

(4) 

(5) 

( 6 ) 

As a simple example of how our method works, let us 

consider a cluster of atoms in the diamond structure shown 

in Figure '1. The reference atom is labelled 0 and from 

symmetry many atoms are equivalent and are labelled with 

the same number. Thus there are only four inequivalent 

atoms in this cluster of 29 atoms. ·· Furthermore, we notice 

that there are twelve six-fold rings of bonds passing through 

the central atom. We now construct a "diamond-Bethe" sys-

tern by connecting a Bethe lattice to the dangling bonds of 

atoms 2 and 3. For simplicity, let us label all the atoms 

in the Bethe lattices connected to atoms 2 and 3 by only even 

and only odd number~ respectively. The LDOS of atom 0 can 

now be solved by using equation (4) with H being a one-
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orbital Ham1ltonian with only nearest neighbor interactions 

Vas in (1). We then obtain the following infinite·set of 

linear equations 

E<OIGIO> = 1 + 4V <l!Gio> 

E<l!GIO> = V<OIGIO> + 3V<2IGIO> 

E<2IGIO> = V<l!G!O> + 2V<3IGIO> + V<4IGIO> 

E<3IGIO> = 2V<2IGIO> + 2V<SIGIO> 

E<4IGIO> = V<2IGIO> + 3V<6IGIO> 
: .. 

E<SIGIO> = V<3IGIO> + 3V<7IGIO> 

. 

E<2NIGIO> = V<2N-2IGIO> + 3V<2N+2IGIO> 

E<2N+l!GIO> = V<2N-l!GIO> + 3V<2N+3IGIO> 

( 7) 

These equations can be solved using the transfer matrix 

technique. We define 

T = <N+2IGIO> I <N!G!O> N~2 , ( 8) 

so that we can reduce the infinite set of equations in 

(7) to the following four linear equations 
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E<OIGIO> = 1 + 4V<liGIO> 

E<liGIO> = V<OIGIO> + ·3V<2IGIO> 

E<2IG I 0> ' ' V<liGIO>+ 2V<3IGIO> + VT<2IGIO> 
(9) 

E<3IGIO> = 2V<2IGIO> + 2VT<31 G I 0> 

where, from (7) and (8) 

(10) 

The analytic solution to the above system gives 

. 1 
n (E) = -- Im<OIGIO> = 

0 lT 

where 

(12) 

The result (11) 1s plotted in Figure 2(a) as a thick 

solid line. In Figure 2(b) we plot the corresponding re-

sults using the four-orbital Hamiltonian. First of all 

we notice that even for this small cluster of 6nly 29 atoms 

we get structure in the LDOS which 1s very different from 

that of the Bethe lattice shown superimposed as a dashed 

line. Secondly, we notice that the LDOS of the "diamond-

Bethe" system is rather similar to the LDOS of an atom in 

- a 
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the diamond structure (shown as a thin solid line). 

:rhis emphasizes the importance of short range . configura-. 

tions in determining structure in the DOS. In particular 

the two peaks and the dip in the middle of the spectrum 

can be interpreted in terms of the twelve six-fold rings 

passsing through the central atom. To show the associa-

tion of structure in the DOS with the ring statistics of 

a cluster we have done the following. Five "cluster-Bethe" 

systems were constructed such that each cluster contained 

six rings of only one ~ (i.e. 6 five-fold, six-fold, 

seven-fold, and eight-fold rings respectively). These 

clusters were made so that there was one ring in each 

pair of bonds of the central atom. The results are shown 

in Figures 2(c) and (d) using the one-orbital and four-

orbital Hamiltonians respectively. The structure in these 

DOS can be very easiry identified with the eigenvalues of 

isolated rings as shown in Figure 2(e). The agreement lS 

excellent and indicates that the ring-like nature of the 

local environment is essential in determining the type of 

structure found in the DOS. Moreover, a close examination 

of Figure 2(c) shows that the strengths of the peaks are 

much larger the smaller the ring. This indicates the im-

portance of the smallest rings in a cluster. Finally, the 

bigger peak to dip ratio in the spectrum of the "diamond-
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Bethe" system as compared to the spectrum of the "six-

fold ring cluster-Bethe" system is caused by the larger 

number of six-fold rings in the former system. This in-

dicates the importance of the number of rings.of a g1ven 

type in determining the sharpness of the structure in the 

DOS. 

