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ABSTRACT 

An idea for testing the non-local character of quantum theory in systems made of 

two neutral kaons is suggested. It requires detecting two long-lived or two short

lived neutral kaons in coincidence, when copper slabs are either interposed on or 

removed from their paths. Tests of this sort may be performed around asymmetric 

<11°-factories. They could answer some questions raised by the EPR paradox and 

Bell's inequalities. If they are performed and if predictions of quantum mechanics 

and standard theory of kaon regeneration are verified experimentally, all descrip

tions of the relevant phenomena in terms of local interactions will be ruled out in 

principle, with the exception of very peculiar ones, which imply the existence of 

hidden variables, of different kinds of kaons corresponding to different values of 

the hidden variables, and, for some of these kaons, of regeneration probabilities 

enhanced by a factor of the order of 500 or more over the average. 

Of course, the experiment may also reveal a break down of quantum theory. 

•This work is supported by the Director, Office of Energy Research, Office of High 

Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 

Energy under Contract DE-AC03-76SF00098. 
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1 Introduction 

1.1 Background 

The purpose of this paper is to describe a test of the non-locality of quantum 

theory with neutral kaons and to show the relevancy of the EPR paradox, [1]. 

Tests of non-locality in quantum mechanics have been extensively performed 

in optics and atomic physics, [2]. Their results to date all agree with the 

predictions of that theory. To be thorough, one should perform tests in kaon 

physics too. The test suggested here involves systems of two neutral kaons in 

a C=-1 state, such as those produced in ~0-factories. It is shown to probe 

the same kind of non-local effects as those revealed by the EPR paradox and 

Bell's inequalities, [3, 4]. If such a test is performed and if predictions of 

the standard theory of kaon regeneration are upheld, the results will provide 

evidence for non-local phenomena in systems of neutral kaons. 

The relation between the EPR paradox and the K0~ system resulting 

from ~0-decay has been noticed and discussed in the literature, [5]. Recently, 

it has been claimed, [6], that a fool-proof demonstration of non-locality for 

systems of two neutral kaons cannot be provided by strangeness measure

ments at different times using a popular form of Bell inequality, [4], because 

the quantum mechanical predictions do not violate that inequality. That 

claim is not contradicted by this paper, because the test proposed here does 

not involve measurements of strangeness, but of the short- or long-lifetime 

character of the kaons with different amounts of material interposed on 

their path. Moreover, the test is not free of all possible loopholes since, if 

the results confirm quantum theory, hidden-variable theories implying very 

large enhancement factors in regeneration probabilities will not be ruled out. 
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Thus, in this test as in tests with supplementary hypotheses, quantum the

ory is tested only against local theories without hidden variables and local 

hidden-variable theories with limited enhancement factors. 

1.2 The Four Experimental Setups 

The test is supposed to be performed at an asymmetric ~0-factory, with 

one electron beam of 2.13 GeV colliding with a positron beam of 122 MeV. 

~0 states are produced and, for all practical purposes, decay immediately. 

Some of them decay into two neutral particles, i.e., neutral kaons of mass 

0.5 GeV /c2 • These kaons are moving at about the velocity of their CMS, 

{3; ~ 2, i.e. each one with a momentum of about 1 GeV fc. They separate 

from each other and take different paths because of their relative motion in 

the CMS. The kaon along one of the paths will be called "' and the one on 

the other path will be called K-
1

• 

The experiment consists of measuring the number of events where "'and 

K-
1 are identified as both being K L or both being K s, in four different setups 

shown on Fig. 1. KL is the linear combination of K 0 and Jt1 with a long 

mean-lifetime and Ks is the combination with a short mean-lifetime. The 

long-lifetime neutral kaons, KL, are identified in two detectors, one on the 

path of the "' particle and the other on the path of K-
1

• These K L detectors 

are detectors of nuclear interactions of neutral particles, located far enough 

downstream from the setup that the number of short lived Ks reaching them 

is negligible; because of the KL long average lifetime, the detection efficiency 

of KL's is still approximately 100%. Ks's are identified by their two-11" decay 

mode at short distances. First we neglect ambiguous identifications, but not 

absorption of kaons in material. 
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setup [0,0'] 

e 

setup [:E,O'] 

setup [O,:E'] 

e 

setup [:E,:E'] 

e 

Figure 1: The four experimental setups. 
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As shown on Fig. 1, the four setups are 

(0,0'] : no material between the e+ e--collision point and the neutral particle 

detectors; theory predicts only events with a kaon being a K L and the 

other being a Ks; no two KL's and no two Ks's; 

(:E,O'] : a 4 mm copper slab, :E, interposed on the path of particle K, near 

the e+ e- -collision point, and no material on K 1
; standard theory pre

dicts some two-KL events because of Ks-+KL regeneration of some K 

particles in slab :E; 

[O,:E'] : a 5 em copper slab, :E', on the path of K
1

, occupying a space between 

20 and 25 em downstream from the collision point, and nothing on Kj 

theory predicts some two-KL events because of Ks-+KL regeneration 

of some kaons K
1 in slab :E'; 

(:E,:E'] : both slabs together, :Eon K near the collision point and :E' on ,, , 20 em 

downstream from the collision point; theory predicts more two-KL 

events than the number of two-KL events predicted in setup (:E,O'] plus 

the number of two-KL events in setup [O,:E'], because of a constructive 

interference effect between the two regeneration processes. 

That surplus of two-KL events is present only if both slabs are inter

posed, at different locations, on the paths of different particles. This 

will be shown to be a manifestation of these phenomena called non

local in quantum theory and related to the EPR paradox. 
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2 Regeneration Theory 

2.1 Parameters of the Experiment 

An asymmetric CI> 0 -factory of the type considered here has the advantage 

over a symmetric one that the average decay range of the Ks's is longer, 

namely 5.4 em. This is the same kind of advantage that asymmetric B

factories have over symmetric ones, [7]. For CI>0 -+ neutral kaons, copper 

slabs can be interposed on the kaon paths to regenerate a fraction of the 

Ks's into KL's. 

In vacuum, KL and Ks are eigenvectors of the Hamiltonian. If a kaon 

is a KL or a Ks, it remains a KL or a Ks till it decays or interacts in a KL 

detector. At this point of the paper, detection inefficiencies and ambiguities 

are neglected. If a kaon does not interact in a slab, or if there is no slab, the 

kaon is assumed to end up identified correctly as a KL or as a Ks. However 

kaon absorption in the slabs is not neglected. 

In each one of the experimental setups, 3 x 109 CI>0 , i.e. about 109 events 

of the type Cf>0 -+ neutral kaons, are assumed to be produced. Because the 

<P0 is a C'=-1 particle, [8], and because of C conservation in «P0 -decay, the 

state vector of the two-kaon system at the Cf> 0-decay point can be written as 

(1) 

where A is a normalization factor close to ~; where K s K£ refers to a state 

where particle K. is a short-lived K s and K.
1 is a long-lived K Li and where 

K LK's refers to the state where K. is a K L and K.
1 is a K S· 

In setup [0,0'] of Fig. 1, quantum mechanics predicts that, at all times 

before either kaon decays, the state vector of the system remains of the form 
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of Eq. (1). Then 50% of the events end up identified as 

""""' = KsK£, (2) 

and 50% as 

(3) 

The number of KLKL events, i.e. with two KL's, is 

no,o• = 0, (4) 

like the number of KsK's events ( with two Ks's), 

n~.o' = 0. (5) 

2.2 I<s-+I<L Regeneration 

In setup [~,0'] as in setup [0,0'], still 50% of the events have particle K 1 

decaying as a K s and 50% detected as a KL, since there is no material 

interposed on the path of K 1
• However, in setup [~,0'], among the 50% 

in which K
1 is a KL, a small fraction has also K detected as a K£. That 

fraction is equal to the probability that K, assumed to be a Ks initially, is 

regenerated into a KL in the copper slab~' [9]. For 109 events cl)0 -+ K 0Jtl, 
there are 

nE,O' = 9200 (6) 

such events.1 They are of the KLK£ type. 

