
J

LBL-31841
UC-405
Preprint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

Index Transformation Algorithms in a Linear Algebra Framework

A. Edelman, S. Heller, and L. Johnsson

April 1992

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

til
Il.

I.Q .
til
lSI

r
r til r
0"(1 I
'1 0 L.)

Ill" .-
'1'< (b
'< ~ . .- .-

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur
poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-31841

INDEX TRANSFORMATION ALGORITHMS IN A
LINEAR ALGEBRA FRAMEWORKl

Alan Edelman2

Lawrence Berkeley Laboratory
and

Department of Mathematics
University of California

Berkeley, CA 94720

Steve Heller
and

Lennart Johnsson3

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142

April 1992

ISimultaneously appears as Thinking Machines technical report TMC-223.
2Supported in part by the Applied Mathematical Sciences Subprogram of the Office of

Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.
3 Also affiliated with the Division of Applied Sciences, Harvard University

\ ..

Index Transformation Algorithms in a Linear Algebra Framework*

Alan Edelman t
Lawrence Berkeley Laboratory
& Department of Mathematics

University of California
Berkeley, CA 94720

edelman~math.berkeley.edu

Steve Heller
& S. Lennart Johnssont

Thinking Machines Corporation
245 First Street

Cambridge, MA 02142
heller~think.com

johnsson~think.com

April 1992

Abstract

We present a linear algebraic formulation for a class of index transformations such as Gray
code encoding and decoding, matrix transpose, bit reversal, vector reversal, shuffles, and other
index or dimension permutations. This formulation unifies, simplifies, and can be used to derive
algorithms for hypercube multiprocessors. We show how all the widely known properties of Gray
codes and some not so well known properties as well can be derived using this framework. Using
this framework, we relate hypercube communications algorithms to Gauss-Jordan elimination
on a matrix of O's and l's.

Keywords and phrases: binary-complement/permute, binary hypercube, Connection Mw
chine, Gray code, index transformation, multiprocessor communication, routing, shuffle

·Simultaneously appears as Thinking Machines technical report TMC-223.
tSupported by the Applied Mathematical Sciences subprogram ofthe Office of Energy Research, U.S. Department

of Energy under Contract DE-AC03-76SF00098.
f Also affiliated with the Division of Applied Sciences, Harvard University.

1

1 Introduction

We present a theory for a class of index transformation algorithms that should be properly

thought of as a matrix-vector product, though they rarely are. This class is strictly a superset of

the class known as BCP (bit-permute/complement) [20,21]. In spirit this theory is linked with the

ideas in Van Loan's new book [26], particularly the notion that matrix factorizations can define

algorithms. The principal idea is not the discussion of matrix factorization algorithms, per se. The

idea is a different way of viewing and generating algorithms.

Van Loan covers computational frameworks for the Fast Fourier Transform. Despite differences

in our approach, on this quote from [26] we firmly agree:

The proper way to discuss a matrix-vector product such as the discrete Fourier

transform is with matrix-vector notation, not with vectors of subscripts and multiple

summations. We should be as repelled by scalar notation as we are by assembly language

coding for both retard algorithmic development.

Although it has always been clear that BCP and larger classes of communications problems can

be formulated as matrix-vector products, they rarely have been. Keohane and Stearns address a

similar class of permutations in [19], but do not formulate the problem as a matrix-vector product.

A notable exception is the contemporaneous work of Cormen [2] for permuting data on disk arrays.

Our motivation stems from communications algorithms for real applications on hypercube mul

tiprocessors such as the Connection Machine model CM-2 multiprocessor, though we believe these

ideas to have wider applicability. Our matrices only contain O's and 1 's: they describe transforma

tions on a vector of length 2n indirectly through binary encodings. The most familiar example is

bit reversal, an operation used in conjunction with FFT's. Bit reversal is a permutation of a vector

of length 2n induced by a permutation on n objects: the n bits of the vector's indices. One can

represent this transformation as a 2n x 2n permutation matrix on the components of the vector (as

is done in [11] and in [26]). For our purposes it is more convenient to consider the more compact

representation of the n x n matrix describing the index transformation, which in the bit reversal

case has ones on the northeast-southwest diagonal and is otherwise O. Also familiar are so called

dimension transformations or index permutations. These are arbitrary permutations of the n bit

indices, which induce permutations on 2n elements. Why use matrices of order 2n when matrices

of order n suffice?