Before concluding this section, two specific comments 

about the "cluster-Bethe" method should be made. Firstly, 

it is interesting to discuss the relationship between our 

approach and the Haydock, Heine and Kelly (HHK) method~. 
In this method, the local Green function of an atom is ex­

panded as a continued fraction with the mathematical boun-

dary condition that all the coefficients are constant be-

yond a certain term. The Bethe lattice, however, taken 

alone can also be expanded as a continued fraction with 

constant coefficients. Nevertheless, a close inspection 

shows that the local Green function of an atom in a cluster-

Bethe system can by no means be reduced to the HHK form. 

Moreover, there is no physical similarity between the two 

methods since HHK deal with a finite cluster whereas we 

deal with an infinite system. Secondly, it might be aruged 

that the effects of the 'Bethe lattice are nothing but a 

broadening of the LDOS of a bare cluster. This, however, 

i·s not the case as we shall see with several examples in 

the next sections. 
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III. ~Study of Densities-of-States 

Using the ': cluster.,-Bethe" method we examine and 

analyse the DOS of the BC-8 and ST-12 structuresVand 

we calculate the DOS of th~ Polk~and Connell~models. 
The BC-8 and ST-:-12 structures have been shown\Yto·be 

very important in studying the structural aspects of the 

amorphous Group IV elements. They contain 8 and 12 atoms 

in a primitive cell respectively and have very different 

ring-like topologies.. The BC-8 and ST-12 structures also 

provide us with two prototypes which can be used to check 

our method as a calculational technique. We can construct 

various uBC-8 and ST-12 Bethe" systems with clusters of 

different sizes. By comparing the DOS of these systems 

withthe Bloch DOS of the BC-8 and ST..,.l2 structures we 

can examine how our method converges to the exact solution. 

This gives us important i~formation about the limits and 

validity of our method. With this knowledge at hand we 

proceed to study two popular structural models of the 
' . 

amorphous phase; the Polk and Connell models. 

A. BC-8 

In the BC-8 structure we only have even-numbered r1ngs 
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of bonds and only one typeof atom. Consequently, as in 

diamond, the LDOS and the total DOS are equivalent. In 

Figure 3 we have plotted the LDOS of four "BC-,8-Bethe" 

systems using the one-orbital [(a), (c), (e) a~d (g)], 

and four-orbital [(b), (d), (f) and (h)] Hamiltonians. 

In Figure 3(a) and Figure 3(b} (dashed line) we show the 

results corresponding to a BC-8 cluster with only 26 atoms. 

This cluster contains 9 six-fold rings passing through 

the central atom and is the smallest cluster that can be 

made such that the central atom is not directly connected 

to a Bethe-lattice. The solid line in Figure 3(b) is the 

Bloch DOS of ~he BC-8 crystal obtained with a band structure 

calculation. In Figures 3(c) and (d), (e) ~nd (f), and (g) 

and (h), we have plott~d the LDOS of "BC-8-Bethe" systems 

with clusters containing up to and including all eight-fold, 

ten-fold and twelve-fold r1ngs re$pectively passing through 

the central atom. 

Let us now examine the trends as we go down the col-

umns in Figure 3. We notice first that the general features 

of the Bloch DOS are already present when dealing with the 

smallest cluster of atoms. We see that the BC-8 crystal 

displays a spectrum which can be essentially characterized 

in terms of two strong peaks and one dip in the middle. In 

the 26-atom cluster these two peaks can be directly identified 

with the 9 six-fold rings passing through the central atom. 
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This is easily seen by compar1ng Figures 3(a) and (b) 

with Figures 2(c) and (d) respectively. When we .increase 

the number of atoms in the clusters we get more structure 

1n the DOS but the·general features of two peaks and a dip 

in the middle ~till remain.' tn Figures 3(c) and (d) we 

notice that there is a small hump in the middle of the 

spectra. This is caused by the large number (36) of 8-

fold rings passing through the central atom. In the case 

pf Figure 3(e) ~nd (f) we have a cluster with 113 atoms 

and the results are very similar to the exact result shown 

in FigUre 3(b). It is now fruitless to carry the ring in-

terpretation further to larger rings. However, the impor-
. . 

