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ABSTRACT

Freed’s lattice-field theory provides a basis for a double-lattice
model for the Helmholtz energy of mixing for binary polymer solu-
tions. When Freed’s series-expansion terms for the simple Ising lat-
tice and for the Flory-Huggins lattice with r;=1 and r,=100 are
revised slightly, predicted liquid-liquid coexistence curves are in
excellent agreement with those calculated from Scesney’s Pade-
approximant coefficients and from computer-simulation results by

Madden, Pesci and Freed; here r; and r, are numbers of sites required
by molecule 1 and molecule 2, respectively. For real systems, the
interchange energy (e/k) and r, are adjusted to fit the experimental
concentration dependence of the Flory-Huggins parameter y deter-
mined by vapor sorption, osmotic pressure, light scattering or sedi-
mentation. To account for highly oriented interactions between seg-
ments, a secondary lattice is introduced. This secondary lattice
requires an additional ‘parameter (6e/k) related to the energy of the

oriented interaction, and one empirical parameter c,,. Using the dou-
ble lattice theory, coexistence curves can be reproduced for systems

* present address: Thermodynamics Research Laboratory, East China Institute of Chemical Technology, Shanéhai
200237, China.
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having an upper critical solﬁtion temperature (UCST) , a lower critical
solution temperature (LCST), or a miscibility loop with both UCST

and LCST.

INTRODUCTION

The phase behavior of binary polymer/solvent mixtures differs from that for
ordinary liquid mixtures because of the large molecular-size difference .of the com;
ponents. For example, lower critical solution temperatures (LCST), "hour-glass"
shaped and closed-miscibility loop phase diagrams are commonly encountered for
polymer solutions but they are not common for "ordinary” fluid mixtures-[1]. Quan-
titative underst'anding of the phase behavior of polymer solutions is important for
the development, production and processing of advénced polymer materials. In this
work, we extend our previous theory for small-molecule systems [2] to
polymer/solvent mixtures. We are here concerned with polymer mixtures at tem-
peratures well below the solvent’s critical temperature. We are therefore not con-

cerned with the free-volume effect that leads to lower critical soluﬁo_n temperatures
as described by Patterson [3].

A variéty of polymer-solution theories have been developed during the last half
century; most of them are revised forms of the classical work proposed by Flory [4]
- aﬁd Huggins [5]. The classical theory of Flory and H.uggins is based on a lattice
model for polymer solutions wherein all lattice sites are occupied by segments of
molecules. A mean-field approximation was.uscd to obtain the Helmholtz energy of
mixing, AA. In the mean-field approximation, AA is the sum of a combinatorial

entropy and a simple term for the energy of mixing:

where N, 1s the total number of lattice sites, r; is the number of lattice sites occu-

pied by a molecule of component i, and @; is the volume fraction of component i.
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The interaction parameter g, reflects nearest-neighbor interaction energies. In prac-
tice, g,, is adjusted to give quantitative agreements between theory and experiment.

Typical experimental results indicate that g,, depends on temperature and concen-

tration. To obtain a more accurate fit, Tompa [6] suggested a power-series expan-
sion in concentration with empirical coefficients for g,,. Later, Koningsveld and

Kleintjens [7] derived a closed-form expression for g, by replacing the volume
fraction with the nearest-neighbor site-occupancy probability. Further, an extra
' 'entropy correction term was added.

Althbugh these modified models of the original Flory-Huggins theory provide
improvements for data fitting, they cannot describe the phase behavior of the sys-
tems with LCST or with miscibility loops (both LCST and UCST). Such phase
behavior may be dl.lg to highly oriented interactions such as hydrogen bonding, as
first indicated by Hirschfelder, Stevensen and Erying [8]. For systems with miscibil-
ity loops, an early model was proposed by Barker and Fock [9] ; they introduced a
special lattice in which each molecule carries several contact points with different
interaction energies.v Using thé quasi-chemical method (a version of the mean-field
approximation), a qualitative dcscﬁption of the miscibility loop was obtained. Quan-
titative description cannot, however, be achieved with a mean-field approximation.
The first successful non-mean-field method for describing the miscibility loop was
developed by Wheeler and Anderson [10,11] who suggested a decorated lattice
which can be mapped on a spin-1/2 Ising lattice. Using Scesney’s exact Pade-
approximant coefficients for spbntaneous magnitization [12] , Wheeler and Anderson
could simulate coexistence curves with both LCST and UCST. Although the
language of Ising statistics 1s unfamiliar to chemical engineers and the procedure is

