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G.J. Moridis* , SPE, Lawrence Berkeley Laboratory, D.A. McVay, SPE, S.A. 

Holditch & Assoc., and D.L. Reddell, Texas A&M U. 

Abstract 

A new numerical method, the Laplace Transform Finite Difference (LTFD) method, was 

developed for the simulation of single-phase compressible liquid flow through porous 

media in one, two or three dimensions. The major advantage of LTFD is that it eliminates 

time dependency, the need for time discretization, and the problems stemming from the 

treatment of the time derivative in the nonlinear equation of flow by employing a Laplace 

transform formulation. The LTFD method yields a solution semi-analytical in time and 

numerical in space, and renders the effects of the time derivative on accuracy and stability 

irrelevant because time is no longer a consideration. The method was tested against 

results from one-, two- and three-dimensional test cases obtained from a standard Finite 

Difference (FD) simulator, as well as from analytical models. For a single timestep, LTFD 

requires an execution time 6 to 10 times longer than the analogous FD requirement without 

an increase in storage. However, this disadvantage is outweighed by the fact that LTFD 

allows an unlimited timestep size. Execution times may be reduced by orders of magnitude 

because calculations in the LTFD scheme are necessary only at the desired observation 

times, while in a standard FD method calculations are needed at all the intermediate times 

* Formerly at Texas A& M U. 
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of the discretized time domain. Thus, a problem in standard FD format may require 

several hundred timesteps and matrix inversions between the initial condition and the 

desired solution time, but LTFD requires only one timestep and no more than 6 to 10 

matrix inversions. Moreover, LTFD yields a stable, non-increasing material balance error 

in addition to a more accurate solution than the conventional FD. 

Introduction 

In transient flow through porous media, the general Partial Differential Equation (PDE) to 

be solved is obtained by combining appropriate forms of Darcy's Law and the equation of 

mass conservation, yielding: 

[ 
P ] a -\7. k J.l (\7p- pg\7z) =at (p¢>) + q. (1) 

Eq. 1 is generally nonlinear and contains the time derivative apjat, of which the 

numerical approximation is consistently the most important source of instability and error 

in numerical models. The treatment of apjot in a traditional Finite Difference (FD) 

approximation scheme involves the discretization of the continuous time coordinate into 

a large number of small timesteps b.t. Numerical solutions at a number of representative 

points "' in the domain are then sought at the discrete times 

n 

to = 0, t1 = b.tb t2 = b.t1 + b.t2, ... , tn = L b.te , 
l=l 

(2) 

where the dependent variable pK(t) is approximated by a set of values p~, f = 1, 2, ... n. 

The PDE problem with a continuous smooth solution surface is thus reduced to a set of 

algebraic equations relating the discrete approximate values PK to each point "'· A Taylor 

series approximation of the time derivative yields 

( -n+l -n) E 
-A-- Pt>. - PK + t>.,n ' 
utn+l 

1 
(3) • 
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where 

E _ 11 ~tn+l 111 ~t~+l 
P -P~ 6 + ... K,n- K 2 ~ (4) 

is the truncation error, and n + 1 and n denote the current time and previous times of the 

discretized time domain. For v = n, Eq. 3 represents a forward difference approximation 

and results in the explicit formulation of the FD, which is not unconditionally stable; 

for v = n + 1, Eq. 3 represents a backward difference approximation and results in the 

unconditionally stable implicit formulation of the FD. The above approximation introduces 

an error of order O(~t). Accuracy (and, in the case of the explicit formulation, stability) 

considerations preclude the use of a large ~t. Minimization of E,.,n often dictates the 

use of a large number of small timesteps ~t between desired observation times, requiring 

longer execution times and resulting in potentially larger roundoff errors. The problem of 

restriction on the size of ~t is further exacerbated by the nonlinearity of the PDE, which 

is caused by the pressure dependence of the liquid density and the formation porosity. This 

necessitates even shorter timesteps, dictates internal iterations within each timestep until a 

convergence criterion is met, and adds significantly to the computational load. 

The Laplace Transform Finite Difference (LTFD) method belongs to a family of 

new, Laplace transform-based numerical methods recently introduced by Moridis and 

Reddell1 - 5 • It was first applied to the solution of the diffusion-type (parabolic) PDE 

of incompressible flow through porous media 1 •2 , and was extended to the solution of the 

advection-diffusion (hyperbolic) PDE of solute transport (miscible displacement) in porous 

media3
• The major advantage of LTFD is that it eliminates the time dependency of the 

problem because of the Laplace transform formulation employed, and thus the need for 

time discretization for an accurate, stable solution. In essence, LTFD yields a solution 

semi-analytical in time and numerical in space. An unlimited ~t size is possible without 

loss of accuracy or stability, and the need for a large number of intermediate steps between 
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desired observation times is eliminated. 

In the present paper, the LTFD method was formulated to address the problem of 

slightly compressible, single-phase liquid flow through porous media. The mathematical 

basis of the method is developed, and its performance is evaluated against analytical 

solutions and standard FD models. 

The Nonlinear Liquid Flow Equation 

A general equation for liquid density is6 

p = PsrcfJ, (J = fJo R, R = exp[CL(P-:- Po)] , (5) 

where (J is the inverse of the formation volume factor. Then 

1 (p) 1 ((J) 1 
P = Po + C LIn Po = Po + C L In fJo = Po + C L lnR , (6) 

where Po = psrcfJo. Differentiation of Eq. 6 yields 

ap 1 1 aR 
ado = c L R ado ' 

(7) 

where do = x ,y, z in cartesian coordinates, or do = r, (}, z in cylindrical coordinates. 