tant point is that the six-fold ring character still persists. 

for the cluster in Figures 3(g) and (h) we have 207 atoms 

and now our method can even resolve the wiggles in the middle 

.of the spectrum. The only discrepancies with the exact result 

are the small peaks near the band edges. These will be dis-

cussed at length in Section IV. 

B. ST-12 

The ST-12 structure is very useful because it provides 

us with a system with 12 atoms in a primitive cell so that 

effects caused by periodicity should be less important than 
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for other structures. Furthermore, the ST-12 structure 

is interesting because it contains five-, six-, seven-

and eight-fold rings of bonds. There are two types of 

atoms in the primitive cell with 4 atoms of Type I and 

8 atoms of Type II. In order to compare the DOS of "ST-

12-Bethe" systems with the total Bloch density of states 

of ST-12 we need to construct clusters for each type of 

atom. In what follows we show only a weighted average of 

the LDOS of clusters centered on atoms of Type I and II. 

For a more detailed exposition see Yndurain et al~. 
In Figure 4 we have plotted the DOS (averaged over two atoms) 

of 'three "ST-12-Bethe" systems uslng the one-orbital [(a), 

(c), and (e)] and four-orbital [(b), (d), and (f)] Hamil-

tonians. In Figure 4(a) and (b)(dashed line), we show the 

results corresponding to an ST-12 system with 27 atoms in a 

Type I cluster and 31 atoms in a Type II cluster. These 

cl~sters were chosen so that all five~, six-, and seven-fold 

rings were included. In the cluster with a Type I central 

atom we have 4 five-fold, 2 six-fold, 4 seven-fold and 3 

eight-fold rings of bonds passing through the central atom. 

In the cluster with a Type II central atom, we have 3 five-

fold, _2 six-fold, 5 seven-fold and 8 eight-fold rings of 

bonds. If we compare Figures 4(a) and (b) with Figures 2(c) 

and (d) respectively, we find that the peak near -2.7V is 

caused by a five-fold ring peak and the overlap of a seven- and 

eight-fold ring peak. The little bump near -l.6V is caused 



·., 

0 0 0 0 J I 
-18-

mostly by a six-fold rlng peak while the hump around OV is 

caused primarily by an eight-fold ring peak.and the over:-

lap of a five- and ·seven-fold ring peak. Finally, the 

peak around 2V includes the overlap of five-, six~, seven-, 
( 

and eight-fold ring peaks. 

We notice again as in the BC-8 structure the general 

features of the Bloch DOS of the ST-12 structure (shown as 

a solid line in Figure 4(b)) are already present when deal-

ing with a very small cluster. of atoms. When we add more 

·atoms ,to the clusters, we are able to resolve the various 

peaks more clearly. In Figures 4(c) and (d), and (e) and 

(f), we have plotted the DOS of "ST..;l2-Bethe" systems with 

clusters Containing up to §lnd including all eight-fold and 

ten-fold rings respectively, passing through the central 

atom. This saturates the number of eight-fold rings to a 

total of 22 and 25 for atoms of Type I and Type II respective-

ly. This saturation causes a sharpening of the structure 

as is .seen in Figures 4(c) and (d). Finally, in Figures 

4(e) and (f), we obtain DOS spectra for clusters with only 

93 atoms which are in excellent agreement with the Bloch DOS 

of ST-12. Every peak is resolved and even the shape of the 

structure is reproduCed. 

This agreement is very important in testing the "cluster­

Bethe" method as a calculational technique. What we have found 

is that·we can proceed with confidence and reliability to 



-19-, 

study any amorphous system of atoms. As long as we choose 

clusters containing up to ten-fold rlngs of bonds, we are 

as~ured to obtain a spectrum which will be in very good agree-

ment with the exact result. With this in mind we proceed 

in th~ next part to study some structural models of an 

amorphous random network• 

c, Structural Models 

We will now use the "cluster-Bethe" method to study 

the Polk~ and Connell~models. These are structural 

models of an amorphous tetrahedrally coordinated solid which 

have some very interesting similarities and differences. 