We define a linear index transformation by

i ~ Ai,

2

j

v

where i is a bit vector with n components, A is an n X n 0,1 matrix, and the matrix-vector multiply

is performed modulo 2. So long as A is non-singular, this n x n matrix induces a permutation

on the 2n indices. Dimension permutations are trivial examples of such transformations; other

examples include Gray code encoding and decoding of arbitrary axes. Many real applications on

hypercube multiprocessors require complicated compositions of these transformations.

We show that this is not a matter of notation, but rather that the existence of a certain kind

of convenient algorithm on a hypercube to perform the data movement given by a linear index

transformation is equivalent to the ability to perform Gauss-Jordan elimination on A without

pivoting. This ability, in turn, is related to a familiar condition on the principal submatrices of A.

Thus the complicated combinatorial problem of devising an algorithm is reduced to the algebraic

problem of decomposing a matrix. We believe that this is the first time that the existence of

a hypercube communications algorithm has been related to the ability to perform Gauss-Jordan

elimination.

In Section 2, we fix notation that will be useful throughout the paper, while Section 3 contains

our main results. In Section 4, we apply these results towards the special case of Gray code encoding

and decoding while Section 5 considers dimension permutations. We conclude in Section 6.

2 Notation

Let F2 be the field of elements {0,1} with addition and multiplication defined modulo 2. In

this paper, addition and multiplication are always performed modulo 2.

We denote the vector space of n-vectors with elements in F2 as F2. Similarly, the set of m X n

matrices with elements in F 2 is denoted by F~,n. For clarity, we sometimes display such matrices

with empty spaces where the entries are O. We sometimes consider i or its binary encoding as the

node address of a hypercube in the usual manner.

Any integer i such that 0 ~ i < 2n can be identified with an element of F2 by the use of

the binary encoding of the number. Thus, if i = I:k:~ ik2k, then we identify i with the vector

(io, , in-I?' Notice that the vector is written with the least significant bit first. Of course F2

can be naturally included as a subset of F~+1 by appending an extra zero.

We admit that this vector notation for the binary representation of a number seems to clash with

the usual representation, in-I ... il io, in that the order appears backwards, but the definition as

presented is appropriate and consistent for matrix-vector notation. We have resisted the temptation

to refer to the first row of a matrix in F2n or the first component of a vector in F2 as the zeroth,

3

but rather chose the more familiar index origin of one.

Some useful vectors are en = 2n -
l in which only the nth component is 1 and in = 2n - 1 in

which only the first n components are 1. These vectors can be thought of as elements of F~ for any

k ~ n using the natural embedding. Also we can avoid difficulties by letting eo = jo = O.

If (Xb" ., Xk) is any ordered sequence of numbers, then its reversal is the sequence (Xk," ., Xl).

3 Linear and Affine Index Transformations

We now define the transformations of interest to us which we refer to as affine or linear:

Definition 3.1 An index transformation is defined to be affine if the data in node i is sent to

node f(i), where

f(i) = Ai + b.

Cormen [2] calls this class of transformations BMMC for bit-matrix-multiply /complement.

Definition 3.2 An index transformation is defined to be linear if the data in node i is sent to

node f(i), where

f(i) = Ai.

Thus a linear index transformation is an affine transformation that fixes the data in node O.

The simplest hypercube communication is the unconditional exchange of data across a fixed

dimension. Algebraically this can be described by f(i) = i + ek. Another simple hypercube commu

nication sends data to the opposite corner of the hypercube. This is f(i) = i + in, which describes

vector reversal.

