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~ LATTICE VIBRATION AND MECHANICAL STABILITY
- IN AN IDEALIZED ALLOY

by

. ‘ ! C. W. Krause* and J. W. Morris, Jr.
5 Inorganic Materials Research Division, Lawrence Berkeley Laboratory and
' Department of Materials Science and Engineering, College of Engineering

University of California, Berkeley, California 94720

ABSTRACT
In this.ﬁaper we use a simple modelvof a metallic‘alloy to freat

.'laptiCe vibrations and to probe the mechanical,stability of the close-
packed crystal éfructures. bLetting fon cores intéragf.according to the
two-body Friedel pqtential, we compute dispersioh félations for trans-
verse phonons propagating perpendicular to the cldée—packed planes of the
FCC aqdrHCP lattices. -Géneraiized dispersibn curves are found_as a
function of the conduction'electfon’fo atom ratio Z, and elastic.con—
stants are dete;mined as a»functioh of Z using the method of ;ong‘waves.
‘The regionS’df Z over which imaginaryIfrequencies‘appear are identifiéd;

these corfespbnd to regions.of mechanical instability of the lattice.
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I. INTRODUCTION

In a previous paper(l) we used a simple model bfva metallic alloy
to compare the relative cohesive energies of selecfed‘metallic,crystal
structures as a function of the conduction electrpn to atom ratjo Z. In
this paper:ﬁe use the same approach t0'modél 1atfice'vibrations in
metallic alidyé and to probe the mechanical sﬁability_of thé‘clése—packed
crystal structures.

The ﬁodel bégins from the observation in pseudopotential theory
(Harrison(z)).that to secoﬁd order perturbations the'éohésivé energy of
a simple métal méy be written |

'E=E0_+E1+E.V(rij) '(1»)
ij

Qhere the.zerbfh and first'order'termsbdepend on the nature of the atom
aﬁd oﬁ the étqmic volume. ‘The sfruccural éontribdtioh.to the_cbheéivé_‘
energy appears first in the se;ond ofder Ferm, whichﬂié éxpressibié as a
sum of twdfbody interactions in real space. The pétenfial,V(rij) depen&sv

on the precise pseudopotential assumed, but has thevasymptotic_form

cos(2kFr)

V(r) ~» A (ékFr)3 , (2)¥.

valid for large values of kFr, where V0 is a functibn of structure-=

independent parameters from pseﬁdopotential thepry(z) and.kF is the

Fermi wavénumber. We obtain a simple tractable model by approximating

V(r,.) by its astpto;ic'form. The structural contribution to the-

i}

cohesive energy'may then be written as the dimensionlessvsum

€sT © EST/VO = )1'} virgg) T (3)
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where v(r)-isxa dimensionless potential (previously referred to as the

Friedel potentlal( ))

€

V) = cos Qi) Qigr)” I (5

LN

For~gived‘cfySta1 structure the energy €g depends oniy on the electron-
td atom retio, Z. The model may be generalized to treat alloys by
simply using-the mean value of Z in the alloy, a step which impllcifly
involves the assump;ion of a random solution add the use of the virtuai

(3)

crystal model;

Eqdation (3) may‘be used to estimate the energydchange onden arbi-

trary rearrangement of atoms at constant atomic §oluﬁe. In Reference 1
we compared the cohesive energies of a selected set of common crystal

' structuresbas a funetion of Z. Similarly, by 1etting‘the displacement

of atoms be infinitesimal and perlodlc equation (3) may be used to con-
struct model phonon dispersion curves as a functlon of Z. This procedure
yields shear elastic constants and illustrates the mechanical instabili-
ties which limit the.range dﬁ stability of crystal structures.

In the following we specifically compute the dispersion relatidns
for transverse phonons éropagating perpendicular to the close-packed
planes of the face centered cubic and hexagonal close packed structuresf
These eases‘arerparticularlf simple since the aseociated lattice defof—,
matidn is e‘rigid shear of close—packed,planes.’VThe»equations of motion
may be written in a one dimensional form, with the planes taken to

- interact according to a slight modificatien of the Blandin—Friedei-
Saada

4,1 1nterp1anar interaction. As the electron to atom ratio Z is

variedithe resulting dispersion relations exhibit the two common types ;
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"an observation fi:st made by Koenig.
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of lattice mechanical instability: elastic instability, which appears

‘as an imaginary frequency in the long wavelength limit (and which has

been previously studied in this model by Cousins( )), and other insta-

bilities of the "soft-mode" type, which are manifested by an imaginary

frequency of a short wavelength vibration while the long wavelength

vibrations, and hence the elastic constants,Aremaiﬁ'well’behaved.