They are both models of an amorphous random network and both 

glve radial distribution functions which are in very good 

agreement with experiment. However, they have very differ-

ent topological properties. The Polk model represents a 

system with odd and ~numbered rings of bonds whereas 

the Connell model is constructed so that there are only even 

numbered rings of bonds. The atoms in these models are 

all inequivalent so that in principle we would need to aver-

age over the LDOS of every atom to obtain the total DOS. 

For the Connell model, however, we found that the LDOS of 

the atoms studied were very similar. This is caused by the 
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strong similarity ln the rlng statistics of these atoms, 

as shown in Table I. Therefor~ in Figure 5 we show a DOS 

averaged over only 5 central atoms in the Connell random 

network. Again we use.the one- and four-orbital Hamilton-

ians. Tn Figure 5 (a) and (b), and (c) and (d), we have 

plotted the DOS of two "Connell-cluster-Bethe" systems with 

clusters containing up to and including all eight-fold and 

ten-fold rings respectively. These clusters contain a 

central atom which on the average (see Table I) has 16 

six-fold rings and 21.6 eight-fold rings. This is a very 

large number of six-fold rings and this is reflected clearly 

as a very large dip at the middle of the spectrum with two 

large. peaks near the band edges. This, however, is quite 

different from what happens in amorphous Ge or Si where 

we get a substantial filling up of the dip\ij. Although 

the. Connell model does not seem to be appropriate for amor-

phous Ge or Si, it may still be valid for the amorphous 

III-V compounds (as the authors intended). 

Let us now examine the Polk model. For this system 

we found that the LDOS of the atoms were not very similar·. 

This is also reflected ln the ring statistics as shown ln 

Table II. In Figure 6.we have plotted the LDOS of two 

"cluster-Bethe" systems for three different atoms in the 

Polk model using the one-orbital [(a), (c), and (e)] and 
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four-orbital [(b), (d), and (f)] Hamiltonians.·. In 

Figure 6(a) and (b) we show the LDOS of an atom (label 

229) containing 1 five-fold, 9 six-fold, 4 four-fold, and 

16 eight-fold rings of bonds in·a cluster containing up 

to and including all eight-fold rings (dashed line) and 
#') f~-,~~j~;hf~.... ~ f 

all ten-fold rings (solid line). In Figure 6(c) and (d) 

we show the LDOS of another atom (label 223) in two similar 

clusters containing 2 five-fold, 6 si·x-fold, 5 seven-fold 

and 17 eight-fold rings of bonds. Finally, in Figure' 6 (e) 

and (f) we show the LDOS of an atom (label 231) with ring 

statistics given by 3 five-fold, 4 six-fold, 7 seven -fold 

and 21 eight-fold rings of bonds. Comparing the spectra 

as we go down the columns we find again a correlation be-

tween structure in the DOS and ring statistics. For the DOS 

on the top we notice a large characteristic dip in the mid-

dle of the spectrum. This. dip becomes gradually filled ln 

until we get to the DOS at the bottom where we now get a 

peak in the middle of the spectrum. This behavior is easily 

correla.ted with the changes in rlng statistics as we go 

down the columns in Figure 6. The ring statistics of the 

atom at the top of the figure show a very small number of 

five- and seven-fold rings but a relatively large number 

of six-fold rings. Thus, we get a characteristic two-peak 
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and dip structure. As we go down the columns, there is-

an increasing number of five-, seven- and eight-fold rlngs 

while the nwp.ber of six-fold rings l? decreasing. This 

is reflected as an introduc'tion of new structure near the 

middle of the spectrum. 
·, 

In Figure 7 we show a DOS averaged over 17 central atoms 

ln ~he Polk model, using the one-orbital and four-orbital 

Hamil t;onians. In Figure 7 (a) and (b), and (c) and (d) we 

have -plotted the DOS of two""Polk:-cluster-Bethe" systems 

with clusters containing up to and including all eight-fold 

and ten-fold rings respectively. Comparing Figure 7 with 

Figure 5, we notice the striking. difference between the 

Polk and Connell models- when using the DOS as a discerning 

factor. The Polk model seems to be a good model for the 

amorphous phase of Ge and Si even though we only have a-partial 

filling up of the_ dip. It remains to be seen from future 

high resolution spectroscopy whether the amorphous phase 

really has a partial or complete filling up of the dip. 