Expansion of the left-hand side of Eq. 1 and substitution for p yields 

(8) 

where zdo is the elevation gradient along the d 0 direction. 

Expansion of the time derivative in the right-hand side of Eq. 1 and substitution for 

p and apjaR yields 

a ( a¢ ap) aR aR 
8t (p¢) =Po ¢ + R ap aR at= poCrfft, (9) , 
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where Cr = </> + (1/CL)(a</>jop). 

The porosity </> is a weak function of pressure. For consolidated formations the 

variation of pore volume with pressure is accounted for by6 

</> = </>o exp[Cn(p- Po)] . (10) 

From Eqs. 6 and 10, 

a<t> - A. c R(CR/CL) 
- 'f'O R , ap 

(11) 

leading to 

(12) 

For large pressure differentials of compressible liquids in compressible reservoirs, 

R =/= 1 and Eq. 12 has to be used in its most general form. For small pressure differentials, 

R ~ 1 and Cr is reduced to the constant 

(13) 

For nearly incompressible formations Cr ~ </>0 • 

Substitution in Eq. 1 and division by the constant p0 yields the general equation of 

compressible liquid flow in cartesian coordinates as 

a [ kx aR kx 2] - -- -- - - gzxpoR 
ax p.C L ax p. 

a [ ky aR ky 2] + !l -C ~ - - gzypoR 
uy p. L uy p. 

8 [ kz oR kz 2] +- -- ---- gzzpoR 
oz p.C L az p. 

where q = ijf po. In cylindrical coordinates 

oR 
=Cr-+q at ' 

1 8 [ kr aR] 1 a [ · ke aR] 
;: ar r p.C L ar + r 2 ao p.C L ao 

(14) 
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+- -- --- gzzpoR = Cr - + q . 8 [ kz oR kz 2] oR 
oz JLCL oz JL 8t 

(15) 

Inspection of the R formulation of Eqs. 14 and 15 reveals the following: 

1. The nonlinearity of the product pop I Od0
' ( d0 = X' y' z in cartesian coordinates, 

or d0 = r, 8, z in cylindrical coordinates) in the original PDE (Eq. 1) has been removed. 

2. The nonlinearity of p2 in the gravitational components is maintained in R2
• 

3. For areal simulations and all cases where gravitational effects are not included, 

the flow Eqs. 14 and 15 are linear if Cr can be approximated by Eq. 13 within a desired 

degree of accuracy. 

4. When gravity effects are included or Cr cannot be adequately described by Eq. 

13, Eqs. 14 and 15 are weakly nonlinear. 

Eqs. 14 and 15 are theoretically correct, but present potentially serious computational 

problems which severely limit the usefulness of the R formulation even if the nonlinearity 

in R 2 is not considered. If solutions in terms of R are sought, near-singular matrices result 

almost invariably. Such behavior is more pronounced if the pressure changes are small. 

This is caused by (a) the inherent machine accuracy limitations, and (b) the proximity of R 

to the value of 1 and its relative insensitivity even to very significant pressure variations, 

due to the small compressibility of the reservoir liquids. Significant changes in pressure 

(thousands of psi) may result in minuscule decreases in R which may vary within a narrow 

range (i.e. between 0.95 and 1). Solutions in R may thus suffer from substantial errors. 

These problems of nonlinearity and nonsingularity are alleviated by reformulating 

Eqs. 14 and 15 in terms of D.R, i.e. the deviation of R from the value of 1 corresponding 

to the reference pressure p0 • Substitution for 

R = 1 + D.R, R 2 = 1 + 2 · D.R + (6.R)
2 (16) 

, 
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in Eqs. 14 and 15 yields 

a [ a( 6-R) . [ 2]] ox Ax I ox - -Xx2 1 + 2 · 6-R + ( 6-R) 

a [ a( 6-R) [ 2] ] + oy Ayi oy - .Xy2 1 + 2 · 6-R + ( 6-R) (17) 

o [ 8(6-R) [ 2] l 8(6-R) + oz Az~ oz - Az2 1 + 2 · 6-R + (6-R) = CT &t + q , 

in cartesian coordinates, and 

! ~ [ .X o(6.R)] 2_ ~ [.x 8(6-R)l 
r or r rl or + r2 ()() 81 ()() 

a [ 8(6-R) [ 2] l 8(6-R) + oz Azi oz "-- .Xz2 1 + 2 6-R + ( 6-R) = CT ot + q 

(18) 

in cylindrical coordinates, where 

and (19) 

and do = x, y, z or r, (), z. Eqs. 17 and 18 are the fundamental equations of flow of 

compressible liquids through porous media in their most general· form. 

