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ABSTRACT

A new method is developed to study the eléctronic
density of states of infinite networks oflatoms. The
mefhod involves tréating p;rt of the sySfem'exactly as
a'clustef and'simulating the effects of the rest of the

eﬂvironment by connecting a Bethe lattice (Cayley tree)

to the surface of the cluster. Calculations show that

the local ring-like topologies of each atom are of prim-

ary importance in determining structure in the electronic

density of states. The densities of states of the dia-

'mond,'BC€8 and ST-12 structures are studied in detail

using this method. These calculations are in éxcellent

agreement with the .exact results. . Because of this, the

method is used to obtain the density of stateS-of the
- Polk and Connell random network models. These

'.models'give the same radial distribution functions but

exhibit striking differences in their densities of states

Which‘are_interpréted in terms of topology.

I. Introduction

There are many theoretical problems in solid state

physics which defy the use of simplifications found in



treating systems with complete periodicity. The fields
ofbsurfaces and amorphous Solids are ;ertainly two very
iafge areas involved with problems of this type. This is
parficularly.true in the study éf aﬁorphous solidé where
rBloch's‘fhéorem is no longer valid. One iévthUS presented
witﬁ a seQefé obstaéle in'trying tobformulafe any type of
realistic théory, a ré&listicbthéofy béing‘one which can be
readiiy compared with experiment. |

Recently the study of émorphoﬁé semiconductors (e.g.,
Ge, Si, GaAs,_etc.) has‘beenvcoﬁcerned to a large extent with
the_étruqtural nature‘of the amorphous phase and with the
"effects of disorder on the electronic'density of states
(DOS).. The DOS is a particuiarly usefulrtéol in studying
.the structural nature of amofphous systems because it'is'a
simple, wéll defined function and is Quife'sehsitiVe to dis-
érder and'tdpology. Experimenfally3 information about the

DOS can be obfained from ultra-violet (UPS) L2

and X-ray
(XPS}%Q}/phthemission spectroscopy as'well as from X-ray
emission and absorption.meaéurements\w/. In the case of Ge
and Si these experiments reveal fhat the DOS in the amor-
phous phasevCOﬁsists of a smoothediblue—shifted peak rela-
tive to. the crystal phase at the:top of the valence band
("p-like" states) and a seemiﬁgly iargé broad peak at the

bottom of the valence band ("s-like" states). This is in

contrast to the‘two'strong peaks found in the "s-like" region
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of fﬁe DQS of the cryétalline phase.

| ~ There have been many’théoreticalvapproaches in the étudy
of the amorphou§ problem, A verj-fquitful approach\g/has

been to discern information about tﬁe émorphbus phase by study-

ing Various'éomplex crystalline metastable phases (e.g., the

BC-8 and ST#12 structures ) which contain many atoms in a
primitive cell. These caléulations,have revealed fheAimpor—
tance of shorf'range disorder in accountiﬁg for the behavior
.othheramorphbus spectra. Other approaches have been to
study'fihife clusters of atoms whefé long;range_order hés
been eliminated completely.' One apprdach 8/is to calculate
the DOS'by using moments thained by countihg paths'deter-
mined bj the type of Hamiltonian one is using. This method
is quite~interesting but it is of limited use because of
the large numbef of moments needed before any structure iﬁ
the DOS éan be believed. Anotherlhpproacﬁ\Z;g/is to cal-
culate the DOS for a finite cluster of atoms with some type
of boundafy condition to take caré of the surface atoms.
The,problem here is that again one needs to go to large
clﬁsters of atomsvbecausé of the difficulty in applying
reasonéblé boundary conditions without getfing sﬁurious
'fesults. Yét another approach\e/ﬁas beeh.to study simple

"models without periodicity which (for some simple Hamil-



tonians) are exactly soluble'iike the Bethe 1éttice\i9/
" (Cayley tree) and the Husumi'cacti\{}( The DOS of these
“models however‘aré-relatively featureless so that taken
alone they provide little new insight into thé problem..

L2 to obtain

In fhis paper, we present a new method
the~DOS of_an infinife connected network of atoms in terms
of the loéal denéity of states (LDOS) of each atom at the
cehtér‘of a small clustef of this systém. ‘Thé'méthod es-
sentially entaiisvtreating‘part of the system exactlyA(i.e.
as a cluster ) and replacing the rest of the environmént by
ah-aﬁﬁropriaté Bethe lattice. The details are'discussed
»in_Sectiéﬁ II;; |
The Hamiltdnién that we will be'uéing’is of fhe_fdrm

H li><i'] , (W)

i
<<
™M

i,i

where |i> fepreseﬁté:an "é—like"-orbitalvon atom i and -

V}is the interaction between nearest neighbqr orbitals.