too complicated for practical purposes, the decorated-lattice results provide useful

insights.
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The above theories are all based on a closé-packcd lattice. ' To account for
compressibility and changes in volume upon isothermal mixing, Sanchez and
Lacombe [13], and -anir_lgsveld and Kleintjens [14], have derived different forms of
a lattice-fluid model based on Flory-Huggins theory. The equation of state as well as
the Gibbs (or Helmholtz energy) of mxxmg has been obtained. Recently, Sanchez
and Balazs [15] introduced corrections for oriented interactions between dissimilar
components. The resulting lattice-fluid model can describe at least qualitatively the

miscibility lobp. On the other hand, Flory [16], Patterson and Delmas [17]

developed free-volume theories for polymer solutions. Model parameters can be

obtained from experimental thermal-expansion and compressibility coefficients. At
about the same time, Heil and Prausnitz [18] and later Brandani [19] developed a
semi-empirical local-composition theory; good agreement .was found between theory
and experiment for polymer solutions but these were not able to describe LCST.

Freed and coworkers [20,21,22] recently developed a complicated lattice-field
theory for polymer solutions which is formally an exact mathematical solution of
the Flory-Huggins lattice. Good agreement was found between predicted results and
the computer simul_atioh data by Dickrﬁan and Hall [23] for the chain-insertion pro-
bability and for the pressures in a system of athermal chains and voids. Freed’s
théory does not use a mean-field approximation.

In this paper, we introduce a double-lattice model based on Freed’s theory.
"Ordinary” polymer solutions are described by the primary lattice, while a secondary

lattice is introduced as a perturbation to account for oriented interactions.

MODEL DEVELOPMENT
Our aim here is to establish expressions for the Helmholtz energy of mixing for
binary polymer solutions. We begin with a primary lattice for the Solvent/polymer

mixture and later incorporate a secondary lattice.
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1. Partition Function for a Double Lattice

Binary polymer solutions are described by a Flory-Huggins lattice which we

define as the primary-lattice. Each molecule of solvent (1) occupies one site and
each molecule of flexible polymer (2) occupies fz sites, where r, is the number of

segments in the polymer molecule relative to r =1 for the solvent.

At temperature T, the canonical partition function Q is given by

Q= 2exp(—Ea/kT) ' (2)

where k is the Boltzmann constant and the summation is over all possible
configurations of the system. E_, is the potential energy of the system at
configuration «. For a binary mixture where only nearest-neighbor interactions con-

tribute to the potential energy,
E; = —(N11811+Ny€xtN12€ 1)), 3)

where N,;,N,, and N, are the numbers of 1-1, 2-2 and 1-2 nearest-neighbor (non-

bonded) segment-segment pairs. They are related by the conservation equations
2Ny +Nyp = 2qi Ny
2Np+Njpy = 25N, ' R C))

where z is the coordination number, N,,N, are numbers of molecules of solvent (1)
and polymer (2) respectively; g, and g, are external surface parameters for

molecule 1 and molecule 2, related to r, and r, by
g, = (zr\—r+2)/z
4, = (Zrz—r2+2)/z (5)

The positive energy parameters, €,,,€,, and £,, are for the corresponding nearest-
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neighbor segment-segment interactions. For the mixtures of interest here, eq 2 can

also be expressed by

0 = 3 g(N1,r 1Ny N ) expley AT (expleqy/AT)) Xexple / ATH  (6)
Mo

where g(N,,r{,N,,r,N;5) is the combinatorial factor which depends on the number
of 1-2 segment-segment pairs (not to be confused with g, in eq 1). The summation

is over all possible N;,. The Helmholtz energy of mixing can then be calculated by
AA/KT = =N InQ+N,InQ+N,,InQ, @)

where Q; and Q, are partition functions for the pure components; N,,N,l and N,,
are the numbers of lattice sites for the mixture and the pure components, respec-
ively. |

