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LATTICE VIBRATION AND MECHANICAL STABILITY 
. lN AN IDEALIZED ALLOY 

by 

} C. W. Krause* and J. W. Morris, Jr. 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering 

University of California, Berkeley, California 94720 

ABSTRACT 

In this paper we use a simple model of a metallic alloy to treat 

lattice vibrations and to probe the mechanical .stability of the close-

packed crystal structures. Letting ion cores interact according to the 

two-body Friedel potential, we compute dispersion relations for trans-

verse phonons propagating perpendicular to the close-packed planes of the 

FCC and HCP lattices. · Generalized dispersion curves are found as a 

function of the conduction electron to atom ratio Z, and elastic con-

stants are determined as a function of Z using the method of long waves. 

The regions of Z over which imaginary frequencies appear are identified; 

these correspond to regions.of mechanical instability of the lattice. 

*Present Address: Department of Metallurgy, University of Oxford, 
Oxford, England. 
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I. INTRODUCTION 

In a previous paper(l) we used a simple model of a metallic alloy 

to compare the relative cohesive energies of selected metallic crystal 

structures as a function of the conduction electron to atom ratio Z. In 

this paper, we use the same approach to model lattice vibrations in 

metallic alloys and to probe the mechanical stability of the close-packed 

crystal structures. 

The model begins from the observation in pseudopotential theory 

(Harrison(2)) that to second order perturbations the cohesive energy of 

a simple metal may be written 

(1) 

where the zeroth and first order terms depend on the nature of the. atom 

and on the atomic volume. The structural contribution to the cohesive 

energy appears first in the second order term, which is expressible as a 

stun of two-body interactions in real space. The potential V(r .. ) depends 
' 1J 

on the precise pseudopotential assumed, but has the asymptotic form 

cos(2~r) 

V(r) -+ VO (2kFr)3 (2) 

valid for large values of ~~' where v0 is a function of structure-

. (2) 
independent parameters from pseudopotential theory and -~ is the 

Fermi wavenumber. We obtain a simple tractable model by approximating 

V(rij) .by its asymptotic form. The structural contribution to the 

cohesive energy may then be written as the dimensio~less sum 

(3) 
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where v(r) is.a dimensionless potential (previously referred to as the 

Friedel potential(!)) 

(4) 

For given crystal structure the energy e:ST depends only on the electron 

to atom ratio, Z. The model may be generalized to treat alloys by 

simply using the mean value of Z in the alloy, a step which implicitly 

involves the assumption of a random solution and the use of the virtual 

(3) 
crystal modeL 

Equation (3) may be used to estimate the energy change on an arbi-

trary rearrangement of atoms at constant atomic volume. In Reference 1 

we compared the cohesive energies of a selected set of common crystal 

structures as a function of Z. Similarly, by letting the displacement 

of atoms be infinitesimal and periodic equation (3) may be used to con-

struct model phonon dispersion curves as a function of Z. This procedure 

yields shear elastic constants and illustrates the mechanical instabili-

ties which limit the range o.f stability of crystal structures~ 

In the folloWing we specifically compute the dispersion relations 

for transverse phonons propagating perpendicular to the close-packed 

plan~s of the face centered cubic and hexagonal close packed structures. 

These cases are particularly simple since the associated lattice defor-

mation is a rigid shear of close-packed.planes. The equations of motion 

may be written in a one dimensional form, with the planes taken to 

· interact according to a slight modificatien of the Blandin-Friedel­

Saada(4,l) interplanar interaction. As the electron to atom ratio Z is 

varied.the resulting dispersion relations exhibit the two common types 
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of latt'ice mechanical instability: elastic instability, which appears 

as an imaginary frequency in the long wavelength limit (and which has 

been previously studied in this model by Cousins(S)), and other insta-

bilities of the "soft-mode''/ type, which are manifested by an imaginary 

frequency of a short wavelength vibration while the long wavelength 

vibrations, and hence the elastic constants, remain well behaved. 

II. COMPUTATION OF DISPERSION RELATIONS 

For lattice vibrations oriented along certain symmetry directions 

in a crystal, the normal modes are polarized into one purely longitudinal 

and two purely transverse components. (6) The transverse component of. 

such a mode impels a rigid, parallel displacement of planes of atoms 

perpendicular to the propagation direction. With the (introduction of 

'' . (6 7) ' 
interplanar stiffness constants ' the problem of determining disper-

sion relations reduces to a vibration problem in one dimension. The 

appropriate dispersion relation is 

2 1 ' 
(I) = - E C •[1 - cos(qpd)] ·: 

M p;&O p 

where (I) is the angular frequency associated with the phonon of wave 

number q, M is the mass of the ion, and C is the stiffness constant 
p 

between a plane serving as origin and a parallel plane a distance pd 

from the origin. For a transverse phonon propagating along the stacking 

direction of close-packed planes the values of C can be easily approxi-
. ' ' p 

. . (4 8) 1 mated through use of the interplanar form ' of the Friede potential, 

an observation first made by Koenig. (g) 