.,This Hamiltonian ié used because of its simﬁlicity and

and becéﬁse'ifs gigen?alues'are.relafed by an énalytic

- transfofmation\i}/to the "s—iike" states of a four-orbital
' Hamiltonian where one places four sp3—like orbitals’onleach

atom and takes two types of interactions into acéounﬁ\i>/;
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‘These interactions consist of V, between different

1
orbitals on the same atom and v, bétweenvorbitéls on
different atoms but along the same bond; This-four4
brbital'Hamiltonian is very useful since it‘gives a
reasonably gbod.déscriptioﬁ of the "s—like"'states of
- more realistic Hamiltonians. vMoreover, the one;orbital:
'4( eq. 1) and four-orbital Hamiltonians allow us to cal-
culate the LDOS of an afbm in a "cluster-Bethe" system
éxactly. |

-Thé format of the paperAis'aslfoilows. InHSection
11 we discuss the details of 6ur method.f This includes
the way of choosing a cluster and the phyéical and math-
ematical reasons for using the Bethe lattice to simulate
the effects of an infinite system. We.then apply oﬁr
method With some simpie examples whiChvreveal the imporfance
of local topologies in determining the type of structure
fouﬁd in the "s-like" region of the DOS. In particular we
are able to show decisively thaf this structure is intimately
related to the numbers and types of rings of bonds in the
vicinity of‘and passing through each atom.  In Section III
we test our method as a calculational tbollby applying it
“to the BC-8 and ST-12 structures;v We theh ekamine two popular

structural models (the Polk L% - anad Connell\iﬁ/models)‘



‘which give very similar radial distribution funbtiong\i;/

but differ in that the Polk model contains even and odd

membefed rings of bonds whereas the Connell model contaiﬁs
only'gygg memberéd rings of bonds. Next in Section IV

we discuss the properties of finite clustePSfénd the ef-
fects of the Bethe lattice on the band edges. ?finaily, in

Section V we make some concluding remarks.

II. The "Cluster-Bethe" Method

In this section we describe éndvdiscusévthe-method'
used.in‘obtaining‘the DOS. The idea is the fdlloWing;v.
 we cOnsidér any infinite connected netwérk of atoms. with-
, féﬁr—fold'coordinétion and we choose one atom as a_refefe
encé.point; We then remove a small cluster surrounding
and including this atom from the system. The.cluster is
chosenAsuch that every atom in the clustef is part of at
1easf one ring passsing through the_central»qr reference atom.
A Bethe lattice is.now introduced and connected to the sur-
face atoms to simulate the effecfs of the rest:Of the origin—
al systém{' The Bethe lattice is an infinite connected net-
work of atoms'with'four—fo1d coordination.but with no rings

of bonds. If we now use the oné—orbital or four-orbital
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Hamiltonian (described in the Introdnction) we can
solve for the LDOS of the central atom in the"cluster-
Bethe" system analytically.

The reasons for using the Betné laftice aé a boun-
dary condition‘are threefold. Firstly, from a mathe-
matical'point of view we can solve the system exactly;
Secondly,vfrom a pnysical poirnit of view we preserve the
connectivity of the system'and we maintain the four-fold
: coordination. And finally, the DOS»of‘thefBethe lattice
is snooth and featureless. Conseqnently, any structure
found in the LDOS of an atom in the "cluster-Bethe" system
is very closely associateq with the local environment of
this atom. :

The calculational procedure 'is as follows. The DOS

in a Green function formalism is given simply by
n(E) = - T In[TrG(E)] (2)
and we are interested in obtaining the diagonal matrix

elements of G(E).

We can write G(E) as a Dyson equation

i
ns [ Rl
-+

Lug C(3)

so that by'takingvmatrix elements between a basis set



{]i>} we obtain

E <i|G|j> = 6ij + I <i|H|{n><n|G|]3> o (4)

The LDOS ni(E) of the ith atom is then‘given by

n,(E) = - = Im <i|6|i> (5)
~and
..n(E) = In (E) , o o (8)
_ -

Wﬁeré'n(E)iis the total density of states.

As‘a éimple example df how our ﬁethod WOPkS,.letqu
consider a cluster of atoms in the diamond structure shown
in Figure 1. The reference atom is labelled 0 and from
‘symmetry manylatdméfare eQuivalent and ére labelled with
the same number. Thus théré are only féur inequivaient
| atoméfin this cluster of 29 atoms;" Furthermore,'we notice
 tha£ there are twelvé six~-fold ringsuof bondS'passing through
the cenfral_atom.’ We noﬁ construct a'"diamond—Béthe" sys-
tem by:éoﬁhecting a Bethe lattice to fhe'daﬁgling-bonds of
atoms 2 and 3. For'simpligity, lef-us'label all the atoms
in the Bethe lattices connected to atoms 2 and 3 by only even
and only odd numbers respectively. The LDOS of atom O.can

now be solved by using equation (4) with H being a one-



orbital‘Hamiltonian'With only nearest neighbor interactions
V. as in (1). We then obtain the following infinite set of

" linear equations

E<0|G|0> = 1 + 4V <1|g|0>
E<1|G10> = V<0|G|o> +-3v<2]G|Q> )
E<2|Gl0> = v?1|G|0> + 2v<3|g|o> + v<i|g|O>
E<3|@|0> = 2v<2|@|0> + 2v<5|c|0>

E<t|elo> = v<2]|G|o> + 3v<s|G|o>

" E<5]glo> = v<3|glo> + -3v<7]G|O> , o

E<2N|G|0> = V<2N-2|G|0> + 3V<2N+2|G|0>

- E<2N+1|G|0> = V<2N-1|G|0> + 3V<2N+3|G|0>

These equations can be solved using the transfer matrix

technique. We define:
T = <N+2|@|0> / <N|G|0o> ; N22 , (8)

so that we can reduce the infinite set of equations in

(7) to the following four linear equations -
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E<0|G|o> 1.+ uv<l|cl|o>
E<1|6|0> = v<o0|g|0o> + 3V<2|G|0> |
E<2|G]0> = v<l|G|o>+ 2v<3|e|o> + vT<2|c|0>

"E<3|G|0> = 2v<2|Glo> + 2vT<3|G|o>
where, from (7) and (8)

”T.= [E-(E2-12v%)1/27 / v

The analytic solution to the above system gives

. ] i _ l ’ . _
n,(E) = -= Im<0|G|0> =

;%»Im{E-uVQEE-svz(E-VT)‘lzfll*l}'l ,
where

‘g% = 1 < uy2(E-2vD) "t(E-vo) Tt

(9)

(10)

(11)

(12)

The result (11) is plotted in Figure 2(a) as a thick

solid line. TIn.Figure 2(b) we plot the correspondihg re-

sults using the feur—orbital Hamiltonian. Firét of all

we notlce that even for thls small cluster of only 29 atoms

we get structure in the LDOS Whlch is very different from

that of the Bethe lattlce shown superlmposed as a dashed

“line. Secondly, we notlce that the LDOS of the "dlamond—

" Bethe" system is rather similar to the LDOS of an atom in



the diamond struetﬁre‘(shown as a thiﬁ‘solid line).