:This should have important consequences regarding the ring 

statistics of the amorphous phase. 
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IV. Finite Clusters and Band Edges 

Until now we have been concerned with the position 

and number of peaks a:nd dips on the DOS. However, we 

have said nothing about the properties of finite clusters 

and band edges. This is because these properties require 

. , . 
a more careful and deta1led analys1s. 

Let us being by examining what we really mean by a 

LDOS. The LDOS as defined in equation (5) can be written 

as 

where l~i> is the orbital of the ith atom and I~T> is an 

eigenfunction of the total system with energy ET. Equation 

(13) can also be written as 

El<~i,~T>I 2 o(E-ET) 

n. (E) T 
E 0 (E-ET) -1 

E o(E-ET) T 
T 

(14) 

n. (E) ·-1 
P(E) n(E) (15) 

where n(E) is the total DOS and is equal toE o(E-ET). 
T 

From the equation (15) we notice that the LDOS n.(E) is 
l 
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just equal to the total DOS multiplied by a.weighting func­

tion P(E). P(E) is just the average probal:>ility that an 

electron is at the site i when it has an energy E. 

The total DOS of a "cluster-Bethe" system is necessar-

ily equal to that of the infinite Bethe lattice. The DOS 

rof ihe Bethe latticie, however, 'is only defined in the in­

terval [ -112 V, 112 V ] where V is the interaction para-

meter of the one-orbital Hamiltonian. If we assume this 

parameter V has the same value throughout the whole "clus­

ter-Bethe" system, the LDOS of the reference atom is then 

different from zero .only within [ -112 V, ill V ] . There-

fore we cannot for example,obtain the(correct band edge 

for the diamond or BC-8 structures which normally would lie 

in the int~rval [-4V,4V]. The effects of the Bethe lattice 

may then be t~ produce spurious peaks near the band edges. 

To remedy this situation we took V = ~ for the Bethe 
112 

lattice and V=V in the cluster. This gives us a spectrum 

that now generally lies in the interval [-4V,4V]. An ex-

ample of this is shown in Figure 8. The dotted curve ln this 

figure corresponds·to the "BC-8-Bethe" spectrum shown in 

Figure 3(e). Superimposed in Figure 8, we have a solid 

curve which represents the new "BC-8-Bethe" spectrum with 

two interaction parameters. We notice that the curves are 
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almost identical except near the band edges. In fact, 

the new 'spectrum lcfoks much more like the exact result 

(Figure 3(b)) which does not have the small peaks near 

± 3V. We obtain similar results for the small p~aks 

near± 3V in the Connell model shown in Figure 5 (c). In 

the ST-12 structure, however, these peaks remain essentially 

unchanged. It is interesting that even for the BC-8 struc­

ture these peaks do not vanish completely when we change 

the strength of the Bethe lattice. We believe. this is a 

real effect which is caused by an intrinsic property of the 

finite cluster that we are dealing with. 

It would be appropriate at this time to exam1ne the 

Bethe lattice as a boundary condition by comparing the LDOS 

of "cluster-Bethe" systems with the LDOS of finite isolated 

cluster systems. In Figure 9 we show the LDOS of three 

clusters using the one-orbital Hamiltonian with [(a), (c), and 

(e)Jandwithout [(b), (d), and (f)] the Bethe lattice as 

a boundary condition. The clusters in (a), (c) and (e) 

correspond to those shown in Figure 3(a)-, ·(c) and (e). 

The spectra in Figure 9(b), (d) and (f) have been Gaussian 

broadened by about 0.2V. The differences between the.res­

pective spectra 1n the first and second columns is striking. 

