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Abstract 
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1 Introduction 

We present a theory for a class of index transformation algorithms that should be properly 

thought of as a matrix-vector product, though they rarely are. This class is strictly a superset of 

the class known as BCP (bit-permute/complement) [20,21]. In spirit this theory is linked with the 

ideas in Van Loan's new book [26], particularly the notion that matrix factorizations can define 

algorithms. The principal idea is not the discussion of matrix factorization algorithms, per se. The 

idea is a different way of viewing and generating algorithms. 

Van Loan covers computational frameworks for the Fast Fourier Transform. Despite differences 

in our approach, on this quote from [26] we firmly agree: 

The proper way to discuss a matrix-vector product such as the discrete Fourier 

transform is with matrix-vector notation, not with vectors of subscripts and multiple 

summations. We should be as repelled by scalar notation as we are by assembly language 

coding for both retard algorithmic development. 

Although it has always been clear that BCP and larger classes of communications problems can 

be formulated as matrix-vector products, they rarely have been. Keohane and Stearns address a 

similar class of permutations in [19], but do not formulate the problem as a matrix-vector product. 

A notable exception is the contemporaneous work of Cormen [2] for permuting data on disk arrays. 

Our motivation stems from communications algorithms for real applications on hypercube mul

tiprocessors such as the Connection Machine model CM-2 multiprocessor, though we believe these 

ideas to have wider applicability. Our matrices only contain O's and 1 's: they describe transforma

tions on a vector of length 2n indirectly through binary encodings. The most familiar example is 

bit reversal, an operation used in conjunction with FFT's. Bit reversal is a permutation of a vector 

of length 2n induced by a permutation on n objects: the n bits of the vector's indices. One can 

represent this transformation as a 2n x 2n permutation matrix on the components of the vector (as 

is done in [11] and in [26]). For our purposes it is more convenient to consider the more compact 

representation of the n x n matrix describing the index transformation, which in the bit reversal 

case has ones on the northeast-southwest diagonal and is otherwise O. Also familiar are so called 

dimension transformations or index permutations. These are arbitrary permutations of the n bit 

indices, which induce permutations on 2n elements. Why use matrices of order 2n when matrices 

of order n suffice? 

We define a linear index transformation by 

i ~ Ai, 

2 

j 
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where i is a bit vector with n components, A is an n X n 0,1 matrix, and the matrix-vector multiply 

is performed modulo 2. So long as A is non-singular, this n x n matrix induces a permutation 

on the 2n indices. Dimension permutations are trivial examples of such transformations; other 

examples include Gray code encoding and decoding of arbitrary axes. Many real applications on 

hypercube multiprocessors require complicated compositions of these transformations. 

We show that this is not a matter of notation, but rather that the existence of a certain kind 

of convenient algorithm on a hypercube to perform the data movement given by a linear index 

transformation is equivalent to the ability to perform Gauss-Jordan elimination on A without 

pivoting. This ability, in turn, is related to a familiar condition on the principal submatrices of A. 

Thus the complicated combinatorial problem of devising an algorithm is reduced to the algebraic 

problem of decomposing a matrix. We believe that this is the first time that the existence of 

a hypercube communications algorithm has been related to the ability to perform Gauss-Jordan 

elimination. 

In Section 2, we fix notation that will be useful throughout the paper, while Section 3 contains 

our main results. In Section 4, we apply these results towards the special case of Gray code encoding 

and decoding while Section 5 considers dimension permutations. We conclude in Section 6. 

2 Notation 

Let F2 be the field of elements {0,1} with addition and multiplication defined modulo 2. In 

this paper, addition and multiplication are always performed modulo 2. 

We denote the vector space of n-vectors with elements in F2 as F2. Similarly, the set of m X n 

matrices with elements in F 2 is denoted by F~,n. For clarity, we sometimes display such matrices 

with empty spaces where the entries are O. We sometimes consider i or its binary encoding as the 

node address of a hypercube in the usual manner. 

Any integer i such that 0 ~ i < 2n can be identified with an element of F2 by the use of 

the binary encoding of the number. Thus, if i = I:k:~ ik2k, then we identify i with the vector 

(io, .... , in-I?' Notice that the vector is written with the least significant bit first. Of course F2 

can be naturally included as a subset of F~+1 by appending an extra zero. 

We admit that this vector notation for the binary representation of a number seems to clash with 

the usual representation, in-I ... il io, in that the order appears backwards, but the definition as 

presented is appropriate and consistent for matrix-vector notation. We have resisted the temptation 

to refer to the first row of a matrix in F2n or the first component of a vector in F2 as the zeroth, 
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but rather chose the more familiar index origin of one. 