This emphasizes the importance of short range configura-
tions in determining structure in the DOS. In particular
the two peaks ‘and the dip in the mlddle of the spectrum
can be 1nterpreted in term$ of the twelve six-fold rlngs
passsing through the central atom. To show the associa-
tion of strucfure in the DOS with the ring statistics of

a cluster we have done the following. Five "cluster-Bethe"
,syStems were constructed such that each cluster contained
 six.rings of”gglx_gge type (i.e. 6 five-fold, six-fold,
seven-fold, and eight-fold rings respectively). These

' clusters were made SO that there was onevring in each
‘Pair of bonds of the central atom. The resﬁlts are shown
in Figures 2(c) and (d) using the one-orbital and four-
orbital Hamiltonians respecti?ely. The structure‘in these
DOS can be very easin identified with the eigenvalues of
isolated rings as shown in Figure 2(e). The agreement is
~excellent and indicates that the ring- llke nature of the
local env1ronment is essential in determlnlng the type of
structure found in the DOS. Moreover, a close examination
of Figure 2(c) shows that the strengths of the peaks are

- much larger the smaller the ring. This indicates the im-
portance of the smallest-riﬁgs in a cluster. Finally, the

bigger peak to dip ratio in the spectrum of the "diamond-
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vBethe" system as compared to the'spécfrum'of the "six-
fold ring cluster-Bethe" system is caused by the larger
number of six;fold rings in the‘fOrmer‘system.i This in-
dicatés the importance.  of the number'of‘rings,of a given
‘type in determining the sharpness of the structure in the
DOS.

Before céncluding this sectiOn, two sbeéific comments
“about the‘"cluster;Bethe" method'should‘bé'ﬁade; ‘Firstly,
it is interesting to discuss the relationship between our
approach and the Haydock, Heine and Kelly (HHK) method\{&/.
In fhis‘ﬁethdd, the iocal Green function of an atom is ex-
panded as a continued fraction with the mathemétical boun-
'_dary condition that all the coefficients are constant be-
yond a certain term. The Béthe’lattice, however, taken
alone'éan also be‘expanded as aAcontinued fractionvwith

constant coefficients. ©Nevertheless, a close inspection

shows that the local Green function of an atom in a cluster-

Bethe system can by no means be reduced to the'HHK form.
Moreover, there is no'bhysical similafity between the two
methods since HHK deal with a finite cluster whereas‘we
deal with ah infinite system. Secondly, it might be aruged
that the effects of the Bethe lattice are nothing but a
bfoadeﬁing of the LDOS of a bére cluster. This, however,
is not the case és we shall see with several examples in

the next sections. . -
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ITI. A Study of Densities-of-States

Using the-"cluster—Bethe“ method we'examine'and_
analyse the DOS of the BC-8 and. ST- 12 structure;\ﬁ/and
we calculate the DOS of the Polk\iﬁ/and Connell\§//ﬁodels
The BC-8 and ST-12 structures have been shown\v/to be
very 1mportant in studylng the structural aspects of the
' amqrphous Group IV elements.. They contain 8 and lZ atoms
~in a primitive cell respectively and haVevvery different
__,riag-like topologies. The BC-8 aﬁ&lST—IQ structures also
vprovide us with two prototypes.Whlch can be used to check
oUr_method.as a calculatienal technique. We caﬁ construct
.varioﬁs "BC-8 and ST-12 Bethe" systems with clusters of
ediffefent sizes. By comparing fhe DQS ijthese_systemsv
‘with the Bloch DOS of the BC-8 and ST-12 structures we
can examine how our method converges fo»the exact solution.
This gives us important information about the limits and
validity of our method. With this knowledge at hand we
proceed to'study,two.populaf structural modele of.the

amorphous phase; the Polk and Connell models.

In the BC-8 structure we only have even-numbered rings
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of bonds and only one type. of atom. ansequently5 as in
“diamond, the LDOS and the total.DOS afe equivalent.v In
Figure 3 we have plotted the LDOS.of four "BC-8-Bethe"
'syéfems_using the one-orbital [(a), (c), (e) and (g)J,
and foﬁr—qrbital [(B), (a), (f) and ()] Hamiltonians.
In Figure 3(a) and Figure 3(b) (dashea line) we show the
results Corresponding to a BC-8 ciuster with only 26 étoms.
‘This cluster cpntains 9 six-fold rings passing through
the qehtral atom and is the smallest cluSter that can be
made such'{hat,the central atom is not directly connécted
t6 é Bethe-lattice. The solid line in Figure é(b) is the
Bloch DOS of the BC-8'crysfal obtained with a band structure
caléulation. In Figures 3(c) ahd-(d), (e) and (f), and (g)
and (h), we have plottgd'the LDOS 6f‘"BC-8—Bethe"'systems
- with élustérs containing up tovand_including all eight-fold,
téhffold and f@élveFfold’rings respectively passing through
the central atom. |

