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Abstract 

Numerical experiments are described by which stable capillary surfaces are calcu
lated. The surfaces in question are determined by the following data: the container 
is a cube in space; the contact angle is 70°; the Bond number is zero; only symmetric 
configurations are taken into consideration. 

1 The Mathematical Problem 

Let ~ be the unit cube in R3. We are comidering sub domains n C ~ having a piecewise 
smooth boundary an = r u:E, where r is a subset of the interior of ~ and :E is a subset of 
the boundary a~ of~. We are looking for those sub domains n which solve the following 
variational problem: The energy functional 

E = 1 dr - cos 1? k d:E 

is minimal under the restriction that the volume 

v= kdn 

attaines a prescribed value. It is a well known fact - going back to K. F. Gaufi - that 
solutions of this variational problem must be such that the capillary surface r has constant 
mean curvature 

2H =p 

and the contact angle between rand :E equals to 1? (see, e.g., [6]). The number p is 
the Lagrange multiplier of the variational problem. It turns out that it is equal to the 
difference of the pressures of two liquids (fluid or gas) occupying the domains n and ~ \ n, 
resp. 
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So far, for the problem studied here, namely capillary surfaces in a cube under zero 
gravity conditions, there are no existence nor uniqueness proofs, except for simple cases, 
namely for those in section 3. Nevertheless, the results presented in this paper are consis
tent with laboratory experiments that have been performed up to now. 

There are several papers dealing with similar problems. The problem of determin
ing shapes of capillary surfaces experimentally, mathematically, and numerically for zero 
gravity conditions has been studied in [5], [8] and [11], see also [15]. In [4] the package 
EVOLVER was used to determine the shape of equilibrium capillary surfaces for exotic 
containers. The same package was used for the numerical studies of the present paper, 
see section 4. A numerical method that allows solving the Euler-Langrange equation for 
the variational problem described above has been presented in [9]. This method, and also 
the EVOLVER, allows calculating surfaces that are not simple graphs of functions over 
a planar domain; i.e., more complicated geometrical configurations can be treated rather 
than only project able surfaces. The following is known for a semi-infinite cylindrical tube 
of general cross section with gravity zero (or positive): If the boundary of the free surface 
lies entirely on the cylindrical walls, then the surface is determined uniquely by its contact 
angle and volume, see [13]. Therefore, in that case the standard numerical methods deter
mine a uniquely defined solution, if it exists. In the more general case of a finite container 
such as a cube, there is no uniqueness result of that type. This lack of uniqueness makes 
the numerical computations especially important. 

A more recent study of bifurcation phenomena for problems with axial symmetry is 
given in [10]. There, for drops that are entrapped between two parallel planes, numerical 
methods were used that depend strongly on path-following techniques, see [1] and [14]. 

2 Symmetric Configurations 

In this paper we restrict ourselves to domains that share symmetries with the cube. It is 
obvious that after prescribing the contact angle f} and the volume V and then finding a 
solution n of the variational problem, the set n = ~ \ n solves the variational problem for 
the data J = 1r - f} and if = 1- V. Conversely, if we prescribe J = 1r - f} and if = 1 - V 
and find the set n, we get a solution of the original problem as n = ~ \ n. We call this 
the complementary configuration. 

In the following we are going to describe the various topological situations and show 
plots of figures that were obtained numerically for the contact angle f} = 70°. In those 
cases where the volume n is the union of several unconnected symmetric sets we will show 
only one of these sets. In order to indicate the container, we also show the bottom face of 
the cube. 

1. The Corners: For this situation we assume that n is the union of eight symmetric 
sets ni , i = 1, ... , 8 which are attached to the eight corners of the cube. This case is 
denoted by "Ce". If n is this union, the complementary configuration n is denoted 
by "Ci". Obviously, these solutions make sense only as long as the individual sets ni 
do not touch each other. Hence, they are taken into consideration only for a range 
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Figure 1: Ce: Exterior Corner, V = 8 * 0.0125 = 0.1 

of volumes of the form 0 < V < VCe and VCi < V < 1, resp., with some values VCe 
and VCi. Figure 1 shows one eighth of n for the case "Ce" with V = O.l. 

2. The Edges: For this situation we assume that n is the union of four symmetric sets 
ni, i = 1, ... ,4 which are attached to four of the twelve edges of the cube. Each of 
the ni is assumed to cover a part of the edge not touching the neighbouring corners. 
This case is denoted by "Le" (lemon). The complementary situation is denoted by 
"Li". The domains of existence are 0 < V < VLe and VLi < V < 1, resp. Figure 2 
shows one fourth of n for the case "Le" with V = 0.08. 