Next, we considér polymer solutions where segment-segment intéractions
between i and j include oriented interactions originating from hydrogen bonding,
donor-acceptor electron transfer or strong dipole-dipole interactions. The surface
fraction of a segment permitting oriented interactions is designated by 7. In gen-
eral, n is different for different components; for gimplicity, we treat 71 as a constant.
Later we show that the calculated results are insensitive to the numerical value of 7).
The total number of i-j segment-segment interactions , N;; , is determined from the
primary lattice, including both non-specific and oriented interactions. We visualize
three types of interactions. The first (hh) occurs when both i and j interact using
their oriented surfaces. The second (nn) occurs when both 1 and j interact between
their non-oriented surfaces. The third (nh) occurs when 1 and ) interact such that one
entails an oriented and the other a non-oriented surface for interaction. Only the first

type is responsible for oriented interactions. In the limit of complete randomness,

the respective numbers of interactions for these three types are N,-jnZ,N,-j(l—n)2 and



N;2n(l-n), giving

Nj = Ny, + N, + Ny, = Ni[n*+(1-1)*+2n(1-1)] (8)
where N,,,N,, and N,;, are numbers of h-h, n-n and n-h pairs, respectively. How-
ever, we do not use eq 8, we present it here only for conceptural purposes. For more
realistic systems, the number of oriented i-j interactions N, differs appreciably
from Nijnz; it depends on the competition between energetic and entropic effects.
Generally, the specific oriented interaction is energetically favored because the
energy is lowered upon pair formation. However, it is entropically unfavored

because the number of configurations chacteristic of the non-specific interaction

outweighs the number of configurations characteristic of the specific oriented

interaction.
To account for the additional Helmholtz energy associated with oriented i-j

interactions, we construct a simple Ising model which we describe by a secondary
lattice. In this secondary lattice, the total number of lattice sites, N, , is related to

the number of i-j pairs N;; by the conservation equation,
le/2 = N’J . v (9)

The number of sites available for oriented interaction in this lattice is N;7n, while

the remaining N,(1-1)sites cannot participate in oriented interactions. The numbers
of oriented i-j interactions and non-oriented i-j interactions are consistent with those

mentioned in eq 8 in the limit of complete randomness.

~ The partition function of this secondary lattice can be expressed as

OQsec.ij = Zg(Nij:n’Nhh)(expagij)NM (10)
Ny

where 88 =06¢/kT and &¢ is the additional (positive) energy responsible for the



-8-

oriented interaction for each i-j segment-segment pair . The corresponding additional

Helmbholtz energy is

. AA = _lenQ.vec,ij (11)

sec,ij —

For one i-j segment-segment pair, the additional Helmholtz energy is

AA

sec,if sec,if

IN;; = 2AA,,, ;;/2N; = —(2KT/zN)InQ,.. ;; (12)

To make progress, we use a reasonable approximation: the secondary lattice is
independent of the primary lattice. In other words, we consider the secondary lattice
as a perturbation about the primary lattice which serves as the reference system.

With the oriented interaction taken into account, the total partition function of the

primary lattice for a binary mixture is given by

[ = Zg(Nl»rl,Nz,"z,le)
NIZ

En—AA .11’N11 . €20~AA,c 22/N2
(exp( :TC " (exp( ;;f ) *(exp( T

where AA;,. 11, DA, 5> and AA, . ;5 are given by eq 11 or 12.

Because AA,, ;; is temperature dependent, the essential feature of the secon-
dary lattice is to introduce a temperature dependence for énergy parameter &;;. For
calculations under isothermal conditions, the éecondary latticé provides no func-
tional advantage.

The summations in eqs 6 and 10 are over all possible values for N 12 and N,
However, no closed-form analytical solution is available for either eq 6 or eq 10.
The mean-field approximation gives a comparatively simple expressions for the par-
tition function and for the Helmholtz energy of mixing by taking the most probable
value of N,|,N,, and N, through minimizing fhc Helmholtz energy. However, this

" procedure gives incorrect results near the critical point. On the other hand, Freed’s

€144, 12/N12 e ¢13)
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theory seems to be promising because of its non-mean-field nature. Therefore, our

model is based on the Helmholtz energy of mixing from Freed’s theory.