1To compute this number, the optical model has been used to get the forward scattering 

lengths /{0) and f(O) of the i(l and Jt1, respectively, by copper at 1 GeV fc, [9): 

l/(0)-f~O)I = fl....!!ili 
1 GeV c 1i. 

The other constants needed are well known, [8]. 
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In setup [O,'E'] a somewhat symmetrical situation exists. In 50% of the 

events, the K particle decays as a Ks and, in the other 50%, it is detected 

as a KL. In the latter 50% of the events, particle K
1 is assumed to be a 

Ks initially. In 97.6% of these 50%, it decays as a Ks before it reaches the 

copper slab 'E'. The remainder may be considered as K s 's reaching the slab. 

In setups [0,0'] and [E,O'], these events are those for which K
1 decays as a 

K s at a distance of more than 20 em from the e+ e- -collision point. They 

amount to 

L,S 12 "11" n0 ,0 , = m1 1on (7) 

events out of the 109 q,o --+ neutral kaons events produced. 

In setup [O,'E'], a fraction of these Ks's are regenerated into KL's by 'E' on 

the path of K 1
, generating events with two](£. Using the same computation 

and the same constants as for setup ['E,O'], one computes their number 

no,E' = 5540 . (8) 

2.3 Two Regenerators 

In setup ['E,E'], both regeneration processes, i.e. regeneration of K in slab 'E 

and of K
1 in E', are at work. Since slab E is the same in setups ['E,'E'] 

and [E,O'], one expects the probability of regeneration of K from Ks to KL 

to be the same in either one of these setups. However, in setup ['E,'E'], an 

event where the particle K is regenerated from Ks to KL ends up being a 

KLK£ event only ifthe associated long-lived K 1 remains a KL after traversing 

slab E'. Let us call r/ the probability that a KL particle impinging on 

E' emerges as a KL without interacting or being transformed into a Ks; 
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r/ ~ 0;59. In setup [E,E'], using Eq. (6), the regeneration process in E 

contributes to the sample of KLKi events by 

nl:,O' X rJ' = 5430 events. (9) 

Similarly, let us call TJ the probability that a KL particle impinging on 

E emerges as a KL after going through it; 'T} ~ 0.96. Taking Eq. (8) into 

account, the regeneration process in E' contributes to the sample of KLKi 

events in setup [E,E'] by an amount equal to 

no,l:' X 'T} = 5320 events. (10) 

Whether the regeneration happened to K. in E with K.
1 impinging on and 

going through E' as a KL, or to K.
1 in E' with K. traversing E unmodified, 

the final state is the same: both K. and ,..,, are K L states and there is no 

recoil particle in any slab. It is impossible to distinguish which regeneration 

process is responsible for the KLKi event. Therefore the two processes 

interfere. In setup [E,E'], slab E is close to the e+ e- -collision point, while 

slab E' is located 20 em downstream. Regeneration of K. in E implies that 

K.
1 travels the 20 em to the location of E' as a KL, while, in the process 

where K.
1 is regenerated in E', it emerges as a KL only after it has travelled 

the same distance as a Ks. That distance corresponds to 3.7 Ks mean 

lifetimes, while the KL-Ks mass difference is about half the inverse Ks 

lifetime; it follows that there is a positive interference term, contributing to 

an additional number of KLKi events, nadd = 8000. We call these events 

the additional events. The total number of K LKi events in setup [E,E'] is 

I 
nl:,O' 'T} + no,E' 'T} + nadd , (11) 
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18800' (12) 

i.e. more than the sum of n:t,O' of Eq. (6) and no,:E' of Eq. (8). There is an 

increment of 

~n 

i.e. ~n 4000 

KLK£ events, present only when both :E and :E' are in place. 

3 Realistic Pictures of Quantum Systems 

3.1 Realism and Local Realism 

(13) 

(14) 

Along with the computation of Sect. 2, a picture of what is happening was 

used. At any time, either a kaon is a particle that can be detected in a 

KL detector if there is no regenerator further downstream, and then it is 

called a J( L; or it is a particle that decays at a short distance, and then 

it is called a Ks. If there is a slab on the path of K or K', a regeneration 

process is invoked, meaning that some kaons born Ks's are transformed 

into KL 's. This description of the KK' system is foreign to the Copenhagen 

interpretation of quantum mechanics, (10]. That interpretation gives no 

physical meaning to descriptions of kaons before these particles actually 

are seen after they either decay or interact in a detector. In particular, 

when both K and K' are on the stretch between the e+ e- -collision point 

and the regenerators, the Copenhagen interpretation gives a meaning only 

to the state vector 7/J, which is not an objective, but a mathematical entity 

depending in principle on both what the system is and what the observer 

knows about it. 
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Of course there is no harm in using a picture describing the KK1 system as 

an object independent of any observer, as we did in Sect. 2. It helps visualize 

what is happening. One can simulate how the system evolves in time from 

one configuration to another by Monte Carlo and different configurations 

represent differences in the system itself, not simply in what an alleged 

observer knows. If a modification in the experimental setup generates a 

difference in the configuration of a Monte Carlo event, it is an influence on 

the system, not just a change in our information about it.2 

It is always possible to have an objective picture of any quantum sys

tem. Very general models have been constructed that give a picture of what 

quantum systems may actually be, [11, 12], and these models can reproduce 

all experimentally verified predictions of quantum mechanics. Physicists be

lieving in models of that type are called realists. Their philosophy is called 

realism. 

In setup [0,0'] of Fig. 1, there are no KLK£ events, i.e. no events with 

both K and K
1 detected as K L in the KL detectors; but there are some in 

setups [E,O'], [O,E'], and [E,E'], when regenerators are interposed on the 

trajectories of K and K
1

• A realistic description of the phenomenon must 

involve an influence of these regenerators at least on some of the KK1 systems. 

In setup [E,O'], the number n:r:,o• of KLK£ events can be explained assuming 

the regeneration of K particles in slab E with a regeneration probability that 

depends only on the nature, thickness, and location of E. The phenomenon 

can be described using only local interactions of K with its own environment. 

2 The significance of the word influence here is the same as in the description of mea

surements by quantum mechanics, where it is said that measurements not only inform an 

observer but also influence the system itself. 
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In setup [O,E'], similarly, the number no,E' of KLK£ events can be explained 

by regeneration processes of K' involving only local interactions in E'. In 

both setups, there is need only for influences between objects at the same 

location. Describing phenomena in terms of objects interacting with other 

objects only in their immediate vicinity is a requirement of a special type 

of realism called local realism. In a Monte Carlo simulation, local realism 

implies that the random process that decides the fate of K does not have 

a mathematical dependence on parameters describing pieces of equipment 

located on the path of K'; and vice versa.3 

In setup [E,E'], the picture used to compute the interference term nadd in 

Eq. (11) is of a different nature. The term nadd is a complicated function of 

parameters specific of E and of others specific of E', as if the phenomenon 

responsible for it involved a conspiracy between objects distant from one 

another. The phenomenon is not described using only local interactions. 

The question is whether or not there are other pictures than the one of 

Sect. 2, that could also account for the data. but where only local interactions 

would be involved. 