) Ii. COMPUTATION'OF DISPERSION RELATIONS

For lattice vibrations oriented along certain symmetry directions
in a crystal, ‘the normal modes are polarized into one purely longitudinal
and two purely transverse components.( ) The transverse component:of
such a modg impels a rigid, parallel displacement of planes of atoms
perbendicuiar-to the propagation direction. Wiﬁh the(introduction of
ingerpianar stiffness constants(6f7) the pfOblem of determining-disper4
sion relations reduces t§ a vibration problem 1n'one dimensioﬁ. The
appropriaﬁe dispersion relation is |

w2 = 51; E c:(1 - ‘cosA(qu)V]
T '

whefe\m is the angular freqﬁency associated with the phonon of(wavei

number q, M is the mass of the ion, and Cp is the stiffness constant

between a plane serving as origin and a parallélvplane a distance"pd

’ from.the origiﬁ. For a transverse phonon propagating.along the stacking

diréction,of closé-packed planes the values of Cp can be easily apprbxi—r

mated through use of the interplanar form( »8) of the Friedel potential,.
(9) |

To formulate generalized dispersion relations it 1s useful to

 consider thie dimensionless ffequency

(w')2 = mazwzlvo- . o . tS)



The dispersion relation is then

@2 =3 c'(1 - cos(qpd)] . | (6
p#0 P

where C"is the dimensionless stiffness constant
' = mac /v, | Q)
P Y _ }

It can be shown (Blandin, Friedel, and Saada(4)) that if ion cores
interact by the Friedel potential then parallel close—packed planes of
ions seperateo by a nornal distance x will have a total (dimensionless)
interaction energy

¢ (x) =Z \P(§J_,x) cos (g_l'-'lz) ) v_ ' (é)

EL . o :

4where the sum is over the set of reciprocsl lattice vectors perpendicu-
lar to the stscking-direction, h is a translation vector, parallel to
the planes which would carry one plane into the other if the two were
superimposed, and w(gl.x) is a functlonal coeffic1ent. The stiffness
coefficients Cé follow directly from equation (8). ‘Let a plane a
distance (pd) from a plane which serves as origin undergo an infinitesi-

‘mal translation §, of magnitude §, perpendicular to the stacking direc-

tion. The change in energy per ion is

84 (pd) = ZIP(gL,Pd){cos(g_L (b+6)) - cos(g| D)} O
§ :

Assuming . the lattice is initially in equilibrium (though this equili—

brium may be unstable) a Taylor expansion in the small quantity § gives

_ the stiffness constant

>




|

!

|

| ="

l{

| e 2 (80D = - Y gl u(e)pd) cosCab)  (10)
1 C! = — [4¢ = - cos

| > T o6 (8¢ (p gl§ B| P sL

| 2l

L

| ¢ where gl§ is the projection of gl-in the direction of 6
|

Equation (8) may be simpllfied considerably First, since the
,stacking directlon of close-packed planes is a symmetry direction, the
value of the summation is independent of the direction of.6 Second,
the summation is dominated by those terms for which |gl} < ZkF (4, 8)

When there are such ‘terms the larger values of gl.may be neglected.

Let

= (d/a)/(d/a) ppp, s T (11)

the non-ideality ratio, where d is the interplanar spacing, a is the

interatomic spacing in a close-packing, and (d/a)IDEAL is ¥2/3. Then in

an FCC or HCP crystal the-flrst set of non-zero reciprocai lattice vectors,
, 8

%L,'falls_below ZkF at an electron-atom ratio Z = Zc = 1.147.( The

next smallest set remains greater than ZkF until Z = ¢§7'Zc = 5.92Y..

| v '  Hence over the range of Z which includes most. of the ciose—packed metels
the summation in equation (8) is well.approximated by a single term.
With these siﬁplifications the interﬁlanar stiffness constant 1is

‘ o feey =0 |
| c'= | ' | - - (2)

v | P By, . b40

Lo

" where the fifst form gives the stiffness constant for equivalent planes

(e.g., A-A in the ABC... stacking notation) and the second applies to

inequivalent planes (e.g., A-B or A—C). The coeffiéient Y(p,Z) is(s)'