The LTFD Numerical Method 

The Laplace Transform Finite Difference (LTFD) numerical method eliminates the accuracy 

and stability problems caused by the treatment of the time derivative in Eq. 1 by providing 

a numerical solution in the Laplace space. This approach renders time considerations 

and limitations irrelevant. The vector of the unknowns in time is then obtained by 

numerically inverting the Laplace-space solution using the Stehfest algorithm 7 •8 • The 

numerical simulation of nonlinear (compressible) liquid flow using the LTFD method 

consists of four steps described· in detail in the following sections. 
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Step 1: The Laplace Transform of the PDE. The Laplace transform of Eq. 17 yields 

a [ aw 1] - Axt -- ..\x2 • Cp ii!- ..\x2 • -ox ox s 

(20) 

where s is the Laplace space parameter, 6.R(O) is the distribution of 6.R at t = 0, 

(21) 

q = .C{q} ' (22) 

and 

ii! = .C{6.R} ' (23) 

with ..C{} denoting the Laplace transform of the quantity in braces. The q in Eq. 20 does 

not have to be time-invariant since Eq. 22 is general and allows the transformation of any 

time-variable q(t) which has a Laplace transform. 

Applying the same procedures to a three-dimensional cylindrical coordinate system 

yields the following equation in the Laplace space: 

1 a [ oil!] 1 a [ oil!] 
;: Or r Art ox + r2 {)() AOI ox 

a [ oil! 1] + oz Azt oz - ..\z2 Cp \I!- .Xz2 -:; = Cr [s \I!- 6.R(O)] + q. 
(24) 

The term C p is obtained from the linearization of 

2 6.R + (6.R) 2 = (2 + 6.R) 6.R ~ Cp 6.R 

over the interval from t = 0 to t = t, and 

6.R = (1/t) lt 6.R dt = (1/t).c-:I {il! Is} . (25) 
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If small pressure differentials are involved, the approximation e f3 ~ 2 can be used with 

negligible effects on accuracy. 

Step 2: The FD Scheme in the Laplace Space. We employed a "block centered" grid6 

method in the space discretization of the transformed PDE. In this paper, the subscript i, j, k 

refer to the position in the three-dimensional grid, and define the ith, jth and kth grid-block 

center in the x, y and z direction respectively, with i = 1, ... , M X, j = 1, ... , MY and 

k = 1, ... ,MZ. The parameters MX, MY and MZ are the number of subdivisions 

of the x, y and z coordinate. This discretization divides the solution space into 

NT = M X x MY x M Z locally uniform and homogenous grid-blocks. 

Using a FD scheme with an appropriate space discretization, truncation errors are 

minimized and the continuous three-dimensional PDE's (Eqs. 20 and 24) in the Laplace 

space are approximated by (and reduced to) the following algebraic form (see Appendix): 

AX ~i-I +BX ~+ex ~i+I + GX 

+AY ~i-I +BY~+ eY ~i+1 + GY (26) 

+AZ ~k-1 + BZ ~ + ez ~k+I + GZ = eT (s ~- ~R(O)] + ij. 

For simplicity, the subscripts i, j, and k are omitted and only those needed to illustrate . 

communication between gridblocks are mentioned. 

Collecting and rearranging terms, the final form of the FD equation in the Laplace 

space is 

where 

AX ~i-1 + AY ~i-1 + AZ ~k-1 + B 

+ex ~i+1 + eY ~i+1 + ez · ~k+I = D, 

B=BX+BY+BZ-eT·S, 

D = -eT ~R( 0) + ij + GG , 

(27) 

(28) 

(29) 



10 

and 

GG = -( G X + GY + GZ) . (30) 

Step 3: The Solution in the Laplace Space. The FD approximation of the partial 

differential equations over the solution domain ( x, y, z) or ( r, 8, z) in the Laplace space 

results in NT simultaneous equations. Written in matrix notation, the FD system of 

simultaneous equations in Eq. 27 becomes 

(31) 

where M is the flow coefficient matrix, ~ is the vector of the unknown transformed !:l.R's, 

and D the 'known' right-hand side vector. 

The solution of Eq. 31 necessitates computation of M and D, and requires arithmetic 

values of the s parameter of the Laplace space. For a desired observation timet, these are 

provided by the first part of the Stehfest algorithm 7 •8 as 

ln2 
S 11 = -v, v = 1, ... ,Ns, 

t 
(32) 

where N s is the number of summation terms in the algorithm and N s is an even number. 

Optimum values for N s were discussed extensively by Moridis and Reddell1
•
2

• Solution 

of Eq. 31 returns the set of N s vectors 

- -1 -'llv=M 11 D 11 , v=1, ... ,Ns. (33) 

To obtain a solution at a timet, all vectors ~ "' v = 1, ... , N s are needed, i.e. the system 

of simultaneous equations has to be solved N s times. 

Step 4: The Numerical Inversion of the Laplace Solution. The unknown vector !:l.R 

at time t is obtained by using the Stehfest algorithm 7 
•
8 to numerically invert the Laplace 
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solutions qi 11 • The procedure is described by the following equations: 

- ln2 ~ ... 
~R(t) = -t L l¥v · W11 , (34) 

v=l 

and 

(35) 

~ N ... 
where F11 = ( -1) 2 +v, L 0 = ~(v + 1), and LM = min{v, T }. R is then computed as 

(36) 

where f is the unit vector. The pressure vector p can be obtained from Eq. 6. 

Although the accuracy of the method is theoretically expected to improve with 

increasing N 5 , Stehfese indicated that with increasing N s the number of correct significant 

figures inreases linearly at first and then, due to roundoff errors, decreases linearly. Testing 

his algorithm against 50 equations with known inverse Laplace transforms, he determined 

the optimum N 5 = 10 for single precision variables (8 significant figures) and N s = 18 for 

double precision variables (16 significant figures). Investigating the performance of LTFD 

in the simulation of flow of incompressible fluids, Moridis and Reddell1 •2 determined that 

optimum results were obtained for aN s between 16 and 20, but that the improvement in 

accuracy between N s = 8 and N s = 20 was marginal. 