2. AAgy for the Secondary Lattice

The secondary lattice is a simple Ising lattice where each component has only
one segment and occupies one site. Then r;=1 and r,=1. To obtain an analytical
expression for the Helmholtz energy of mixing for the Ising lattice,v we use Freed’s
theory developed for a Flory-Huggins lattice. We set the numbers of segments of
- both components equal to unity and expand the Helmholtz energy of mixing to

second order in reduced energy; we then obtain an approximate solution for the

Ising model:
AA/N KT = x)lnx +x,lnx,+2€x,x,/2—2E€ 2x12x§/4 (14)

where € is a reduced interaction parameter defined by
€ = €/kT = (&) +Ep—2€)/ kT (15)

To test eq 14, we caiculatc the coexistence curve using traditional phase-
equilibrium thermodynamics. By adopting a series-expansion method, accurate
numerical results of coexistence curves have been obtained for the Ising model by
Scesney [12] in the form of Padé-approximant coefficients for spontaneous magneti-

sation . We then compare the result calculated from eq 14 with that calculated from

’ . - - o~ . .
the Pade-approximant coefficients. In these calculations, £ for the critical tempera-

ture is evaluated by solving the equation

O’AA

3,2
oxj

=0 (16)

x,=0.5

Figure 1 compares Scesney’s accurate numerical solutions to predictions of the
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truncated Freed theory. Only half of the coexistence curve is shown because it is
symmetrical about x,=0.5. Figure 1 also shows results of the Flory-Huggins theory
(given by eq 1 and-r,=r,=0.7887 ); here the value of r was chosen to obtain the
same critical point as that calculated from Freed’s theory. Tﬂe results of Freed’s
theory (eq 14) are much better than those from Flory-Huggins theory. For the range
from T/T,=1 to T/T.=0.75, the standard deviation of compositions of the conju-
gated phases of the coexistence curve (calculated in comparison with Scesney’s
accurate results) RMSx, is 0.0193.

However, agreement between phase boundaries calculated by Freed’s theory
and the results from Scesney is not complete, probably because eq 14 does not

include higher terms. There are several ways to revise eq 14 to improve the coex-

istence curves. Two of them are investigated here. One way ‘is to introduce an

empirical coefficient ¢, to the € 2x,z,r22/4 term. The best choice is ¢,=1.074. The

other way is to add to eq 14 an additional high-order term, c,oz€ mxlmx%o, arbi-

trarily taken to be order 10. The best choice of the numerical coefficient is
¢10=380.0 . The results of these two revisions are well-matched. If ¢,=1.074,¢,¢=0,

RMSx=0.0015; if ¢,=1,c,0=380.0, RMSx=0.0066 . Any linear interpolation between
these two limits gives nearly equally good results. Therefore, we can write a gen-

eral expression for the Helmholtz energy of mixing for the Ising model. For this

special case where r\=r,=1,

AA/IN KT = x|Inx+x,lnx,+2€x,x5/2—c,2€ 2x12x§ /4—co2€ mxlloxzm (17)

where ¢, and ¢, are related by
€10 = 3515.1-5135.1¢, (18)

‘The coefficients of eq 18 are obtained from the two limits mentioned above.
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The calculated coexistence curve using eq 17 is nearly perfect when compared
to Scesney’s accurate results. For some binary systems, we use ¢, =1.074 and
¢10=0. However, as shown later, for some binéry mixtures, it is better to retain the
high-order term while restricting constants ¢, and ¢,q according to eq 18.

For the secondary lattice, component 1 represents those sites available for

oriented interactions while component 2 represents those sites not participating in
oriented interactions. The contribution to the Helmholtz energy of mixing (A4, ;;)

is obtained directly from eq 17 with three changes. First, x is replaced by 7 ;
second, € is replaced by &€; and third, we add the additional energy of the refer-
ence state,
AA, i = N,kT[nlnn+(1—n)ln(l—n)+z§§,-]'-n(l—n)/2
—¢2(8€ ;) °(1-1)4-c 19288 ;) ' %(1-n)'0- 58 ;2]

= N;KT[nlnn+(1-n)in(1-1)-288 ;jn%2—cyz (88 ;;)* 02 (1-n)4—c 02 (88 ;) 'n'°(1= 1)) (19)
The first two terms on the right-hand side account for the Flory-Huggins entropy

that arises from mixing N7 sites with Ny(1-n) sites. The term —z18& ;;/2 accounts
for the energy of the reference state where all the sites in the lattice are responsible

for oriented interactions. The contribution of the other reference state (where all the

sites in the lattice cannot participate in oriented interactions) is zero. Constants ¢,

and c,, satisfy eq 18.