Another example of a linear index transformation is a dimension permutation considered by

such authors as Stone [22], Fraser [6], Nassimi and Sahni [20,21], Flanders [5], Johnsson and Ho [14],

Stout and Wagar [23, 24], and Swarztrauber [25]. A dimension permutation is defined as the map

f(i) = Pi, where P is a permutation matrix. Since permutation matrices are orthogonal (P pT = I),

if it is also symmetric then it is a square root of the identity (P 2 = I). Thus a symmetric

permutation matrix corresponds to a disjoint set of dimension pairs being exchanged.- On

the other hand circulant permutation matrices correspond to relabeling dimensions in a way

that preserves the circular order of the indices. The shuffle and unshuffle operations give two

such matrices. Circulant permutation matrices form a subset of the irreducible permutation

matrices. A matrix A is said to be irreducible if it has no non-trivial invariant subspaces. The

irreducible permutation matrices correspond to the dimension exchange represented by a cycle.

4

\
V

\ .. '

In Section 4, we will consider the example of Gray code encoding and decoding.

The basic theorems of algebra tell us that if f(i) = Ai + b, where A is non-singular, then the

map is one to one. Otherwise, if the rank of A is r, then A maps the hypercube to an r dimensional

subcube. This map sends the data in 2n - r nodes to one.

Definition 3.3 A conditional exchange across dimension k, denoted Ek, is a communication

pattern defined by f(i) = Ai, where A is any matrix whose diagonal consists of 1 's, and whose

off-diagonal may possibly be 1 only in the kth row.

An example of a conditional exchange across dimension 3 is represented by the matrix:

The mapping f(i) = E3i describes a conditional change of the third bit, depending on the first

and fourth bits. We will extend our use of the term "conditional exchange" to also refer to the

associated matrix without loss of clarity.

Lemma 3.1 If Ek is a conditional exchange, then Ek is non-singular, Ekek = ek and Ef = I (i.e.,

Ek = Ek
1
).

Proof From the form of the matrix, it is clear that the determinant of Ek is 1, and that Ekek = ek.

Either Eki = i so that Eli = i or Eki = i + ek and Ek(i + ek) = i. Either way, E'fi = i for all nodes

i, and thus E~ = I.

Notice that if the kth diagonal entry were 0, then the kth column is 0 and the matrix would be

singular. In fact the rank of the matrix would be exactly n - 1. Such a communication might be

termed a conditional projection.

A conditional exchange can be implemented directly on a hypercube. Each node either sends

all its data across the dimension specified in the exchange, or does nothing. Only one dimension

of the hypercube is traversed in this operation, and this algorithm achieves fifty percent overall

utilization of that dimension.

A hypercube communication operation that uses all the dimensions simultaneously is called

cube swap. In this operation, each node sends one message along each hypercube dimension.

If an n X n matrix A can be decomposed as a sequence of conditional exchange matrices,

A En ... Et, then this factorization describes an algorithm for implementing the linear index

5

transformation given by A as a sequence of conditional exchange operations across dimensions 1

through n respectively. More generally, if A admits a factorization of the form A = Edn ••• E d2 E d1 ,

where d1 , d2 , ••• , dn is a reordering of the dimensions 1 through n, then the factorization defines an

algorithm for implementing the linear index transformation as a sequence of conditional exchanges

in a different order. Any sequence of exchanges on disjoint dimensions can be implemented in a

pipelined fashion on a hypercube as a sequence of identical cube swap operations, as long as there

is a non-trivial amount of data at the node. The pipeline will have one start-up and one wind-down

step for each dimension traversed. Once the pipe is started the algorithm achieves fifty percent

utilization of the total bandwidth available. Of course, this leaves us short by a factor of two in

total use of cube swap bandwidth, but allows us to consider very general situations.

We now present our main theorem relating hypercube communication algorithms algebraically

to Gauss-Jordan elimination performed columnwise and modulo 2 instead of over the reals:

Theorem 3.1 The following statements are equivalent:

1. A may be decomposed as a product of conditional exchanges:

2. The index transformation defined by A can be accomplished on a hypercube as a pipelined
sequence of cube swaps, accomplishing a sequence of conditional exchanges traversing
dimensions 1 through n consecutively.

3. The columnwise Gauss-Jordan elimination algorithm (modulo 2) onA runs to completion
without the need for pivoting .

..{. All n principal submatrices of A are non-singular.