The use of steep time functions for time-variable well rates and boundary conditions 

(i.e. step functions or pulses) poses no conceptual and mathematical problem in the Laplace 

space. The presence of such steep functions may reduce the accuracy of the solution 

because of limitations of the inversion algorithm. In this case the value of N~s needed for 

a sufficiently accurate solution rises to 18 ~ N 5 ~ 24. Although at such a high N 5 some 

oscillations still persist in the immediate vicinity of the time ts at which the step function 

or pulse occurs, we determined that these affect the solution by less than 1%, completely 

disappear fort ~ 1.15t8 , and have a negligible effect on the mass balance error. 
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The solution in the Laplace space eliminates the stability and accuracy problems 

caused by the treatment of the time derivative in standard FD simulators, thus allowing 

an unlimited timestep size. In a standard FD method, there are three sources of error: 

the time-related truncation error, the space-related truncation error, and the roundoff error. 

Because the time domain is not discretized, there is no time-related truncation error in 

the LTFD method, in which the sources of error are the truncation error caused by the 

space discretization, the error attributed to the numerical inversion of the Laplace solution, 

and the roundoff error. The numerical inversion creates very little (if any) error, which 

for smooth time functions can be at the level of machine accuracy. The ability to use 

an unlimited timestep size bounds the accumulation of roundoff error by an upper limit 

defined as the roundoff error accumulated after the N s solutions required by the method. 

Thus, the LTFD solution is inherently more accurate than the standard FD method for the 

same grid system. It offers a stable, non-increasing roundoff error irrespective of the time 

of observation tobs because calculations have to be performed at this time only using a 

fit = tobs; on the other hand, calculations in a standard FD method have to be performed 

at all the intermediate times 

l 

(tint)i = L fiti, f = 1, 2, ... , L and 
i=l 

continuously accumulating roundoff error in the process. 

L 

L = tobs, 

i=l 

(37) 

The LTFD method does not increase the memory requirements over a standard FD 

method because a) the values of the unknowns at the previous time step are not needed, 

since no intermediate timesteps are necessary, and the !:::. size coincides with the observation 

time, and b) the N s sets of unknowns can be stored and summed in a single array. In the 

FD method this array is that of the unknowns at the end of the previous timestep. 

Inner Iterations. These are required only when the approximations of Cr in Eq. 13 
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and of C 13 in Eq. 21 are not acceptably accurate. Under these circumstances, the LlFD 

method is easily extended to cover these weak nonlinearities through an iteration procedure 

entirely analogous to the treatment of such nonlinearities in FD. The process involves a 

limited number of inner iterations (2 to 4), during which the values of Cr and Cp are 

updated and an improved solution D.R is obtained until a desired convergence criterion is 

met. 

Verification and Test Problems 

The LlFD numerical method was tested using four test problems which represented 

increasing levels of complexity. Analytical solutions exist for the first two problems. 

The LlFD solution was verified through comparison with the analytical solutions. No 

analytical solutions exist for the other two test problems. In all four cases the results 

obtained with LlFD were tested against results obtained using a standard, commercially 

available implicit FD simulator9 with the same space discretization. A direct banded-matrix 

solver was used to solve the system of simultaneous equations arising in both the LlFD 

and FD methods. Double precision variables with 16 and 20 significant figures were used 

in all simulations. A variable timestep D.t was used for all test cases in the FD simulator, 

given by the recursive formula 

(38) 

where ML is a multiplier, D.tmax is the maximum permissible D.t, and D.tApmax is the D.t 

corresponding to a maximum permissible pressure change D.pmax· Table 1 shows the M £, 

D.to, D.tmax• and D.pmax used in the four test problems, as well as the number of timesteps 

and matrix solutions (i.e. the number of times the system of simultaneous equations in 

the FD simulator had to be solved) in the simulations. Because of internal iterations, the 

number of matrix solutions is significantly larger than the number of timesteps. 
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Verification and Test Problem 1. Test Problem 1 was a problem of flow to a well in 

a circular bounded reservoir, for which a number of exact and approximate analytical 

solutions exist Table 2 shows the fluid properties. Reservoir properties and dimensions, 

and discretization information for the FD and LTFD simulations appear in Table 3. We 

used the equation provided by vanEverdingen and Hurst10 for the computation of the 

analytical solutions. 

We investigated three subproblems. In Problem la we compared the LTFD and the 

analytical solutions over the whole reservoir at 4 observation times. We used N s = 8 in 

all the LTFD simulations of Problem la. Fig. 1 shows that the two solutions coincided 

regardless of the magnitude of observation time. This gives the measure of the accuracy of 

LTFD, and shows the complete insensitivity of the method to the size of the time increment. 

