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ABSTRACT 

Freed's lattice-field theory provides a basis for a double-lattice 
model for the Helmholtz energy of mixing for binary polymer solu­
tions. When Freed's series-expansion terms for the simple Ising lat-

tice and for the Flory-Huggins lattice with Tl=l and r2=100 are 
revised slightly, predicted liquid-liquid coexistence curves are in 
excellent agreement with those calculated from Scesney's Pade­
approximant coefficients and from computer-simulation results by 

Madden, Pesci and Freed; here Tl and r2 are numbers of sites required 
by molecule I and molecule 2, respectively.· For real systems, the 

interchange energy (elk) and r2 are adjusted to fit the experimental 

concentration dependence of the Flory-Huggins parameter X deter­
mined by vapor sorption, osmotic pressure, light scattering or sedi­
mentation. To account for highly oriented interactions between seg­
ments, a secondary lattice is introduced. This secondary lattice 

requires an additional parameter (8e1 k) related to the energy of the 

oriented interaction, and one empirical parameter cw. Using the dou,. 
ble lattice theory, coexistence curves can be reproduced for systems 

-
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having an upper critical solution temperature (UeST) , a lower critical 
solution temperature (LeST), or a miscibility loop with both UeST 
and LeST. 

INTRODUCTION 

The phase behavior of binary polymer/solvent mixtures differs from that for 

ordinary liquid mixtures because of the large molecular-size difference of the com­

ponents. For example, lower critical solution temperatures (LeST), "hour-glass" 

shaped and closed-miscibility loop phase diagrams are commonly encountered for 

polymer solutions but they are not common for "ordinary" fluid mixtures-[1]. Quan­

titative understanding of the phase behavior of polymer solutions is important for 

the development, production and processing of advanced polymer materials. In this 

work, we extend our previous theory for small-molecule systems [2] to 

polymer/solvent mixtures. We are here concerned with polymer mixtures at tem-

peratures well below the solvent's critical temperature. We are therefore not con-

cerned with the free-volume effect that leads to lower critical solution temperatures 

as described by Patterson [3]. 

A variety of polymer-solution theories have been developed during the last half 

century; most of them are revised forms of the classical work proposed by Flory [4] 

and Huggins [5]. The classical theory of Flory and Huggins is based on a lattice 

model for polymer solutions wherein all lattice sites are occupied by segments of 

molecules. A mean-field approximation was used to obtain the Helmholtz energy of 

mixing, ~A. In the mean-field approximation, M is the sum of a combinatorial 

entropy and a simple term for the energy of mixing: 

(1) 

where Nr is the total number of lattice sites, 'i is the number of lattice· sites occu-

pied by a molecule of component i, and <1>; is the volume fraction of component i. 

.. 
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The interaction parameter g 12 reflects nearest-neighbor interaction energies. In prac-

tice, g 12 is adjusted to give quantitative agreements between theory and experiment. 

Typical experimental-results indicate that g 12 depends on temperature and concen­

tration. To obtain a more accurate fit, Tompa [6] suggested a power-series expan-

sion in concentration with empirical coefficients for g12. Later, Koningsveld and 

Kleintjens [7] derived a closed-form expression for g12 by replacing the volume 

fraction with the nearest-neighbor site-occupancy probability. Further, an extra 

entropy correction term was added. 

Although these modified models of the original Flory-Huggins theory provide 

improvements for data fitting, they cannot describe the phase behavior of the sys­

tems with LCST' or with miscibility loops (both LeST and UCST). Such phase 

behavior may be due to highly oriented interactions such as hydrogen bonding, as 

first indicated by Hirschfelder, Stevensen and Erying [8]. For systems with miscibil­

ity loops, an early model was proposed by Barker and Fock [9] ; they introduced. a 

special lattice in which each molecule carries several contact points with different 

interaction energies. Using the quasi-chemical method (a version of the mean-field 

approximation), a qualitative description of the miscibility loop was obtained. Quan-

titative description cannot, however, be achieved with a mean-field approximation. 

