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Abstract 

A famous conjecture concerning Gaussian Elimination was recently 
"settled" as false, by a counterexample found on a Cray supercom
puter. Mathematica did not yield the same conclusion when given 
identical data, reminding us of the care needed when proving mathe
matical statements using rounded arithmetic. Indeed, the conjecture is 
false, but a proper counterexample requires modifications of the data. 
In this note, we provide proper counterexamples by modifying numbers 
computed in rounded arithmetic by Nick Gould on a Cray. 

1 Introduction 

Gaussian elimination is the most basic numerical method for solving a dense 
linear system of equations Ax = b. There are many variations on how to 
organize the computations, but taken as a whole Gaussian elimination is 
probably one of the most widely known numerical algorithms. For decades, 
scientists have solved problems of ever increasing size using Gaussian elimi
nation. By last year, the largest matrix solved was of size 55,000, and surely 

*Supported by the Applied Mathematical Sciences subprogram of the Office of Energy 
Research, U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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a matrix of size 100,000 will undergo Gaussian elimination very soon, if it 
has not already. 

The algorithm may be old, but new and unanswered questions continue. 
Some relate to the practical details of implementing the algorithm on new 
and ever changing architectures. Others concern whether a different algo
rithm might be more suitable. This article focuses on a theoretical mystery 
associated with Gaussian elimination: the complete pivoting conjecture for 
the growth factor. 

Associated with any matrix A is a growth factor g(A) which describes 
the growth of matrix elements when A undergoes Gaussian elimination with 
complete pivoting. The conjecture states that g(A) ~ n for an n X n ma
trix A. In the next two sections we explain this conjecture and present a 
Mathematica program to calculate the growth factor. 

This article also focuses on the difference between exact and floating 
point arithmetic calculations. This distinction is not made often and clearly 
enough. Putting aside philosophical issues of whether or not one should trust 
a computer for mathematical proofs, one can not too hastily make inferences 
about exact arithmetic from rounded computations. Another step is needed: 
the justification of the approximation or a check in exact arithmetic. 

Recently, Nick Gould reported on a counterexample to the complete 
pivoting conjecture [Gould 1991a]. He presented a 13 x 13 matrix "for which 
the growth is 13.0205", and said that "growth larger than n has also been 
observed for matrices of orders 14, 15, and 16". Gould found his matrix 
using floating point arithmetic on a Cray supercomputer. 

To verify the results reported by Gould, I worked with two students, 
Miles Ohlrich and Su-Lin Wu, duplicating Gould's calculations in exact 
arithmetic with programs written in Mathematica and Maple. 

Imagine our surprise when we observed a growth factor of under 7.34 for 
the matrix that was supposed to give growth of 13.0205! Initial attempts 
by one of the students failed to find a perturbation of Gould's matrix that 
would give large growth, and hence we began to wonder if the conjecture 
was indeed false. After all, the growth factor is only a piecewise continuous 
function of the matrix, and hence a small rounding could greatly change 
the result. Here we report that the conjecture is indeed false, and Gould's 
example can be modified in a small way so as to give a true counterexample. 

2 Gaussian Elimination 

In its simplest form, Gaussian elimination factors a matrix A into L x U 
where L is a lower triangular matrix with unit diagonal and U is upper 
triangular. Here is a 3 x 3 example. 

( ~ ~ 1~ ) = ( ! ~ ~ ) ( ~ ! ~ ) 
-4 6 4 -2 2 1 0 0 8 
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Once A is in the form L x U it requires much less computational effort to 
solve first Ly = b and then U x = y to get the solution x to Ax = b. 

The matrix L is not needed for our purposes. U can be found by repeated 
row opemtions, adding multiples of one row to another to eliminate the 
nonzero entries below the diagonal. Algorithms for Gaussian elimination 
appear in many standard references, such as [Golub and van Loan 1989; 
Press et. al. 1986].1 The "no-frills" method of computing U can be expressed 
in Mathematica as 

NoFrills[ A_?MatrixQ ] := 
Kodule[{a=A, U={}}, 

Do[ 
U = Append[U, a[[1]] ]; 
r = Range[2,k]; 
a= a[[r,r]] - Outer[Times, a[[r,1]] ,a[[1,r]] ]/a[[1,1]], 
{k, Length[A], 2, -1} 

] 

U = Append[U, a[[1]] ] 
] 

This implementation erases a row and column of A after each pass 
through the loop and only stores the upper triangular part of U. The lower 
(k- 1) X (k- 1) part of the matrix is updated by the addition of a scaled 
outer product that is formed from the first column, the first row, and the 
upper left element as the scaling factor. 