| Let us now examine the trends as we go down the col-
umns in Figﬁre 3. We ﬁotice first that the general features
of the Bloch DOSvaré already present when dealing wifh the
smallest cluster of atoms. We-see that the BC-8 crystal
displays a spectrum which caﬁ_be essentially characterized
in terms of two sfrong peaks aﬁd oné»dip in the middle. In
the 26-atom cluster these twoApeaks can be diréctly identified

with the 9 six-fold rings passing through the central atom.
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This is easily éeen by.comparing‘Figuresﬁs(a) and (b) |

with Figures 2(c) and (d) respectively. When we increase
the number'bf‘atoms in the clusteré_we get‘more structure
invthé:DOS but the general features éf two peaks and é dip

in the middle.S£ill remain.’ In Figures 3(c) and (d) we
nétice;that there is a small hump—in fhevmiddle of the
sﬁectra. Thislis caused by the large number (36) of 8-
 fold ringé.passing through the central atom. in'the caséu

'pf Figﬁre's(e) and (f) we have a cluster with 113vatdms:_

aﬁd thevresults are very similér to'the exact resﬁlt shown
~in Figure 3(b). It is now fruitless to éarryjthe‘ring iﬁ_
ferpretation further to larger rings. However; the impor-~
tant point is that'the'sifoold ring character;stiil persists.
For the cluster in Figures 3(g)vand‘(h) we have 207 atoms

.and now our method can even resolve the wiggles in the middle
of thevsﬁectrum. The only discrepéncies_with‘the exact result
are tﬁe small peaks near the band edgés. These will be dis-

cussed at length in Section IV.
B. ST-12
'The ST-12 structure is very useful because it provides

us with a sysfem with 12 atoms in a primitive cell so that

effects caused by periodicity should be less important than



L =17-

for-other structures. . Furthérmore, the ST-12 structure
is interesting because it éontains five-, six-, seven-
and eight-fold rings of bonds. There are two types of
atoms in the primitive cell with Hvatoms of Type I and

8 atoms of Type II.  In order to compare the DOS of "ST-
12-Bethe" systems with the total Bloch density of states
of ST-12 we need fo construct clusters for each type of
afém; ‘In what follows we show only a weighted average of
the' LDOS of'clﬁsters centered on atoms of Type I and II; 
For a more detailed exposition éee Yndurain et al ..

In Figure 4 we have plotted the DOS (averaged over two atoms)
of three "ST—lZ—Bethe" systems using the oneforbital [(a),
-(cj, and (e)] and four-orbital [(b), (d), and (£f)] Hamil-
tonians. In Figure 4(a) and (b)(dashed liné), we show the
‘fesﬁlts‘cofresponding to an ST—l? system with 27 atoms in a
 Type I cluster aﬁd 31 atoms in a Type II clustef; These
clusters were chosen so that ali five-, six-, and seven-fold
'rings were indludéd. In the cluster with a-TypeyI central
'vatom‘we\have 4 five—fold,'2 six-fold, 4_seven—fold and 3

: éight—fold rihgé of bonds passing through the céntral atom.
In the cluster with a Type II central atom, we have 3 five-
fold, 2 six-fold, 5 seven—fold and 8 eight-fold rings of -
bonds. If We.compare Figures 4(a) énd (b) with Figures 2(c)
and (d) respectively, we find that the peak near -2.7V is

caused by a five-fold ring peak and the overlap of a seven- and

eight-fold ring peak. The little bump near -1.6V is caused



hostly by a six-fold ring peak ﬁhile the hump‘arbund 0oV is
~caused primarily by an eight-fold ring‘peak'and the over-
lap of a:five—.and'seven—fold ring peak. Finally, the -
peak .abeDd'2V inciudes the overlaprOf five-, six-, se?én—,'
'and eight—foid ring peaks. | |

We notice again as in the BC-8 Strucfure the general
feafﬁfes of the Bloch~DOS of the_ST—l? structure (shown as
a solid line in Figure 4(b)) are already ﬁreSent when deal-
ihg'with a very small cluster of étoms.' When we add more
atoms to the clusters, we are ablejto resolve the'variqus
' peaks more clearly. -In figﬁres,ﬁ(c) and'(d),_and (e) and
(f)5 Wé have plotted the DOS of "ST-12-Bethe" systems with
‘clusfePSJCOntaining up to and including.all eight-fold and
' ten;féld rings respectively, péssing through,the central
atom. This saturates the number of eight;fold rings to a
vgtotal'of ?2'ahdﬁ25 for atoms of Type I and Type II respective-
ly. This saturation causes a sharpening of the structure
‘as is,éeen in Figures 4(c) and (d). Finally, in Figures
4(e) aﬁd (f), we .obtain DOS spectra for élusters with only
93 atoms which are in eXcellent.agreement with the Bloch DOS
of ST-12. EQery'peak is resolved and even the shape of the
‘structure is reproduded;

This agreement is very imporfant in testihg the "cluster-
Befhe".mefhdd'as a calculational technique. What we have found

is that we can proceed with confidence and reliability to
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~study any amorphous system of atoms. As long as we choose
clusters containing up to ten-fold rings of bonds, we are
assured to obtain a spectrum which will be in very good agree-
ment with fhe exact result. With this in mind we proceed

in the next part to study some structural models of an

amorphous random network.
C.  Structural Models

We will now usé thé "cluster-Bethe" méthod to stﬁdy
the Polk\ij/ and Connell N%models. These are structural
modéls of an amorphous tetrahedrally coofdinated solid which
have some very interesting similarities and differences.
They are.bqth models of an amorphous random ﬁetwbrk and both
give radial distribution functions which are in very good
agreement with expefiment. However, fhey havé very differ-

ent topological properties. The Polk model represents a

system‘with odd and -even numbered rings of bonds whereas

the Connell model is constructed so that there are only even
numbered rings 6f bonds. The atoms in these modéls are

all inequivalent so thaf in principle We.would need to aver-
age over the LDOS of every atom to obtain the total DOS.