The first successful non-mean-field method for describing the miscibility loop was 

developed by Wheeler and Anderson [10,11] who suggested a decorated lattice 
I 

which can be mapped on a spin-l/2 Ising lattice. Using Scesney's exact Pade-

approximant coefficients for spontaneous magnitization [12] , Wheeler and Anderson 

could simulate coexistence curves with both LCST and UCST. Although the 

language of Ising statistics is unfamiliar to chemical engineers and the procedure is 

too complicated for practical purposes, the decorated-lattice results provide useful 

insights. 
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The above theories are all based on a close-packed lattice .. To account for 

compressibility and changes in volume upon isothennal mixing. Sanchez and 

Lacombe [13], and KQningsveld and Kleintjens [14], have derived different forms of 

a lattice-fluid model based on Flory-Huggins theory. The equation of state as well as 

the Gibbs (or Helmholtz energy) of mixing has been obtained. Recently, Sanchez 

and Balazs [15] introduced corrections for oriented interactions between dissimilar 

components. The resulting lattice-fluid model can describe at least qualitatively the 

miscibility loop. On the other hand, Flory [16], Patterson and Delmas [17] 

developed free-volume theories for polymer solutions. Model parameters can be 

obtained from experimental thermal-expansion and compressibility coefficients. At 

about the same time, Hell and Prausnitz [18] and later Brandani [19] developed a 

semi-empirical local-composition theory; good agreement was found between theory 

and experiment for polymer solutions but these were not able to describe LeST. 

Freed and coworkers [20,21,22] recently developed a complicated lattice-field 

theory for polymer solutions which is formally an exact mathematical solution of 

the Flory-Huggins lattice. Good agreement was found between predicted results and 

the computer simulation data by Dickman and Hall [23] for the chain-insertion pro­

bability and for the pressures in a system of athermal chains and voids. Freed's 

theory does not use a mean-field approximation. 

In this paper, we introduce a double-lattice model based on Freed's theory. 

"Ordinary" polymer solutions are described by the primary lattice, while a secondary 

lattice is introduced as a perturbation to account for oriented interactions. 

MODEL DEVELOPMENT 

Our aim here is to establish expressions for the Helmholtz energy of mixing for 

binary polymer solutions. We begin with a primary lattice for the solvent/polymer 

mixture and later incorporate a secondary lattice. 

.. 
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1. Partition Function for a Double Lattice 

Binary polymer solutions are described by a Flory-Huggins lattice which we 

define as the primary-lattice. Each moleeule of solvent (1) occupies one site and 

each molecule of flexible polymer (2) occupies r2 sites, where r2 is the number of 

segments in the polymer molecule relative to r 1 = 1 for the solvent. 

At temperature T, the canonical partition function Q is given by 

Q = Lexp(-Ec/kT) (2) 
a 

where k is the Boltzmann constant and the summation is over all possible 

configurations of the system. Ea is the potential energy of the system at 

configuration a. For a binary mixture where only nearest-neighbor interactions con-

tribute to the potential energy, 

(3) 

where N ll ,N22 and N12 are the numbers of 1-1, 2-2 and 1-2 nearest-neighbor (non-

bonded) segment-segment pairs. They are related by the conservation equations 

(4) 

where z is the coordination number, N 1 ,N 2 are numbers of molecules of solvent (1) 

and polymer (2) respectively; ql and q2 are external surface parameters for 

molecule 1 and molecule 2, related to r 1 and r2 by 

(5) 

The positive energy parameters, £11'£22 and £12' are for the corresponding nearest-
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neighbor segment-segment interactions. For the mixtures of interest here, eq 2 can 

also be expressed by 

Q = L g (N 1'; 1 ,N 2,r2,N 12)( exp(e 11/ kT»N II (exp(e221 kT) t21( exp(e 121 kT)t12 (6) 
N12 

of 1-2 segment-segment pairs (not to be confused with g12 in eq 1). The summation 

is over all possible N 12. The Helmholtz energy of mixing can then be calculated by 

(7) 

where Ql and Q2 are partition functions for the pure components; Nr,Nr1 and Nr2 

are the numbers of lattice sites for the mixture and the pure components, respec-

ively. 