As we mentioned earlier, the effect of the Bethe lattice 

cannot be viewed as just an averaging or broadening of a 

'• 
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finite. cluster spectrum. For instance, the two strong 

peaks in the. ~solated cluster (Fig~re 9(f)) are not at the 

correct energies for the total DOS whereas the ones ln the 

"cluster-Bethe" model (Figure 9(e)) are. 

- Finally we should say a few words about how the 

"cluster-Bethe" method converges to the exact result for 

systems with high symmetry. As an example, let us take 

the diamond structure. The detailed shape of the diamond 

DOS is governed by Van Hove singularities. For instance, 

using the one-orbital Hamiltonian, these sharp features 

occur at OV, ± 2V and± 4V (Figure 2(a)). As we take 

larger and larger "cluster-Bethe" systems we find that the 

basic,two-peak and dip structure remains essentially un-

. changed, with additional wiggles appearing near the singu­

larities .. What is happening here is similar to the Gibb's 

phenomenon. In addition, we are trying to :reproduce the 

crystalline DOS with an infinite number of delta functions 

of which only a small number are directly related to the 

cluster. For example, in the cluster without a Bethe lat-

tice.we would get as many delta functions as there are atoms. 

However, in systems with high symmetry we find that many of 

these delta functions are degenerate. For instance, in Fig-
/ 

ure l, we have a cluster of 29 atoms in the diamond structure. 

But we only get 4 delta functions since we only have 4 dis-



-27-

tinct atoms. Because of these effects the convergence 

for the diamond structu·re is rather slow. However, 

for more complicated structures the convergence lS very 

good. This is clear as we have alreadyseen in the BC-8 

and ST-12 structures. Therefore, the "cluster-Bethe" 

system should have the fastest convergence for amorphous 

systems. 

V. Summary and Conclusions 

We have used a new method to study the DOS of in­

finite systems of atoms by treating part of the system 

exactly (as a cluster) and letting the Bethe lattice 

simulate the effects·of the rest of the environment. 

Using this method we have shown the importance of local 

ring-like-topologies in determining s:tructure in the DOS. 

By taking various BC-8 and ST-12 "cluster~Bethe" systems 

we have interpreted the DOS of their crystalline phases. 

As the size of the clusters increase, more details appear 

ln the DOS spectra, but the basic features are already 

present in very small clusters of atoms. Consequently, 

the interpretation of structure in the DOS can be carried 
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out in terms of small membered rings only. In this way, 

we have also been able to test our method as a calcula-:-

tional tool by examining how it converges to the ·exact 

result. In particular we have found that.the convergence 

is fastest the more complic'ated the system. For the 

BC-8, ST-12 and amorphous phases a "cluster-Bethe" system 

with a cluster containing up to all rings of order ten 

should glve an excellent estimate of the actual DOS. 

In this context we have studied two popular structur-

al models of an amorphous random network. Although both 

models fit the experimental radial distribution functions 

quite well, their respective DOS is quite different. This 

is a consequence of their very different ring topologies. 

One model has only'even-numbered rings of bonds while the 

other has in addition odd-numbered rings of bonds. This 

shows the sensitivity of the DOS, and hence the usefulness 

of characterizing amorphous samples, to the local ring 

topologies of each atom. 

Finally, we have found that possible spurious results 

near the band edges can be eliminated by taking two types 

of interactions into account when studying a "cluster-Bethe" 

system using the one-orbital Hamiltonian. By taking the 

Bethe lattice to have a stronger interaction parameter than 
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the cluster, the width of the DOS spe.ctrum increases and 

approaches that of the original system. 

There are many extensions and areas where we could 

apply our method. For example, we are currently extending 

this method to be used with more realistic Hamiltonians. 

In particular, we are studying a three parameter molecula·r 

orbital tight-binding Hamiltonian and a five parameter four­

orbital Hamiltonian. ·These Hamiltonians can give valence band 

DOS which are in excellent agreement with experiment. 

·· Our method can be used to study amorphous binary com­

pounds or surfaces on amorphous or crystalline solids. 