For the Cohﬁell model, however, we found that the LDOS of

the atoms studied were very similar. This is caused by the



strong Similarify in the ring statistics df:theée atoms,
éé'shown in Table I. Therefore.in Figure 5vw¢.épow a DQS
~averaged over only b5 centfal atoms ip the Cpnnéll random
:netwprk."Again wé use the One—"and‘kouerrbital Hémilton—
viané. »In-Figuré 5(a) and (p), and (c¢) and'(d), we have
'plotté@»the'DOS of'twp "Connell-Cluster-Bethé" systeﬁs with
clusters containing up to and including‘ail éight—fold and
teﬁffqldhrings respectivély. These clusters cont;in a
:éehtral‘atom which on the average (see Table I) has 16
,:vsix-fcid rings and 21.6 eight—fold‘;ingé. ThiéAis a very
large”number of six—fold’rings and-fhispis reflected clearly
~as a very large dip at the middle df the spectrﬁm with tWo
largenpeaks near the band edges. 'This,'thever; is quite
: diffepent from what happens in amorphous Ge or Si‘where
we get a substantial filling up of the dip\S/.. Although
{he_Connell model does not seem tolbe appropriate for émor—
thus Ge or Si, it may still be valid for the ‘amorphous
ITI-V compounds (as the authors intended).

Let us now ekamine the Polk model. For fhis system
e found thaf‘the LDOS of the atoms were not Qéry similar.
This is also reflectedfin‘the riné statistics as shown in
Table Ii.__In Figure 6 we have‘pldttgd thé LDOS of two
.ﬁCiuster—Bethe" systems for three different éﬁoms in tﬁe

- Polk model using the one-orbital [(a), (c), and (e)] and



-21--

four-orbital [(b), (d), and (f)] Hamiltonians.‘VIn :
Figuré 6(a) and (b) we show the LDOS of an atom (label
229) containing 1 five-fold, 9 six-fold, 4 four-fold, and
.16 eigﬁt—fold rings of bonds in a cluster containing up

to and including all eight-fold rings:(dashéd line) and

Ty by

all ten-fold ring (s01id 1ine). 'In Figure 6(c) and (d)

we show the LDCS'of another atom (iabel 223) in two similar
clusters éontaining 2 five-fold, 6 six-fold, 5 seven-fold
and 17 eight-fold rings of bonds. Finally, in Figure‘B(e)
and (f) we show the LDOS of An‘atom (label 231) with ring
statistics giVen by 3 five-fold, 4 éix—fold,i? seven -fold
and 21 eight-fold rings of bonds. Comparing the spectra

as we go down the columns we find again a correlation be-
tween structure in the DOS and.ring statistics. For the DOS
on the top we notice a large characteristic‘dip in the mid-
dle of the speétrum.\ This dip becomes gradually filled in
ﬁntil we géf to the DOS at the bottom where we no& get a
peak in the middle of the spectrum. This behavior is easil&
correlated with'the changes in rihg statistics aslwergo

down the éolumﬁs in Figure 6. The ring statistics of the
atom at the top of the figure show a very small number of
fi&e— and seven-fold rings but a relativeiy'large number

of six-fold rings. Thus, we get a'characferistic two-peak



vahd dip strﬁcture. As we go down the columns,ftherejisi
an increasiﬁg number of five-, seven- and eight-fold rings
while the number of six-fold rings ig'aecreasihg."This
is-reflectéd'as an introduction of new sfructuré_near the
middlé'of.the SPecfrum.'

’_In Figure_7'wé sh@ﬁ aVDOS averaged 5vér 17 central atoms
in the Polk model, using t%e bhé-orbital ahd'four—orbital
Hamiltoniané. ’Ianigufe 7(a) and (b),,ahd (c) and (d) we
hévefplottéd fhelbos of two "Polk-cluster-Bethe" systems
with clusters containing up té and‘inélﬁding'all eight-fold
and ten-fold rings respectively. Comﬁaring Figure 7 with
Figufe 5, we.noticé the étriking.diffefence between the
'Polk:and Conhéllvmodels‘when'using the DOS as avdiscerniﬁg
| facfor‘ The Polk model seems to be'a good model for. the
: ambrphous phase of Ge and Si even though we only have'a partia1
filling up of.the.dip. It reméiné to be seen from future
high resolutioﬁ spectroscopy whether the amorphous phase
really has a partial or complete fillihg up of the dip.