Next, we consider polymer solutions where segment-segment interactions 

between i and j include oriented interactions originating from hydrogen bonding, 

donor-acceptor electron transfer or strong dipole-dipole interactions. The surface 

fraction of a segment permitting oriented interactions is designated by 1]. In gen-

eral, 1] is different for different components; for simplicity. we treat 1] as a constant. 

Later we show that the calculated results are insensitive to the numerical value of 1]. 

The total number of i-j segment-segment interactions , N;j , is determined from the 

primary lattice, including both non-specific and oriented interactions. We visualize 

three types of interactions. The first (hb) occurs when both i and j interact using 

their oriented surfaces. The second (nn) occurs when both i and j interact between 

their non-oriented surfaces. The third (nh) occurs when i and j interact such that one 

entails an oriented and the other a non-oriented surface for interaction. Only the first 

type is responsible for oriented interactions. In the 'limit of complete randomness, 

the respective numbers of interactions for these three types are Njj 1]2,Nij(l-1])2 arid 
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(8) 

where Nhh,Nnn and Nnh are numbers of h-h, n-n and n-h pairs, respectively. How­

ever, we do not use eq 8, we present it here only for conceptural purposes. For more 

realistic systems, the number of oriented i-j interactions Nhh differs appreciably 

from N;jT}2; it depends on the competition between energetic and entropic effects. 

Generally, the specific oriented interaction is energetically favored because the 

energy is lowered upon pair formation. However, it is en tropically unfavored 

because the number of configurations chacteristic of the non-specific interaction 

outweighs the number of configurations characteristic of the specific oriented 

interaction. 

To account for the additional Helmholtz energy associated with oriented i-j 

interactions, we construct a simple Ising model which we describe by a secondary 

lattice. In this secondary lattice, the total number of lattice sites, NI , is related to 

the number of i-j pairs N;j by the conservation equation, 

Nlzl2 = N·· I) (9) 

The number of sites available for oriented interaction in this lattice is NIT}, while 

the remaining NI(l-T} )sites cannot participate in oriented interactions. The numbers 

of oriented i-j interactions and non-oriented i-j interactions are consistent with those 

mentioned in eq 8 in the limit of complete randomness. 

The partition function of this secondary lattice can be expressed as 

Qsec,ij = Ig(N jj ,1J,N",,)(exp8£jj)N
hh 

Nhh 

(10) 

where 8£ =8£1 kT and &; is the additional (positive) energy responsible for the 
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oriented interaction for each i-j segment-segment pair. The corresponding additional 

Helmholtz energy is 

Msec,ij = -kTlnQsec,ij (11) 

For one i-j segment-segment pair, the additional Helmholtz energy is 

(12) 

To make progress, we use a reasonable approximation: the secondary lattice is 

independent of the primary lattice. In other words, we consider the secondary lattice 

as a perturbation about the primary lattice which serves as the reference system. 

With the oriented interaction taken into account, the total partition function of the 

primary lattice for a binary mixture is given by 

Q= Lg(N1,rl,N2,r2,N12) 
N12 

~here M sec•U ' Msec.22 and Msec.12 are given by eq 11 or 12. 

Because Msec,ij is temperature dependent, the essential feature of the secon-

dary lattice is to introduce a temperature dependence for energy parameter Eij' For 

calculations under isothermal conditions, the secondary lattice provides no func­

tional advantage. 

The summations in eqs 6 and IOare over all possible values for N12 and Nhh • 

However, no closed-form analytical solution is available for either eq 6 or eq 10. 

The mean-field approximation gives a comparatively simple expressions for the par-

tition function and for the Helmholtz energy of mixing by taking the most probable 

value of N ll ,N22 and N12 through minimizing the Helmholtz energy. However, this 

. procedure gives incorrect results near the critical point. On the other hand, Freed's 
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theory seems to be promising because of its non-mean-field nature. Therefore, our 

model is based on the Helmholtz energy of mixing from Freed's theory. 