To formulate generalized dispersion relations it is useful to 

consider the dimensionless frequency 

(5) 
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The dispersion relation is then 

C' [1 - cos(qpd)] . p 

where C' is the dimensionless stiffness constant 
p 

(6) 

(7) 

. (4) . 
It can be shown (Blandin, Friedel, and Saada ·) that if ion cores 

interact by the Friedel potential then parallel close-packed planes of 

ions seperated by a normal distance x will have a total (dimensionless) 

interaction energy 

(8) 

where the sum is over the set of reciprocal lattice vectors perpendicu-

lar to the stacking ·direction, b is a translation vector, parallel to 

the planes, which would carry one plane into the other if the two were 

superimpo$ed, and ljJ(~l,x) i~ a functional coe_ffici~nt. The stiffness 

coefficients C' follow directly from equation (8). Let a plane a 
p . . 

distance (pd) from a plane which serves as origin undergo an infinitesi-

mal translation o, of magnitude o, perpendicular to the stacking direc-

tion. The change in energy per ion is 

(9) 

• Assuming the lattice is initially in equilibrium (though this equili-

brium may be unstable) a Taylor expansion in the small quantity o gives 

the stiffn~ss constant 

' . 

·~ 

' 
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(10) ' 

where gl0 is the projection of ~lin the direction of o. 

Equation (8) may be simplified considerably. First, since the 

stacking direction of close-packed planes is a symmetry direction, the 

value of the summation is independent of the direction of .o. Second, 

the $ummation is dominated by those terms for which. l ~ll < 2~. (4 , 8) 

When there are such terms the larger values of ~l may be neglected. 

Let 

y = (d/a)/(d/a)IDEAL' (11) 

the non-ideality ratio, where d is the interplanar spacing, a is the 

interatomic spacin~ in a close-packing,_ and (d/a)IDEAL is 12/3. Then in 

an FCC or HCP crystal the first set of non-zero reciprocal lattice vectors, 

~l' falls below 2~ at an electron-atom ratio Z = Zc = 1.14y. ( 8
) The 

next smallest set remains greater than 2~ until Z = 1:2'7 Zc = 5.92y. 

Hence over the range of Z which includes.most. of the close-packed metals 

the summation in equation (8) is well approximated by a single term. 

With these simplifications the interplanar stiffness constant is 

I-1:•2.P(p ,Z) 

81r 1jl(p ,Z) 

b = 0 

b rl 0 
(12) 

where. the first form gives th~ stiffness constant for equivalent planes 

(e.g., A-A in the ABC ••• stacking notation) and the second applies to 

inequivalent planes (e.g., A-B or A-C). The coeffi!cient 1jl(p ,Z) is(8) 

. 3 5/3 4/3 2 
1jl(p,Z) ~ - 0.2056 sin p6/(21T) Z y p · (13) 
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where 

(14) 

Equation (13) differs from a similar relation given by Blandin) Friedel, 

and Saada(4) only through the inclusion of the non-ideality factory. 

Inserting equations (12) and (13) into equation (6) and performing 

the summation for the stacking sequence ABCABC ••• we obtain a dispersion 

relation for a transverse mode propagating in a <111> direction in an 

FCC crystal: 

2 . 1 1 
w' (q) = F(Z){a2 (6) - ~2 (6+qd) - ~2 (6-qd) 

(15) 
1 1 1 

- "fl2(36) + ~2(36+3qd) + ~2(36-3qd)} 

where 

and 

00 

=~ 
m=l 

sin(n6)/n2 

(16) 

6/2 
= -6ln 2lsin6/2l + 2 f~d~/tan 4». (17) 

0 

A similar summation for the stacking sequence ABAB ••. yields the disper-

sion relation for a transverse mode propagating parallel to an <001> 

direction in an HCP crystal: 

2 . 1 1 
w' (q) = F(Z){a2(6) - ~2 (6+qd) - ~2 (6-qd) 

3 3 3 
- ~2 (26) + aa2 <26+2qd) + aa2 <26-2qd)} (18) 

Elastic constants for these model crystals may be found through the 
I 

method of long waves. If the dispersion relation is expanded about q=o, 
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the lead term will be of the form 

2 2 
w' =C'(qd) (19) 

where C' is the dimensionless form of the elastic constant appropriate 

to the vibrational mode to which the dispersion relation applies: c66 

for the <OOl>T mode in HCP and [c11-c12+c44 ]/3 for the <lll>t mode in 

FCC. Performing the expansion, we obtain: 

(HCP) (20) 

and 
1 d2 '. ' d2 

= r(Z){3 ---za2 (39) - ---za2 (9)} (FCC) (21) 
de de 

Equations (15), (18), (20) and (21) give generalized model disper-

sion relations and elastic constants, which depend on the crystal struc--

ture and the electron-to-atom ratio (Z) only. Given the simple form of 

the bonding function used, we do not expect these relations to be precise. 