3.2 Comparison with the Two-Slit Experiment 

In setup [E,E'], the computation is similar to the computation of the photon 

intensity in the two-slit experiment shown on Fig. 2. There, at the center of 

the screen, the intensity is larger than the sum of the intensity detected if 
3 There are different possible definitions of the words "local" and "locality", (13]. Some 

do not even mention the concept of "realism", [14]. Others are based on properties that are 

not Lorentz-invariant, [12]. The one used here, called "local realism", is Lorentz invariant 

and is most convenient to demonstrate the purpose of the two-kaon test proposed in this 

paper. 
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only slit :E is open and of the intensity if only slit :E' is there. The usual real

istic description of this effect involves waves propagating through both slits 

and meeting at the center of the screen where they combine and influence 

the photon intensity. The waves are shaped by the slits and are the carriers 

of that influence between the slits and the screen. That interpretation of a 

wave carrying an influence in the case of the two-slit experiment seems to 

be corroborated by the experimental fact that the amount of interference 

changes if a wave shifter is interposed between one of the slits and the center 

of the screen, suggesting that something is going through that wave shifter. 

In the case of the kaons being regenerated in setup [:E,:E'], it is different. 

One could, in principle, place any piece of absorbent material between the 

two kaons after they left the e+ e- -collision point, even an extended piece of 

neutron star in a plane containing the e+e--beam of Fig. 1, and separate 

the setup in two parts. Any known wave or particle coming from slab :E or 

from any point on the path of K. could not meet another wave or particle 

emitted by :E' or any point on the path of K.1 without being intercepted and 

perturbed, but the number of/( LK£ events including the interference term 

would be unchanged. If the influence is transmitted by some kind of a wave, 

that wave has to be far more subtle than in the two-slit experiment. 

Furthermore, in a gedanken experiment where both :E and :E' would be 

located far away from the collision point and inserted at the last instant by 

a free-will experimenter, it is possible to get a similar interference effect but, 

to carry the influence in this case, one can show that the vehicle would have 

to travel faster than light if quantum theory is correct. This is why such 

interference effects are called non-local effects. 
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3.3 The State Vector as a Description of Reality 

To get an objective picture of the system, one could assume, for instance, 

that a state vector t/J does not depend on the observer's knowledge, but on 

the system alone, and that no other quantities are needed to describe what 

the system is. Then t/J is a description of reality as wanted by the realists. 

However, for a system of two particles, a state vector t/J is an elaborate 

mathematical entity involving properties of two particles at different points 

in space. To satisfy not only realism, but also local realism, the description 

of the system of particles should be made of parts that each can be assigned 

a location in space, and that do not get modified instantaneously by what 

happens at a distance. The state vector t/J does not qualify. This was noticed 

by Heisenberg in 1930 already, [15]. 

The two-kcwn experiment can be used to illustrate Heisenberg's argu

ment. Consider the Monte Carlo simulation of events in setup [0,0'], as they 

unfold as a function of time. Before the first kcwn decays, the state vector 

is of the form of Eq. (1) for all events. The random process responsible for 

the decay depends only on t/J, thus it is the same for all events. It gives 

equal chances to K, and to K,
1 to decay as a K s during the next time interval 

dt. As soon as one particle decays as a Ks, the probability for the other 

to decay likewise becomes instantaneously zero. The same random process 

affects both the decay of the first particle and, immediately, the decay prob

ability of the second particle located somewhere else. In effects of this kind, 

Heisenberg sees an action faster than light. 

In setup [0,0'] alone, local realism can be restored easily. One can assume 

that the description of the two-kcwn system requires more physical quantities 
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than the state vector alone. For instance, in the Monte Carlo simulation, 

at the time of the ~0-decay, one can generate two parameters that later 

determine the decay modes and the decay times of "' and "'', one as a K L 

and one as a Ks. One can consider each of these two parameters as one of 

the characteristics of the corresponding kaon, to be carried by the particle 

until it decays or interacts in a detector. Then there is no need for non-local 

action. However these decay modes and times are not quantities determined 

by the state vector of the system at the ~0-decay time. They are features 

added for a complete description of the system and they are unknown before 

decay.4 They are called hidden variables. 

3.4 "Local" Monte Carlo Simulations 

To describe the impact of realism and of local realism on a theory, we in

voked Monte Carlo simulations of the experiment that the theory describes. 

Consider the generation of events in setup [0,0'] of Fig. 1, i.e. without copper 

slab on the path of any particle. The simulation generates a list of events 

numbered 1 ... j ... 109
, where the fate of particles "' and "'' is recorded. 

Each one is either detected in a K L detector; or it is identified as a K s 

because its decay satisfies the experimental criteria set for Ks; or it is am

biguous or not detected at all. 5 Let us call K.j and K.j the K. and the K.
1 

4 This is another case like the one described by EPR, [1], where adding quantities to 

the description of a quantum system can save local realism. 

5 The purpose of taking ambiguous kaon decays into account here is to make the defini

tions enunciated below appropriate for future analyses in Sect. 5. Except for this reason, 

ambiguous events are still neglected at this point of the paper. 
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particles of the ph event, respectively. We write Kj = KL if"' is identified 

as a KL in event j; or Kj = Ks if"' is identified as a Ks; or Kj = Kelu if K 

ends up being an ambiguous or an undetected particle.6 Similarly, we write 

Kj = K£, or K~, or K~l.se' if K1 is identified as a KL, or a Ks, or neither. 

Our definition of realism implies that it is possible to simulate the system 

itself, not just what we know about it. Local realism implies another property 

in addition; as it is mentioned in Sect. 3.1, local realism assumes the existence 

of a Monte Carlo simulation, where features that can be observed on the 

path of "' are independent of the kind of equipment placed on the path of 

K'; and vice versa? After generating events in setup (0,0'], the generation of 

events in setup (:E,O') does not require changing Kj since everything on the 

path of K1 is the same, while, of course, it may require changing Kj since "' 

now traverses slab :E. Therefore the list of Kj in setup (:E,O') has the same 

values K£, K5, or K~lse' as in setup (0,0'). Similarly, in setup (O,:E'), the 

list of Kj is the same as in setup [0,0'), for the same reason. Following the 

same argument again, once the list of Kj has been altered to take slab :E 

into account in setup (:E,O') and once Kj has been modified to take :E' into 

account in setup (O,:E'], the sequence made of these two new lists put together 

gives a valid simulation of the experiment in setup [:E,:E'). We end up with 

four sequences of 109 Monte Carlo events numbered j where, for each j, the 

states "'"'' satisfy the following independence conditions: 

:E' independence without slab :E: "' identical in setups (0,0') and (O,:E']; 
6 Note that, in Monte Carlo computations, if a particle is not detected, it is still known 

that it exists. 
7 In the mathematical sense of the word independent: the selection of a random number 

and the algorithm used to generate an observable feature of "' does not depend, mathe

matically on the parameters defining material laying on the path of~>'; and vice versa. 
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with slab 1:: K identical in setups [1:,0'] and [:E,:E']; 

1: independence without slab 1:': K' identical in setups [0,0'] and [1:,0']; 

with slab :E': K' identical in setups [0,1:'] and [1:,1:']. 

Bell's inequality is a consequence of these independence conditions. 

4 Bell's Inequality 

4.1 The Additional Events 

First let us generalize the concept of additional event of Sect. 2.3. Consider 

any Monte Carlo simulation of events in the four setups of Fig. 1 and the 

corresponding four sequences of events KjKj. Let us define an additional 

event as one that, for a given event index j, is 

a) type KLK£ in setup [:E,:E'], with both slabs 1: and :E' in place; but 

b) not type KLK£ in setup [1:,0'] with :E' removed; and 

c) not type KLK£ in setup [O,E'], where E is removed instead of E'. 