2. 6Asec,lj for the Secondar)1 Lattice 

The secondary lattice is a simple Ising lattice where each component has only 

one segment and occupies one site. Then Tl=l and T2=1. To obtain an analytical 

expression for the Helmholtz energy of mixing for the Ising lattice, we use Freed's 

theory developed for a Flory-Huggins lattice. We set the numbers of segments of 

both components equal to unity and expand the Helmholtz energy of mixing to 

second order in reduced energy; we then obtain an approximate solution for the 

Ising model: 

(14) 

where e is a reduced interaction parameter defined by 

(15) 

To test eq 14, we calculate the coexistence curve using traditional phase­

equilibrium thermodynamics. By adopting a series-expansion method, accurate 

numerical results of coexistence curves have been obtained for the Ising model by 

Scesney [12] in the form of Pad~-approximant coefficients for spontaneous magneti­

sation . We then compare the result calculated from eq 14 with that calculated from 

I 

the Pade-approximant coefficients. In these calculations, e c for the critical tempera-

ture is evaluated by solving the equation 

(16) 

Figure 1· compares Scesney's accurate numerical solutions to predictions of the 
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truncated Freed theory. Only half of the coexistence curve is shown because it is 

symmetrical about xl=0.5. Figure 1 also shows results of the Flory-Huggins theory 

(given by eq 1 and--r1=r2=0.7887 ); here the value of r was chosen to obtain the 

same critical point as that calculated from Freed's theory. The results of Freed's 

theory (eq 14) are much better than those from Flory-Huggins theory. For the range 

from T1Tc=1 to TITc=O.75, the standard deviation of compositions of the conju­

gated phases of the coexistence curve (calculated in comparison with Scesney's 

accurate results) RMSx, is 0.0193. 

However, agreement between phase boundaries calculated by Freed's theory 

and the results from Scesney is not complete, probably because eq 14 does not 

include higher tenns. There are several ways to revise eq 14 to improve the coex­

istence curves. Two of them are investigated here. One way -is to introduce an 

empirical coefficient c2 to the ~2xlxi 14 tenn. The best choice is c2=1.074. The 

other way is to add to eq 14 an additional high-order tenn, clOzelOxfox~o, arbi­

trarily taken to be order 10. The best choice of the numerical coefficient is 

clO=380.0. The results of these two revisions are well-matched. If c2=l.074,clO=O, 

RMSx=O.OO15; if c2=1,clO=380.0, RMSx=0.0066 . Any linear interpolation between 

these two limits gives nearly equally good results. Therefore, we can write a gen­

eral expression for the Helmholtz energy of mixing for the Ising model. For this 

special case where rl='2=1, 

where c2 and clO are related by 

CIO = 5515.1-5135. 1c2 (18) 

The coefficients of eq 18 are obtained from the two limits mentioned above. 

.. 
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The calculated coexistence curve using eq 17 is nearly perfect when compared 

to Scesney's accurate results. For some binary systems, we use c2 =1.074 and 

ClO=O. However, as shown later, for some binary mixtures, it is better to retain the 

high-order term while restricting constants c2 and clO according to eq 18. 

For the secondary laniCe, component 1 represents those sites available for 

oriented interactions while component 2 represents those sites not participating in 

oriented interactions. The contribution to the Helmholtz energy of mixing (Msec.;j) 

is obtained directly from eq 17 with three changes. First, x is replaced by 1J ; 

second, E is replaced by Sf; and third, we add the additional energy of the refer-

ence state, 

I 

= N/kT[1Jln1J+(1-1J)ln(1-1J )-zSf;j1J 2/2-C2Z (Sf;j)21J2(1_1J )2/4-ClOZ(Sf jj)101J 10(1.'7)1<>:1 (19) 

The first two terms on the right-hand side account for the Flory-Huggins entropy 

that ,arises from mixing N/1J sites with N/(1-1J) sites. The term -ZTJOE;/2 accounts 

for the ~nergy of the re~erence state where all the sites in the lattice are responsible 

for oriented interactions. The contribution of the other reference state (where all the 

sites in the lattice cannot participate in oriented interactions) is zero. Constants c2 

and cIO satisfy eq 18. 