For one i-j segment-segment pair, the additional Helmholtz energy is,

AA /N’.’ = 2AASEC,ij/ZNI

sec,ij
= (KT/z)[nInn+(1-m)in(1-1)—288 ;;n%/2—c,z (88 ;) n*(1-1)%4—c 02(8E ;)"0 °(1-1)'°) (20)

Calculated results are insensitive to 7 because it is coupled with the additional
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energy J¢;;.

3. AA for the Primary Lattice

In this work, the primary lattice for fluid mixtures is a Flory-Huggins lattice.
In Freed’s theory, there are three contribuﬁons to the Helmholtz energy of mixing
for a Flory-Huggins léttice: mean-field contribution plu~s two corrections for devia-
tions from mean-field behavior, one energetic and one entropic. After rearrange-

ment, the Helmholtz energy of mixing can be expressed as

AAIN AT = ()/r)In® +(Dy/r)n®y+ Y Y a,, &7'G] (21)

m n

where coefficients a,, are functions of z,r;r, and € . Upon expanding the

Helmholtz energy of mixing to order & 2 and z72 for a cubic lattice (z=6), the

coefficients are
ayy = (49)Ur;~1r,)*+2&
ay, = —(1/2=11/54r,=11/27r+1/9r,r,))(V/r;=1r,)*+E€/r,
ay; = —(1/2=11/54r,=11/27r,+1/97r,)(1r,=1r)*+E/r,
a3y = (1/3=2/9r,~4/9r | +1/18r3 +1/6r 3 +1/9r,r,)(1/r;=1/r,)?

ay3 = (1/3=29r,=-4/9r,+1/18r2 +1/6r2 +1/9r 1) (1/r;=1/r,)?

gy = (23-23r,=2/3r 41612 +1/6r2 +13rr) (U= 1ir)?=3c,8 22 (22)

where c¢;=1 in Freed’s work. Here, however, we use c¢,=1.074. All other

coefficients a;; not mentioned in eq 22 are zero.
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To test the theory, we first calculate the coexistence curve for a poelymer solu-

tion with r;=1 and r,=100; we then compare the results with the computer-
simulation data recently presented by Madden, Pesci and Freed {24]. For these cal-

culations, we need chemical potentials for solvent 1 and polymer 2. They are found

from

g = JAA

_gy = I _2 m-=1xn+l _ M
pi=p] = KT[In®@;+Oy(1-— 71 Y 8, (m@T O3 +H(1-n)RTP)]  (23)
2

m n

s = 204
27H2 = g
aN,

r
Hp=§ = KTyt D (1-~2)41, 3. ¥ 4, (@] O +(1-m)DTDD]  (24)
1 .

m n
Superscript "o" refers to the standard state (pure close-packed liquid at system tem-

perature T). The comparison is shown in Figure 2, which also gives results from
the Flory-Huggins theory. It is surprising that Freed’s theory cannot predict the
correct coexistence curve, even qualitatively. The prediction is even worse than that

of the Flory-Huggins theory. The poor results may be due to neglect of higher terms |
in the expansion of the partition function or Helmholtz energy of mixing. We find
that the entropic correction is the weakest term. Once we omit it, the prediction will
be much better although improvement is still'needed. We therefore revise the entro-

pic correction term by dropping all the higher-order terms and retaining only the
first-order term but multiplied by an empirical coefficient c¢,. The a,,, in eq 20 are

then.revised as

ay; = (49)c,(1/ry=1/ry)*+2€
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ay =E€lry , a;, =&lry

ay = —3c,E%2 (25)

where ¢,=1.074. All other coefficients a,,, not mentioned in eq 25 are zero. As

shown in Figure 2, with ¢,=0.3, we obtain a very good prediction of the coexistence

curve when compared with the computer simulation results by Madden et al.