In the realistic picture of Sect. 2, such event is an event counted in nE,E' 

of Eq. (11); but neither among the nE,O' x rl events of Eq. (9) where K is 

regenerated into a KL by 1: and K' survives as a KL after traversing E'; nor 

among the no,E' X TJ events of Eq. (10) where K1 is regenerated into a KL by 

:E' and K survives as a KL after traversing E. In that picture, it is indeed 

one of those KLK£ a:dditional events in setup [E:E'], due to the interference 

term in Eq. (11). That is the reason why, in any simulation, we give events 
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with properties a), b), and c) above the same name, additional events, as in 

Sect. 2.3. Their number is still called nadd·8 

The definition given here of additional events means that the sample 

of n:E,:E' events of type KLK£ in setup [E,E'] consists of those nadd addi

tional events, and of other events, which are among the KLK£ events in 

setups [E,O'] or [O,E']. It follows that 

n:E,:E' :-::; nadd + n:E,o' + no,:E' · (15) 

Therefore, using Eq. (13), 

(16) 

Next let us consider the effect of local realism. If a theory is local, there 

are Monte Carlo simulations producing sequences of events satisfying the 

independence conditions of Sect. 3.4. Item a) of the definition of additional 

events and the E'-independence condition of Sect. 3.4 require that, after 

removing slab E', "'still be a KL in setup [E,O'] as in setup [E,E']. Let us 

again assume 100% efficiency and no ambiguity in the detection of K L 's and 

K s's. This assumption and item b) of the definition of additional events 

imply that the kaon "''of these events is a Ks in setup [E,O']. Then, because 

of the E-independence condition, "'' is a K s after removing E in setup [0,0'] 

as in setup [E,O']. Similarly, using first item a) and the E-independence 

condition, then item c), then the E'-independence condition, one sees that 

"' is a Ks in setup [O,E'] and [0,0']. Additional events are part of the n0 0, . 
8 Note that nadd depends in general on the theory behind the Monte Carlo simulation, 

even when the different theories predict the same numbers of event types in each setup. 

See Appendix A. 
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events of type KsK's in setup [0,0']. Therefore, whether or not n0,0 , has the 

value predicted by Eq. (5), local realism requires 

nadd ~ no,o• . (17) 

From Ineqs. (16) and (17), one can derive 

~n = nE,E' - nE,O' - no,E' ~ no,O' (18) 

Ineq. (18) is a form of Bell's inequality, [3]. An inequality similar to (18) 

can be derived with the number of KsK's events substituted to the number 

of KLK£ events, and vice-versa in each setup. Then this new inequality and 

Ineq. (18) can be added. If the absorption of kaons in the slabs could be 

neglected, the resulting inequality would be equivalent to the form of Bell's 

inequality that can be found in Ref. [4]. 

4.2 Testable Inequality 

For a Monte Carlo simulation abiding with the principles of local realism, 

Sect. 3.4 gives a recipe to construct sequences of events satisfying the in

dependence conditions. In such Monte Carlo sequences, additional events 

can be identified and their number nadd satisfies Ineqs. (16) and (17). In 

an experiment, where data is gathered in one setup after the other, the 

chance to get sequences of events satisfying the independence conditions of 

Sect. 3.4 is almost zero, even if there is a local theory that can explain the 

data.9 Furthermore, in general, there are several theoretical pictures that, 

9 However that probability is not zero absolutely, since all outputs of the Monte Carlo 

are possible outcomes of the experiment. Such four sequences can be considered in a 
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in the Monte Carlo, give identical numbers of event types in each setup, 

but different nadd when the sequences for the different setups are compared. 

See Appendix A. Therefore nadd is not a quantity provided by experiment. 

Ineq. (17) which uses nadd explicitly, is not adequate for an experimental 

test. 

Ineq. (18), on the other hand, is a constraint imposed on numbers of 

events n~.0,, nE,E'' nE,O'' and n0 p, which each depends on the Monte Carlo 

data computed for only one setup. The values obtained by Monte Carlo 

for these quantities should be equal, within statistical error, to the values 

obtained in experiments performed with the same setup. In experiments 

where lack of detection efficiency and ambiguities can be neglected, n~.0,, 

nE,E', nE,O', and no,E' can be measured and introduced in Ineq. (18).10 

gedanken experiment, as it was considered in Ref. [16]. There, the possibility of such 

four sequences obtained this way was used in an alternate formulation of the definition 

of locality for a theory. The definition implied the possibility to find an experiment (even 

gedanken) with such four sequences as an outcome and, at the same time, with averages 

of number of events in the various setups that do not show excessive deviations from the 

expectation values of the theory. 

This not quite zero probability also legitimates a definition of locality based on coun

ter/actual outcomes of an experiment, [13, 14, 16]. That definition means : suppose an 

experimenter can set a parameter anyway he chooses to; suppose the experiment is per

formed with that parameter set at a particular setting and yields a particular value for an 

observable measured somewhere else; if the parameter has no influence on the observable, 

the same value would have been taken by the observable. 

This interpretation of the word influence implies what is called operational determinism 

by some philosophers, [17], though this philosophy is often adopted when no deterministic 

theory is even assumed to exist, e.g. in cases of human beings taking decisions and assumed 

not to be influenced by facts that they do not know about. 
10 Note that absorption of kaons in the slabs does not have to be neglected though. 
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Ineq. (18) is an inequality that the data must satisfy if the physical processes 

involved can be simulated by Monte Carlo with the independence conditions 

of Sect. 3.4, i.e. with "" simulated identically whether slab :E' is in place or 

not, and K-
1 independently of!:. 

If the data agrees with the predictions of Eqs. (5) and (14), Ineq. (18) 

is violated. The predictions of standard regeneration theory and quantum 

mechanics are not compatible with those of any local theory. In principle the 

test suggested here should should reveal a violation either of regeneration 

theory and quantum mechanics, or of local realism. However there are 

uncertainties associated with the experimental determinations of n~,0,, n:r:,:E', 

n:r;,o', and no,:E' because of ambiguous decays, which we have ignored so far. 

These ambiguities may spoil the violation of Bell's inequality, (18), because, 

among the 109 ()0 -+ K0~ events involved in the experiment, the number 

of ambiguous decays is of the order of or greater than ~n, predicted by 

Eq. (14). The effect of ambiguous decays has to be taken into account in 

the experimental determination of ~n. 

4.3 Direct Observations 

From now on we stop neglecting ambiguous kaon decays. Contrarily to what 

we have assumed so far, in an experiment, one cannot always tell for sure if 

a kaon is a KL or a Ks.11 However, assuming that KL's and Ks's behave 

as in standard theory, the number of KL's and the number of Ks's can 

be determined statistically by analyzing time decay-distributions and decay 

modes. Let us distinguish three possible direct observations on kaons : 

11 In quantum theory, KL 'sand Ks's states are not even completely orthogonal in Hilbert 

space when C P is not conserved. 
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"KL" : kaon surviving without decay for more than 80 em, or via the semi-
. 

leptonic mode at a distance of more then 50 em from the e+ e--collision 

point, or decaying via the three-1r mode; 

"Ks" kaon decaying via the two-1r mode at a distance inferior to 80 em from 

the collision point; 

"K ef6 e" : anything else. 

From the known decay properties of kaons, [8], one can estimate that 99% of 

the states said to be KL contribute to the "KL" sample and 8 X 10-5 of them 

to "Ks"; 99.9% of the states said to be Ks contribute to the "Ks" sample 

and 3 X I0-7 of them to "KL". From the numbers of direct observations 

of "KL" and "Ks", making adequate corrections, one can infer the number 

of K L 's and of K s 's in each conditions. This can be done for K and for K
1

, 

therefore for each event type, to determine the numbers n~.0,, n:E,:E'' n:r:,o', 

and no,:E' of KsK's or KLK£ events in the four setups. 

4.4 Supplementary Assumption 

Ineq. (18) for local theories was arrived at by analyzing additional events, 

which are defined by properties a) to c) of Sect. 4.1, and that satisfy the 

independence conditions of Sect. 3.4. Such additional events can always be 

identified in a local Monte Carlo simulation where K and K
1 can be recognized 

as either a KL or a Ks in each event. For local theories, let us make the 

following supplementary assumption : 

K and K
1 particles can be given a KL or a Ks label in the record 

of each Monte Carlo event, with probabilities of KL and Ks to end 
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up as "KL" or "Ks" equal to the ones assumed when analyzing the 

experimental data; or 

the simulation deviates from this but by so little that the difference is 

within the statistical error of the experiment. 

