
... 

.". 

J. 

LBL-31840 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Mathematics Department 

To be submitted for publication 

On the Complete Pivoting Conjecture for a 
Hadamard Matrix of Order 12 

A. Edelman and W. Mascarenhas 

February 1992 

U. C. Lawrence Berkeley Laboratory 
Library, Berkeley 

FOR REFERENCE 
Not to be taken from this room 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

OJ 
I-' 
0. 
to . 
U1 
S 

r 
r OJ 
1-'- r 
0"(1 I 
Ii 0 W 
Pl '0 ...... 
Ii "< ():) 
"< .t:>-
....... IS) 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specifiC commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

;.. • 

.-



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Govemment or any agency thereof or the Regents of the 
University of California. 



" 

ON THE COMPLETE PIVOTING CONJECTURE FOR A 
HADAMARD MATRIX OF ORDER 12 

Alan Edelman! 
Department of Mathematics 

and Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

Walter Mascarenhas2 

Institute for Mathematics and Its Applications 
University of Minnesota 
Minneapolis, MN 55455 

February 1992 

LBL-31840 

lSupported in part by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, U,S, 
Department of Energy under Contract DE-AC03-76SF00098. 

20n leave from the State University of Campinas, Brazil 



On The Complete Pivoting Conjecture for a 
Hadamard Matrix of order 12 

Alan Edelman· 
Department of Mathematics 

and Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

Walter Mascarenhast 

Institute for Mathematics and Its Applications 
University of Minnesota 
Minneapolis, MN 55455 

February, 1992 

Abstract 

This paper settles a conjecture by Day and Peterson that if Gaus
sian elimination with complete pivoting is performed on a 12 by 12 
Hadamard matrix, then (1,2,2,4,3,1O/3,18/5,4,3,6,6,12) must be the 
(absolute) pivots. By way of contrast, at least 30 patterns for the ab
solute values of the pivots have been observed for 16 by 16 Hadamard 
matrices. This problem is non-trivial due to the fact that row and 
column permutations do not preserve pivots. A naive computer search 
would require (12!)2 trials. 

1 Introduction 

Wilkinson and Cryer's conjecture [2, 16] states that if A is a real n by n 

matrix such that laiil S 1, then the maximum pivot encountered during 

·Supported by the Applied Mathematical Sciences subprogram of the Office of Energy 
Research, U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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the process of Gaussian elimination with complete pivoting, the so called 
"growth factor", is bounded by n. Given a choice of pivoting strategy, the 
growth factor of a matrix is defined as 

max· -k IA(k)1 
g(A) = ',1, i j , 

m"'v- -IA--I ....... ,1 '1 

where A (k) is the matrix obtained from A after k steps of Gaussian elimina
tion. In this paper, we consider only "complete-pivoting", meaning that at 
each step the element of largest magnitude (the "pivot") is moved by row 
and column exchanges to the upper left corner of the current sublock. 

Recently Gould [6] published a 13 by 13 matrix that exhibited in the 
presence of roundoff error growth slightly larger than 13.0205. He also dis
covered a 16 by 16 matrix which numerically has growth larger than 18. 
Edelman [4] found that Gould's matrices could be perturbed so as to serve 
as true counterexamples in exact arithmetic, though in this case finding 
the perturbation was not easy. Gould's discoveries were obtained compu
tationally using sophisticated numerical optimization techniques. The key 
mathematical problem of finding the largest growth possible remains un
solved. 

The conjecture that g( A) ::; n had been supported by the observation 
that an Hadamard matrix, i.e. a n X n matrix H with entries ±1 and 
H HT = nI, always had growth factor at least n. In fact, the last pivot must 
be exactly n for an Hadamard matrix. It has long been thought unlikely 
that any Hadamard matrix could have any pivots greater than n. Indeed 
Gould's examples are not Hadamard. 

We now know that the conjecture is false, but we believe a weaker version 
of the conjecture formulated by Cryer: We believe that g(H) = n if H is a 
Hadamard matrix. Here we take a small step towards proving this fact about 
Hadamard matrices by settling a conjecture by Day and Peterson [3] that 
only one set of absolute pivots is possible for a 12 by 12 Hadamard matrix. 
Husain [10] showed that there is only one Hadamard matrix of order 12 up to 
Hadamard equivalence. (Two matrices are Hadamard equivalent if they can 
be obtained from each other by row and column permutations and by row 
and column sign changes.) However, the pivot pattern is not an invariant 
under Hadamard equivalence. For example, many pivot patterns can be 
observed by permuting the rows and columns of any 16 by 16 Hadamard 
matrix. 
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2 Preliminary Notation and Lemmas 

Hadamard matrices are highly structured. We collect here the important 
properties that we will need for our proof. To begin, it is well know that a 
Hadamard matrix of size n = 4t is equivalent to a symmetric block design 
with parameters v = 4t - 1, k = 2t - 1, and >. = t - 1 [7]. A symmetric 
block design with parameters v, k and >. is a collection of v objects and v 
blocks such that there are 

• k objects in each block, 

• k blocks that contain each object, 

• exactly>. objects in common to a pair of blocks and 

• exactly>. blocks that contain any pair of objects. 