Some useful vectors are en = 2n -
l in which only the nth component is 1 and in = 2n - 1 in 

which only the first n components are 1. These vectors can be thought of as elements of F~ for any 

k ~ n using the natural embedding. Also we can avoid difficulties by letting eo = jo = O. 

If (Xb" ., Xk) is any ordered sequence of numbers, then its reversal is the sequence (Xk," ., Xl). 

3 Linear and Affine Index Transformations 

We now define the transformations of interest to us which we refer to as affine or linear: 

Definition 3.1 An index transformation is defined to be affine if the data in node i is sent to 

node f( i), where 

f(i) = Ai + b. 

Cormen [2] calls this class of transformations BMMC for bit-matrix-multiply /complement. 

Definition 3.2 An index transformation is defined to be linear if the data in node i is sent to 

node f( i), where 

f(i) = Ai. 

Thus a linear index transformation is an affine transformation that fixes the data in node O. 

The simplest hypercube communication is the unconditional exchange of data across a fixed 

dimension. Algebraically this can be described by f( i) = i + ek. Another simple hypercube commu

nication sends data to the opposite corner of the hypercube. This is f( i) = i + in, which describes 

vector reversal. 

Another example of a linear index transformation is a dimension permutation considered by 

such authors as Stone [22], Fraser [6], Nassimi and Sahni [20,21], Flanders [5], Johnsson and Ho [14], 

Stout and Wagar [23, 24], and Swarztrauber [25]. A dimension permutation is defined as the map 

f( i) = Pi, where P is a permutation matrix. Since permutation matrices are orthogonal (P pT = I), 

if it is also symmetric then it is a square root of the identity (P 2 = I). Thus a symmetric 

permutation matrix corresponds to a disjoint set of dimension pairs being exchanged.- On 

the other hand circulant permutation matrices correspond to relabeling dimensions in a way 

that preserves the circular order of the indices. The shuffle and unshuffle operations give two 

such matrices. Circulant permutation matrices form a subset of the irreducible permutation 

matrices. A matrix A is said to be irreducible if it has no non-trivial invariant subspaces. The 

irreducible permutation matrices correspond to the dimension exchange represented by a cycle. 
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In Section 4, we will consider the example of Gray code encoding and decoding. 

The basic theorems of algebra tell us that if f(i) = Ai + b, where A is non-singular, then the 

map is one to one. Otherwise, if the rank of A is r, then A maps the hypercube to an r dimensional 

subcube. This map sends the data in 2n - r nodes to one. 

Definition 3.3 A conditional exchange across dimension k, denoted Ek, is a communication 

pattern defined by f( i) = Ai, where A is any matrix whose diagonal consists of 1 's, and whose 

off-diagonal may possibly be 1 only in the kth row. 

An example of a conditional exchange across dimension 3 is represented by the matrix: 

The mapping f( i) = E3i describes a conditional change of the third bit, depending on the first 

and fourth bits. We will extend our use of the term "conditional exchange" to also refer to the 

associated matrix without loss of clarity. 

Lemma 3.1 If Ek is a conditional exchange, then Ek is non-singular, Ekek = ek and Ef = I (i.e., 

Ek = Ek
1
). 

Proof From the form of the matrix, it is clear that the determinant of Ek is 1, and that Ekek = ek. 

Either Eki = i so that Eli = i or Eki = i + ek and Ek( i + ek) = i. Either way, E'fi = i for all nodes 

i, and thus E~ = I. 

Notice that if the kth diagonal entry were 0, then the kth column is 0 and the matrix would be 

singular. In fact the rank of the matrix would be exactly n - 1. Such a communication might be 

termed a conditional projection. 

A conditional exchange can be implemented directly on a hypercube. Each node either sends 

all its data across the dimension specified in the exchange, or does nothing. Only one dimension 

of the hypercube is traversed in this operation, and this algorithm achieves fifty percent overall 

utilization of that dimension. 

A hypercube communication operation that uses all the dimensions simultaneously is called 

cube swap. In this operation, each node sends one message along each hypercube dimension. 