3. The Faces: For this situation we assume that n is the union of six symmetric sets 
ni, i = 1, ... ,6 which are attached to the six faces of the cube without touching one of 
the edges or each other. This case is denoted by "Oe" (orange). The complementary 
situation is denoted by "Oi". Here we have 0 < V < VOe = 0.646 and 0.567 = VOi < 
V < 1, resp., see section 3. Figure 3 shows one sixth of n for the case "Oi" with 
V = 0.4. 

4. Bridges between Two Corners: For this situation we assume that n is the 
union of four symmetric sets ni, i = 1, ... ,4 which are attached to four of the twelve 
edges of the cube. Each of the ni is assumed to cover the whole edge including the 
neighbouring corners. This case is denoted by "Se" (sausage). The complementary 
situation is denoted by "Si". Here we have Vie < V < vt and VSi < V < vt, resp. 
Figure 4 shows one fourth of n for the case "Se" with V = 0.2. 

5. Dry Spots: For this situation we assume that n is the union of two symmetric 
sets ni, i = 1,2 which are attached to two of the six faces of the cube. Each of 
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Figure 2: Le: Exterior Lemon, V = 4 * 0.02 = 0.08 

Figure 3: Oi: Interior Orange, V = 1 - 6 * 0.1 = 0.4 

4 



Figure 4: Se: Exterior Sausage, V = 4 * 0.05 = 0.2 

the ni is assumed to cover complet.ely the edges that belong to the face including 
the neighbouring corners but to leave out an uncovered fraction in the interior of 
the face. This case is denoted by "De". The complementary situation is denoted by 
"Di". Here we have VVe < V < V.zte and VVi < V < V.zt, resp. Figures 5 and 6 show 
one half of n for the cases "De" with V = 0.16 and "Di" with V = 0.8, resp. 

6. The Pumpkin: For this situation we assume that n is a connected set which covers 
all eight corners of the cube and also all twelve edges but which leaves out interior 
parts of all six faces and also a certain volume in the interior of the cube itself. This 
case is denoted by "Pe". The complementary situation is denoted by "Pi". Here we 
have Vpe < V < VIe and Vii < V < V~, resp. Figures 7, 8, 9, 10,11, and 12 show 
the set n for the cases "Pe" with V = 0.2,0.5,0.65 and "Pi" with V = 0.2,0.5, 0.7, 
resp. 

7. The Cylinder: For this situation we assume that n is the union of two symmetric 
sets ni, i = 1,2 which are attached to two opposite ones of the six faces of the 
cube covering these faces completely including the neighbouring edges and parts of 
the neighbouring faces. This case is denoted by "Te" (tub). The complementary 
situation is denoted by "Ti". Here we have Vie < V < Vie and Vii < V < Vii, 
resp. Figure 13 shows the set n for the case "Te" with V = 0.6. 

8. The Ball: Here we assume that n is the exterior of a ball that has no contact 
to any of the six faces of the cube. This case is denoted by "Be". Here we have 
VEe < V < 1. 
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Figure 5: De: Exterior Dry Spot, V = 2 * 0.08 = 0.16 

Figure 6: Di: Interior Dry Spot, V = 1 - 2 * 0.1 = 0.8 
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Figure 7: Pe: Exterior Pumpkin, V = 0.2 

Figure 8: Pe: Exterior Pumpkin, V = 0.5 

\. 
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Figure 9: Pe: Exterior Pumpkin, V = 0.65 

Figure 10: Pi: Interior Pumpkin, V = 0.2 
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Figure 11: Pi: Interior Pumpkin, V = 0.5 

Figure 12: Pi: Interior Pumpkin, V = 0.7 
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Figure 13: Te: Exterior Tub, V = 2 * 0.3 = 0.6 

3 Results in Closed Form 

For simple geometric configurations one can give the volume V, the energy E, the pressure 
p, and the area A = fr dr in closed form, see also [7] for formulas in the cases of drops 
entrapped between two planes . 