If the upper left entry is ever zero, the no-frills approach breaks in exact 
arithmetic. In finite precision arithmetic, the no-frills approach is numeri
cally unstable, that is, roundoff errors tend to make the result unreliable. 
There are two fixes to this problem, partial pivoting and complete pivoting. 
In partial pivoting, a row interchange occurs to ensure that the upper left 
entry, the pivot, is the largest element (in magnitude) in the column. In 
complete pivoting, a row and column interchange occurs making the pivot 
the largest element in the submatrix. Partial pivoting is most common in 
applications. Complete pivoting is rarely used, because the improvement 
in numerical stability over partial pivoting does not justify the time spent 
searching for the largest element in the submatrix. Only in certain special 
cases can pivoting be avoided altogether. 

Using Mathematica, pivoting can be implemented by defining functions 
to interchange (switch) rows or columns. 

Attributes[RowSwitch]=HoldAll 
Attributes[ColSwitch]=HoldAll 
RowSwitch[m_,n_,a_] := 

{a[[m]] ,a[[n]]}={a[[n]] ,a[[m]]} 
ColSwitch[m_,n_,a_] := 

(a=Transpose[a]; {a[[m]] ,a[[n]]}={a[[n]] ,a[[m]]}; a=Transpose[a]) 

1 However, [Press et. al 1986] devotes undo attention to the Gauss-Jordan algorithm 
which is of little importance as a numerical recipe. 
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The row interchange of partial pivoting is then obtained by inserting the 
following steps into the loop: 

m = First[Position[Abs[a], Max[Abs[#[[1]]]~ /G a]]]; 
RowSwitch [1,m[ [1]], a] 

Complete pivoting is given by a row interchange followed by a column 
interchange: 

m = First[Position[Abs[a], Max[Abs[a]]]]; 
RowSwitch[1,m[[1]],a] 
Co1Switch[1,m[[2]] ,a] 

With either form of pivoting, the pivots will be the diagonal elements of 
the resulting upper triangular matrix U. 

3 Growth Factors 

The quantity that we wish to study is the growth factor of an n x n matrix 
A under complete pivoting, defined as 

max· · k Ia~~)! 
(A)

_ t,J, IJ 
9n - ' maxi,j !aiil 

where a~J) is a matrix element at the k-th step of the elimination process. 
From the definition of complete pivoting it follows that the largest element 
at each step will be one of the pivots, so the growth factor can also be defined 
as 

(A)
_ maxi luiil 

9n - • 
maxi,j !aiil 

In the standard error analysis of Gaussian elimination, it is shown that 
the backward error (a measure of stability) in the numerical solution to 
Ax = b is bounded by 

8n3gn(A)u, 

where u denotes the "unit-roundoff" and the n 3 term is considered pes
simistic in practice. Analysis of forward error (another measure of stability) 
also involves the growth factor. (See any textbook on numerical linear alge
bra for an explanation of the growth factor and error analysis of Gaussian 
elimination.) 

It is natural to ask how large the growth factor can be for n x n matrices. 
Nobody has been able to answer this question. The only known bound is 
due to Wilkinson [Wilkinson 1961], who showed that 

gn(A) ~ n1/2(2 . 3112 ... n1/(n-1))1/2. 

For n = 100, this bound is roughly 3500; however, nobody has ever observed 
growth bigger than 100 for a 100 X 100 matrix. Wilkinson observed that it 
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was difficult to construct a. matrix for which 9n(A) > n. Cryer published 
the statement which has become known a.s Wilkinson's conjecture2 [Cryer 
1968]: 

Conjecture: If Gaussian elimination with complete pivoting is per
formed on a. matrix A, then 9n(A) ~ n. 

The recent claim by Gould that he found a. 13 x 13 matrix with growth 
13.0205 is the first published "counterexample" to the conjecture [Gould 
1991a]. We will show that Gould's floating point calculation is not quite 
correct, in that it does not give the same result in exact arithmetic. We 
will demonstrate rigorously that the conjecture is indeed false by modifying 
Gould's counterexample ever so slightly. To do this we need a. Ma.thema.tica. 
program to calculate the absolute pivots lu;;l. Here is such a. program: 

Options[Pivots] = {Pivoting ->True} 

Pivots[A_, opt ___ Rule] := 
Modu1e[{a=A, m, p={}, piv}, 

piv =Pivoting/. {opt}/. Options[Pivots]; 
Do[ 

] 
p ] 

m = First[Position[Abs[a],Max[Abs[a]]]]; 
If[ piv, 

RowSwitch[1,m[[1]],a]; 
Co1Switch[1,m[[2]],a]]; 

p = Append[p, {m+Length[A]-k,N[Abs[a[[1,1]]] ,40]}]; 
r = Range[2,k]; 
a= a[[r,r]] - Outer[ 

Times, a[[r,1]] ,a[[1,r]] ]/a[[1,1]], 
{k, Length[A], 1, -1} 

The program returns a. list of pivots and the locations of the largest ele
ment in magnitude a.t each step of the Gaussian elimination. The elimination 
is performed either with no pivoting or with complete pivoting, depending 
on how the option is set. In Section 5, we describe briefly our modifications 
to some of Gould's examples. The location of the maximums were essential 
for finding these modifications. 