For one i-j segment-segment pair, the additional Helmholtz energy is, 

Calculated results are insensitive to 1J because it is coupled with the additional 



- 12 -

energy DEij. 

3. ~A for the Primary Lattice 

In this work, the primary lattice for fluid mixtures is a Flory-Huggins lattice. 

In Freed's theory, there are three contributions to the Helmholtz energy of, mixing 

for a Flory-Huggins lattice: mean-field contribution plus two corrections for devia-

tions from mean-field behavior, one energetic and one entropic. After rearrange-

ment, the Hehnholtz energy of mixing can be expressed as 

IlAINrkT = (cI>llr l)lncI>I+(cI>2Ir:z}lncI>2+ L LQmncI>~2 (21) 
m II 

where coefficients Qmn are functions of z ,rl,72 and e . Upon ~xpanding the 

Helmholtz energy of mixing to order ~2 and z-2 for a cubic lattice (z=6), the 

coefficients are 

where c2=1 in Freed's work. Here, however, we use c2=1.074. All other 

coefficients Qij not mentioned in eq 22 are zero. 
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To test the theory, we first calculate the coexistence curve for a polymer solu-

tion with rl=l and r2=100; we then compare the results with the computer­

simulation data recently presented by Madden, Pesci and Freed [24]. For these cal­

culations, we need chemical potentials for solvent 1 and polymer 2. They are found 

from 

o d~A 
II -II ---
r-2 r-2 - dNi 

J12-JL2 = kT[lncI>2+cI>l(l-.2 )+r2L Lamn(ncI>j+lcI>i-1+(l-m)cI>icI>i)] (24) 
rl m n 

Superscript "0" refers to the standard state (pure close-packed liquid at system tem-

perature T). The comparison is shown in Figure 2, which also gives results from 

the Flory-Huggins theory. It is surprising that Freed's theory cannot predict the 

correct coexistence curve, even qualitatively. The prediction is even worse than that 

of the Flory-Huggins theory. The poor results may be due to neglect of higher tenus 

in the expansion of the partition function or Helmholtz energy of mixing. We find 

that the entropic correction is the weakest term. Once we omit it, the prediction will 

be much better although improvement is still'needed. We therefore revise the .entro-

pic correction term by dropping all the higher-order terms and retaining only the 

first-order term but multiplied by an empirical coefficient cs • The amn in eq 20 are 

then revised as 
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(25) 

where c2=l.074. All other coefficients Qmn not mentioned in eq 25 are zero. As 

shown in Figure 2, with cs=O.3, we obtain a very good prediction of the coexistence 

curve when compared with the computer simulation results by Madden et al. 

To account for the oriented interactions, we need a secondary lattice. The 

secondary-lattice contribution is a perturbation to a fixed reference system, (i.e., the 

primary lattice) whose Hehnholtz energy of mixing is given by eq 21. Equation 13 

gives the total partition function which includes both reference and perturbation 

contributions. The general equation for the Helmholtz energy of mixing, eq 21, fol­

lows from eq 6. Equation 13 also follows from eq 6. To account for oriented 

interactions, we use eq 6 but we must replace E;j by E;j-Msu,;/N;j. Following 

the definition of e in eq 15, if oriented interactions occur in 1-2 segment-segment 

pairs, we replace e by e +2Msu liN12kT in eqs 21, 23, 24 and 25. If oriented , . 

interactions occur in 1-1 segment-segmmt pairs, e is replaced by e -Ms~c ,Ill N 11 kT 

in these equations. If oriented interactions occur in 2-2 segment-segment pairs, e is 

replaced by e -~Asec 221N22kT . 