If an n X n matrix A can be decomposed as a sequence of conditional exchange matrices, 

A En ... Et, then this factorization describes an algorithm for implementing the linear index 
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transformation given by A as a sequence of conditional exchange operations across dimensions 1 

through n respectively. More generally, if A admits a factorization of the form A = Edn ••• E d2 E d1 , 

where d1 , d2 , ••• , dn is a reordering of the dimensions 1 through n, then the factorization defines an 

algorithm for implementing the linear index transformation as a sequence of conditional exchanges 

in a different order. Any sequence of exchanges on disjoint dimensions can be implemented in a 

pipelined fashion on a hypercube as a sequence of identical cube swap operations, as long as there 

is a non-trivial amount of data at the node. The pipeline will have one start-up and one wind-down 

step for each dimension traversed. Once the pipe is started the algorithm achieves fifty percent 

utilization of the total bandwidth available. Of course, this leaves us short by a factor of two in 

total use of cube swap bandwidth, but allows us to consider very general situations. 

We now present our main theorem relating hypercube communication algorithms algebraically 

to Gauss-Jordan elimination performed columnwise and modulo 2 instead of over the reals: 

Theorem 3.1 The following statements are equivalent: 

1. A may be decomposed as a product of conditional exchanges: 

2. The index transformation defined by A can be accomplished on a hypercube as a pipelined 
sequence of cube swaps, accomplishing a sequence of conditional exchanges traversing 
dimensions 1 through n consecutively. 

3. The columnwise Gauss-Jordan elimination algorithm (modulo 2) onA runs to completion 
without the need for pivoting . 

..{. All n principal submatrices of A are non-singular. 

Proof The equivalence of 1. and 2. is discussed before the theorem. By columnwise Gauss-Jordan 

elimination we mean an algorithm whose ith step consists of adding multiples of column i to the 

other columns so that the resulting matrix matches the identity in the first i rows. In modulo 2 

arithmetic one can verify that the algorithm takes the following simple form: 

AD = A 
for i=1,2, ... ,n 

Ei:= E(Ai-1,i) 
Ai := Ai- 1 Ei 

end 

Here E(A,j) denotes a matrix that is the identity except in the jth row, which is defined to 

match that of A. It is well known that the Gauss-Jordan algorithm requires no pivoting at the ith 
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step if A~it f; 0 which is exactly the condition that E(Ai - t , i) is non-singular. If the Gauss-Jordan 

algorithm above can run to completion without generating any singular matrices Ei then 

An = I = AEt E2 ... En 

or 

A = En ... Et . 

Conversely, suppose A can be decomposed as in 1. Then 

(3.1) 

Fori = 1, ... ,n, the product on the right side of (3.1) does not change bits 1 through i and thus, 

as a matrix it agrees with the identity matrix in its first i rows. This determines Ei as the unique 

matrix that describes the ith step of column-wise Gauss-Jordan elimination without pivoting. This 

establishes the equivalence of 1 and 3. 

Finally, since at step i the Gauss-Jordan procedure adds multiples of column i to the other 

columns, the determinants of the principal sub matrices do not change. Thus, if the Gauss-Jordan 

algorithm runs to completion, then the principal submatrices are all non-singular. Conversely, if 

the principal submatrices are all non-singular, the ith pivot cannot be 0, for the product of the first 

i pivots is the determinant of the ith principal submatrix. Having now established the equivalence 

of 3 and 4, the proof is complete. 

Corollary 3.1 If A = LU where Land U are non-singular lower and upper triangular matrices, 

then A can be decomposed as A = En ... E t . Thus Gaussian elimination, rather than Gauss-Jordan 

elimination, can be used to test whether A has this decomposition, though Gauss-Jordan is needed 

to construct the decomposition. 

Corollary 3.2 Let dt, ... ,dn be a reordering of the numbers 1 through n. Then A can be decom

posed as A = Ed n ••• Ed} if and only if all the diagonal submatrices of A given by rows and columns 

dt , ... ,di are non-singular for i = 1, ... , n. Equivalently, if A = P LU pT, where P is a permuta

tion matrix, then the index transformation corresponding to A can be performed as a sequence of 

conditional exchanges in an order specified by P. 

Proof The Gauss-Jordan algorithm, when run consecutively on rows dt through dn, gives the 

desired decomposition if it exists, or breaks down through the need for pivoting if it does not. 
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Corollary 3.3 If A is a non-singular upper (or lower) triangular matrix, then an algorithm exists 

that traverses the dimensions in any order. 

Proof All diagonal minors of A are determinants of upper (or lower) non-singular triangular 

matrices. 

Corollary 3.4 A cycle or any matrix at all that has all diagonal entries equal to 0 cannot be 

written as a product of conditional exchanges in any order. 

Proof No 1 X 1 principal submatrix is equal to 1. 