Proof The equivalence of 1. and 2. is discussed before the theorem. By columnwise Gauss-Jordan

elimination we mean an algorithm whose ith step consists of adding multiples of column i to the

other columns so that the resulting matrix matches the identity in the first i rows. In modulo 2

arithmetic one can verify that the algorithm takes the following simple form:

AD = A
for i=1,2, ... ,n

Ei:= E(Ai-1,i)
Ai := Ai- 1 Ei

end

Here E(A,j) denotes a matrix that is the identity except in the jth row, which is defined to

match that of A. It is well known that the Gauss-Jordan algorithm requires no pivoting at the ith

6

v

step if A~it f; 0 which is exactly the condition that E(Ai - t , i) is non-singular. If the Gauss-Jordan

algorithm above can run to completion without generating any singular matrices Ei then

An = I = AEt E2 ... En

or

A = En ... Et .

Conversely, suppose A can be decomposed as in 1. Then

(3.1)

Fori = 1, ... ,n, the product on the right side of (3.1) does not change bits 1 through i and thus,

as a matrix it agrees with the identity matrix in its first i rows. This determines Ei as the unique

matrix that describes the ith step of column-wise Gauss-Jordan elimination without pivoting. This

establishes the equivalence of 1 and 3.

Finally, since at step i the Gauss-Jordan procedure adds multiples of column i to the other

columns, the determinants of the principal sub matrices do not change. Thus, if the Gauss-Jordan

algorithm runs to completion, then the principal submatrices are all non-singular. Conversely, if

the principal submatrices are all non-singular, the ith pivot cannot be 0, for the product of the first

i pivots is the determinant of the ith principal submatrix. Having now established the equivalence

of 3 and 4, the proof is complete.

Corollary 3.1 If A = LU where Land U are non-singular lower and upper triangular matrices,

then A can be decomposed as A = En ... E t . Thus Gaussian elimination, rather than Gauss-Jordan

elimination, can be used to test whether A has this decomposition, though Gauss-Jordan is needed

to construct the decomposition.

Corollary 3.2 Let dt, ... ,dn be a reordering of the numbers 1 through n. Then A can be decom

posed as A = Ed n ••• Ed} if and only if all the diagonal submatrices of A given by rows and columns

dt , ... ,di are non-singular for i = 1, ... , n. Equivalently, if A = P LU pT, where P is a permuta

tion matrix, then the index transformation corresponding to A can be performed as a sequence of

conditional exchanges in an order specified by P.

Proof The Gauss-Jordan algorithm, when run consecutively on rows dt through dn, gives the

desired decomposition if it exists, or breaks down through the need for pivoting if it does not.

7

Corollary 3.3 If A is a non-singular upper (or lower) triangular matrix, then an algorithm exists

that traverses the dimensions in any order.

Proof All diagonal minors of A are determinants of upper (or lower) non-singular triangular

matrices.

Corollary 3.4 A cycle or any matrix at all that has all diagonal entries equal to 0 cannot be

written as a product of conditional exchanges in any order.

Proof No 1 X 1 principal submatrix is equal to 1.

Corollary 3.5 No permutation matrix can be written as a product of conditional exchanges in any

order.

Proof All principal submatrices that include exactly one row and column from one of the compo

nen t cycles are singular.

Corollary 3.6 Any non-singular A defines an index transformation that can be performed as a

pipelined sequence of conditional exchanges followed by a dimension permutation algorithm.

Proof Any non-singular A can be written as P LU by performing Gaussian elimination with partial

pivoting.

Since we have shown how to construct an algorithm corresponding to any LU, and since algo

rithms for accomplishing address permutations exist, we can now accomplish any linear transfor

mation.

Corollary 3.7 If A. has the form U1PU2 where U1 and U2 are upper triangular, then A = PA'

where A' has all non-singular principal submatrices. Therefore A' can be implemented as a sequence

of conditional exchanges in standard order.

Proof Let A' = p TU1PU2. Since Ul is upper triangular, every diagonal minor of Ul and hence

pTU1P is non-zero. The kth principal submatrix of A' is given by the product of the kth principal

submatrix of p TU1PU2 and that of U2 and hence is non-singular.

The triple product U1PU2 arises on the CM-2 multiprocessor when transposing a matrix,

collapsing or separating axes, or changing the layout of an array on the machine. In this case,

U1 and U2 denote Gray coding and decoding operations respectively. The Gray code is decoded,

the address bits are permuted, and then the bits are encoded in possibly a new way. This type of

operation is explored in the next section.