We might; however, expect them to give generally reasonable answers. To 
l . ' 

test this we computed dispersion curves for aluminum (FCC, Z=3) and 

magnesium (HCP, Z=2), using values of v0 calculated from Harrison's(Z) 

formula using the pseudopotentials of Appapillai and Williams. (lO) In 

Figure 1 we compare the results to the experimental dispersion curves 

' (11 12) 
for the <lll>T mode in Al and the <OOl>T mode in Mg. ' The results 

show anticipated trends. At small q in the acoustic branch the agreement 

bet.•een the model and experiment seem excellent, given the simplicity of 

the model. As q increases toward the edge of the Brillouin .zone, dis-

crepancies become evident, 'and the optical mode of Mg is poorly modelled. 

These discrepancies would appear to arise from the importance of short 

r 
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range forces in the short wavelength vibrations at larger q; short-range 

interactions are not well modelled by the Friedel potential, which 

approximates the asymptotic interaction at long range. 

The elastic constants computed from the long wavelength limit of 

Figure 1 are: 

for magnesium and 

for aluminum. These values show reasonable agreement with the experi­

mental values of 1.64xlo11 dyne/em and 2.34xlo11 dyne/em, respectively. 

. I 
III. LATTICE STABILITY 

Any infinitesimal deformation of a crystal lattice can be regarded 

as a linear combination of the extended normal mode vibrations. If all 

the normal mode or phonon frequencies of vibration are found to be real, 

~hen the lattice is stable against any infinitesimal deformation. How-

ever, a normal mode with an imaginary frequency will grow in amplitude 

with time and the lattice will eventually relax to another.configura-

tion. The condition that phonon frequencies be real hence provides a 

criterion for the structural stability of a lattice. The stability 

criterion expressed by Born(l3) in terms of the elastic constants of a 

metallic crystal are just a special case of this condition. 

To test the lattice stability of the HCP and FCC structures for 

atoms interacting according to the Friedel potential we employed 

equations (15) and (18) to compute dispersion curves as a function of 
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electron to atom ratio (Z). The results are shown in Figure 2. To 

extend the curves over ranges of imaginary frequency we have plotted 

-llw' 2
1 where w' is imaginary. 

Dispersion curves for the FCC structure at various values of Z are 

given in Figure 2(a). The two characteristic types of vibrational 

instability are evident in these curves. At Z == 2.0 the lattice is 

elastically unstable; the elastic constant (c11-c12+c44) is negative as 

shown by the imaginary value of w' in the long wavelength limit. At 

I 
Z = 1.5 the lattice exhibits a short-wavelength vibrational instability 

. of the "soft mode" type; while the elastic constant is well-behaved, w' 

becomes imaginary for q/~ greater than about 0.5. At Z = 2.5, 3.0, and 

3.5 the lattice vibration in the <lll>T mode is stable. 

Figure 2(b) shows example dispersion curves for the HCP lattice 

(acoustic mode only). At Z=2.0 and 2.5 vibration in the <OOl>T mode is 

stable. The lattice is elastically unstable at Z = 1.5, and again at 

Z = 3.0 and 3.5; the elastic constant·C66 is negative at these values of 
• 

the electron-atom ratio. A.short-wavelength instability intrudes for 

Z>3.53 (not shown) though the elastic constant is positive for 

3.53<Z<4.0. 

The results are swnmarized and compared to those obtained in earlier 

work(l, 4) in Figure 3. Plot 3(A) shows the regions of relative prefer-

ence of the FCC and HCP structures as determined through direct computa-

tion of structural energies (Reference 1). These computations do not 

consider the possibility that the lattice is unstable. Plot 3(B) is 

taken from Blandin, Friedel, and Saada(4) and shows the regions over 

which the energy of a stacking fault in the HCP or FCC structure is 
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positive, hence the region of Z over which these structures are stable 

against the formation of a fault. 

Plot 3(C) is taken from the present ~ork, and shows the values of Z 
.f' . 

over which the FCC and HCP structures are stable to transverse vibration 

of the close-packed planes. Two interesting features appear from a 

comparison of this plot to the earlier two. First, the region of FCC 

preference near Z = 1.5 disappears along with the region of HCP 

preference near Z = 3.6. In both cases the structures show a short-

wavelength instability and hence have higher energy than undetermined 

structures which differ through short period transverse distortions. 