We can also study the effects of impurities. In addition 

with straightforward extensions to include Betli.e lattices 

of other coo.rdination numbers, we can have a very inter­

esting method of studying amorphous alloys. 
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TABLE I 

The ring statistics of five atoms near the center of the 

Connell random network model. A number in the first col-

umn represents the label of an atom in the model. The 

numbers in the second, third, fourth and fifth columns 

represent the number of five-, six-, seven-, and eight­

fold rings of bonds respecti~ely, passing through this atom. 

A ring is not recognized if more than two atoms in this 

ring are connected directly to the reference atom. 

Label of Number of Number of Number of Number of 
atom five-fold six-fold seven-fold eight-fold 

rings rings rings rings 

1 0 ---18 0 22 

2 0 15 0 19 

3 0 18 0 22 

l 
9 0 15 0 22 

' 

10 0 14 o· 23 
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TABLE II 

The r1ng statistics of seventeen atoms near the center of 

the Polk randotn network model. The convention is the same 

as in Table I. 

Label of Number of Number of 
. ' 

Number of Number of 
atom five-:fold six-fold seven..,.fold eight-fold 

rings rings rings rings · 

229 l 9 4 16 

223 2 6 5 17 

2 31 3 4 7 21 

224 1 7 6 14 
' ., . 

233 2 4 6 17 

2 32 2 6 5 21 

22 8 1 7 6 12 

225 1 8 6 14 

2 36 l 9 .6 12 

227 3 5 5 12 

243 2 6 9 12 

8 1 8 3 15 

2 39 4 2 8 14 

124 1 7 6 20 

2 34 4 2 7 12 

2 35 l 8 5 12 

2 52 1 6 8 12 
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FIGURE CAPTIONS 

Figure 1 Cluster of atoms in the diamond structure. The 

central or reference atom is labelled 0. All 

equivalent atoms 'are labelled with the same number. 

The Bethe lattice is connected to the one and two 

dangling bonds of atom~ 2 and 3 respectively. 

Figure 2 Density-of-states calculations for the diamond 

and ring cluster structures. (a) One orbital 

Hamiltonian in the diamond structure (light 

full line), Bethe lattice (dashed line) and our 

results (heavy full line). (b) Four orbital 

Hamiltonian in the diamond structure (light full 

~ine), Bethe lattice (dashed line) and our results 

(heavy full line). (c) Structure with 6 n-fold 

rings around the central atom in the one-orbital 

Hamiltonian: 5 c (dashed line) n=5; 6 (solid line) 

n=6; 7 (dotted line) n=7; 8 (broken line) n=8. 

(d) Structure 'with 6 n-fold rings in the four-

orbital Hamiltonian. Notation as in (c). (e) 

The orbital energies for isolated five-fold rings 

(das~ed lines), six-fold rings (solid lines), 

seven~fold rings (dotted lines) and eight-fold 

rings (broken lines). The energy in parts (a), 

(c) and (e) is in units of V (see equation (1)) 

and the energy ln parts (b) and (d) is in eV. 
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Figure 3 Densitie~-of-states calculations for four 

"BC-8-Bethe" systems using the one-orbital 

[(a), (c), (e) and (g)] and four-orbital 

[(b), (d), (f), and (h)] Hamiltonians. (a) 

and (b) (dashed iine) ; the LDOS for a "BG- · 

8-Bethe" system with a cluster containing all 

rings up to order six passing through the central 

atom. The full line in (b) is the DOS for the 

BC-8 structure. (c) and (d) the LDOS for a 

"BC-8-Bethe" system with a cluster containing all 

rings up to order eight passing through the central 

atom. (e) and (f) the LDOS for a "BC-8-Bethe" 

system with a cluster containing all rings up 

to order twelve passing through the central atom. 

(g) and (h) the LDOS for a "BC-8-Bethe" system with 

a cluster containing all r1ngs up to order twelve 

pai~ing through the central atom. The energy is in 

units of V for (a), (c), (e) and (~) and in units 

6 f e V for ( b ) , ( d) , ( f) and (h) .. 