8

v

4 Gray Codes and Hypercube Multiprocessors

Gray coding and decoding of arbitrary axes is an important communication pattern on hyper

cube multiprocessors. The outline of this section is as follows:

1. A brief digression into the history of Gray coding, which is not as well known as perhaps it

ought to be.

2. Derivation of widely known properties of the Gray code using the linear algebra framework.

3. Applications of the theory from the previous section toward new results about Gray coding.

The binary-reflected Gray code has had a most curious history in that it has appeared in so

many different applications. It was invented by the French engineer Emile Baudot (1845-1903) for

the purpose of sending and receiving telegraphs [10]. In 1872, it appeared in the solution of the

so-called Chinese ring puzzle (see [7]), and it is also the solution of the famous Tower of Hanoi

puzzle. Frank Gray developed the code that now bears his name during the 1940's, though it was

first published in 1953 in a patent for a so-called pulse code modulation tube. Later, the Gray code

has been used in many ways in analog-to-digital converters.

Though probably obvious to many, we believe that Gilbert [8] in 1958 was the first to point

out explicitly that the consecutive numbers in the Gray code sequence form a Hamiltonian path

on a hypercube. During that time it was fashionable to enumerate other Hamiltonian paths on the .
hypercube as well.

With the invention of multiprocessor computers with hypercube networks, it became possible for

the first time to make use of these paths on real physical hypercubes. Many authors independently

observed the utility of this property for embedding rings and higher dimensional meshes. CM-2

system software uses these embeddings to store grids in such a manner that it is invisible to the

programmer. Indeed it would be easy to believe erroneously that the CM-2 has a separate network

for grid communication.

On the CM-2, data is considered to be in "grid" order (also known as "NEWS" order) if the

data labeled i is located in the processor with the label Gi, where G is the gray coding operator.

The data is in "cube" order (also' known as "send" order) if the data labeled i is in fact located

in node i. Since certain algorithms run more efficiently if the data is in "grid" order while other

algorithms run faster in "cube" order, there has been need for routines to convert between the two

ordering schemes. The communication pattern that converts a single one-dimensional axis from

"cube" to "grid" order is f(i) = Gi and from "grid" to "cube" order is given by f(i) = G-li, where

9

G and G-I are given below. The key point is that they are linear index transformations.

In numerical linear algebra (see [9]), it is common to embed Householder reflections or Givens

rotations inside a larger identity matrix so as to operate on selected components of a vector.

Analogously, one can "Gray code" certain components of a vector. On hypercubes it is usual to

associate blocks of components with various axes, and then one refers to Gray coding an axis.

The Gray code encoding operator G is deceptively simply defined by the condition that G be a

linear operator on vectors modulo 2 and that

GUn) = en, n = 1,2, (4.2)

Since en = jn + jn-I, it follows that

(4.3)

Let Gn denote the restriction of the Gray code encoding operator G to the finite dimensional

space F2. We then have that Gn is a linear transformation on F2 whose n x n matrix representation

The Gray code decoding operator G-I is uniquely defined by

(4.4)

The restriction of G- I to the finite dimensional space F2 has the n x n matrix representation

1 1 1 1 1
1 1 1 1

G- I = 1 1 1
n

0 1 1
1 1

1

We now let Sn be the sequence of 2n elements of F2 in numerically increasing order. To obtain

the same sequence in reverse order, add jn to each element; hence the name vector reversal. Let

G(Sn) denote the sequence of Gray codes of elements of Sn. Since

G(i + jn) = G(i) + G(jn) = G(i) + en, (4.5)

10

v

\..,:

we have proved a very important property of the binary-reflected Gray code that is often taken as

part of the standard definition:

Theorem 4.1 (Reversal Property) The reversal of the sequence G(Sn) is equal to the sequence

G(Sn) with the bit in the nth position complemented.

A related observation is

Theorem 4.2 Consecutive members of the sequence G(Sn) differ in exactly one bit.