Then additional events can be identified in the Monte Carlo and the demon-

stration of Sect. 4.1 is relevant. If the theory is local, the numbers n~.o', ni:,I:', 

ni:,o', and no,I:' determined from the Monte Carlo should satisfy Ineq. (18), 

and so should the experimental determinations of n~.o', ni:,I:', ni:,O', and no,I:' 

by the statistical analysis described above of the data of the experiment. If 

the experimentally determined values of n~.0,, ni:,I:'' ni:,o', and no,I:' turn 

out to agree with the standard predictions of Eqs. (5), (6), (8), and (12), 

they violate Ineq. (18). Thus local theories that satisfy the supplementary 

assumption are ruled out. 

One can imagine theories and simulations where some of the kaons end 

up as "KL", "Ks", or "Kel6e" without necessarily being KL or Ks in an 

intermediate state. In particular, leptonic decays at short distances are 

ambiguous and do not have be assigned to a K s or a K L particle. Such 

theories may not abide with the supplementary assumption and, even if 

they are local, they are not necessarily ruled out if the experimental data 

violates Ineq. (18). 

The class of local theories satisfying our supplementary assumption is 

limited but not empty. If it were not for that 1% of ambiguous decays 

where KL does not end up as "KL", and that 0.1% where Ks does not 

end up as "Ks", each KL and Ks states could be identified. Then n~.0,, 

ni:,I:'' ni:,o', and no,I:' could be measured directly. The predictions of quan-
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tum theory would have to be wrong, if any local theory were correct. In 

the presence of ambiguous decays, if nature designed kaon physics in con

formity with the principles of local realism, it would have to manipulate 

these "ambiguous" modes very carefully not to let this show by a violation 

of quantum mechanics in a test like this one. Nature may just not be so 

"tricky". Therefore a test by Ineq. (18) is a bona fide test of quantum the

ory in kaon physics, in circumstances where the non-local effects of quantum 

mechanics are involved. 

In the same spirit, one could make the test less difficult experimentally, 

by adding another supplementary assumption. If quantum theory is right 

and there is no violation of charge conjugation in <P0 -decay, the number 

of KsK's events is the same as the number of J(LJ(L events in setup [0,0']. 

Then n0,0, is the same as no,O'· This is true even if the <P0 particle has a large 

branching ratio into K 0X0 'Y· Nature may abide by the principles of local 

realism in kaon physics and not hide the violation of quantum mechanics that 

this entails behind another violation, i.e. behind a violation of C. Therefore 

one can test local realism using no,o', which is probably easier to measure 

than n0,0 ,, and introduce it instead of n0,0 , in Ineq. (18). 

5 Tests Using Direct Observations 

The issues are clearer if the test is expressed by inequalities imposed on quan

tities that are directly observable and not, like n0,0,, nE,E', nE,O', and no,E', 

inferred from the data using a supplementary assumption. In the record of 

the Monte Carlo event, there must be parameters that specify what is fi

nally observed. Then, using such parameters, entities like additional events 
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can be defined in every simulation and analyzed as in Sect. 4.1. Unfor

tunately predictions concerning these direct observations do not have such 

clear cut properties as for KL and Ks. Because of ambiguous decays, some 

complications arise. 

5.1 Modified Bell's Inequality 

First let us adjust Ineq. (18) so it can be used with directly measurable 

quantities. 

5.1.1 "Additional" Events 

Consider the possible direct observations of kaons, "KL", "K s", and "K el~e", 

defined in Sect. 4.3. Let us define two-kaon states "KLK£", "KLK's", 

"KLK~1~e'', "KsK£", and so on, as states where K is observed like the un

primed K -symbol and K
1 like the primed one. 

In a Monte Carlo simulation of experimental data in the four setups 

of Fig. 1, "additional" events are defined as those that are "KLK£" in 

setup [:E,:E'); but not in setup [:E,O') for the same event number j; and not 

in setup [O,:E'] either. There are "nadd" such events. Let us also define 

"no,o•", "nr:,o•", "no,r:•", and "nr:,r:•" as the numbers of "K LK£" events in 

setups [0,0'], [:E,O'), [O,:E'), and [:E,:E'), respectively, 

"~n" "nr:,r:•" - "nr:,o•" - "no,r:•" . (19) 

Using a similar argument as in Sect. 4.1, one gets relations analogous to 

Ineq. (15), thus to Ineq. (16), 

(20) 

25 



Category Setup [0,0'] Setup [ E,O'] Setup [O,E'] Setup [E,E'] 

I add "KsK's" "KLKs" "KsK£" "KLK£" 

II add "K K'" elae S "KLKs" "K K'" elae L "KLK£" 

Ill add "K K' " S elae "KLK' " elae "KsK£" "KLK£" 

IV add "K K' " else else "KLK' " else "K K'" else L "KLK£" 

Table 1: Categories of "additional" events and their types in the four differ

ent setups. 

Now, let us assume that the Monte Carlo simulation satisfies the inde

pendence conditions of Sect. 3.4, and let us follow the same reasoning as in 

Sect. 4.1. Table 1 shows all the possible types that an "additional" event 

can have in each setup. It is clear that all "additional" events are included 

in the sample formed by the union of three sets: the "ng;g," events of type 

"KsK's" in setup [0,0'], which include category Iadd; the "n~~~~·8 " events 

of type "KelaeK's" in setup [0,0'], which include category IIadd; and the 

"nt~~ae, events of type "KLK~1se" in setup [E,O'], which include categories 

Illadd and IV add. One can write 

< 

where "n~ 0," 
' 

" L,else, 
nE,O' ' 

"ns,s" + " elae ,s" 
0,0' nO,O' 

(21) 

(22) 

Note that, to include all categories, one may omit events in which the 

particle K
1 decays at a distance smaller than 20 em from the e+ e- -collision 

point. The reason is that, in a local theory, the kaon K
1 is assumed not to be 

affected by the presence or absence of copper slab E' before it reaches the 

place where that slab is or would be. If K 1 decays at a distance inferior to 
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20 em in setups [0,0'] or [:E,O'], it would do so in setup [:E,:E'] too, thus cannot 

belong to an "additional" event according to the definition of this section. 

From now on we will discard K-
1 decays at less than 20 em altogether. 

From Ineqs. (20) and {21), another form of Bell inequality is obtained, 

"A , < " * , + " L,el~e, un - no,o' ni:,O' (23) 

where "n~:~~_,e, is equal within statistical error to a quantity measurable in 

an experiment with only one setup, and where "~n" and "n0,0,'' can be de

termined from quantities shown in Eqs. (19) and (22), each of which is mea

surable because it depends on events counted in only one setup. Ineq. (23) 

is an experimentally verifiable inequality, involving only direct observations 

and requiring no supplementary assumption. 

5.1.2 Predictions of Regeneration Theory 

A likely outcome of the experiment is one that upholds the predictions of 

quantum mechanics and standard regeneration theory. To have an impact 

on the largest possible range of local theories, the best experiments are those 

where quantu~ mechanical predictions would violate Ineq. (23). Then all 

local theories would be ruled out. The interpretation of such experiments is 

loophole-free. 

Taking ambiguous decay modes into account but still assuming the de

tector to be perfect in its identification of the decay times and the decay 

modes, standard theory of Sects. 2.2 predicts : 

"no,o•" = 

= 

27 

440 j 

9360 j 

(24) 
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"no,l:' " = 5680; (26) 

"nr:,I:'" = 18570; (27) 

thus "Ll n" = 3530 j (28) 

and "ns,s, 
0,01 = 28800 j (29) 

" el&e,S, 
no,o' = 126000 j (30) 

" L,el&e, 
nl:,O' 13600 j (31) 

thus "n * " 0,01 155000. (32) 

Equations (28), (31), and (32) show that, for the experiment and the 

experimental parameters described in this paper, predictions based on re

generation theory do not violate Bell's inequality (23). This experiment is 

not loophole-free. However Ineq. (23) would be violated if one could find 

conditions in which there were more Ks-+KL regeneration before the Ks's 

decay. Since all parameters have not been optimized, it may turn out that 

a loophole-free experiment of this kind, but with different parameters, is 

possible. Further study is necessary before one can know whether or not 

this is true. 