In Problem lb we compared the LTFD solution with N s = 8 to a) the analytical 

solution, and b) 4 FD solutions (see Table 1) for t = 60 days. Fig. 2 shows in a 

dimensionless formulation the percent difference between the analytical and the numerical 

solutions. The LTFD solution exhibited a very small deviation from the analytical solution, 

and was consistently superior to the FD difference solution. The superiority of LTFD 

persisted even when a very fine time discretization (65 timesteps, and a total of 136 matrix 

solutions) was used in the FD simulation, indicating that for !/17th of the computational 

load (8 vs 136) LTFD returned a more accurate solution than the FD. With an increasing 

number of timesteps (corresponding to smaller L:lt 's, the FD solutions tended asymptotically 

towards the analytical and the LTFD solutions. 

In Problem lc we studied the effect of N son the performance of LTFD. For aN s 

ranging between 6 and 20, we observed a negligible difference between the analytical and 

the LTFD solutions (Fig. 3 ) at t = 1000 days. The minimum absolute difference was 

observed for N s = 6, and increased with an increasing N s until N s = 12. The solutions 

for an N s between 12 and 20 were identical and exhibited arithmetic differences in the 
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7th decimal place and beyond. 

The implications of the results in Fig. 3 are that a) the accuracy of LTFD for this 

one-dimensional problem is practically insensitive to the value of N s, and b) the number of 

summation terms N s for an accurate solution may be 6, far smaller than the N s = 18 which 

Stehfese suggested for double precision variables. This drastically reduces the execution 

time and makes the LTFD method even more efficient than theoretically predicted. 

Verification and Test Problem 2. Test Problem 2 involved flow towards a well at the 

center of a bounded square reservoir with an infinite-conductivity vertical fracture at the 

center of the square. The fluid properties remain as in Test Problem 1. Fig. 4 shows the 

reservoir geometry, and Table 4 presents reservoir properties and dimensions, and the grid 

discretization used in the FD and LTFD simulations. We used the analytical solution of 

Gringarten et a/11 (which predicts the unsteady-state pressure at the well) as a reference. 

We investigated two subproblems. 

In Problem 2a we compared the LTFD and analytical solutions at the well for 9 

observation times. We let N s = 8 in the LTFD simulations. We observed a pattern similar 

to the one in Test Problem 1. The two solutions coincided regardless of the magnitude of 

observation time (Fig. 5 ). This testifies to the power and accuracy of LTFD, and confirms 

the complete insensitivity of the method to the size of the time increment. 

Analytical solutions of the pressure distribution in the formation do not exist for this 

problem. In Problem 2b we compared the LTFD solution (N s = 8) to 4 FD solutions along 

the y axis at x = 0.025 ft at t =365 days. Fig. 6 shows in a dimensionless formulation 

the difference between the LTFD and the FD solutions. We observed an identical pattern: 

with an increasing number of b.t's the FD solutions a) tended to the LTFD solution, and 

consequently b) the difference, between the two solutions decreased. Using a very fine time 

discretization (79 timesteps, and a total of 231 matrix solutions), the FD yielded a solution 



16 

within 0.1 psi of the LTFD solution, but with a computational load 29 times larger. 

In Problem 2c we studied the effect of N 5 on the performance of LTFD along the 

same axis and at the same time. In Fig. 7 we show the absolute difference between the 

LTFD solutions for different N s values from a reference, taken as the solution obtained 

with N 5 = 8. A slightly different pattern emerged. With the exception of N s = 6, all 

other solutions exhibited extremely small pressure differences from each other, i.e. 0.1 to 

0.2 psi when p was in excess of 3000 psia. The solution for N s = 6 was consistently 

about 5 psi higher than the rest of the solutions, which, while significantly larger than all 

the other deviations, was still very small when compared to the maximum pressure change 

of 1835 psi. In light of the significant difference in the computational load, a N s = 6 

could easily be used when extreme accuracy is not essential. These results confirm our 

previous observations that the accuracy of LTFD is virtually insensitive to the value of N s 

for 8 < N 5 < 20. Slightly lower accuracy (insignificant for most practical applications) 

may be obtained for N s = 6. 

Test Problem 3. Test Problem 3 was a two-dimensional (areal) simulation problem, and 

represented a reservoir with spatially variable properties and wells with variable flow 

rates. The fluid properties remain the same as in Test Problem 1. The reservoir geometry, 

formation thickness, and permeability distribution are depicted in the contour plots of Fig. 

8. Reservoir properties, dimensions, and discretization information are in Table 5. Table 

6 lists the production rates for the 10 wells in the reservoir, of which 3 have constant rates, 

3 have linearly declining (with time) rates, and 4 have exponentially declining rates. No 

analytical solution is available for this problem. A comparison of the LTFD and the FD 

solutions provided a measure of the power, validity and accuracy of the LTFD method. 

Fig. 9 shows of the pressure distribution in the reservoir for the LTFD solution 

(N s = 8) at t = 180 days. We evaluated LTFD by comparing the pressure distribution 
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along the x axis at y = 2900 ft, corresponding to row J = 15 (Fig. 10). The accuracy 

of the LTFD solution was indicated by the fact that for a decreasing /).t (which results in 

smaller truncation errors, more accurate solutions, and larger numbers of timesteps) the 

FD solution tended to approach the LTFD solution and the difference between the two 

solutions decreased. For 86 timesteps, a total of 329 matrix solutions, and 41 times the 

computational load of LTFD, the FD solution virtually coincides with the LTFD solution. 