To account for the oriented interactions, we need a secondary lattice. The
secondary-lattice contribution is a perturbation tb a fixed reference system, (i.e., the
primary lattice) whose Helmholtz éncrgy of mixing is given by eq 21. Equation 13
givés the total partition function which includes both reference and perturbation
contributions. The general equation for the Helmholtz energy of mixing, eq 21, fol-

lows from eq 6. Equation 13 also follows from eq 6. To account for oriented
interactions, we use eq 6 but we must replace g; by g;;—-AA,, ;;/N;;. Following
the definition of £ in eq 15, if oriented interactions occur in 1-2 segment-segmeni
pairs, we repiacc € by £+2AA,,  15/N12kT in eqs 21, 23, 24 and 25. If oriented
interactions occur in 1-1 segment-segmmt pairs, £ is replaced by £-AA,. |,/N (kT
in these equations. If oriented interactions occur in 2-2 segment-segment pairs, £ is

replaced by €—-AA,,. 5o/ NyokT .

PHASE-EQUILIBRIUM CALCULATIONS

1. Results for Flory-Huggins Parameter y

The Flory-Huggins parameter x is often used to characterize the relative

solvent-polymer interaction. It is defined by the chemical potential of the solvent,
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,
py—p = kT[lnd>1+<b2(1-r—l)+x<D§] (26)
2

where r; is usually set equal to unity; r, is then calculated using specific volumes
v; and v, for solvent and polymer ,

M,v,
Fra =
2 Myv,

27

where M, and M, are molecular masses for solvent and polymer, respectively. If

the interaction parameter g,, in eq 1 does not depend on the concentration, y=g1,-

The relative chemical potential for solvent u,—uj can be determined experi-
mentally by various methods such as vapor sorption, osmotic pressure, light scatter-

ing and sedimentation. When carried out with care, results from different experi-
mental methods show good consistency with respect to each other.

To test our model, we substitute the relative chemical potential of solvent from
eq 23 into eq 26; we then calculate parameter y. It is important to note that we cal-
culate volume fractions @ in eq 23 using model parameter r, which sometimes
should be adjusted; however, in eq 26, r, is calculated by eq 27.

To calculate parameter y, the secondary lattice is not used because the data we
examined are isothermal. Usually, two parameters are needed, the energy parameter

€/k and size parameter c,. The latter is defined as:

r, (optimal fir)

ry (from eq 26)

Figures 3,4,5 and 6 show results for n-pentane/PIB(polyisobutene) at 25 OC,

benzene/PDMS(polydimethyl siloxane) at 25 °C, chloro-benzene/PDMS at 60°C, and

DIBK(di-isobutyl ketone)/PDMS at 35°C. In these cases, r, does not require
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adjustment, i.e. ¢,=1. One parameter &/k gives a good fit. The concentration depen-

dence of x , which cannot be described by the original Flory-Huggins theory, can be .
reproduced satisfatorily. However, sometimes two parameters are needed. Figures

7.8,9,10, and 11 show results for benzene/natural rubber at 25°C, benzene/PIB at 25°

C, cyclohexane/PIB at 25°C, cyclohexane/PDMS at 25°C and MEK(methyl ethyl
ketone)/PDMS at 20°C and 50°C. One parameter is not enough for a good fit. Two

parameters, €/k and c,, are needed. Note that the minima in y—® curves for »
benzene/nature rubber and cyclohexane/PIB systems can be reproduced quite well.

Figure 11 showing MEK/PDMS at two temperatures suggests that a temperamré--

dependent &£/k is needed. Because of the scarcity of data at different témpcratures,

we did not try to introduce the secondary lattice which provides a temperature

coefficient for y.

2. Results for Liquid-Liquid Equilibria
For liquid-liquid equilibrium calculations, we require the experimental coordi-

nates of the critical point. We find these coordinates using

OXAA/N,KT) .

od3 -
0XAA/N kT) 1 1 =25 m—1gn-1 m £n-2
o = rl¢l+r2.q)2+22am"[[m(m—l)<bl OF-2mn®7 15 +n(n-1)P7 $2°1 (28)
<D2 m n
and

0*(AA/IN,kT) o

0P3
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O*(AA/N,KT)
. _ L1 +zZamn[[—m(m—l)(m-—2)(l)i"_3<l>§1
I3 n®f @ m o

+3mn(m-1)®7 205 3mn(n-1)®T 10 20 (n-1)(n-2)QTP; > (29)
Using the experimental upper (or lower) critical coordinates, eqs 28 and 29 are

solved to yield energy and size parameters €/k and r,(r;=1).