However, if the predictions of standard regeneration are upheld, the local 

theories satisfying the supplementary assumption of Sect. 4.4 will be ruled 

out by the test described in Sect. 4.4. In addition, other local theories will 

also be ruled out if the tests described in the next sections are performed. 
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5.2 Theories without Hidden Variables 

5.2.1 Samples of Single Kaons 

Consider now local theories that describe kaons without hidden variables, 

i.e. as linear superpositions of two basic states, as in one-particle quantum 

mechanics applied to single kaons. With such theories, four sequences of 

Monte Carlo events, one for each setup, can be generated satisfying the 

independence conditions of Sect. 3.4 and, for each configuration of particle ,..,, 

the state of K.
1 is described by a density matrix in a two-dimensional Hilbert 

space. By selecting Monte Carlo events on criteria based on observations on 

K., one defines samples of ,..,, particles with decay properties determined by 

a density matrix. Then any two observations made on any two samples of 

particles,..,, satisfy an inequality, (59), shown in Appendix B. That inequality 

and local realism impose constraints on measurable quantities, which can be 

tested in our experiment. 

For lneq. (59) of Appendix B, let us consider two simulated "measure

ments" made on particles K.
1 generated by Monte Carlo : 

Mr;•: slab E' in place; outcome considered: "Kl,"; because of local realism, 

the outcome is the same in setups [O,E'] and [E,:E']; 

Mo: slab E' removed; outcome considered: "Kl,"; because oflocal realism, 

the outcome is the same in setups [0,0'] and [:E,O']. 

For Ineq. (59), let us also consider two samples, (A) and (B), of K.
1 

particles that belong to events abiding with the independence conditions of 

Sect. 3.4 and that reach the location of slab E' before they decay. That decay 

criterion should not invalidate the description of the samples of surviving 
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kaons K 1 by a density matrix. Aside of that decay requirement, the selection 

of the samples of K 1 is based only on observations made on the other particle, 

K. The selection criteria are : 

(A) : K
1 particles associated with K's seen as "KL" when slab :E is not 

there, i.e. in setups [0,0'] and [O,E']; 

(B) : K
1 particles belonging to events where, in the four sequences of Monte 

Carlo events, K is a "Ks" or a "Kelse" without slab :E, i.e. in se-

tups [0,0'] and [O,:E'], but where K is a "KL" with slab :E in place, i.e. 

in setups [:E,O'] and [E,:E']. 

5.2.2 Probabilities and Limits on Probabilities 

The probabilities Pk~) and pk~) we want to introduce in lneq. (59) can be 

determined from selecting the events belonging to sample (A) or (B), then 

dividing the number of events where K
1 is a "KL" in setups with slab :E' 

by the total number of events. Similarly for p~A) and p~B) without slab E. 

For the numbers of events selected with criteria defined in more than one 

setup, no determination is possible from experiment. However, for them, 

in the Monte Carlo, one can derive limits that are functions of quantities 

depending on criteria in only one setup thus equal to the same quantities 

measured in the experiment. 

The limits are justified from properties of local Monte Carlo simulations 

according to Sect. 3.4. Their numerical value depends on the experimental 

data and can be obtained using expressions given hereafter. The value ex-
? pected for them from standard regeneration theory is also given, after a 

sign. 
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The number of events in sample (A), n<A), is equal to the sum of the 

numbers "n "of "K K'" "nL,s, of "K K'" and "nL,elu, of "KLK' " 
0,0' L L ' 0,0' L S ' 0,0' ebe 

events, in setup [0,0') or [O,E']. The predicted value is given in Eq. (7). 

n(A) = "no,o•" + "n~.~" + "n~.~,tae, ~ n~.~ J: 12 million . (33) 

The probability that is associated with M:r;•, i.e. of K 1 being observed as a 

"KL" with slab E' in place, is given by the ratio of the number of "KLK£" 

events in setup [O,E') to n(A) : 

(A) "no,:r:•" ? 
P:r;• = n(A) 

5680 = 5 10-4 . 
12 million 

(34) 

The probability corresponding to Mo, i.e. of K
1 being observed as a "KL" 

when slab E' is removed, is the probability of having a "KLK£" event in 

setup [0,0') : 
(A) _ "no,o•" ? 

Po - n<A) 
440 = 4 10-5 . 

12 million 
(35) 

As to sample (B), Table 2 shows all the categories of events belonging 

to that sample and their event types in the various setups, taking the inde

pendence conditions of Sect. 3.4 into account. The number nCB) of events in 

sample (B) is less than the sum of all events that are "KsK's" or "KelaeK's" 

in setup [0,0'), which include categories II( B) and V (B) of Table 2, and of all 

events that are "KLK£" or "KLK~13e" in setup [E,O'), which include cate-

gories I(B) and IV(B)' as well as III(B) and VI(B)· Eqs. (25), (29), (30) and 

(31) give the predicted value, 

For sample (B) and M:r;•, the probability pg;> that K 1 ends up as a "KL" with 

slab E' in place is the sum of the contributions of categories I(B)' II(B)' and 
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Category Setup [0,0'] Setup [:E,O'] Setup [O,:E') Setup [:E,:E'] 

I( B) "K K'" S/else L "KLK£" "K K'" S/else L "KLK[," 

II(B) "K K'" S/else S "KLKs" "K K'" Sfelse L "KLK£" 

III(B) "K K' " S /else else "K K' " L el1e "K K'" Sfelse L "KLK£" 

IV(B) "K K'" Sfelse L "KLK£" "K K' " S/else Sfelse "K K' " L S/elae 

v(B) "K }'"'" S/else '-s "KLKs" "K K' " S/else Sfelse "K K' " L S/elae 

VI( B) "K /{' " S /else '-else "K K' , L else "K K' " S /else Sf else "KLK' " Sf else 

Table 2: Categories of events belonging to sample (B) and their types in the 

four different setups; "Ksjelse" means "Ks" or "/(else". 

III(B) of Table 2. Events of type "KLK£" in setup [:E,:E'] are either events 

of these categories, or events that do not belong to sample (B) because they 

have K. as a "KL" without slab :E, i.e. events of type "KLK£" in setup [O,:E'] 

too. Predicted values are given by Eqs. (26) and (27). 

12900 = 0.072 . 
178000 

(37) 

Finally, for Mo on sample (B), the probability of K
1 being a "KL" when 

slab :E' is removed, is given by events of categories I(B) and IV(B) of Table 2, 

which are fewer than all "KLK[," events in setup [:E,O']. Eqs. (25) and 

Ineq. (37) give a prediction. 
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5.2.3 Experimental Test 

If the local theory describes kaons without hidden variables, it has to predict 

b b'li . (B) (B) (A) d (A) h t ld t' f I (59) . pro a 1 ties PE• ,p0 ,p0 , an PE• t a wou sa IS y neq. , I.e. an 

inequality that can be rewritten as 

(39) 

If the data agrees with the predictions of standard regeneration theory, a 

local theory cannot fit the data because, if Eqs. (34) and (35), as well as 

Ineqs. (37) and (38) are verified by the data, the left-hand side of Ineq. (39) 

is larger than 0.039 and the right-hand side is 0.030. Then no Monte Carlo 

abiding with the independence conditions of Sect. 3.4 and describing kaons 

by a two-component wave function can simulate the data. All local the

ories without hidden variables in their description of kaons will be ruled 

out, regardless of the description of q,0-decay or kaon evolution, decay and 

regeneration. 

