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ABSTRACT 
,f 

A plate of fused quartz mounted in the jaws of a 

magnetic clamp serves as a current-controlled phase retarda

tion plate. The current to the clamp controls the stress on 

the quartz plate, and hence the amount of stress-induced 

birefringence. The device described here can be used in a 

D.C. mode as ,a fixed phase retardation plate, or in an A~C. 

mode as a polarization rrodulator at frequencies up to several 

htmdred Hertz. This device offers several advantages over 

other polarization modulators available. 
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I. Introduction 

In experiments involving linearly or circularly 

polarized light, modulating deviceswhich alternately 
\ 

transmit light of differing polarization are frequently 

used in conjunction with phase-sensitive detection to en-

h h . 1 . . 1 ance t e signa -to-noise ratio; such devices include 

modulators of the Kerr or Pockels cell variety, 2 rotating 
. 3 4 

polarizers, ' and fused quartz stressed by piezoelectric 
5-7 crystals. ~. 

Each of these devices have serious limitations; 

Kerr cells have low transmission, and the materials used 

in Pockels cells ·strongly absorb in the \Lll traviolet. 

Rotating modulators work well at low frequencies, but 

frequencies more suitable for phase sensitive detection 

are not easily attained. 8 The piezoelectrically-stressed 

fused quartz modulators must be operated at a resonant 

frequency of the quartz plate because of limitations imposed 

by the driving crystals; these fixed frequencies (several 

kHz) are not convenient for all applications of phase-

sensitive detection. Here we rep<;>rt a current-controlled 

phase retardation plate which uses a magnetic clamp to 

produce stress birefringence. 

II. Theory 

Cubic crystals and amorphous solids become 
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birefringent if subjected to mechanical stress. This effect, 

first noted by Brewster, 9 ' 10 can be explained by considering 

the index of refraction parallel an~ perpendicular to the 

stress. 

A stress deformed body may be described by the 

strain tensor: 

1 au .. a~ 
uik = 2 ax~ + axi 

where V(x,y,z) is the displacement vector for points inside the 

material. When the displacements are small, only first order 

terms are needed in the dielectric permeability tensor: 11 

Here E
0 

is the dielectric permeability constant of the isotropic 

material in the absence of stress, oik is the Kronnecker delta 

(equal to one if i = k, otherwise zero), and a1(w), a2(w) are 

wavelength-dependent strain-optical coefficients; the repeated 

indices imply summation. If we consider the material stressed 

in the x or y directions, with light incident.along the z 

axis, the two relevant components of E are: 

Eyy = E
0 

+ ~ U + a2(u + U + U ) 
1 yy XX yy ZZ 

J • 
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Since e:: and e:: differ little from e:: , and since 
XX ZZ 0 

here n = Je::, we find: 

Futher expansion, neglecting higher order tenns, yields: 

Taking n
0 

= Je:: , and using the fact that n differs little from 
0 0 

n n· x' y· 

Consequently, the retardation (in radians) between x andy 
~ 

polarized components of wavelength A, after traversing a length 

Jl. of birefringent material is given by: 

Since strain is proportional to stress in 'linear materials, 
. ' 12 

this formula is often wr1tten as: 

r - crt--A-
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where r = 2~ ·is the retai:dation in wavelengths, T is the 

applied tensile stress in Newtons/meter, 2 ~ is the length 

of the light path in the material, A is the wavelength, and 

C is the stress-optical constant in Brewsters (10-lZ m2 /N). 

III. Construction 

We have used several different versions of the 

current-controlled phase retardation plate. A diagram of the 

most recent version in shown in Fig. 1. The fused quartz 

plate (. 5 x 1 )( 7. 5 em) is held in the grip of a magnetic 

clamp made from a spli t-C laminated pulse-transformer core. 

A rigid connection is maintained between the poles on one 

side of the clamp. On the other side, a .5 mm gap is 

obtained by properly choosing the length of the quartz 

plate. The clamp is actuated by a pair of drive coils wound 

on the transformer coil. The device is mounted so that the 

quartz plate makes an angle of 45° with respect to the 

polarization of the incoming light. 