These·are not simply faulted structures since the. ideal lattices are 

stable against faulting over these ranges of z. Second, the region of 

HCP vibrational stability centered about Z = 2.0 extends into the region 

where the stacking fault energy of the HCP structure is negative. · Since 

a stacking fault in a close-packed structure is a finite transverse 

displacement of close-packed planes, Figure 3(C) shows the region over 

which the HCP structure is S'table in the sens·e that· a fault will not 

spontaneously form through growth of an infinitesimal transverse dis-

placement. 

Finally, recognizing the result,.discussed in the previous section, 

that the Friedel model is less reliable for short wavelength displace-

ments where short-range interactions are important, we have included 

plot 3(D) which shows the regions of elastic stability for the HCP and 

FCC structures. The only significant distinction between this plot and 

that in 3(C) is the reappearance of the FCC field near Z = 1.5 and the 

HCP field near Z = 3.6. 



0 0 0 0 t;~. 2 0 ~ ., 

0 ~ 'J 3 ,, 
' . 

-11-

ACKNOWLEDGEMENTS 

The authors are grateful to W. A. Harrison for helpful discussions. 

This work was supported by the Atomic Energy Commission through the 

Inorganic Materials Research Division of the Lawrence Berkeley Laboratory • 

.. 



-12-

REFERENCES 

1) C. W~ Krause and J. W. Morris, Jr., Acta Met.,~' 767 (1974). 

2) W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, 
N.Y. (1966). 

3) V. Heine and D. :weaire, in Solid State Physics, Vol. 29, edited by 
H. Ehrenreich, F. Seitz, and D. Turnbull, Academic Press, N.Y. 
(1970). 

4) A. Blandin, J. Friedel, and G. Saada, J. Phys. C3, 128 (1966). 

5) c. S. G. Cousins, J. Phys. F ~' 1· (1974). 

6) C. Kittel, Intr.oduction to Solid State Physics, J. Wiley, New York 
(1966). 

7) A. J. E. Foreman and W. Lomer, Proc. Phys. Soc. (London), B20, 1143 
(195 7) • 

8) C. W. Krause, Ph.D. Thesis, Department of Materials Science and 
Engineering, University of California, Berkeley (1974). 

9) S. H. Koenig, Phys. Rev., 135, Al693 (1964). 

10) M. Appapillai and A. R. Williams, J. Phys., F, 1, 759 (1973). 

11) R. Stedman and G. Nilsson, Phys. Rev., 145, 492 (1966). 

12) P. K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan and A. P. Roy, 
Neutron Inelastic Scattering, Vol. I, p. 153, IAEA, Vienna (1965). 

13) M. Born and K. Huang, Dynamical Theory of Crystal Latices, Oxford 
(1968). 

' 

.. 
'j 

\( ..... 



·u 
Q) 

~ 
·-c 
0 
~ 

It) -· 0 -)( 
• . -a 

~r 

3.---~------~------------

.,.,..----, . 

i#l" 

21- / I 

,' 
/ 

II • I . 

I 
I 

I 
I 

I 
/. 

I 
I 

I 
I 

I 
~· 

0 . 
0 0.5. LO 

Qjqmax 

XBL748-7071 

u 
Q) 

~ 
'1j 
0 
·~ 

It) 
-0 -)( .. a 

~ .. 1 ct 

3~----------~-----------

0 

0 
0 

0 
0 

0 
0 

·0 
0 

1.. 

Oo-----------------------~ 
0 0.5 1.0 

Q/Qmax 

FIG. 1. 
XBL 748-7070 

Phonon dispersion curves for: (a) AluminUm (Z = 3), <111> mode and (b) Magnesium (Z = 2), 
<OOl>T. The solid curve is the calculated relation. The aashed curve (Al) and discrete 
points (Mg) represent experimental data. 

-0 

c '• 

:c::. 

0 

"' ~. 

f\.~ 

c 
t\;' 

I 0 
t-' 
w 
I ~ 

\ 

Jl.. 



w' 

0.5 

-0.5 

J1w'21 

w' 

0.5 

1.01 I I 0~ I I 1.0 
. Q/qmox 

1.5 

-0.5 

Jlwl21 

XBL 748-7068 XBL 748-7069 

FIG. 2. Phonon dispersion curves as a function of valence (Z) for (a) the <lll>T mode in an FCC 
lattice, (b) the <OOl>T acoustic mode in an HCP lattice. Where the fr~quency w' is 
imaginary the curve has been continued by plotting the quantity -~ . 

~-"'t <-~I 

I 
I-' 
~ 
I 



9 5 

-15-

zr 2 3 4 
~----------~~------------~----------~ 

A 

8 

c 

D 

Z I 2 3 4 

D 
•.-·• fcc hcp 

, XBL 7410-7455 
FIG. 3. Ranges of electron to atom ratio Z over which various stabil­

ity criteria are satisfied for the FCC and HCP structures: 
A) relative cohesive energy at 0°K; B) stability against 
faulting; C) real phonon frequeney; D) positive elastic 
constants. 
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