.Ihis should have imporfant consequences regarding the ring

statistics of the amorphous phase.
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CIV. ‘Finite Clusters and Band Edges

~Until now we have been concerned witﬁ the pQSitiQn
and nuﬁber of peaks and dips on the DOS. However, we
have said nothing about the properties of finite clusters
and band edges. This is because these properties require
a more careful and detaiied anélysis,

‘Let us being by examining what we really mean byka
LDOS. The LDOS as defined in equation (5) can be written

as
n. (E) ?§'<¢1|WT>‘2 § (E-Eq) , (13)

where |¢i> is the orbital of the ith atom and IWT> is an
| eigénfunction of the total system with energy Er. Equation

(13) can also be written as

z[<¢i|wT>|? § (E~Erp)
T

s (E—ET) o (14)

n;(E) =
- z G(E—ET) T
T .
n;(E) = P(E) n(E) - - (19
where n(E) is the total DOS and is equal to % G(E—ET).
- T

From the equation (15) we notice that the LDOS ni(E) is
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just equal to the total DOS multiplied by a.weighting func-

N

tion P(E). P(E) is just the average probability that an
electron is at the site i when it has an energy E.

‘The total DOS of a "cluster-Bethe" system is necessar-

ily equal to that of the infinite Bethe lattice. The DOS

of the Bethe lattice, however, is only defined in the in-

' tepval [(—VlZ V, Y12 V ] where V is the interaétion pafa—

‘meter of the ohe-orbital Hamiltonian. If we assume this

parametéf’v has the same Valﬁe throughout the whole '"clus-
terQBethe"‘systém; the LDOS of the‘;eference atom is then
different from:zero‘énly within [ -vI2 Vv, V12 V 1. There-
fore we cannot for example, obtain the’correét band edge

for the diamond or BC-8 structures which'nofmally would iie
in the:interval [-4v,4V]. The effects of'the_Bethe lattice
may then Ee'towproduce spurious peaks near the:band edges.

BV

To remedy this situation we took V = for the Bethe
V12

‘lattice and V=V in the cluster. This gives us a spectrum

“that now generally lies in the interval [QHV,HV]. An ex-

ample of this is shown in Figure 8. The dotted curve in this

figure correéponds“tb the "BC-8-Bethe" spectrum shown in

Figure 3(e). Superimposed in Figure 8, we have a solid
curve which represents the new "BCFS-Bethe" spectrum with

two interaction parameters. We notice that the curves are
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almbst idenfical except near the band edges. In fact,
the new ‘spectrum ldbks‘much'more iike the exact result
(Figure 3(b)) which does not have the small peaks near
+ 3V. ‘We obtain similar results for the small peaks
near t 3V in the Connell model‘shown in Figure 5 (c). .In
the ST-12 structure, however, these peaks remain_essentially
unchanged; It is interesting that even for the BC~8'struc-
ture theée'peaks do not vanish completely when we change
‘the strengthiof.the.Bethe iatticé. We believe. this is a
real effect which is caused by an intrinsic property'of the
finite cluster that we are dealing'with;>

It would be appropriate at this time to examine the
. Bethe lattice as a boundary condition by comparing thé LDOS
of "cluStef—Bethe" systems with the LDOS of finite isolated
cluster'é§stems;. In Figure 9 we show the LDOS of thfee
élﬁstérs uSing the one—drbital Haﬁiitonianbwifh [(a), (e), and
(e)] and without [(b), (d), and (£)] the Bethe lattice as
a boundary condition. The clusters in (a), (c) and (e) A
.gorrespond to those shown in Figure 3(a), (c) and (e).
The spectra in Figure 9(b),.(d) and (f) have been Gaussian
broadened by about 0.2V. Thé differences between the res-
pective spectra in the first and second columns is striking.
Asvwe mehtioned earlier, the effect of the Bethe lattice_

cannot be viewed as just an averaging or broadening of a
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finite cluster spectrum. For instaﬂce, the two strong
peaks in the;isolated ciuster (Figure_Q(f))vare not at the
correqt énergies for tﬁe total DOS whereas tﬁe ones in the.
"cluster-Bethe" model (Pigure 9(e)) are. | |

. Finaliy‘We:should say a few words about how the
"cluster~Befhe" method converges to the exact result for
systeﬁs-with high symmetry. As an example, let us take
"thé diamond structure. .The detailed shaﬁé‘qf the diamond
DOSvisigoverned'by Van Hove singulafitieé. Pdr instance,
usiﬁg the one-orbital Hamiltonian, fheSe'sharp features
occur at 0OV, + 2V and t 4V (Figuré 2(a)). As we take
larger and larger "cluster-Bethe" systems we find that the
basic two-peak and dip structure remains essentially un-
lchanged, with additional wiggles appearing near the singu-
larities;xQWhat is happening here is sihilar to the Gibb's
‘phenomenon. Iﬁ addition, we are trying to repr@duée the
crystaliiﬁe DOS with an infinite number of delta functions
of.Whicﬁ_only a small number are directly related to the
‘> éiusfer, For example, in the cluster without a Bethe iét—v
tiée.we woﬁld get as many delta functions as there are atoms.
However, in systems with high symmetry we find that many of
these delta functions are degenerate. TFor instéﬁce,.in Fig~
uﬁevl, wé/have a cluster of 29 atohs‘in the diamond stfucture.

But we only get 4 delta functions since we only have 4 dis-
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tinct atoms; Because of these éffects”the convergence
 for the diamond struétufe is rather slow. HoweVer; |
for more complicated structures the'cohvergence is very
'good}v This is clear as we have élready“seen in the BC-8
~and ST-12 structures. Therefore, the "cluster-Bethe"
systém.should have the fastest convergence for amorphous

systems.