FD cannot deliver the accuracy of LTFD·unless a very large number of timesteps is taken, 

and then only at the expense of significantly increased CPU time. Fig. 10 demonstrates 

that LTFD can capture in detail the significant pressure changes due to the presence of 

wells and zones of different permeability. The well locations and permeability zones can 

be identified by the existence of peaks and sharp variations in drawdown. These variations 

decrease in magnitude with a decreasing i).t size in the FD solution. For large i).t 's, the 

FD solutions exhibited significant deviations and insufficient accuracy. This was caused 

by the averaging effect used in the treatment of the time derivative. With smaller i).t 's, 

these deviations decreased, and the accuracy of FD the solution improved. 

Test Problem 4. In the three-dimensional Test Problem 4, .we studied a horizontal well in 

an anisotropic reservoir. Due to symmetry, we simulated only 1/8th of the reservoir volume 

(Fig. 11). The fluid properties remain as in Test Problem 1. We provide information on 

the reservoir properties, dimensions, and discretization in Table 6. As in Test Problem 3, 

we evaluated LTFD (N s = 8) by comparing results with 5 FD simulations. We compared 

pressure distributions a) along the x axis at z = 0.125 ft (K=2), y = 0.125 ft (1=2), and b) 

at the xy plane at z = 0.125 ft (K=2). 

We present the pressure distributions, as well as the difference between the two 

solutions, in Figs. 12 and 13. The same pattern observed in all previous test cases is 

obvious: LTFD produced an accurate solution, a fact indicated by the realization that the 
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FD solution for a decreasing b..t size (which results in smaller truncation errors, more 

accurate solutions, and larger numbers of timesteps) a) tended to the LTFD solution, and 

consequently b) the difference between the two solutions decreased and tended to zero. The 

LTFD solution at t=lOOO days is virtually identical to the FD solution with 231 timesteps 

and 680 matrix solutions (Figs. 12a and 13a). The percent absolute difference between 

the two solutions in Figs. 12b and 13b do not exceed 0.021%, which corresponds to 

a maximum difference of 0.5 psi at the pressure of the reservoir. LTFD is capable of 

delivering (and exceeding) the accuracy of a FD solution with an extremely small time 

discretization, but without the corresponding computational load. Significant accelerations 

(by a factor of 85 in this case) of solution times by orders of magnitude are thus possible. 

Material Balance Error Considerations. A very important measure of the validity and 

accuracy of the LTFD numerical method was provided by the magnitude of the material 

balance error as a percentage of the original fluid mass. Fig. 14 shows an analysis of the 

behavior of the material balance errors for the four Test Problems for both the LTFD and the 

FD methods. The small magnitude (bordering machine precision) of the material balance 

error for the methods shows that they both conserve mass. The extremely small magnitude 

of the LTFD material balance error further testified to the power of the method. LTFD 

seemed to have an overall advantage over FD, indicated by the generally lower material 

balance errors. With the condititional exception of the computationally simple Test Problem 

1, LTFD produced consistently a smaller error. This was more obvious in the more difficult 

problems 3 and 4. The b..R formulation may be conceptually powerful, but it poses some 

computational difficulties since it involves solving matrices with coefficients that vary by 

up to 8 orders of magnitude. In small problems, LTFD will produce a very accurate 

solution, but the roundoff error involved may make FD infinitesimally more accurate (i.e. 

by the difference between 10-11 and 10-12). For larger problems LTFD seems to have an 
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advantage because of a) the smaller truncation error, equal to the truncation error of the 

space discretization only, and b)a smaller roundoff error due to fewer operations. 

The material balance error of the LTFD method generally improved as N s increased. 

We determined that a 12 ~ N s ~ 16 yields the smallest material balance error. However, 

for practical purposes, the improvement between N s = 6 and N s = 20 was marginal. 

The implications of these observations are that a) for N s ~ 20 the accuracy of LTFD is 

practically insensitive to the value of N s, and b) the number of summation terms N s for 

an accurate solution may be far fewer than the N s = 18 suggested by Stehfest 7 for double 

precision variables. Our experience in this area tends to suggest that the combination of 

the Finite Difference discretization with the Stehfest algorithm may act as a filter in the 

LTFD scheme , removing frequencies which could cause errors in the application of the 

Stehfest algorithm in the inversion of simple functions. In light of the extremely small 

mass balance error, we suggest a value of 6 ~ N s ~ 10 for LTFD simulations. This 

reduces significantly the execution time requirements. 

The material balance error for LTFD method starts to deteriorate when N s > 16. 

This is probably due to limitations imposed by the computer accuracy in th-e determination 

of the weighing factors V, in Eq. 35. The calculations involve operations with factorials, 

which may become inaccurate for large numbers. Although this deterioration may be 

eliminated in computers with more significant figures in double precision variables than 

was used in this study, this would be pointless and undesirable because Eq. 31 would have 

to be solved more times and would require longer execution times. 

Conclusions 

1. A new numerical method, the Laplace Transform Finite Difference (LTFD) method, 

was developed for the solution of the nonlinear, parabolic Partial Differential Equation 

(PDE) of transient, slightly compressible, single-phase liquid flow through porous media. 
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The nonlinearilty of the PDE is removed by using a variation of the density formulation, 

the !::::J.R formulation. Because LTFD uses a Laplace transform formulation to remove the 

time dependency and eliminate the need for time discretization, it allows an unlimited 

timestep size without loss of stability or accuracy. 