For hydrogen-bonding systems or for systems whose components differ appre-
ciably in molecular size, the primary lattice alone always yields a narrower coex-

“istence curve. Therefore, we have to introduce the secondary lattice to obtain a
satisfactory fit.

For systems having only a UCST , we set ¢,=1.074 and ¢,¢=0. The results
are not sensitive to 7. It can be arbitrarily set within a reasonable range from 0.3 to

0.5. The only additional adjustable parameter is 8e/k, the extra energy contributed
by an oriented interaction. This parameter is obtained from fitting data for one tie

line. Figures 12 and 13 show results for DIBK/PIB22700(polyisobutene,

M_=22700) and DIBK/PIB285000(polyisobutene, M, =285000). A single lattice

exhibits only a small improvement over those calculated from original Flory-

Huggins theory. Using a double lattice, we obtain a very good fit.
For systems having an LCST or having a closed miscibility loops (both UCST

and LCST), c,o cannot be set to zero; ¢;o or ¢, must be adjusted to obtain a good

fit with the restraint shown by eq 18. In these cases, altogether 4 parameters are
needed. Besides €/k and r, obtained from one critical point, we have to use another

two, viz., 8e/k for special interactions and c;,. They can be obtained by fitting
another set of experimental (upper or lower) critical coordinates and one tie line

giving the equilibrium compositions for a pair of cdnjugated phases. If the critical

compositions for upper and lower critical points differ appreciably, then r, obtained
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from LCST will differ from that obtained from UCST. In this case, we use a linear

relation to calculate r, for temperatures between UCST and LCST. For polymer
solutions, because-of experimental difficulties at higher temperatures, usually we
only have an experimental LCST. In this case, we postulate a reasonable pseudo-

UCST and then follow the preceding procedure. Figures 14 and 15 show results
for | water/PEG5000(polyethylene glycol, M_=5000) and
water/PPG400(polypropylene glycol, M, ,=400); they are systems with an experimen-
tal LCST. Excellent fits are obtained. Figure 16 shows results for
water/PEG3000(polyethylene glycol, M,,=3000) with a miscibility loop. In this case
we get a fair fit with ¢,(=328.65 . The standard deviation of compositions in weight
pcrcént for the coexistence curve, RMSw=0.035. The dotted line in this figure is .
calculated with ¢,y=0. The corresponding RMSw=0.080. An essentially perfect fit

can be obtained using an empirical value for ¢y and eq 18 but in that case, ¢, is
negative. We do not assign any significance to that result because first, we have no
information concerning the accuracy of the experimental data (these data are not
shown in tabulated form but only by a small graph) and second, near the upper solu-

tion temperature (214°C) it is likely that free-volume correctious (neglected here)

are required.

DISCUSSIONS AND CONCLUSIONS
The model presented here assigns a significant composition dependence to the

Flory parameter g;, (eq 1) even when there is no specific solute-solvent interaction
such as hydrogen bonding. A significant part of this composition dependence is
given by Freed et al [22] and, as shown by them, it is essentially equivalent to
replacing volume fractions in the last term of eq 1 by surface fractions, as suggested

many years ago by Orofino and Flory [33] and in somewhat different form by
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Koningsveld and Kleintjens [7]. However, Freed et al’s corrections to the original
Flory-Huggins theory go further; they show that additional terms are required

because their theory, unlike those of most earlier authors, does not make the usual
mean-field assumptions. In eq 25, the second term for a;; is the original Flory-
Huggins term; the first term for a,, corrects the entropy for deviations from mean-

field behavior. Coefficients a;, and a,, are (essentially) equivalent to the effect that

concerned Orofino and Flory {33] and Koningsveld and Kleintjens [7]. Coefficient

a,, corrects for the Flory-Huggins mean-field energy.

When the system temperature is well below the gas-liquid critical temperature
of the solveﬁt, polymer solutions can be properly described using a lattice model.
However, the mcan-ﬁéld approximation widely adopted in derivations of the
Helmholtz energy of mixing has seriously limited the applicability of lattice models.