V. '-Summa;y:and Conclusions -

* We have used a new method to study the DOS of in-
finite systems of atoms by treating part of the system
exactly (as a cluster) and letting the Bethe lattice
simulate the effects of the rest of the eﬁvironment.
Using this method we have shown the importanée of.loéal
ring-like—topologies'in‘determining structure in the DOS.
By}taking vérious_BCFS and ST-12 "cluster-Bethe" systems
we have'ihtgfpretéd'the DOS of their crystalline phases.
As'thé size of the clustéfs increase; more detaiis appear
in thé DOS spectra, but the basic features are‘aiready'
.present in vefy”small clusters'of atoms. Consequently,.

the interpretation of structure in the DOS can be carried
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out. in terms of small membered ringSIOnly.. In this way,
we have also been able to test our method as a calcula-
tional tool by examining hbw it converges to the-exact
resﬁlt} 'In particuiar we have fouﬁd’that.the convergence
is faétest'thé more complicated fhe system. qu the
BC-8, ST-12 and amorphous phases a "cluster-Bethe" system
with a cluster COnfaining up to all rings of order ten
should give'an excellent estimate of the actual DOS. -

In this context we have studied two popular structur-

. al models of an amorphous random network. Although both

~models fit the experimental radial distribution functions

quite well, their respect;Ve DOSiis quite different.: This
is a consequence of their very different ring topologies.

One modél has only‘eVen—numbered rings of bonds while the

other has in addition odd-numbered rings of bonds. This

éhows thé sensitivity of the DOS, and hence the usefulness
of cﬁaracterizing amorphous sampies, to the local ring
topologies of éach atom.

Finally, we have found that possiblé spurious results
near the band edges can be eliminated by taking two types
of interactions into account when studying a "ciuster—Bethe"
system using the one-orbital Hamiltonian. By taking the

Bethe lattice to have a stronger interaction parameter than
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the.clustef,'tﬁe width oflfhe DOS épebtrum increases and
approaches that of the original system.v' 
There'are many extensions aﬁd_areas where we could
apply'our method. For e#émple, we are currently extending
~ this method to be used with more realistic Hamiltonians.
In particular; we‘are'studying a three barameter molecular
orbital'tight—binding Hamiltonian and a five parameter foup—
orbital Hamiifonian. :These'Hémiltonians can givevvalence band
DOS which are in excellént agreement with experiment.
?Our méthod"can be used to,study amorphbus binary com-
pounds.orvéurfaCes on amorphous or crystalline solids.
‘We can also‘Study thejeffects of impurities;‘ In addition
with Straightforwafd extensions to include Bethe lattices
of other éoofdination numbers, we can have a very  inter-

esting method of studying amorphous alloys,
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TABLE I

The ring statistics of five atoms'ngar'the center of the
:Connéll'fandpm network model. A number in the first col-
uhn represents the label of an atom in the model. The
numbers in the secohd; third; fourth and fifth columns
‘represent the number of five-, six-, seven-, énd eight-
fo;d rings of bénds-respéétiVely, paésing thrdugh this atom.
A ring is not’recognized if more th?n‘two,atoms'in this

ring are connected directly to the reference atom.

Label of | Number of| Number of{ Number of Number of
atom five-fold| six-fold seven-fold| eight-fold

" rings rings rings rings
1 0 J——18 o 22
2 0 . 15 o 19
3 0 18 0 22
9 0 15 0o 22

10 0 14 o 23
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TABLE II

The ring statistics of seVenteen atoms near the center of
the Polk raﬁdom'network model. The convention is the same

as in Table I.

VLabel of: Number of Nuﬁber of| Number of Number of
atom | five-fold six~-fold seven-fold| eight-fold
rings - rings . rings rings
229 1 | 9 | "A‘ua__-‘ 16
223 | 2 | ¢ s | 1
231 | s | | PR B
224 1 7 s 1y
233 2 | T 6 1 19
232 2 s | '5  21
228 | | 1 | % : 6 12 -
225 | 1 | 8 6 o
236 ' 1 . »‘é | 6 . 12
2217 3 5 s | 12
243 . 6 B g 12
8 1 8 3 15
239 4 2 8 1 1y
12y 1 7 . 6 | 20
234 |y 2 7 12
235 1 | 8 5 . 12
252 1 6 8 12
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Figure 1

‘Figure 2

U0 4 i

2 U 1 8 ;
LA

FIGURE CAPTIONS

CluStgr of atoms in the diamond structure. The
central or reference atom‘is‘iabelled 0. All

equivalent atoms ‘are labelled with the same number.

‘The Bethe lattice is connected to the one and two

dangling bonds . of atoms 2 and 3 respectively.

" Density-of-states calculations for the diamond

and ring cluster structures. (a) One orbital
Hamiltonian in the diamond structure (light

full line), Bethe lattice (dashed line) and our

' results.(heavy full line). (b) Four orbital

Hamiltonian in the diamond structure (light full

line), Bethe lattice (dashed line) and ourvresults
(heavy full line). .(c¢) Structure with 6 n-fold
rings around the central atom in the one-orbital
Hamiltonian: 5 (dashed line) n=5; 6 (solid line)
n=63; 7 (dotted line) n=7; S (brokéniline) n=8.

(d) Structure with 6 n-fdld rings in the four-
orbital Hamiltonian. Notation as in (e). (e)

The orbital energies for isolated five-fold rings

'  (dashed lines), six-fold fings (solid lines),

seven-fold rings (dotted lines) and eight-fold
rings (broken lines). The énergy in parts (a),
(c¢) and (e) is in units of V (see equation (1))

and the energy in parts (b) and (d) is in eV.