Proof Two consecutive numbers can always be written as i + jk-l and i + ek, where neither i nor

Gi has a 1 in the k least significant bits. Since Gjk-l = ek-l and Gek = ek-l + ek, the bit in which

the Gray codes differ is the kth.

Following [8], the reversal property is readily grasped by the eye from the diagram below in

which 0 is represented by a blank space, and 1 with a black square.

0001
0011

0011 0010
0100 0110
0101 0111
0110 0101
0111
1000
1001
1010
1011
1100
1101
1110
1111

Since G and G-l are both upper triangular, by Corollary 3.3 Gray coding and decoding can be

accomplished in any order. For example, when n = 4, we express the algorithm from [12] in our

notation:

l:JC:IJ
11

and

Notice that the algorithms perform encoding from low-order bits to high-order bits, while de

coding is performed from high-order bits to low-order bits. Algorithms for the reverse order first

appeared in [16], and the existence and use of algorithms for any order are discussed in [15] and

[17].

One particularly interesting example is decoding starting from the least significant bit. In this

case FC has a 1 in row p(k) and column n. It readily follows that if an edge is used in the sub cube

defined by Vn = 0, then it is not used in the sub cube Vn = 1. This is the basis for a new algorithm

given in [15] that takes better advantage of the available bandwidth.

More generally, if A can be decomposed as the product of conditional exchanges Ei over distinct

dimensions, then if the element in the ith row and jth column of Ei is 1 for every i and if the jth

row of A matches the identity matrix, then the wires along dimension j can be used to take better

advantage of the available bandwidth.

We define a code change operation as any G1 G2"1 combination. As an example, treating a

two-dimensional matrix as a one-dimensional vector on a hypercube involves a code change.

Corollary 4.1 All code change operations have pipelined algorithms.

Proof Since decode and encode operations are both upper triangular, so is their composition.

Corollary 4.2 All code change operations have pipelined algorithms for each permutfltion of the

dimensions.

5 Dimension Permutations and Hypercube Multiprocessors

We have seen previously that dimension permutations correspond to permutation matrices.

Why use n 2 elements to describe an object only requiring n? There are two answers. One is

that on a hypercube multiprocessor it is frequently desirable to combine coding, decoding, and

dimension permutation operations; see for instance [13]. Matrix notation allows us to put all of

these operations into the same setting. The other answer is that we can derive results about these

matrices without actually explicitly writing down the entries of the matrix. In this latter context,

we are really only deriving algebraic results for the symmetric group on n objects.

12

On hypercube multiprocessors, dimension permutations induce a fairly complicated motion on

the machine. Remember that a dimension permutation is an index transformation on n objects

that induces a more complicated permutation of 2n objects. Factorizing the permutation matrix

into simpler matrices allows a compact way of thinking about algorithms.

A dimension permutation on all dimensions forming a shuffle is represented by a circulant matrix

as shown below for five dimensions.

0 0 0 0
1 0 0 0

SI,5 = 0 1 0 0
0 0 1 0
0 0 0 1

An unshuffle is also represented as a circulant matrix,

s-1
1,5

010
001
000
000
100

o 0
o 0
1 0
o 1
o 0

1
0
0
0
0

In our next definition we precisely define shuffle permutations.

Definition 5.1 A shufHe permutation on indices i, i + 1, ... ,j is the transformation whose

matrix Si,j is given as the identity except in columns i, i + 1, ... , j, which are ei+l, ... ,ej_l, ej, ei

respectively; in other words, the appropriate columns are shifted left circularly.

On hypercube multiprocessors, it is convenient to implement dimension permutations as sequences

of elementary bit-exchanges:

Definition 5.2 An index transformation is defined to be an elementary bit-exchange if its

matrix representation is a permutation matrix that is the identity except in two rows and columns.

We denote such a matrix Ei+-+j, where i and j are the distinguished rows and columns.

Definition 5.3 An index transformation is defined to be a bit-exchange if its matrix represen

tation is a symmetric permutation matrix.

Lemma 5.1 A bit-exchange matrix can be expressed as the product of independent elementary bit

exchange matrices, and, conversely, the product of independent elementary bit-exchange matrices

can be reduced to a bit-exchange matrix.