2. To evaluate the LTFD method we investigated four Test Problems. LTFD requires 
\ 

solution of the resulting system of simultaneous equations N s times, one for each of the N s 

different approximations of the Laplace space variable s. In essence, this means that the 

solution at any time is obtained by solving the system of simultaneous equations in LTFD 

N s times and algebraically combining the solutions. We established that a 6 < N s :::;: 10 

is sufficient to provide an extremely accurate solution. Although the accuracy increases 

with increasing N s for N s :::;: 16, the improvement is marginal and insufficient to justify 

the additional execution time. 

3. The disadvantage of having to solve the system of simultaneous equations 6 to 

10 times for a single timestep is outweighed by a) an unlimited timestep size without any 

loss of accuracy, b) a superior accuracy, and c) a stable, non-increasing roundoff error. 

Therefore, calculations in a LTFD scheme are necessary only at the desired observation 

times, thus allowing 'snapshots' in time. On the other hand, in a standard FD method 

calculations are needed at all the intermediate times of the discretized time domain. 

4. With a smaller timestep size and more timesteps, the FD solution tended to approach 

the LTFD solution. The LTFD method provided a solution generally more accurate than the 

FD solution for the same space discretization. This was expected because a) the elimination 

of the time discretization limited the truncation error to that of the space discretization only, 

and b) the roundoff error was reduced due to the limited number of operations needed. An 

unlimited timestep size with a stable, non-increasing error is thus possible. 

5. The LTFD methoddoes not increase the computer memory requirement over a 

standard implicit FD method. 
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Nomenclature 

Ad* = flow coefficient defined in Eq. A-7 

B = formation volume factor 

Bd* = flow coefficient defined in Eq. A-9 

Cd* = flow coefficient defined in Eq. A-8 

Ct = CL+CR 

CL = fluid compressibility 

CR = rock compressibility 

Cr = defined in Eq. 12 

ctJ = defined in Eq. 21 

do = x,y,z 

d* = X,Y,Z 

g = gravitational acceleration 

Gd* = defined in Eq. A-10 

h = formation thickness 

I,J,K = gridblock indices in the FD and LTFD models 

k = absolute permeability 

L = length of horizontal well 

MX = gridblocks in the x direction (similarly for y, z) 

p = pressure 

PD = dimensionless pressure = 21r k h(po - p) / ( Q B J.l) 

Pw = well pressure 

q = volumetric flow rate per unit volume 

q = mass flow rate per unit volume 

q = defined in Eq. 22 
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Q = volumetric flow rate 

r = radius 

rw = well radius 

rv = dimensionless radius = r I r w 

R,6.R = defined in Eqs. 5 and 16 

t = time 

tv = dimensionless time= ktl( -rr ¢> J.l Ct r~) 

tvA = dimensionless time = kt I ( 4¢> I' Ct X eYe) 

s = Laplace transform parameter 

Xe = reservoir half length 

Xf = fracture half length 

Ye = reservoir half width 

z = vertical coordinate 

Zdo = elevation gradient in the do direction 

(3 = liB 

hd0 = l6,d0 
2 

6.do = 6.x, 6.y, 6.z: Mesh spacing in x, y , and z 

6.do ~~:±1 = ~(6.do" + 6.do ~~:±I) 

6.p = difference between the LTFD and the FD solution 

6.t = timestep 

6.tmax = maximum allowable timestep 

6.tflpmar defined after Eq. 38 

6.w = defined in Eq. A-2 

,.., = i,j, k 

Ado 1 2 = 
I 

defined in Eq. 19 

J.l = dynamic viscosity 
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p = fluid density 

<P = porosity 

'11 = defined in Eq. 23 

Subscripts 

0 = initial state 

i,j, k = gridblock indices in the x, y , and z direction 

STC = standard conditions 
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Appendix - Derivation of the Flow Coefficients 

Using a Taylor series, the d0 -derivative (d 0 = x,y,z) on the left side of Eq. 20 is 

approximated by 

(A -1) 

where 

(A- 2) 



and 

1\,= {~ 
k 

if d0 =X 
if d0 = y. 
ifd0 =z 

The subscript K ± ~ refers to the interblock value of the quantity involved. 
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(A- 3) 

(A -4) 

Calculation of the exact pressure drop between grid-blocks K and K ± 1 (K = i,j, k) 

in the FD scheme leads to the determination of Ad• 1 at K ± ~ as 

do=x,y,z. (A- 5) 

Therefore, ( Ad• I) ~t±t is the harmonic mean value of ()..d. 1 ) of the adjacent grid-blocks. 

Eq. A-5 minimizes the mass balance error. Eq. A-1 is then written as: 

(A- 6) 

where 

(A -7) 

(A- 8) 

(A- 9) 
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Gd: = ~ [().d0 2) _ ().d0 2) ] ' 
t:J..d It s ~-~ s +~ 

. ~ 2 It 2 

(A- 10) 

and d* = X, Y, Z. 
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Sl Metric Conversion Factors 

bbl X 1.589873 E-01 = m3 

cp X 1.0 E-03 = Pa·s 

ft X 3.048 E-01 = m 

md X 9.869233 E-04 = pm2 

psi X 6.894757 E+OO= kPa 

. ·.-
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TABLE 1 - TIME DISCRETIZATION FOR THE FD METHOD 

Test Num. of Num. of 
Problem# dto (days) dtmax (days) ML dpmax (psi) dt MS 

1 60 60 1 3000 1 3 
10 30 5 1000 3 9 
0.1 10 5 500 9 23 

0.001 1 5 250 65 136 
2 100 365 5 1000 3 11 

20 100 2 500 6 18 
0.1 50 3 500 13 36 

0.001 5 5 250 79 231 
3 1 100 5 1000 10 39 

0.1 50 5 500 18 59 
0.01 25 5 500 21 68 
0.01 2 5 250 86 329 

4 0.01 1000 5 500 24 73 
0.01. 100 5 500 27 82 
0.01 50 5 500 34 102 
0.01 10 5 250 133 399 
0.001 5 5 250 231 680 