PHASE-EQUILIBRIUM CALCULATIONS 

1. Results for Flory-Huggins Parameter X 

The Flory-Huggins parameter X is often used to characterize the relative 

solvent-polymer interaction. It is defined by the chemical potential of the solvent, 
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(26) 

where rl is usually- set equal to unity; r2 is then calculated using specific volumes . 
VI and v2 for solvent and polymer, 

(27) 

where MI and M2 are molecular masses for solvent and polymer, respectively. If 

the interaction parameter gI2 in eq 1 does not depend on the concentration, X=g12: 

The relative chemical potential for solvent PI-pi can be detennined experi­

mentally by various methods such as vapor sorption, osmotic pressure, light scatter­

ing and sedimentation. When carried out with care, results from different experi-

mental methods show good consistency with respect to each other. 

To test our model, we substitute the relative chemical potential of solvent from 

eq 23 into eq 26; we then calculate parameter X. It is important to note that we cal-

culate volume fractions 4> in eq 23 using model parameter r2 which sometimes 

should be adjusted; however, in eq 26, r2 is calculated by eq 27. 

To calculate parameter x, the secondary lattice is not used because the data we 

examined are isothermal. Usually, two parameters are needed, the energy parameter 

e/ k and size parameter cr- The latter is defined as: 

C = r 

r2 (optimal fit) 

r2 (from eq 26) 

Figures 3,4,5 and 6 show results for n-pentane/pIB(polyisobutene) at 25°C, 

benzene/pDMS(polydimethyl siloxane) at 25°C, chloro-benzene/pDMS at 60°C, and 

DIBK(di-isobutyl ketone)/pDMS at 35° C. In these cases, r2 does not require 
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adjustment, i.e. cr= 1. One parameter ef k gives a good fit. The concentration depen-

dence of X , which cannot be described by the original Flory-Huggins theory, can be 

reproduced satisfatorily. However, sometimes two parameters are needed. Figures 

7,8,9,10, and 11 show results for benzene/natural rubber at 25°C, benzene/PIB at 25° 

o 0 
C, cyclohexane/PIB at 25 C, cyclohexane/PDMS at 25 C and MEK(methyl ethyl 

ketone)/pDMS at 20
0 e and 50°C. One parameter is not enough for a good fit. Two 

parameters, elk and cr' are needed. Note that the minima in X-<l> curves for 

benzene/nature rubber and cyclohexane/PIB systems can be reproduced quite well. 

Figure 11 showing MEK/PDMS at two temperatures suggests that a temperature-

dependent ef k is needed. Because of the scarcity of data at different temperatures, 

we did not try to introduce the secondary lattice which provides a temperature 

coefficient for X. 

2. Results for Liquid-Liquid Equilibria 

For liquid-liquid equilibrium calculations, we require the experimental coordi­

nates of the critical point. We find these coordinates using 

and 

ij2(Mfl'fr kT) 
-----=0 

d<l>~ 

d\MINrkT) 
-----=0 
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Using the experimental upper (or lower) critical coordinates, eqs 28 and 29 are 

solved to yield energy and size parameters elk and '2('1=1). 

For hydrogen-bonding systems or for systems whose components differ appre-

ciably in molecular size, the primary lattice alone always yields a narrower coex­

istence curve. Therefore, we have to introduce the secondary lattice to obtain a 

satisfactory fit. 

For systems having only a UCST , we set c2=1.074 and clO=O. The results 

are not sensitive to 11. It can be arbitrarily set within a reasonable range from 0.3 to 

0.5. The only additional adjustable parameter is &Ik, the extra energy contributed 

by an oriented interaction. This parameter is obtained from fitting data for one tie 

line. Figures 12 and 13 show results for DIBK/PIB22700(polyisobutene, 

Mw=22700) and DIBKjPIB285000(polyisobutene, Mw=285000). A single lattice 

exhibits only a small improvement over those calculated from original Flory­

Huggins theory. Using a double lattice, we obtain a very good fit. 