Lemma 5.2 Any shuffle permutation can be expressed as the product of two bit-exchange matrices.

13

Proof Renumber the shuffle, if necessary, to be SI,n. Sl,n is the product of the following two

bit-exchange matrices: El = E l n E2 n-l ... and E2 = El n-lE2 n-2 .••.

Lemma 5.3 Any permutation matrix can be expressed as the product of two bit-exchange matrices.

Proof The proof is similar to the proof of Lemma 5.2 once the permutation matrix is separated

into disjoint cycles.

These facts can be quite useful in practice. Code written for the CM-2 to accomplish the

bit-reverse operation [4] was easily generalizable to performing a bit-exchange operation. Using

Lemma 5.3, any dimension permutation had an implementation. This was the motivation for a

large software project, known as the "twuffler," to accomplish operations of the form G1PG":;1.

Notice that if j = i + 1, then Ei j = Si,j.

As is well known (see for instance [14]), a shuffle or unshuffle can be carried out as a sequence of

dimension exchanges in two convenient ways, as illustrated by the following examples when n = 5:

and

In fact, there are exactly n factorizations of the shuffle matrix into elementary bit-exchanges with

n - 1 factors. Since elementary bit-exchanges are their own inverses, factorizations of S~~ are

obtained by reversing the order of the factors of SI,S.

Generalizing the two examples, we see that

(5.6)

and

(5.7)

where the product is in increasing order in Equation (5.6) and in decreasing order in Equation(5.7).

Note how in Example 1, all dimensions but the first and last are used twice, while in Example 2

only dimension 1 is used more than once. With n - 1 factors, the total use of dimensions must be

2n - 2, so that Example 1 best load balances all of the dimensions, while Example 2 represents the

worst case ofload balancing the dimensions. However, the data motion in Example 1 accounting for

the factor-of-two difference between the two approaches is unnecessary, and can be eliminated [14].

14

v

Furthermore, even though Example 2 appears unfavorable, if the fixed dimension is a dimension

local to a node, then all bit-exchanges are between adjacent nodes in a binary cube, while the

factorization given in Example 1 requires communication between nodes at distance two. The

factorization given by Example 2 is the basis for the aIgorithms in [25], and several of the algorithms

in [14, 18].

These algorithms are based on the following observation. From (5.6) we see that Ei_i+1Si,j =
Si+l,j. Combining this with (5.7), we obtain that

Ei_i+1 II Ei_k = Si+1,j.
k=j, ... ,i+l

Thus, a shuffle on n - 1 dimensions can be expressed as the product of n + 1 elementary hit

exchanges, with the same dimension used in every bit-exchange. If dimension i in fact represents

local memory, the advantages of this approach are clear. Each elementary bit-exchange represents

one-hop communication on the hypercube.

Another approach that has proved convenient is to express a shuffle permutation as a com

position of several shuffle permutations on fewer dimensions. This method can be used to devise

algorithms with optimal concurrency in communication [20, 21, 14, 18].

Again using Equations (5.6) and (5.7),

taking advantage of the fact that Sj,k and Si,j-l commute. Thus, if there are several elements per

node, some elements can be permuted according to Sj,k first, others according to Si,j-l first.

6 Conclusion

We have cast index transformation algorithms in a linear algebraic framework with applications

towards hypercube algorithms. Such a framework has multiple purposes. One is to express ideas

that are already commonly known, but in a more concise language. Another more important

purpose is to shed light on the existence of algorithms and to construct them automatically. We

have demonstrated both.

15

Acknowledgements

We would like to thank Thinking Machines Corporation, and particularly Marshall Isman and

Ted Tabloski, for supporting this work and related projects on the Connection Machine. They

provided financial support and a sense of spirit that makes such a project a pleasure. In addition,

the first author would like to thank Thinking Machines Corporation and the third author for

inviting him to work on this project as it related to the "twuffier" project in the summer of 1990

during which the earliest version of this paper was drafted [3]. Finally, we would like to thank

Emily Stone for her excellent assistance in editing.

References

[1] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, Optimal communi
cation algorithms for hypercubes, submitted for publication.

[2] T.H. Cormen, Fast Permuting on Disk Arrays, Brown/MIT VLSI Conference, (1992).