Corollary 3.5 No permutation matrix can be written as a product of conditional exchanges in any 

order. 

Proof All principal submatrices that include exactly one row and column from one of the compo

nen t cycles are singular. 

Corollary 3.6 Any non-singular A defines an index transformation that can be performed as a 

pipelined sequence of conditional exchanges followed by a dimension permutation algorithm. 

Proof Any non-singular A can be written as P LU by performing Gaussian elimination with partial 

pivoting. 

Since we have shown how to construct an algorithm corresponding to any LU, and since algo

rithms for accomplishing address permutations exist, we can now accomplish any linear transfor

mation. 

Corollary 3.7 If A. has the form U1PU2 where U1 and U2 are upper triangular, then A = PA' 

where A' has all non-singular principal submatrices. Therefore A' can be implemented as a sequence 

of conditional exchanges in standard order. 

Proof Let A' = p TU1PU2. Since Ul is upper triangular, every diagonal minor of Ul and hence 

pTU1P is non-zero. The kth principal submatrix of A' is given by the product of the kth principal 

submatrix of p TU1PU2 and that of U2 and hence is non-singular. 

The triple product U1PU2 arises on the CM-2 multiprocessor when transposing a matrix, 

collapsing or separating axes, or changing the layout of an array on the machine. In this case, 

U1 and U2 denote Gray coding and decoding operations respectively. The Gray code is decoded, 

the address bits are permuted, and then the bits are encoded in possibly a new way. This type of 

operation is explored in the next section. 
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4 Gray Codes and Hypercube Multiprocessors 

Gray coding and decoding of arbitrary axes is an important communication pattern on hyper

cube multiprocessors. The outline of this section is as follows: 

1. A brief digression into the history of Gray coding, which is not as well known as perhaps it 

ought to be. 

2. Derivation of widely known properties of the Gray code using the linear algebra framework. 

3. Applications of the theory from the previous section toward new results about Gray coding. 

The binary-reflected Gray code has had a most curious history in that it has appeared in so 

many different applications. It was invented by the French engineer Emile Baudot (1845-1903) for 

the purpose of sending and receiving telegraphs [10]. In 1872, it appeared in the solution of the 

so-called Chinese ring puzzle (see [7]), and it is also the solution of the famous Tower of Hanoi 

puzzle. Frank Gray developed the code that now bears his name during the 1940's, though it was 

first published in 1953 in a patent for a so-called pulse code modulation tube. Later, the Gray code 

has been used in many ways in analog-to-digital converters. 

Though probably obvious to many, we believe that Gilbert [8] in 1958 was the first to point 

out explicitly that the consecutive numbers in the Gray code sequence form a Hamiltonian path 

on a hypercube. During that time it was fashionable to enumerate other Hamiltonian paths on the . 
hypercube as well. 

With the invention of multiprocessor computers with hypercube networks, it became possible for 

the first time to make use of these paths on real physical hypercubes. Many authors independently 

observed the utility of this property for embedding rings and higher dimensional meshes. CM-2 

system software uses these embeddings to store grids in such a manner that it is invisible to the 

programmer. Indeed it would be easy to believe erroneously that the CM-2 has a separate network 

for grid communication. 

On the CM-2, data is considered to be in "grid" order (also known as "NEWS" order) if the 

data labeled i is located in the processor with the label Gi, where G is the gray coding operator. 

The data is in "cube" order (also' known as "send" order) if the data labeled i is in fact located 

in node i. Since certain algorithms run more efficiently if the data is in "grid" order while other 

algorithms run faster in "cube" order, there has been need for routines to convert between the two 

ordering schemes. The communication pattern that converts a single one-dimensional axis from 

"cube" to "grid" order is f(i) = Gi and from "grid" to "cube" order is given by f(i) = G-li, where 
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G and G-I are given below. The key point is that they are linear index transformations. 

In numerical linear algebra (see [9]), it is common to embed Householder reflections or Givens 

rotations inside a larger identity matrix so as to operate on selected components of a vector. 

Analogously, one can "Gray code" certain components of a vector. On hypercubes it is usual to 

associate blocks of components with various axes, and then one refers to Gray coding an axis. 