Various means can be employed to hold the quartz 

in place; here we have just epoxied the ends of the plate to 

the transformer coil. 

To obtain a uniform stress distribution, and hence 

uniform retardation over the active area, it is necessary to 

take some care in mounting the plate. Before making the 

) . 

) 
'·• 
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mounting pennanent, one must check the stress distribution by 

viewing the plate between crossed polarizers with a D.C. current 

applied to the clamp. The mounting of the quartz is adjusted 

to give the most unifonn stress. We have found that slightly 

rounding the ends of the quartz plate makes it easier to obtain 

the desired unifonnity over the central region. 

In our application, we wish to cycle the devise from 

zero to half wave retarda~ion at about 80 Hz. An oscillator, 

solid state audio amplifier, .and D.C. bias supply provide the 

necessary drive currents. The retardation plate,· along with 

its drive circuitry may be mounted in a 3-width NIM module. 

IV. ·Results 

To measure the· perfonnance of the device, we allow 

light which is linearly polarized at· 45° with respect to 

the stress axis to fall upon the retardation plate. The expected 

polarization of the light emerging from the plate is shown as a 

function of applied stress in Fig. 2. With no stress, the 

polarization is unaltered. Increasing stress generates first 

elliptically, then circularly, and finally, with half-wave 

retardation, linearly polarized light emerging from the plate; 

light is polarized perpendicular to the incident light. Further 

increase of stress retraces the pattern in reverse order, until 

at full wave retardation, the emerging light is again 
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polarized parallel to the incident light. 

If one places the retardation plate between properly 

aligned crossed polarizers, one expects zero transmission at 

zero current; as the current is increased, the transmission 

should increase uhtil the retardation is half-wave, and then 

should fall ~ith further increase in current. The result of 

reasurements taken with this configuration, using Glan-Thomson 

prisms as polarizers, is shown in Fig. · 3. Here the transmitted 

intensity is plotted relative to that obtainedwith parallel 

polarizers. 

When an A.C. current is superimposed on a properly 

chosen bias current with the experirental arrangement described 

above' the transmitted intensity cycles between zero and 

maximum as the retardation plate inodulates the polarization of 

the incident light. In Fig. 4 we show the output of a photo

multiplier monitoring the transmitted light at. 2614 A from a 

lead discharge lamp. The photo is a triple exposure; the top 

and bottom traces give the intensity with parallel and crossed 

polarizers respectively. 

V. Conclusion 

Devices based upon stress induced birefringence 

produced by a magnetic clamp overcome several of the dis

advantages cited earlier for other types of polarization 

J • 
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modulators. They are inexpensive, can be designed to transmit 

well into the UV, have large usable area and high angular 

acceptance, and are easily used at frequencies convenient for 

phase-sensitive detecti~n. Unlike the piezo-electric devices, 

they can also be used in a static mode as variable phase 

retardation plates. In addition, a given device can be 

employed over a broad range of wavelengths by simply adjust-

, ing the drive currents. The same device can be used to switch 

between linearly polarized components, or circularly polarized 

components, again, with only an electrical adjustment. 

The current-controlled phase retardation plate was 

developed for use in the Isotope-Zeeman Atomic Absorption 

Spectrometer, an instrument which uses polarization modulation 

to effect automatic background correction in atomic absorption 

trace-element measurements. 8 We wish to thank David Church, 

Douglas MacDonald and Mich Nakamura for their contributions 

to the development of the device described here. 
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FIGURE CAPTIONS 

Figure 1. 'Diagram of current controlled phase retardation 

plate. (a) Plate of fu5ed quartz. (bj Laminated pulse 

transfonner core (Arnold Engineering AL 98 or Westinghouse 

L98). (c) .5 mm gap. (d) Drive coils (about 200 turns 

each). (e) Stiffener plates epoxied to the transfonner 

core. 

Figure 2. Expected polarization of light emerging from the 

phase retardation plate as the applied stress is increased. 

Figure 3. Relative transmissi<?n through crossed polarizers 

with a current-controlled phase retardation plate mounted in 

between. 

Figure 4. Modulation of light transmitted through crossed 

polarizers with appropriately chosen A.C. and D.C. currents 

applied to the magnetic clamp. 
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