[3] A. Edelman, The algebra of shuffling and Gray-coding on a hypercube, Thinking Machines
Corporation, Semi-internal note, August 9, 1990.

[4] A. Edelman, Optimal matrix transposition and bit reversal on hypercubes: all-to-all personal
ized communication, J. Parallel Dist. Comp., 11, (1991), 328-33l.

[5] P.M. Flanders, A Unified Approach to a Class of Data Movements on an Array Processor,
IEEE Transactions on Computers. C-31, (1982), 809-819.

[6] D. Fraser, Array permutations by index-digit permutation, Journal of the Association for
Computing Machinery. 22, (1976), 298-308.

[7] M. Gardner, Mathematical Games. The curious properties of the Gray code and how it can
be used to solve puzzles, Scientific American. 227 (August 1972), 106-109.

[8] E.N. Gilbert, Gray codes and paths on the n-cube, Bell System Technical Journal. 37 (1958),
815-826.

[9] G. Golub and C.F. Van Loan, Matrix Computations, second edition, Johns Hopkins University
Press, Baltimore, 1989.

[10] F.G. Heath, Origins of the binary code, Scientific American. 227 (August 1972), 76-83.

[11] M. van Heel, A fast algorithm for transposing large multidimensional image data sets, Ultra
microscopy 38, (1991), 75-83.

[12] S.L. Johnsson, Communication efficient basic linear algebra computations on hypercube archi
tectures, J. Parallel Distributed Comput. 4 (1987), 133-172.

[13] S.L. Johnsson and C.T. Ho, Algorithms for matrix transposition on Boolean N-Cube Config
ured Ensemble Architectures, SIAM J. Matrix Anal. Appl. 9, (1988), 419-454.

[14] S.L. Johnsson and C.T. Ho, Optimal Algorithms for Stable Dimension Permutations on
Boolean Cubes, The Third Conference on Hypercube Concurrent Computers and Applica
tions, ACM Press, 725-736, (1988).

[15] S.L. Johnsson and C.T. Ho, On the conversion between binary code and binary-reflected Gray
code on Boolean cubes, Harvard University Technical Report 20-91, (1991).

\

16

ij

I.

[16] S.L. Johnsson, Optimal Communication in Distributed and Shared Memory Models of Com
putation on Network Architectures, Models of Massively Parallel Computation, Morgan Kauf
man, (1990), 223-389.

[17] S.L. Johnsson and C.T. Ho, The Complexity of Reshaping Arrays on Boolean Cubes, The
Fifth Distributed Memory Computing Conference, IEEE Computer Society, (1990), 370-377.

[18] S.L. Johnsson and C.T. Ho, Generalized Shuffle Permutations on Boolean Cubes, J. Parallel
and Distributed Computing. 1992, To appear.

[19] J. Keohane and R.E. Stearns, Routing linear permutations through the omega network in two
passes, Proceedings of The 2nd Symposium on the Frontiers of Massively Parallel Computing,
IEEE, No. 88CH2649-2, 476-82.

[20] D. Nassimi and S. Sahni, An optimal routing algorithm for mesh connected parallel computers,
Journal of the Association for Computing Machinery, 27, (1980), 6-29.

[21] D. Nassimi and S. Sahni, Optimal BPC Permutations on a Cube Connected SIMD Computer,
IEEE Transactions on Computers. C-31, (1982), 338-341.

[22] H. Stone, Parallel processing with the perfect shuffle, IEEE Transactions on Computers. 20,
(1971), 153-161.

[23] Q.F. Stout and B. Wagar, Passing Messages in Link-Bound Hypercubes, Proceedings of Hy
percube Multiprocessors 1987, SIAM Publications, Philadelphia, 1987.

[24] Q.F. Stout and B. Wagar, Intensive hypercube communication I: prearranged communication
in link-bound machines, Computing Research Laboratory, University of Michigan, Technical
Report CRL-TR-9-87, (1987).

[25] P.N. Swarztrauber, Multiprocessor FFT's, Journal of Parallel Computing. 5, (1987), 197-210.

[26] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM Publications,
Philadelphia, 1992.

17

v--- _

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

", --- ..,..,.......

