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Abstract 
Anharmonic phonons are examined to study the unusual isotope effect ex

ponents for the high-T c oxides. Within a simple model of anharmonicity, 
the mass dependences of the electron-phonon coupling constant A and the 
phonon frequency determine thJe' isotope: effect exponent 0' as ,a function 1 of 
coupling strength. A model in which the outer wells of a multiple-well poten
tial deepen as the orthorhombic/low temperature tetragonal phase transition in 
La2_xMxCU04 is approached is consistent with some experimentally observed 
variations in T c and o. 

As demonstrated by the other papers of this volume, there is ample evidence 
that anharmonic phonons are present in the high-T c oxides. EXAFS data can be 
interpreted in terms of a double well for apical oxygen motion.1 Ion channelling mea
surements indicate unusual atomic correlations, below Tc.2 The proximity of supercon
ductivity to structural phase transitions,3 especially in the La2_xM1Cu04 systems, 
suggests the relevance of soft modes associated with these transitions. Pair distribu
tion functions from neutron scattering data on Nd2_xCexCu04 and ThBa2CaCu20s 
can be interpreted in terms of a superposition of two buckling distortions of 0 atoms 
perpendicular to the Cu-O bonds.4 Fi'ozen phonon calculations Have yielded strongly 
anharmonic energy surfaces for tilts and rotations of the Cu-O octahedra in La2Cu04.5 

We will examine the possible effects of anharmonicity on the superconducting isotope 
effect in La2_xMxCu04 and YBa2Cu307, with an eye towards accounting for the 
possibility of an isotope effect exponent greater than 0.5 ;in La2-xMxCU04' 

The treatment of anharmonicity has been presented in previous papers.6 ,7: In sum
mary, an anharmonic expression for the electron-phonon coupling ). is constructed 
from a summation between the lattice ground state and all excited states for a dis
persionless local oscillator at T=Os. 

'). = f: N(O) (E l(nIMkk,10)1
2 

n=1 kk' En - Eo 
(1) 
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where Ik), Ik') are electronic states on the Fermi surface and In) is the phonon eigen
state of energy En. The electron..:.phonon matrix element. Mkk' is· 

Mkkl = (k'IV(r - t5r) - V(r)lk), (2) 

where V(r) is the electron-ion potential. The electronic degrees of freedom are fac
torized out and lumped into a prefactor (]2)' which we -will assume to be mass inde
pendent, 

A = N(O)(]2} f: l(nl t5r IO)1
2

• 

n=l En - Eo 
(3) 

Note that the electronic prefactor could obtain a mass dependence ifi the electronic 
structure is sensitive to fine details of structural distortions. 5 The summation is broken 
up into separate contributions to the electron-phonon coupling expression 0 2 F(w) 

00 

0
2 F(w) = L Anwnh(w - wn), (4) 

n=l 

where 

(5) 

and 
(6) 

This expression can be evaluated by numerical solution of the. Schrodinger equation 
for the different isotopic masses. The isotope effect is then obtained I ftom numerical 
solution of the Eliashberg equations. Note that the this treatment does not yield 
the value of A, but only its mass dependence. The strength of the electron-phonon 
coupling is determined by the experimental results for T c, at which point the isotope 
effect can be calculated. 

The model is first applied to the higher temperature superconductors, for example 
YBa2Cu3 07. As a simple model calculation, we consider a possible anharmonic po
tential modeling buckling motions of the planar oxygens perpendicular to the Cu-O 
bond. The potential has a quadrapolar form, with distance :of A between the wells 
and a well depth of 2000 K. Other potentials with differing widths or shallower wells 
produce similar results. Fitting to a value of A = 1.4, we obtain a transition tem
perature of 1l0K and an isotope effect exponent of 0 = 0.04. Large values of Tc 
and near-zero isotope effects are consistent withlelectron-phonon'coupling:within this 
model of anharmonic phonons. 

The formalism can also be applied to the single-layer doped La2Cu04 compounds. 
As the strontium concentration increases in La2-zSrzCu04, the isotope effect expo
nent appears to increase to values above 0.5.for x ~ 0.12 and then decrease to 0 ~ 0.1 
for greater strontium concentrations.9 Meanwhile, T c reaches a smooth maximum at 
x ~ 0.15. Barring questions of sample homogeniety, these variations can be ana
lyzed in the context of potential anharmonic phonons associated with an incipient 
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low temperature orthorhombic to low temperature tetragonal structural phase tran
sition. The approach to this transition is modelled bya'quadrupolar pG>tentiallwith a 
central well and four outer wells associated with the four equivalent tilt directions for 
transition into the low teperature tetragonal phase. As the strontium concentration 
is increased, we assume that the outer wells deepen as shown in figure 1. For each 
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Figure 1: The r-dependence of the various quadrupolar potentials stud

ied. Strontium concentration increases with increasing depth. 

potential, the value of .A is adjusted to reproduce the experimental value of T c. At this 
point, the model still contains limited freedom, in that the analysis does not provide 
a quantitative relation betweenlstrontium concentration and the particular potentials 
chosen; only the ordering of the potentials is fixed. After fitting to the experimental 
results for Tc , one obtains a variation in Q with strontium concentration shown in 
figure 2. We emphasize that the agreement between theory and experiment is only 
qualitative due to the number of free. parameters. in. the theory. A. more complete 
discussion of these results is given iil a previous publication.7: 

This choice for the evolution of the potentials assumes that the low tempera
ture tetragonal phase becomes more favored with increasing strontium concentration. 
Qualitatively similar results could be obtained from a slightly different series of poten
tials which are identical to the potentials discussed for strontium concentrations less 
than x=O.12, but then flatten out for higher concentrations. This series of potentials 
produce a maximally stable low temperature tetragonal phase around x=O.12. 
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Figure 2: The isotope exponent Q versus :c in La2_zSrzC1i04 for the 
interionic potentials shown in Fig. 1. The solid circles are the data of 
Crawford et al.9 The open circles are the theoretical results. 

We note a potential ambiguity in the preceding discussion. The difficulty of defin
ing normal modes in a strongly anharmonic system clouds the choice of effective 
oscillator mass. In the preceding analysis, the oscillator mass has been taken as the 
mass of an oxygen atom, instead of the reduced mass of the Cu-O octohedra, as would 
be valid for a harmonic normal!mode; Sucn an assumption is plausible if the octahe
dra do not act as purely rigid entities. Assuming rigid motion of the Cu-O' octahedra, 
the La2_rSrrCu04 system can be reanalyzed within a more quantitative framework 
by solving the Schrodinger equation for the actual octopolar potential calculated from 
frozen phonon calculationsS with an oscillator mass equal to theTeduced mass of the 
Cu-O octahedra, namely 2.6 times the mass of an oxygen atom. In the case of purely 
quadratic electron-phonon coupling, a preliminary analysis yields an isotope effect 
exponent of Q ~ 0.4 for a rather large electron-phonon coupling of ,\ ~ 3. However, 
for such large values of the electron-phonon coupling the'preceding zero-'temperature 
treatment of anharmonicity is suspect, so that this result should be considered at best 
qualitative until a finite temperature treatment is performed. Recent experimental 
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work has suggested that the anomalous values of a in La2_xSrxCu04 may be due 
to an isotope-dependent phase separation of a' strontium~rich non;..superconducting 
phase for copper-rich samples. IO copper-poor samples, which do not show this phase 
separation, yield isotope effect exponents of roughly 004. 

In summary, a simple model of anharmonicity can account for values of the iso
tope effect exponent both near zero and above 0.5 for' superconducting transition 
temperatures in the range observed for the high-T c oxides. \ 
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