5.3 Theories with Enhanced Regeneration for Some Kaons 

In local hidden- variable theories, it is possible to define different kinds of 

kaons, as if there were another quantum number than strangeness to describe 

the kaon basic states. Ineq. (59) is not a constraint anymore. However, if 

the result of the experiment proposed here are those predicted by standard 

regeneration theory, very different properties will be required from those 

different kinds of kaons. The larger the difference in properties required to 

fit the data, the larger the class of local theories eliminated. 

The property of relevance here is the "Ks"---+"KL"-regeneration proba

bility. For Monte Carlo kaons observed as "Ks" or "Kelae"when no slab is 
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on their path, it is defined as the probability to be observed as a "KL" when, 

on its path, a slab is added to the setup. It is possible to determine such 

probability in Monte Carlo simulations, but not in experiments. However, 

it is possible, for those regeneration probabilities defined for samples of sim

ulated events, to find limits computable from quantities that each depends 

on a sequence of events in only one setup. These quantities should be equal 

to values obtained by experiment. Thus, from the experimental data, one 

can compute limits which then become constraints on local theories. From 

the high and the low limits established for different samples of events, the 

need for large variations in regeneration probabilities can be demonstrated. 

Hereafter, expressions are given as how to compute those limits from data 

and, along with them, the predictions of standard regeneration theory after 
? • 

a = sign. 

5.3.1 Samples of Two-Kaon Events 

In the Monte Carlo sequences, this time, five samples of events are consid

ered. They are 

(1) :in setup [0,0'], type "KsKL" or "KelseKL"; the number n(l) of events 

in this sample depends on events defined in only one setup; it can be 

measured, n<l) J: 500 million; 

• 
(2) :in setup [0,0'], type "KLKs"; the number n<2) of such events can also 

be measured; it is n<2) ~ n~.~ J: 12 million according to Eq. (7); 

(3) :in setup [0,0'), type "KsKs" or "KebeK's"; the number of events here 
? 

is measurable and equal to "n~.0,'' = 155000; sample (3) contains all 
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so-called "additional" events of categories Iadd and IIadd defined in 

Table 1; 

( 4) : same criteria as for sample (3) but, in addition, "' is a "KL" in 

setups [E,O'] and [E,E']; thus the number of events in sample ( 4) is not 

measurable in an experiment; sample ( 4) contains fewer events than 

sample (3), but it still contains all "additional" events of categories Iadd 

and IIaddi 

(5) :in setup [E,O'], type "l(LK~Ise"; the number of events in this sample 

is measurable; it is equal to "nt:~~se, J: 13600; sample (5) contains 

all "additional" events of categories Ill add and IV add. 

From these samples again, events where "'' decays upstream from the loca

tion of slab E were eliminated. 

5.3.2 Limits on Enhancement Factors 

In the samples of Monte Carlo events (1) and (3), where "' is a "Ks" or 

a "[(else" in setups without slab E, a Ks-+KL-regeneration probability for 

"' can be defined as the probability of "' being a "KL" when E is in place. 

The averages of these regeneration probabilities over samples (1) and (3) are 

calling Pregen and /XPregen, respectively. Similarly, regeneration probabilities 

for l'i.
1 when slab E', P~egen' f' X P~egen' and /(5) X P~egen can be defined 

for sample (2), (4), or (5) respectively. The probabilities Pregen and P~egen 

are essentially the average regeneration probabilities. The factors f are 

enhancement factors. They are ratios between the regeneration probabilities 

of at least some kaons in samples (3) or (5) and the average regeneration 

probabilities. By showing that these enhancement factors have to be high, 
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one shows how different the regeneration probabilities have to be for a local 

hidden-variables theory not to be ruled by the data. 

Regenerated ,.,•s in events of sample (1) are of the type "KLK£" in 

setup [:E,01
], and regenerated ,.,1's of sample (2) are "KLK£" in setup [O,:E1

]. 

Therefore, using Eqs. (25) and (26), 

Pregen 

I 
Pregen 

< 

< 

"n:E,o'" ? 

n(l) 

"no,:E'" ? 
n(2) 

93~0. = 1.9 10-5 ' 
500 m1lhon 

5680 . -4 
-12_m_i,.,.lli_o_n = 4" 7 10 · 

(40) 

(41) 

By definition of sample ( 4) and of f X Pregen, the number o{ events in 

sample (4) is f X Pregen X "n0,0,''. "Additional" events are those events from 

sample (4) and (5) where ,.,1 has become a "KL" when slab :E1 has been 

added to setup [:E,01
]. Therefore, 

" , JJI 1 " * , + ~~ 1 " L,elae, nadd = PregenPregen no,O' J (5)Pregen n:E,O' (42) 

and, using Ineqs. (20), (40) and (41), 

" "" " " " "Ll " < Jf' n:r;,o' no,:E' " * , + ~~ no,:E' " L, elae, 
n - n(I) n(2) no,o' J (5) n(2) n:E,O' (43) 

where all the terms "Lln" "n " "n " n(I) n<2) "n* " "n " and , :E,O' ' O,:E1 
, ' ' 0,0' ' 0,1:' ' 

"n~·~~ae, are measurable. 
' 
The result of the test consists of showing how large at least one of these 

enhancement factors /, / 1 and /(5) has to be. The minimum value compat

ible with Ineq. ( 43) will be given by making the values of f, / 1 and /(5) all 

equal. That value is the minimum value for the ratio between regeneration 

probabilities that a local Monte Carlo simulation of the experiment has to 

assign to the different kinds of kaons. And the kaons with the large prob

ability have also to be made responsible for the "additional" events where 

both ,., and ,.,1 get regenerated in the same event. 
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If the standard predictions are correct, Eqs. (28), (31 ), and (32) together 

with lneq. (40) and (41) show that Ineq. (43) reduces to 

? 
3530 < 1.4 10-3 f !' + 6.8 f(s) . (44) 

If the factors f are all equal, they must be larger than 4 70. If they are not 

equal, one of them at least must be more than 4 70. 

5.4 Apparatus Ambiguities 

All the ambiguities that have been considered so far are due to ambiguous 

kaon decays, i.e. decay modes and decay times for which both K L and 

Ks can decay with a non-negligible probability. There are other ambigui

ties due to detection inefficiencies, particle mis-identification, and position 

measurement errors of kaon decay-products in the detectors. A complete 

analysis of these apparatus ambiguities is beyond the scope of this paper. 

Here, we will just point out that detector ambiguities do not depend on kaon 

physics but, instead, on the behavior of pions and leptons in matter. One 

can assume that the behavior of such particles is well understood and can be 

simulated accurately in the detectors. This assumption further restricts the 

local theories that are tested by the experiment; it is called a "fair sampling" 

assumption; it means that, if hidden variables are used for the description 

of kaons, they are not correlated with apparatus ambiguities due to phys

ical processes outside of kaon physics. Then apparatus ambiguities can be 

corrected for in order to get the numbers of events "nE,E'", "nE,o'", "no,E•", 

" S,S, " el3e,S, " L,el3e, d " " . E (19) (22). (34) d (35) n0,0, , n0,0, , nE,o' , an no,o' In qs. , , , an , as 

well as in lneqs. (23), (36), (37), (38), and ( 43). 

Even with a good detector simulation, some apparatus ambiguities may 
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still impact on the results and increase the number of event types with K or 

K
1 ending up as "Ketae" in setup [0,0']. Then, if the predictions of standard 

regeneration theory are upheld, the enhancement factor required for hidden

variable theories that survive the test may be expected to be reduced below 

the value of about 500 deduced from Ineq. (44). 