. w(p,Z) = - 0.2050 sin p6/ (27 )3 5/3, 4/3 2. (13)



where

0 = 56723 - 2/HYR25 (14)

Equation (15) differs from a similar relation given by Blandin, Friedel,
and Saada(a) only through the inc1usion of the non-ideality factor Y.
Inéérting eqﬁations (12) and (13) into equation (6) and éerforming :
the summation for‘the_sﬁacking sequence ABCABC... we bbtéin a'dispersion
relation for a transverse mode ﬁropagating iﬁ a <1ii> direction in an -

FCC crystal:

0@ = F@{ay(®) - 1o, (6+qd) - Ja,(e-qa)

15
- 30,(30) + Zu,(30+3qd) + Fu,(30-3qd)} o
where R :
| CF(2) = 0.410/m2734/37 (16)
and
| - o : 6/2 _
ay(8) = 32 sin(n8) /n’ = ~61n 2.'|'s.inQ/2‘|r +2 .6';¢d¢/tan $. .(17)

m=1
A similar summation for the stacking sequence ABAB;;, yields the disper-

sion relation for a transverse mode propagating parallel fo an <001>

direction inian HCP crystal:
42 _ . 1 1 ‘
w' () = F(Z){az(e) - §u2(6+qd) - Eaz(e-qd)
= 35 (20) + 3. (2642qd) + 30, (20-2q0)} -(18)
™2 8%2 q g%z 4%-4q -

Elastic constants for these model crystals may be found through the

method of 1ong'ﬁaves. If the dispersion relation is expahded about q=o,



U

the lead term will be of the form

0'? = ¢ (qa)? | | er)

where C' is the dimensionless form of the elastic constant appropriate
to the Vibratibnal mode to which the dispersion relation applies° C66
for the <001>; mode in HCP and [C  -C ,*C,,1/3 for the <111> mode in-

FCC. Perfbrming the‘expansion,'we obtain:

' lF(z){ﬁ 93— a,(28) - dz d 8)} (HCP). (20)
66 2 402 2 d62 ,2 i _
and
. _ | ;2 « dz
(c c' +c'4)/3 = —F(Z){s ——§a2(3e) - 2(e)} (FCC) (21)
- g de de ,

Equations (15), (18), (20) and (21) give generalized model d1sper—
sion relations and elastic constants, which depend on the crystal struc-
ture and the electron—to—atom ratio (Z) only. Given the simple form of

the bonding function used, we do not expect these'relations to be precise.
We might; however, expect them to give generally reasonable answers. To
test this we computed dispersion curves for aluminum (FCC, Z=3) and

(2)

magnesium (uce, z=2), using'values of V0 calculated from Harrison's'

(10)

formula using the pseudopetentials of Appapillai and Williams. In

Figure 1 we compare the results to the experimental dispersion curves

for the <111>; mode in AL and the <001>, mode in . 11,12) gy reSults '

show anticipated trends. At small q in the acoustic branch the agreement

,between the model and experiment seem excellent given the simplicity of

the model As q increases toward the edge of the BrillOUin zone, dis-

.crepancies become evident, and the optical mode of Mg is poorly modelled:

 These discrepancies would appear to arise from the_importance of short
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range forces in the short wavelength vibrations ét larger q; short—rangg
interactions are not well modelled by the Friedel potential, which
approximatés the asymptotic interaction at long range.

The elastic constants computed from the long wavelength limit of

Figure 1 are:

11

C.., =1.3°10 dyne/cm2

66

for magnesium and

11

~C1,*C,4)/3 = 1.4°10 dyne/cm?

(C41-Cy2%C,,

for aluminum. These values show reasonable agreement with the experi- '

11

mental values of 1.64x10"" dyne/cm and 2.34x1011 dyne/cm, respectively.

I
|

III. LATTICE STABILITY
" Any infinitesimal deformation of a crystal lattice can be regarded

as a linear combination of the extended normal mode vibrations. If all

the normal mode or phonon frequencies of vibration are found to be real,
. " _

then the lattice is stable against any infinitesimal’deformatioﬁ{' How—.
ever, a norﬁal mode with an imaginary frequency will grow in ampli;ude
with time and the lattice will eventually relax to another.configuré-
tion. The cbndition that phonqn frequencies be real hence provides a
criterion for the structural stability of a 1attiqe;,‘The stability

(13) in terms of the elastic constants of a'

-criterion expressed by Born
metallic crystal are just a special,cése of this‘condition.