Figure 4 Densities-of-states averaged over two atoms for 

three "ST-12-Bethe"·systems using the one-orbital 

[(a)·, (c) and (e)] and four-orbital [(b), (d), 

and (f)] Hamiltonians. (a) and (b) (dashed line); 

the DOS for an "ST-12-Bethe" system with a clus­

ter containing.all rings up to order seven passing 

through the central atom. The full line in (b) is · 

the total DOS for the ST-12 Structure. (c) and (d) 

the DOS for an "ST-12-Bethe" system with a cluster 

containing all rings up to order eight passing 
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through the central atom. (e) and (f) the 

DOS for an "ST-12-Bethe" system with-a cluster 

cont ·ining all rings up to order ten passing 

through the central atom~ The energy is in units 
., 

of V for (a) , (c) and (e)', and in units of e V 

for (b), (d), and (f). 

Figure 5 Densities~of-states averaged over five atoms near 

the center of the Connell model for two - "Connell­

cluster-Bethe" syst~ms using the o~e-orbital [(a) 

and (c)] and four-orbital [(b) and (d)] Hamilton:.. 

ians. (a) and (.b) the DOS for a "Connell-cluster-

Bethe" system with a cluster containing all rings 

up to order eight passing through the central atom. 

(c) and (d) the DOS for a "Connell-cluster~Bethe" 

system with a cluster containing all rings up to 

order ten passing through the central atom. The 

energy lS in units of V for (a) and (c) and in 

units of eV for (b) and (d). 

Figure 6 Densities-of-states for three atoms in the Polk 

model using the "cluster-Bethe" method with the 

one~orbiial [(a), (c) and(~)] and four-orbital 

[(b), (d), and (f)] Hamiltonians. (a) and (b) 

the DOS for two "cluster-Bethe" systems containing 
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all rings up to .order eight (dashed line) and 

ten (full line) respectively passing through 

the central atom (label 229; see Table II). 

(c) and (d) the DOS for two "cluster-Bethe" 

.systems containing all rings up to order eight 

(dashed line) and ten (full line) respectively 

passing through the central atom (label 223). (e) and (f) 

DOS for two "cluster-Bethe'1 systems containing 

all rin.gs up to order eight (dashed line) and 

ten (full line) respectively passing through 

the central atom (label 231). The energy is 1n 

units of V for (a), (c) and. (e) and in units of 

eV for (b), (d) and (f). 

Fig~re 7 Densities-of-states averaged over seventeen atoms 

near the center of the Polk model for two "Polk­

cluster-Bethe" systems using the one-orbital [(a) 

and (c)] and four-orbital [(b) and (d)] Hamilton­

ians. (a) and (b) the DOS for a "Polk-cluster­

Bethe" system with a cluster containing all rings 

up to order eight passing through the central atom. 

(c) and (d) the DOS for a "Polk-cluster-Bethe" 

system with a cluster containing all rings up to 

order ten passing through the central atom. The 

energy is in units of V for (a) and (c) and in 

units of eV for (b) and (d). 
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Figure 8 Densities-of-states for a "BC-8-Bethe" system 

with a cluster containing all rings'up to 

order ten. The DOS was obtained using the 

one-qrbitai Hamiltonian with all interactions 

'in the "cluster-Bethe" system equal to V (dot-

ted line) and with interactions in the cluster 

equal to V and inter~cti6n~ in·~the Bethe lat-

tice equal to 4V/If2 (solid line). The energy 

J_s ln units of V. ·, 

,_i 

Figure 9 Densities-of-states using the one-orbital Ham-

iltonian for three BC-8 cltisters with [(a), .. \" 

(c) and (e)] and without [(b), (d) and (f)] 

·the Bethe lattice connected to the surface . 

.. (a) and (b) the DOS for a cluster containing all 

rings up to order six. (c) and (d) the DOS 

fo~ a cluster con~ainirig all rings up to order 

eight. (e) and (f) the DOS for a cluster con-

taining all rings up to order ten. The energy 

is in units of V and· the spectra· in (b), (d) 

and (f) have been G~ussian broad~n~d by 0.2V. 
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