• The Ball: If the domain n is the complement with respect to the cube q; of a ball 
having radius T, i.e., in situation "Be", we have the following relations. The volume 
V and the area A are given by 

V = 1 - 411" r3, A 2 = 41rr . 
3 

TherefQre, the energy E is 
E = A - cos '!?18q;1, 

where 18q;1 = 6 is the area of the surface of the container. The pressure p is equal 
to 2H, where H = ~ is the mean curvature of the surface of the ball, hence 

2 
P - -- . 

r 

• The Orange: If n is one slice of height h < r of a ball which has radius T, we have 
the following relations. With 

h = r{1- cos'!?), s = rsin'!? 
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we have 

and 
2 

p= -. 
r 

Hence, in the situation "Oe" we get for the six slices 

Ve = 6V, Ae = 6A, and Ee = Ae - 61rs2 cost? 

Simple geometric considerations lead one to the restriction 

1. 1 1 
o < r < r max = -2 mm { v'2 ' "'7""":Q }. 2 - cost? sm v 

If n is the complement with respect to the ball of a slice cut from the ball, we get 
the following relations. 

and 

V = 4; r3 - ih2 (3r - h), A = 21rr(2r - h) 

2 
p= --. 

r 
Hence, in the situation "Oi" we get for the complement of the six sets of this type 

Here the restrictions to be satisfied are 

1 1 o < r < r max = - In . 
2 v2 + cos t? 

4 Numerical Results 

As a test example the case of a contact angle of 70 degrees was chosen. The figures show the 
results that were obtained by using the program package EVOLVER (see [2] [3]). On the 
average, for surfaces that have about 1000 vertices one needs 10 steepest descent iteration 
steps followed by at least 50 conjugate gradient steps to obtain results with sufficient 
accuracy. Between 500 and 5000 vertices where needed to represent the surfaces. The 
method underlying this program package is in principle similar to the technique described 
in [12]. 

There are curves of the following three relations: Figure 14 shows E versus V, figure 
15 shows p versus V, and figure 16 shows A versus V. All these curves are obtained by 
calculating the solutions using the EVOLVER package. For each of the solutions, one gets 
not only the surface r described by its vertices, edges, and faces, but also the values for 
V, E, A, and p. These numerical values were used to draw polygonal lines that connect 
the points in the V-E-plane, the V-p-plane, and the V-A-plane. Since obviously p -+ 00 

for V -+ 0 in the cases "Ce", Le" , and "Oe", and p -+ -00 for V -+ 1 in the cases "Be", 
"Li", "Ci", and "Oi", the V-p-curves were cut at p = 10 and p = -10, resp. 
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Figure 16: Area versus Volume 

4.1 Special Properties 

If one considers an experiment in which the cube is partially filled with a liquid leaving 
the complement as void and if one increases the value of the volume V from 0 to 1, the 
following sequence of stable configurations will result: 1) The corners "Ce", then from 
V = 0.145 on 2) the sausage "Se", after this from V = 0.301 on 3) the pumpkin "Pe", and 
finally from V = 0.656 on 4) the ball "Be". This observation is based on the assumption 
that one considers only configurations with the symmetries described in this paper, and 
on the other hand, if one looks only for those cases which have the absolute minimum 
of the energy functional E. This means that the other cases for which figure 14 shows 
larger values of the energy E, represent only local minima of the variational problem. In 
principle, they can be obtained using careful experimental manipulations; but they are 
only locally stable. 

For certain values of the volume V there are quite a few different local minima. As an 
example, let us look at V = 0.68. There are as many as ten different possible configurations 
for this volume. Here, the values of the energy increase in the following order: "Be", "Pe", 
"Di", "Li", "Si", "Te", "Ci", "Pi", "Oi", "Ti". It depends on the history of an experiment 
which of the configurations will actually be observed in a given situation. This is a 
pronounced hysteresis effect. 

The curves p versus V are the derivatives p = ~t of the curves E versus V. This is 
due to the fact that the Lagrange multiplier of a variational problem is the derivative of 
the objective function with respect to the value of the constraint. For these curves one 
can see that for small values of the volume V the pressure p is always positive in this 
case, whereras it is negative for larger values of the volume. For those cases in which 

13 



the pressure happens to be zero, one gets minimal surfaces for r, since then the mean 
curvature H is zero. 

The curves A versus V seem to indicate that for the two cases "Pe" and "Pi" one has 
Ai(V) = Ae(V), i.e., that the areas A are the same for the same volume V prescribed in 
the two cases. 

From the basic concept of the package EVOLVER it is clear that one can get only local 
minima of the variational problem. It is not possible to calculate other stationary points of 
the energy functional using this program package. Therefore, the curves in the V-E-plane 
leave the branches out which have saddle-points. In this sense, we have calculated only a 
part of the full bifurcation diagrams. One way of doing that would be to use an approach 
that has been studied previously in [9]. 
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