To tést‘the lattice stébiiity of.the HCP and FCC structures for
atoms_interécting according to the Friedél»potential we employed |

‘equations (15) and (18) to compuﬁe dispersion curves as a function of

vy



¥

08004202094
-9-

electron to atom ratio (Z). The results are shown in Figure 2. To

extend the_curves over rénges of imaginary frequency we have plotted

,—/wazl where o' is imaginary.

Dispersion curves for the FCC structure at various values of Z are

-given in Figure 2(a), The two characteristic types of vibrational

instability are eﬁident in these curves. At Z = 2.0 the lattice is
elastically unstable; the elastic constant (Cll—C12+C44) is negative as
shown by the imaginary value of w' in the long wavelength limit. At

Z = 1.5 the lattice exhibits a sﬂort—wavelength vibrational instability

.of the "soft mode" type; while the elastic constant is well-behaved, w'

- becomes imaginary for q/qm greater than about 0.5. At Z = 2.5, 3.0, and.

3.5 the lattice vibration in the <111>, mode is stable.
Figure 2(b) shows example dispersion curves for the HCP iattice

(acoustic mode only). At Z=2.0 and 2.5 vibration in the <001>, mode is

" stable. The lattice is elastically unstable at Z = 1.5, and again at

Z = 3.0 and 3.5; the elastic constant-C66'is negative at these values of

.

- the electron-atom ratio. A_short—wavelepgth;insﬁability intrﬁdes for

. Z>3.53 (not shown) though the elastic constant is positive for

3.53<72<4.0.

‘The results are summarized and compared to those obtained in earlier

work(l’A)‘in'Figure 3. Plot 3(A) shows the regions.of relative prefer-

ence of the FCC and HCP structures as determined through direct computa-

- tion of structural energies (Reférence 1). These computations do not

consider the possibility that the lattice is unstable. Plot 3(B) is

~ taken from Blandin, Friedel, and Saada(a) and showsithe regions over

‘which the energy of a stacking fault in the HCP or FCC structure is

- .
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positive, hence the region of Z over which these structures are stable
against the formation of a fauit.. |

Plot 3(C) is taken from the present\ﬁbrk, and shows the values of Z
over which ﬁhe FCC and HCP strucfures are stable to transverse vibration
of the close-packed planes. Two interésting featufes appear frqmva |

comparison of this plot to the earlier two; . First, the region of FCC

preference near Z = 1.5 disappears along with the region of HCP

L]

preférence near Z = 3.6. In both cases the structures show a short-
waveleﬁgth instability and hence have higher energy than undetermined
structuresIWhich differ through short period trans&erseidistortions.
These ‘are not simply faulted structures since the ideal lattices are
stable agaiﬁst faultiﬁg over these:ranges,of Z. Second, the region of
HCP viﬁiationai stability centered about Z ='2;0 extends into the region
wﬁere the étacking faﬁlt energy of the HCP structure is negative. Since
a'stacking fault in a close-packed structure is a finite transverse
displacement of close—backed planes, Figure 3(C) shows the région over
which the HCP structure is stable in the-sensekthaf.é fault will not
spontanebuéiy‘form through growth of an infinitesimal transverse dis-
placement. | |

Finally, recognizing thé.result,’discussed in the previous ggction,
that the Friédel.model is less reliable fér short wavelength displace-
ments where short—range interactions are important; wé have included
plot 3(D) which shéws the regions of elastic stability for the HCP and’
FCC structures. The only significant distinction_betwéen this plot and

that in 3(C) is the'reappearance of the FCC field near Z = 1.5 and the

HCP field near Z = 3.6.
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FIG. 2. Phonon dispersion curves as a function of valence (Z) for (a) the <111>_ mode in an FCC .
lattice, (b) the <001>_ acoustic mode in an HCP lattice. Where the friquency w' is
‘imaginary the curve haS been continued by plotting the quantity -V(w')".

[ <’ ’ . R e o

—{7'[_



<3

FIG. 3.
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XBL 74107455

Ranges of electron to atom ratio Z over which various stabil-

- 1ty criteria are satisfied for the FCC and HCP structures:

A) relative cohesive energy at O:K; B) stability against
faulting; C) real phonon frequenty; D) positive elastic

constants.
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