The Gray code encoding operator G is deceptively simply defined by the condition that G be a 

linear operator on vectors modulo 2 and that 

GUn) = en, n = 1,2, .... (4.2) 

Since en = jn + jn-I, it follows that 

(4.3) 

Let Gn denote the restriction of the Gray code encoding operator G to the finite dimensional 

space F2. We then have that Gn is a linear transformation on F2 whose n x n matrix representation 

The Gray code decoding operator G-I is uniquely defined by 

(4.4) 

The restriction of G- I to the finite dimensional space F2 has the n x n matrix representation 

1 1 1 1 1 
1 1 1 1 

G- I = 1 1 1 
n 

0 1 1 
1 1 

1 

We now let Sn be the sequence of 2n elements of F2 in numerically increasing order. To obtain 

the same sequence in reverse order, add jn to each element; hence the name vector reversal. Let 

G(Sn) denote the sequence of Gray codes of elements of Sn. Since 

G(i + jn) = G(i) + G(jn) = G(i) + en, (4.5) 
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we have proved a very important property of the binary-reflected Gray code that is often taken as 

part of the standard definition: 

Theorem 4.1 (Reversal Property) The reversal of the sequence G(Sn) is equal to the sequence 

G(Sn) with the bit in the nth position complemented. 

A related observation is 

Theorem 4.2 Consecutive members of the sequence G(Sn) differ in exactly one bit. 

Proof Two consecutive numbers can always be written as i + jk-l and i + ek, where neither i nor 

Gi has a 1 in the k least significant bits. Since Gjk-l = ek-l and Gek = ek-l + ek, the bit in which 

the Gray codes differ is the kth. 

Following [8], the reversal property is readily grasped by the eye from the diagram below in 

which 0 is represented by a blank space, and 1 with a black square. 

0001 
0011 

0011 0010 
0100 0110 
0101 0111 
0110 0101 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Since G and G-l are both upper triangular, by Corollary 3.3 Gray coding and decoding can be 

accomplished in any order. For example, when n = 4, we express the algorithm from [12] in our 

notation: 

l:JC:IJ 
11 



and 

Notice that the algorithms perform encoding from low-order bits to high-order bits, while de

coding is performed from high-order bits to low-order bits. Algorithms for the reverse order first 

appeared in [16], and the existence and use of algorithms for any order are discussed in [15] and 

[17]. 

One particularly interesting example is decoding starting from the least significant bit. In this 

case FC has a 1 in row p(k) and column n. It readily follows that if an edge is used in the sub cube 

defined by Vn = 0, then it is not used in the sub cube Vn = 1. This is the basis for a new algorithm 

given in [15] that takes better advantage of the available bandwidth. 

More generally, if A can be decomposed as the product of conditional exchanges Ei over distinct 

dimensions, then if the element in the ith row and jth column of Ei is 1 for every i and if the jth 

row of A matches the identity matrix, then the wires along dimension j can be used to take better 

advantage of the available bandwidth. 

We define a code change operation as any G1 G2"1 combination. As an example, treating a 

two-dimensional matrix as a one-dimensional vector on a hypercube involves a code change. 

Corollary 4.1 All code change operations have pipelined algorithms. 

Proof Since decode and encode operations are both upper triangular, so is their composition. 

Corollary 4.2 All code change operations have pipelined algorithms for each permutfltion of the 

dimensions. 

5 Dimension Permutations and Hypercube Multiprocessors 

We have seen previously that dimension permutations correspond to permutation matrices. 

Why use n 2 elements to describe an object only requiring n? There are two answers. One is 

that on a hypercube multiprocessor it is frequently desirable to combine coding, decoding, and 

dimension permutation operations; see for instance [13]. Matrix notation allows us to put all of 

these operations into the same setting. The other answer is that we can derive results about these 

matrices without actually explicitly writing down the entries of the matrix. In this latter context, 

we are really only deriving algebraic results for the symmetric group on n objects. 

12 



On hypercube multiprocessors, dimension permutations induce a fairly complicated motion on 

the machine. Remember that a dimension permutation is an index transformation on n objects 

that induces a more complicated permutation of 2n objects. Factorizing the permutation matrix 

into simpler matrices allows a compact way of thinking about algorithms. 

A dimension permutation on all dimensions forming a shuffle is represented by a circulant matrix 

as shown below for five dimensions. 

0 0 0 0 
1 0 0 0 

SI,5 = 0 1 0 0 
0 0 1 0 
0 0 0 1 

An unshuffle is also represented as a circulant matrix, 

s-1 
1,5 

010 
001 
000 
000 
100 

o 0 
o 0 
1 0 
o 1 
o 0 

1 
0 
0 
0 
0 

In our next definition we precisely define shuffle permutations. 