6 Summary and Conclusions 

6.1 Local Realism 

Realism is defined as implying the existence of a Monte Carlo simulation of 

what the system is, i.e. where changes in the description of the system corre

spond to changes of the system, not only of what a alledged observer knows 

about it. Local realism implies that, in that simulation, one can generate 

different sequences of events corresponding to changes in the experimental 

setup and only what is observed on waves and particles traversing the part of 

the setup that has been modified is changed. Here it has been shown that a 

local theory, i.e. a theory abiding with the principles of local realism, makes 

predictions that obey inequalities, some of them requiring a supplementary 

assumption. The test suggested in this paper inve-stigates a case where some 

of these inequalities are violated by the predictions of quantum mechanics 

and standard regeneration theory. 

6.2 Significance of the Experiment 

If the predictions of the standard theory of kaon regeneration are upheld, 

the experiment described in this paper will give results that will rule out any 

local theory describing the kaon by a quantum-theoretical superposition of 
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two basic states without hidden variables, regardless of how ci> 0-decay or kaon 

time-evolution and decay are accounted for. The experiment will also rule 

out a class of local hidden-variable theories, which assume the existence of 

different kinds of kaons for different values of the hidden variables. Defining 

a regenerated kaon in the Monte Carlo simulation as one that satisfies the 

"KL" criteria of Sect. 4.3 when a copper slab is placed on its path and does 

not satisfy them when the slab is not there, the only local theories that 

survive are those 

where most kaons are described as being regenerated with a probability 

smaller than or equal to what is predicted by regeneration theory; and 

where a less frequent kind of kaons is regenerated with a probability 

enhanced by a factor of the order of 500 or more over the standard 

prediction. The latter kind of kaons would be the ones involved in 

the "additional events" defined in Sect. 5.1.1, where the two kaons get 

regenerated in the same event. 

Unless a Monte Carlo simulation is based on a theory implying hidden vari

ables with such enhancement factors, that simulation would have to be non

local, i.e. what is observed in one part of the apparatus has to be changed 

when parts of the apparatus are changed elsewhere. 

With the parameters described in this paper, the standard predictions 

for this experiment do not violate Bell's inequality (23). Therefore, the 

experiment would not rule out all hidden variable theories; it is not loophole

free. To know if a different choice of parameters could make the experiment 

loophole-free, further study is necessary . 
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It has been assumed that hidden variables, if there are any, are not 

correlated with the efficiencies of the apparatus to detect and measure kaon 

decay products. A good detector simulation is needed to correct for detector 

inefficiencies and ambiguities. Even with a good detector simulation, the 

enhancement factor for the hidden-variables theories that are not ruled out 

by the test may be reduced below the value of about 500 mentioned above 

and in Sect. 5.3.2. The experiment has to be designed so that the conclusion 

concerning enhancement factors still be significant. Also, the experiment 

should be able to rule out local theories without hidden variables. 

6.3 Possible Violations of Quantum Theory 

This entire paper was written to show the usefulness of the experiment if it 

gives results in agreement with the standard predictions. It should not be 

forgotten that kaon physics has been the source of surprises in the past, e.g. 

CP-violations. It may happen that the predictions of the standard theory 

of regeneration are not verified in this experiment. This may be evidenced 

already by the test of Ineq. (18), analyzing the data as recommended in 

Sect. 4.3. When everything is cleared, some failure of orthodox quantum 

mechanics may be discovered. Such an occurrence may be improbable but 

it would be so significant that, regardless of its small likelihood, it may still 

be a good justification of this test . 

For the same reason, interesting tests of quantum theory in kaon physics 

can be performed around ~0-factories operating in the symmetric mode. 
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Appendices 

A Dependence of nadd on the Theoretical Picture 

Suppose a Monte Carlo simulation has been made and, in each category 

shown in Table 3, suppose there are, let us say, more than 200 events with 

the indicated event types corresponding to the different setups. One can 

imagine another Monte Carlo simulation based on another theoretical pic

ture, where the categories marked with a sign + in the last column have 

a larger population by 200 events and where the categories marked with 

a - sign have a smaller population by 200 events. The new Monte Carlo 

simulation gives the same number of event types in each setup, thus gives 

the same predictions for the measurable quantities. However, the number 

of "additional" events, Category IV, is increased by 200. Thus nadd does 

not depend only on the measurable numbers of event types in each setup. 

It also depends on the theory behind the Monte Carlo generation. 

Note that all four categories of Table 3 satisfy the independence con

ditions of Sect. 3.4. The change in nadd without changing the numbers of 

Category Setup [0,0'] Setup [~,0'] Setup [0,~'] Setup [~.~'] +I-
I ](L](s ](L](S KLK£ KLK£ -

II ](L](S KsK's KLK£ KsK£ + 
III KsK's KsK's KsK£ KsK£ -

IV KsK's J(L/(S KsK£ KLK£ + 

Table 3: Example of categories of events that can be altered without changing 

the number of event types in any setup, while nadd is changed. 
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event types can he done and the theory he kept local, if it were local initially. 

B Inequality for Two-Components Systems 

Suppose a quantum system can he described by a state vector with only two 

components, i.e. belonging to a two-dimensional Hilbert space. Operators 

can he expressed as linear combinations of the identity operator I and the 

three Pauli matrices ax, ay, and Uz. Consider a measurement M and one of 

the possible outcomes. Let p be the system density matrix. The probability 

for the outcome is related to the elements of p by a linear expression of the 

form of a trace, Tr(p·Af), where M is a positive-definite hermitian operator. 

Let us now consider two measurements. One will be called M0 and 

the other M:r; •. 12 There is one outcome singled-out for each of them. Let 

Mo and M:r;• he the operators associated with the probability computation 

of the singled-out outcomes of the two measurements. Also consider two 

samples (A) and (B) of such quantum systems and their associated density 

matrices p(A) and p<8 >. The probabilities of the singled-out outcome when 

the measurement M0 is performed on samples (A) and (B) are called p~A) 

and p~8>; they are called Pb~) and Pb~) when M:r;• is performed instead. 

There are real three-dimensional vectors mo, iii:r;•, f(A), and f(B) such that 

Mo ~(I - mo · a) ; 

!u- iii:r;•. a) ; 
2 

~(I + r(A) · a) ; 

!{I+ r(B) . a) 2 . 

12These names are convenient when used in the core of the paper. 
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The coefficient of I for the operators Mo and ME' is ~ as for the density 

operators and the norms mo, ffiE', r(A), and r(B) of the vectors fiio, mE', 

f(A), and f(B) are all inferior to 1. Then, 

(A) 
Po = ~c1 - r{A> . mo) ; (49) 

(A) 
PE' = ~(1- r{A) ·mE') ; (50) 

(B) 
Po = ~(1 - r{B> . mo) ; (51) 

(B) !(1 - r(B) · mE') (52) PE' 2 . 

Let us also define q ~(1- mo. mE'). (53) 

An inequality can be written for the three sides of the triangle formed by 

the vectors mo, mE', and f'(A). 

(54) 

Developing both sides oflneq. (54), using Eqs. ( 49), (51), and (53), as well 

as the normalization conditions for the vectors : 

m5 + m~, - 2 + 4q ~ 

(r(A))2 + m5- 2 + 4p~A) + (r(A)? + m~,- 2 + 4p~~) 

+2 (Cr(A))2 + m5- 2 + 4p~A)) (Cr(A))2 + m~,- 2 + 4p~~)) ; 

(55) 
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< p(A) + p(A) + 2 p(A)p(A) • 
- 0 I:1 0 I:1 

' 
(56) 

(57) 

An inequality similar to Ineq. (57) cart be derived replacing iiio by r(B) 

and r(A) by iiio, and also using Eqs. (50), (52), and (53), 

flJf ~ j;f!f + ..;q . (58) 

Taking Ineq. (57) into account, 

f(jj)<{(ii).f(A)+I(A) V Pr/ - V Po ' -r V Po ' V P}:/ · (59) 
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