For systems having an LCST or having a closed miscibility loops (both UCST 

and LCST), clO cannot be set to zero; clO or c2 must be adjusted to obtain a good 

fit with the restraint shown by eq 18. In these cases, altogether 4 parameters are 

needed. Besides elk and '2 obtained from one critical point, we have to use another 

two, viz., 8t:lk for special interactions and clO0 They can be obtained by fitting 

another set of experimental (upper or lower) critical coordinates and one tie line 

giving the equilibrium compositions for a pair of conjugated phases. If the critical 

compositions for upper and lower critical points differ appreciably, then '2 obtained 
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from LCST will differ from that obtained from UCST. In this case, we use a linear 

relation to calculate r2 for temperatures between UCST and LCST. For polymer 

solutions, because-of. experimental difficulties at higher temperatures, usually we 

only have an experimental LCST. In this case, we postulate a reasonable pseudo­

UCST and then follow the preceding procedure. Figures 14 and 15 show results 

for water/PEG5000(polyethylene glycol, and 

water/PPG400(polypropylene glycol, Mw=400); they are systems with an experimen­

tal LCST. Excellent fits are obtained. Figure 16 shows results for 

water/PEG3000(polyethylene glycol, Mw=3(00) with a miscibility loop. In this case 

we get a fair fit with c 10=328.65 . The standard deviation of compositions in weight 

percent for the coexistence curve, RMSw=O.035. The dotted line in this figure is . 

calculated with clO=O. The corresponding RMSw=O.080. An essentially perfect fit 

can be obtained using an empirical value for cI0 and eq 18 but in that case, Cz is 

negative. We do not assign any significance to that result because first, we have no 

information concerning the accuracy of the experimental data (these data are not 

shown in tabulated form but only by a small graph) and second, near the upper solu­

tion temperature (214°C) it is likely that free-volume corrections (neglected here) 

are required. 

DISCUSSIONS AND CONCLUSIONS 

The model presented here assigns a significant composition dependence to the 

Flory parameter g12 (eq 1) even when there is no specific solute-solvent interaction 

such as hydrogen bonding. A significant part of this composition dependence is 

given by Freed et al [22] and, as shown by them, it is essentially equivalent to 

replacing volume fractions in the last term of eq 1 by surface fractions, as suggested 

many years ago by Orofino and Flory [33] and in somewhat different form by 
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Ko.ningsveld and Kleintjens [7]. Ho.wever, Freed et aI's co.rrectio.ns to. the o.riginal 

Aery-Huggins theo.ry go. further; they shew that additio.nal terms are required 

because their theo.ry .. unlike these o.f mo.st earlier autho.rs, do.es net make the usual 

mean-field assumptio.ns. In eq 25, the seco.nd term fer all is the o.riginal Ao.ry-

Huggins term; the first term fer all co.rrects the entro.py fer deviatio.ns fro.m mean-

field behavio.r. Coefficients a12 and a21 are (essentially) equivalent to. the effect that 

co.ncerned Oro.fino. and Aery [33] and Ko.ningsveld and Kleintjens [7]. Coefficient 

a22 co.rrects fer the A~ry-Huggins mean-field energy. 

When the system temperature is well belo.w the gas-liquid critical temperature 

o.f the so.lvent, polymer so.lutio.ns can be pro.perly described using a lanice model. 

Ho.wever, the mean-field appro.ximatio.n widely ado.pted in derivatio.ns o.f the. 

Helmho.ltz energy o.f mixing has serio.usly limited the applicability o.f lattice models. 

Besides its well-kno.wn poor perfo.rmance in the vicinity o.f the critical co.nso.lutio.n 

po.int, the dependence o.f Flo.ry-Huggins parameter X en co.mpo.sitio.n exposes 

ano.ther weakness o.f the mean-field appro.ximatio.n. Many attempts have been made 
~ 

to. o.verco.me these difficulties. Ho.wever, empirical terms o.r empirical coefficents 

have to. be introduced. Freed's lattice field theo.ry pro.vides a new impetus because 

o.f its no.n-mean-field nature. The present wo.rk shews that, with small empirical 

revisio.ns, Freed's results are useful fer describing the phase behavio.r o.f stro.ngly 

no.nideal fluid mixtures including po.lymer so.lutio.ns. The successful descriptio.n o.f 

the co.ncentratio.n dependence o.f FIery-Huggins parameter X and the co.existence 

curves, especially near the critical co.nso.lute po.ints, leads us to. the co.nclusio.n that 

in mo.dified form, the Ising lattice as well as the FIery-Huggins lattice can provide 

good representatio.ns o.f phase equilibria fer po.lymer so.lutio.ns. The deficiency o.f 