We can interpret a Hadamard matrix as a symmetric block design by first 
negating rows and columns of H so that its leading row and column only 
contains positive ones. We then have a design on the objects 1 through n-1 
by saying that i is a member of block k iff Hi+I.k+l = +1. In particular, a 
12 by 12 Hadamard matrix is equivalent to an arrangement of 11 symbols 
into 11 blocks containing 5 objects such that each object appears in exactly 
5 blocks, every pair of distinct objects appears together exactly twice, and 
every pair of distinct blocks has exactly 2 elements in common. 

We say that a matrix A is completely pivoted, or CP, if the rows 
and columns have been permuted so that Gaussian elimination with no 
pivoting satisfies the requirements for complete pivoting. Following [3], let 
A[k] denote the absolute value of the determinant of the lower right k by 
k principal submatrix of A, and A(k) denotes the absolute value of the 
determinant of the upper left k by k principal submatrix. The determinant 
of a 0 by 0 matrix is defined here to be 1. 

Definition 2.1 Let A be CP, we define the kth pivot as 

Pk = A(k)/A(k - 1). 

The usual definition of the kth pivot is the value of Akk after k - 1 steps 
of Gaussian elimination. Our definition is equivalent to IAkkl which allows 
us to avoid the "±" symbol in every formula. 
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Lemma 2.1 If H is an n by n Hadamard matrix, then 

nn/2 H(k) = n k H[n - k]. 

Proof See [3], Proposition 5.2. 

Corollary 2.1 If H is an n by n Hadamard matrix, then the kth pivot from 
the end is 

nH[k - 1] 
Pn+1-k = H[k] . 

Proof This follows immediately from the lemma and Definition 2.1. 

Corollary 2.2 If a Hadamard matrix H is CP and k < n, then, for all 
(k - 1) X (k -1) minors Mk-l of the k x k lower right submatrix of H, we 
have H[k - 1] 2:: , det(Mk-d ,. 

Proof This follows from Corollary 2.1 and the CP property of H, for oth
erwise we could permute rows and columns of the lower right k x k minor 
of H to obtain a larger value for Pn+l-k. 

This corollary is useful for telling us that H[k - 1] is the magnitude of 
the largest (k - 1) x (k - 1) minor of the k x k lower right su bmatrix of H. 
Thus H[k - 1]/ H[K] is the largest element in magnitude of the inverse of 
the k x k lower right submatrix of H. 

Lemma 2.2 Let dn denote the largest possible value of a determinant of an 
n by n matrix consisting of entries ±1. The first seven values of the sequence 
(di) are 1,2,4,16,48,160,576 and for n = 2, ... , 7 if the determinant of an 
n by n matrix is dn, then the matrix must have an n - 1 by n - 1 mmor 
whose absolute determinant is dn- l . This is not true when n = 8. 

Proof The values of dl , ••• ,d7 were computed in [17] who further showed 
that up to equivalence there is only one n by n matrix with determinant dn 

for n = 2, ... ,7. It is easy to verify that each of these matrices have an n-l 
by n - 1 minor with absolute determinant dn - l . When n = 8, ds = 4096 
while all 7 by 7 minors have determinant of magnitude 512. 

Lemma 2.3 If H is a CP Hadamard matrix, then H(4) = 16 so that the 
4 X 4 principal subminor of H is an Hadamard matrix of order 4. 

Proof See [3], Proposition 5.8. 
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3 Pivot Sequence for H12 

In this section we prove our main result: the pivots for a CP 12 X 12 
Hadamard matrix are (1,2,2,4,3,10/3,18/5,4,3,6,6,12). The first four piv
ots were determined by Day and Peterson [3] as given in Lemma 2.3. In 
Lemma 3.1 that follows, we show that the fifth pivot must be 3 from which 
the remaining pivots will be determined to be unique using Lemma 2.2. 

Lemma 3.1 If H is a 12 X 12 CP Hadamard matrix then H(5) = 48. 