MS: Matrix solution 



TABLE 2- FLUID PROPERTIES 
IN TEST PROBLEM 1 

p 5000 psi 

B 1.2 

Jl 1 cp 

CL 1.5x1 o-5 psi-1 

TABLE 3 - RESERVOIR PROPERTIES, GEOMETRY, 
AND DISCRETIZATION IN TEST PROBLEM 1 

Discretization 

MX 
.1r (in ft) 

<I> 0.15 

k 10 md 

CR 0.0 psi-1 

h 30ft 
Q 50 bbi/D 

rw 0.25 ft 

re 2,500 ft 

62 

0.00033,0.00066,0.00131,0.00262,0.00328, 

0.0105,0.021 ,0.042,0.084,0.168,0.336, 

0.672, 1.3438,2.6877,3.281 ,3.281 ,4.921' 

7.382, 11.073, 16.609,24.934,37.139,53.077, 

82.02,82.02,82.02,82.02,82.02,82.02,82.02, 

82.02,82.02,82.02,82.02,82.02,82.02,82.02, 

82.02,82.02,82.02,82.02,82.02,82.02,82.02, 

82.02,82.02,82.02,65.617,65.617,65.617, 

49.213,32.81 ,32.81 '16.4, 16.4,9.843,6.562, 

3.28, 1.64,0.984,0.328,0.164,0.164 

28 



TABLE 4- RESERVOIR PROPERTIES, GEOMETRY, 
AND DISCRETIZATION IN TEST PROBLEM 2 

4> 

kx= ky 

kx along Xf (1=1-26, J=1) 

0.15 

10 md 

107 md 

0.0 psi-1 

30ft 

50 bbi/D 

1000 ft 

500ft 

CR 

h 

a 
Xe=Ye 

Xf 

Discretization 

MX 
flx (in ft) 

MY 

fly (in ft) 

40 

0.005,0.02,0.025,0.05,0.25,0.25,0.5, 1.5 

2.5,7.5, 15,25,25,50,50,50,50,50,50,40, 

30,20, 15,1 0,5,2.5,2.5,5, 1 0, 15,20,30,40, 

50,50,50,50,50,50, 77.5 

24 

0.001 ,0.004,0.015,0.03,0.05,0.1 ,0.3,0.5, 

1 ,3,5, 1 0,20,30,50,80, 100,100,1 00,1 00, 

1 00,1 00,1 00,1 00 

TABLE 5- RESERVOIR PROPERTIES, GEOMETRY, 
AND DISCRETIZATION IN TEST PROBLEM 3 

Discretization 

MX 
flx (in ft) 

MY 

fly (in ft) 

4> 0.10 

k Variable (Fig. Sb) 

CR 0.0 psi-1 

h Variable (Fig. Sa) 

48 

48x200 (uniform size) 

36 

36x200 (uniform size) 

29 



TABLE 6 - WELL INFORMATION IN TEST PROBLEM 3 

General well rate equation: Q = Oo + 01 t + 02 exp(-03 t) 
Well Location 

I 

6 
14 
17 
22 
26 
28 
31 
33 
38 
42 

J Oo (bbi/D) 01 (bbi/D) 02 (bbi/D) 03 (bbi/D) 

17 -15 0.0041 0 0 
18 -10 0 0 0 
25 -10 0 -50 0.0037851 
15 -15 0 -60 0.0189254 
25 -20 0 -45 0.0037851 
8 -10 0 0 0 
14 -15 0 -30 0.0037851 
21 -40 0.0137 0 0 
17 -20 0.0055 0 0 
27 -10 0 0 0 

·TABLE 7- RESERVOIR PROPERTIES, GEOMETRY, 
AND DISCRETIZATION IN TEST PROBLEM 4 

<I> 

kx 
ky 

kz 

CR 

Pw 
L 

0.15 

10 md 

3 md 

0.001 md 
0.0 psi-1 

1000 psi 

1000 ft 

Dimensions in x,y,z (ft) 

Discretization 

2640 X 2640 X 31.75 

MX 26 

8x (in ft) 5x141, 140,80,40,20, 1 0,5,5, 1 0,20,40,80, 

9x148,153 

MY 14 

11y (in ft) 0.25,0.5,1,2,4,8,16,32,64,128,256,512, 

2x808.13 

MZ 7 

11y (in ft) 0.25,0.5, 1,2,4,8,16 

30 
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Fig. 9- LTFD solution of pressure distribution in the reservoir at t = 180 days-Test Problem 3. 
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of Test Problem 4. 
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Fig. 13--Comparison of the L TFD and FD solutions on the xy plane at 
z = 0.125 ft (K=1 ): (a) the pressure distributions virtually coincide when 
FD uses 231 timesteps, as shown by the% difference between the two 
solutions in (b)-Test Problem 4. 
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