Figure 3

Figure14
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Dénsitieé¥of-stateé calculations fér fdurv
"BC-8-Bethe" systems using the one-orbital

t(a), (c), (e) and (g)] and four-orbital

[(b), (d), (f), and (h)] Hamiifoniéns., (a)

and (b) (dashed'1ine);:the LDOSIfor a "BC--
8-Bethe" system with a clustér,cohtaining all
rings up”to’ordér.six passing_througﬁfthe central
atom. The full line in (b) is the.DOS for the
BC-8 structure. (c) and (d) the LDOS for a
"BC-8-Bethe" éystem With a clusterbcontaining all

rings up to order eight passing through the central

“atom. (e) and (f) the ‘LDOS for a "BC-8-Bethe"

system with 4 cluster cbntaining:all rings up

to order twelve passing through the central atom.

 (g) and (h) the LDOS for a "BC-8-Bethe" system with

a cluster containing all rings up to order twelve
paéSing throughvthe central atom. The energy 1is in_
units of V'fof (a),'(gjg (e) and (g) énd in units
of eV for (b), (d), (f) and (h).
Densities-of—sfates aQeraged ovef two atoms for
three'"ST—lZ—Bethe"‘sySteﬁs using the»one—orbitél
[(a)j (¢) and (e)]‘aﬁdvfour—orbitél'[(b), (a),

and (£)] Hamiitonians; (a) and (b) (dashed line);
the DOS‘forraﬁ "ST-lZ—Bethé" system with a clus-

ter containing‘éll rings up to order seven passing

thfough the central atom. The full line in (b) is-

the total DOS for the ST—12 structuPe. (é) aﬁd (&)

the DOS for an "ST—lZ—Betheﬁ system with a cluster

containing all rings up to order eight passing



Figure 5

through the ‘central atom. (e) and (f) the

DOS for an "ST-12-Bethe" system with a cluster

cont ‘ining all rings up to order ten passing
through the central atom. The energy is in units
of V fbrf(é), (c) and <e>; and in units of eV

for (b), (d), and (£).

‘Densities-of-states averaged over five atoms. near

'the center of the Connell model for two - "Connell-

cluster-Bethe" systems using'the.oﬁé—orbital [(a)

“and (e)] and four-orbital [(b) and (d)] Hamilton-

ians.. (a) and (b) the DOS for a "Connell-cluster-

~ Bethe" sYstem with a clusteér containing all rings

Figure 6

up to order eight passing thr@ugh the central atom.
(c) and (4d) the DOS‘for'é "Conhéll—éluster;Béthe"'
system with:a cluster-containing all rings up to
order fen passing throﬁgh the central atom. The
energy is”in units of V for (a) and (c¢) and in

units of eV for (b) and (d).:

Densities—of;states for three atoms in the Polk
modél‘using the "clustef—Bethe"‘method with the
one-orbital [(a), (c) aﬁd‘(e)j aﬁd‘four—orbital
[(b), (d), and (£)] Hamiltohians; (a) and (b)

the DOS for two "cluster-Bethe" systems containing
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"311 rlngs up to order elght (dashed line) and
~ten (full line) respectlvely pa851ng through
ythehcentral atom (label 229; see Table II)
(e);ahd (d) the DOS for two "cluster Bethe",
‘systems contalnlng all rlngs up to order eight -
(dashed llne) and ten (full llne) respectlvely
passlng through the central atom (label 223) (e) and (f)
DOS for two-"clusteréﬁetheﬁ systems cbntaining
all rings up to order eight (dashed 11ne) and
'ten (full llne) respectlvely pa831ng through
_theacentral atom (label_23l). The energy is in
_'uhits of V for (a), (c)'and.(e) and ih units of

eV for (b), (d) and (f).

Figure 7_rDensities-of—states avefaged ovef seventeen atoms
- near the cedter of the Polk model:fof two "Polk-
“cluster-Bethe" systems using the one-orbital [(a)
,Hand (e)) and feur—orbital [(b) and (d)] Hamilton-
ians.‘ (a) and (b) the DOS for a ﬁPolk-cluster—
~ Bethe" system with a cluster:containing all rings
up to order eight passing through the central atom.
“(c) and (d) the DOS for-a "Peik-eluSter—Bethe"
system with a cluster‘contaihing ail,rings up to
obder ten passinghthrough(the central atom. The
~energy is in uhits of V fer‘(a) and (¢) and in

units of eV for (b) and (4d).
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‘Figure;én Densities—qf—étates fof a "BC-8-Bethe" system
| ) withba cluster containing all rings:up to
Order.teﬁ. The DOS was obtained‘using'the
. one—quital Hamiltonian with all interactions
_'in the “cluster—Bethe” system equal to V (dot-
 fea line) and with interactions in the cluster
equal to V and ihferéétiéﬁs’in“the Bethe lat-
 tice equal to HV//Tf'(éélid:line). The energy

. is in units of V..

Figure 9 DensitiéélofLStafeé‘uSing theione-orbifql Ham-
v“iltdni;n_fgr three BC-8 clusters wifﬁjtka),
(c) and (e)] and without [(b), (d) and (£)]
jthé Bethe lattice connéctéd to thé éﬁffaﬁe.
 :(a) and (b) fhe DOS f§P a cluster containing éll
‘rings up to Qrder-sixl’v(c) aﬁdf(d) the DOS
for a cluster containiﬁg all rings up‘fd ofder
eigﬁf._ (e) and (f)vthérDOS.for a cluster éon—
taining.all fings up to order ten. Tﬁé\energy
is in units d%-Vlané the 8pectr§~ih;(b), (d)

and (f) have been Géuésianvbroadénéd by 0.2V.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.




A e

-4

TECHNICAL INFORMATIQN DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