Proof The argument is simplified if we consider the design interpretation 
of a Hadamard matrix so (without loss of generality) we assume that the 
first row and column of H are all + 1, and also that the upper left 4 X 4 
submatrix of H is a 4 X 4 Hadamard matrix (by Lemma 2.3) which can be 
given by the block design Bl = (1), B2 = (2), B3 = (3). 

It is of no consequence to us in what order rows and columns 5 through 
12 appear, it is sufficient that we show that some 5 X 5 minor of H with 
determinant 48 includes rows and columns 1 through 4. In fact, since by 
Lemma 2.2, 48 is the maximum value of the determinant of a 5 X 5 matrix 
of ±1 's, if there were such a minor M5 with determinant 48 then, because 
of complete pivoting, we must have 48 = det(M5) :5 H(5) :5 48, implying 
H(5) = 48. It is also of no consequence how rows and columns 2 through 4 
are ordered among themselves. 

We proceed to find conditions on four blocks in the symmetric design 
corresponding to H. Each block has five elements, each pair of blocks has 
two elements in common, and we are building from the upper left 4 X 4 
submatrix of H. From these conditions, there is no loss in generality by 
labeling 

Bl = (1 4 5 6 7), and B2 = (2 4 5 8 9). 

Now Bl n B2 n B3 is either empty or consists of one object which we can call 
5 without loss of generality. (There could not be three blocks containing the 
same pair.) This leads to only two distinct possibilities for B}, B2 and B3 
either 

(1456 7), (24 589), (356 8 10), 

or 
(1 4 5 6 7), (2 4 5 8 9), (3 6 7 8 9). 

Let B4 be a block that contains 1 and 2 but not 3. (There are two blocks 
that contain any pair such as 1 and 2, and they both could not contain 3 for 
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otherwise there would be too many elements in common.) It is easy to verify 
that B4 can not contain a 4 for if it did, it would not be possible to choose 
the last two elements to be consistent with the either of the possibilities 
above. Thus B4 contains 1 and 2 but not 3 and 4. 

The information from Bl through B4 about the objects 1 through 4 
tells us that we have a five by five minor that includes rows and columns 1 
through 4 of the form 

1 1 1 1 1 
1 1 -1 -1 1 
1 -1 1 -1 1 
1 -1 -1 1 -1 
1 1 1 -1 -1 

This matrix has determinant 48 and thus H(5) = 48. o 

Corollary 3.1 If H is a 12 x 12 CP Hadamard matrix then 

ps = H(5)/ H(4) = 3. 

Theorem 3.1 No matter how the rows and columns of a CP 12 by 12 
Hadamard matrix H are ordered, the pivots must be 1, 2, 2, 4, 3, 10/3, 
18/5, 4, 3, 6, 6, 12. 

Proof From Lemmas 3.1 and 2.1, it follows that H[7] = 576. Observe that, 
from Lemma 2.2, this is the maximum value attained by the absolute value 
of the determinant of a 7 X 7 matrix with entries ±1. Lemma 2.2 also tell us 
that the 7 X 7 lower right corner has a 6 X 6 minor with maximal determinant 
160. As a consequence of Corollary 2.2, H[6] = 160. Similarly, we conclude 
H[5] = 4, H[4] = 16, H[3] = 4, H[2] = 2, and H[1] = 1. The last seven 
pivots now follow from Corollary 2.1. 

4 Hadamard matrices of order 16 and open prob
lems 

It is known (see [14]) that there are five equivalence classes of Hadamard 
matrices of order 16. Unfortunately, the pivot pattern is not an invariant 
of the equivalence class, and thus the number of equivalence classes may 
offer little useful information. We found over 30 possible pivot patterns for 
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Hadamard matrices of order 16, though not all patterns appeared for each 
equivalence class. However, we found the number of possible values for H (k) 
to be quite small. For example the only values that appeared in practice 
for H(8) were 1024, 1536, 2048, 2304, 2560, 3072, and 4096. For H(7) the 
values that appeared were 256, 384, 512, and 576. It may be necessary to 
understand these possible values to prove that the growth factor for a 16 by 
16 Hadamard matrix, must be 16. 

An interesting conjecture by Day and Peterson [3] that the fourth from 
last pivot must be n/4 remains unsolved. We performed extensive experi
ments beyond those reported in [3] for a large variety of Hadamard matrices 
including some that were only discovered in the last seven years. We too 
strongly believe this conjecture, though we have not attempted to prove this 
at this time. Hadamard matrix problems sound tantalizingly easy, yet still 
the existence of relatively small Hadamard matrices (n = 428) is not known. 
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