Besides its well-known poor performance in the vicinity of the critical consolution

point, the dependence of Flory-Huggins parameter' y on composition exposes -
another weakneés of the mean-field approximation. Many attempts have been made
to overcome these difficulties. However, empirical terms or empirical coefficents
have to be introduced. Freed’s lattice field theory provides a new impetus because
of its non-mean-field nature. The present work shows that, with small empirical
revisions, Freed’s results are useful for describing the phase behavior of strongly

nonideal fluid mixtures including polymer solutions. The successful description of

the concentration dependence of Flory-Huggins parameter ¥ and the coexistence
curves, especially near the critical consolute points, leads us to the conclusion that
in modified form, the Ising lattice as well as the Flory-Huggins lattice can provide
good representations of phase equilibria for polymer solutions. The deficiency of
Flory-Huggins theory does not lie in the lattice model but in the approximations
used to obtain an expression for the Helmholtz energy of mixing. When the

Helmholtz energy of mixing is modified to agree with accurate results of
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spontaneous magnetisation of the Ising model, and the computer simulation coex-
istence curve for a r;=1 and r,=100 lattice polymer mixture, the phase behavior of

polymer solutions can be reproduced well.
In our model, we have two adjustable parameters: the energy parameter &/k

and thé size parameter c¢,. For liquid-liquid equilibria showing a LCST or a misci-
bility loop, we need two additional parameters, the additional energy for an orivented
interaction 8e/k and c;o. The need for c, arises because the lattice model provides
only an approximation for polymer solutions; a solvent molecule can hardly be con-

“sidered a flexible chain. A polymer molecule is not an ideal flexible chain as we

have assumed in the theory. Upon introducing ¢, we can fit the y—® curves for

several polymer/solvent mixtures. For mixtures with oriented interactions, a

double-lattice model is useful. Incorporating ¢, and c;, makes the model more
flexible.

The model presented here is for polymer solutions at high densities, i.e., near
close Eacking. It can serve as a basis for constructing models for polymer solutions

that are compressible; for such mixtures, it will be necessary to add free-volume

corrections [3].
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FIGURE CAPTIONS _
Comparison of coexistence curves calculated from various models

with Scesney’s accurate results.
Comparison of coexistence curves calculated from various models
with computer-simulation results.

Figure 1.
Figure 2.

Figure 3. Composition dependence of y for n-pentane/PIB.
Figure 4. Composition dependence of y for benzene/PDMS.
Composition dependence of y for chloro-benzene/PDMS.

Figure 5.

Figure 6. Composition dependence of y for DIBK/PDMS.

Figure 7. Composition dependence of y for benzene/nature rubber.
Figure 8. Composition dependence of y for benzene/PIB.

Figure 9. Composition dependence of x for cyclo-hexane/PIB.
Figure 10.  Composition dependence of y for cyclo-hexane/PDMS.
Figure 11.  Composition dependence of y for MEK/PDMS.
Figure 12.  Coexistence curves for DIBK(1)/PIB22700(2).
FH: n=l, r=1426, k=57.187K
single lattice: r;=1, r,=160.7, €/k=86.705K
double lattce: ri=1, r,=160.7, &/k=-346.029K
5e1,/k=1658.57K, n=0.3
expt: Shultz and Flory {31].
Figure 13.  Coexistence curves for DIBK(1)/PIB285000(2).
' FH: n=1l, r,=1540, e/k=55.884K
single lattice: r;=1, r=1712, €/k=86.162K
double lattice: r,=1, r,=1712, &/k=-332.347K
8¢,,/k=1658.57K, 1n=03
_ expt: Shultz and Flory [31].
Figure 14.  Coexistence curves for water(1)/PEGS5000(2).
double lattice: r;=1, r,=1069.2, &/k=949.143K
8e1/k=1346971K, n=0.3, c,,=2.3325
expt: Malcolm and Rowlinson [32].
Figure 15. Coexistence curves for water(1)/PPG400(2).
' double lattice: r;=1, r,=49.143, €/k=1126.365K
S¢12/k=1581.108K, n=0.3, ¢,0=0.084473
expt: Malcolm and Rowlinson [32].
Figure 16. Coexistence curves for water(1)/PEG3000(2).
double lattice: r;=1, ry(UCST)=47091, r,(LCST)=489.24, &/k=737.339K
\ 8e,1,/k=858.503K, n=03, c,0=328.65
expt: Malcolm and Rowlinson [32].
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