FIery-Huggins theo.ry do.es net lie in the lattice model but in the approximatio.ns 

used to. o.btain an expressio.n fer the Helmho.ltz energy o.f mixing. When the 

Helmho.ltz energy o.f mixing is modified to. agree with accurate results o.f 
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spontaneous magnetisation of the Ising model, and the computer simulation coex-

istence curve for a rl=l and r2=100 lattice polymer mixture, the phase behavior of 

polymer solutions can be reproduced well. 

In our model, we have two adjustable parameters: the energy parameter e/ k 

and the size parameter cr' For liquid-liquid equilibria showing a LCST or a misci­

bility loop, we need two additional parameters, the additional energy for an oriented 

interaction &/k and cw. The need for cr arises because the lattice model provides 

only an approximation for polymer solutions; a solvent molecule can hardly be con­

. sidered a flexible chain. A polymer molecule is not an ideal flexible chain as we 

have assumed in the theory. Upon introducing cr we can fit the X-<l> curves for 

several polymer/solvent mixtures. For mixtures with oriented interactions, a 

double-lattice model is useful. Incorporating c2 and cIO makes the model more 

flexible. 

The model presented here is for polymer solutions at high densities, i.e., near 

close packing. It can serve as a basis for constructing models for polymer solutions 
'" . 

that are compressible; for such mixtures, it will be necessary to add free-volume 

corrections [3]. 
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Figure 6. 

Figure 7. 
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. Figure 10. 

Figure 11. 

Figure 12. 

Figure 13. 

Figure 14. 

Figure 15. 

Figure 16. 

Comparison of coexistence curves calculated from varIOUS models 
with Scesney's accurate results. 

Comparison of coexistence curves calculated from varIOUS models 
with computer-simulation results. 

Composition dependence of X for n-pentane/Pffi. 

Composition dependence of X for benzene/pDMS. 

Composition dependence of X for chloro-benzene/pDMS. 

Composition dependence of X for DIBK/PDMS. 

Composition dependence of X for benzene/nature rubber. 

Composition dependence of X for benzene/pffi. 

Composition dependence of X for cyclo-hexane/Pffi. 

Composition dependence of X for cyclo-hexane/pDMS . 

Composition dependence of X for MEK/PDMS. 

Coexistence curves for DffiK(I)/Pffi22700(2). 
FH: TI=I, '2=142.6, Elk=57.18JK 

single lattice: '1=1, T2=160.7, £Ik=86.705K 

double lattice: TI=l, T2=160.7, £Ik=-346.029K 

&1IIk=1658.57K, 7}=0.3 
expt: Shultz and Flory [31]. 

Coexistence curves for DIBK(1)/Pffi285000(2). 
FH: Tl=l. T2=1540, Elk=55.884K 

single lattice: '1=1, T2=1712, Elk=86.162K 

double lattice: TI=I, T2=1712. Elk=-332.347K 

0£11Ik=1658.57K, 7}=0.3 
expt: Shultz and Flory [31]. 

Coexistence curves for water(I)/PEG5000(2). 
double lattice: TI=l, '2=1069.2, £Ik=949.143K 

&12Ik=1346.971K, 7}=0.3, clo=2.3325 
expt: Malcolm and Rowlinson [32]. 

Coexistence curves for water(1)/PPG400(2). 
double lattice: TI=l, T2=49.143, Elk=1l26.365K 

&12Ik=1581.l08K, 7}=0.3, clo=0.084473 
expt: Malcolm and Rowlinson [32]. 

Coexistence curves for water( 1)/PEG3000(2). 
double lattice: ,,=1. ',2(UCST)=470.91. T2(LCST)=489.24. Elk=737.339K 

&12/k =858.503K. 7}=0.3. clO=328.65 

expt: Malcolm and Rowlinson [32]. 
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