Definition 5.1 A shufHe permutation on indices i, i + 1, ... ,j is the transformation whose 

matrix Si,j is given as the identity except in columns i, i + 1, ... , j, which are ei+l, ... ,ej_l, ej, ei 

respectively; in other words, the appropriate columns are shifted left circularly. 

On hypercube multiprocessors, it is convenient to implement dimension permutations as sequences 

of elementary bit-exchanges: 

Definition 5.2 An index transformation is defined to be an elementary bit-exchange if its 

matrix representation is a permutation matrix that is the identity except in two rows and columns. 

We denote such a matrix Ei+-+j, where i and j are the distinguished rows and columns. 

Definition 5.3 An index transformation is defined to be a bit-exchange if its matrix represen

tation is a symmetric permutation matrix. 

Lemma 5.1 A bit-exchange matrix can be expressed as the product of independent elementary bit

exchange matrices, and, conversely, the product of independent elementary bit-exchange matrices 

can be reduced to a bit-exchange matrix. 

Lemma 5.2 Any shuffle permutation can be expressed as the product of two bit-exchange matrices. 

13 



Proof Renumber the shuffle, if necessary, to be SI,n. Sl,n is the product of the following two 

bit-exchange matrices: El = E l ..... n E2 ..... n-l ... and E2 = El ..... n-lE2 ..... n-2 .••. 

Lemma 5.3 Any permutation matrix can be expressed as the product of two bit-exchange matrices. 

Proof The proof is similar to the proof of Lemma 5.2 once the permutation matrix is separated 

into disjoint cycles. 

These facts can be quite useful in practice. Code written for the CM-2 to accomplish the 

bit-reverse operation [4] was easily generalizable to performing a bit-exchange operation. Using 

Lemma 5.3, any dimension permutation had an implementation. This was the motivation for a 

large software project, known as the "twuffler," to accomplish operations of the form G1PG":;1. 

Notice that if j = i + 1, then Ei ..... j = Si,j. 

As is well known (see for instance [14]), a shuffle or unshuffle can be carried out as a sequence of 

dimension exchanges in two convenient ways, as illustrated by the following examples when n = 5: 

and 

In fact, there are exactly n factorizations of the shuffle matrix into elementary bit-exchanges with 

n - 1 factors. Since elementary bit-exchanges are their own inverses, factorizations of S~~ are 

obtained by reversing the order of the factors of SI,S. 

Generalizing the two examples, we see that 

(5.6) 

and 

(5.7) 

where the product is in increasing order in Equation (5.6) and in decreasing order in Equation(5.7). 

Note how in Example 1, all dimensions but the first and last are used twice, while in Example 2 

only dimension 1 is used more than once. With n - 1 factors, the total use of dimensions must be 

2n - 2, so that Example 1 best load balances all of the dimensions, while Example 2 represents the 

worst case ofload balancing the dimensions. However, the data motion in Example 1 accounting for 

the factor-of-two difference between the two approaches is unnecessary, and can be eliminated [14]. 
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Furthermore, even though Example 2 appears unfavorable, if the fixed dimension is a dimension 

local to a node, then all bit-exchanges are between adjacent nodes in a binary cube, while the 

factorization given in Example 1 requires communication between nodes at distance two. The 

factorization given by Example 2 is the basis for the aIgorithms in [25], and several of the algorithms 

in [14, 18]. 

These algorithms are based on the following observation. From (5.6) we see that Ei_i+1Si,j = 
Si+l,j. Combining this with (5.7), we obtain that 

Ei_i+1 II Ei_k = Si+1,j. 
k=j, ... ,i+l 

Thus, a shuffle on n - 1 dimensions can be expressed as the product of n + 1 elementary hit

exchanges, with the same dimension used in every bit-exchange. If dimension i in fact represents 

local memory, the advantages of this approach are clear. Each elementary bit-exchange represents 

one-hop communication on the hypercube. 

Another approach that has proved convenient is to express a shuffle permutation as a com

position of several shuffle permutations on fewer dimensions. This method can be used to devise 

algorithms with optimal concurrency in communication [20, 21, 14, 18]. 

Again using Equations (5.6) and (5.7), 

taking advantage of the fact that Sj,k and Si,j-l commute. Thus, if there are several elements per 

node, some elements can be permuted according to Sj,k first, others according to Si,j-l first. 

6 Conclusion 

We have cast index transformation algorithms in a linear algebraic framework with applications 

towards hypercube algorithms. Such a framework has multiple purposes. One is to express ideas 

that are already commonly known, but in a more concise language. Another more important 

purpose is to shed light on the existence of algorithms and to construct them automatically. We 

have demonstrated both. 
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