4 Gould's Floating Point Counterexample 

Gould's purported counterexample to the growth conjecture is a. 13 x 13 
matrix which we represent in Ma.thema.tica. a.s follows: 

a= {1, -1, -1, 660848918578853640, 350768677240296530, 139130936348087710, 
1, -1, 945463095088536990, -64358761317393848, -47259056539260776, 

2 though Wilkinson never published this explicitly as a conjecture 
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981447528786957180, 1, 1, 1, -1, -1, -882625441488454570, 
-793497892195840220, -1, -700496337540687080, 1, 1, -1, 1, 
-651498589419302720, 1, 493218479970826740, 1, 523219868894640230, 1, 

931478025815019150, -1, -1, -1, 906340171404097510, 1, 196359942450215320, 
520200438016106050, -852377236166545040, 1, -799595937286409320, 1, 

-613950298735988050, -1, -1, 1, 1, 1, 1, -1, 1, -641979766159483270, 1, 
-823477739209516720, -1, 1, -1, -1, 1, -1, -1, -980475145622109130, 
1, 1, -757461144210523130, 876253886818607830, -1, -1, 

-814104693902053870, 1, 1, -1, -1, 1, 
-1, -1, 1, 1, 1, 1, 588225298469760790, 1, -1, 117806934515049340, 
-1, 1, -1, -1, -1, 1, 1, 1, -123654398954411060, -1, -1, 1, 1, 1, 1, -1, 1, 
1, 1, -1, 167280198905618540, -1, -1, 1, 670377079454039460, -1, 

-1, 1, -1, 1, -1, -1, -1, 1, 734512344136362240, 
774209922789794840, 1, 1, 1, 1, 1, 1, -1, 1, 

-1, -1, -322948030097235110, 1, -1, 59471427088948606, -1, 1, 
-773051215153670920, 1, 1, 1, 1, 1, -1, -170078579523277070, 1, 1, 
-1, 1, -1, -1, 918980310122519350, -1, -1, 250493402326499640,.1, 

961431109359263460, -1, 724092990184259320, -1, 1, 1, -1, 1, 1, 
1, -1, -1, 1}; 

gould= Partition[a/1 /. 1 -> 10-18, 13] 

We computed Pivots [gould] and Pivots [gould, Pivoting->False] 
and found the pivots listed in Table 1. With complete pivoting the matrix 
yields a growth factor of around 7.355 in exact arithmetic, considerably 
smaller than the 13+ needed to be a counterexample. It does, however, 
yield 13.0205 in double precision floating point arithmetic. When we ran 
the elimination without pivoting, we found that there was a near tie in the 
sixth pivot. The proper winner of this near tie would not be resolvable by 
the finite precision arithmetic in the hardware of most computers. 

To speed up the computation, we can replace the matrix A with N [A, 100] 
in the call to Pivots. Of course, there is no guarantee that this will give 
the correct answer in general, but it does for this example. 

5 Finite Precision, Exact Arithmetic, and True 
Counterexamples 

We found that a true counterexample could be obtained from Gould's matrix 
simply by changing the (11, 10) entry from 1 to 1- 10-7 • 

The fix: gould [ [11, 10]] = 1 - 10- ( -7); 
This small perturbation of the matrix jumps over a discontinuity in the 

growth factor function, yielding the growth of 13.02, even in exact arith
metic. The fact that we were able to find a counterexample by a small 
perturbation leads us to consider the 

Perturbation Question for the Growth Factor: If 9n(A) denotes 
the growth factor of a matrix computed in finite precision, must there exist 
a small perturbation E such that Yn(A +E)= 9n(A) in exact arithmetic? 
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Gould has very recently informed me of matrices with observed growth 
factors below [Gould 1991b]: 

n !Jn 
18 20.45 
20 24.25 
25 32.99 

Of course, I quickly tried the Mathematica program on the biggest ma
trix, and found a growth factor of 9.4. Again, it turned out to be possible, 
though laborious, to find a perturbation of this 25 X 25 matrix that gives 
growth of nearly 32.99 in exact arithmetic. We list in the table below the 
fix to the 25 X 25 matrix to give the reader an idea of what changes need to 
be made. The matrix appears in the electronic supplement. 

Entry Gould's matrix our fix 
10,10 .99998703567977021 .999987035679771 
18,18 .99997583082741470 .999975830827420 
20,20 .99996637588164239 .999966375881650 
21,21 .99997417725485349 .999974177254860 
23,23 .99995075834718583 .999950758347190 

With these fixes Gould's matrix gives a 25x 25 matrix with growth factor 
32.986341. 

We do not elaborate on how we found the fixes, but we invite the reader 
to find it for himself. Very roughly, the idea is that if two elements are nearly 
tied, but the "wrong" element is ever so slightly larger in magnitude, exact 
arithmetic picks a different pivot than does floating point arithmetic. Thus, 
by knowing the location of the false maximum, which is returned by the 
function Pivots, we can reduce the corresponding element in the original 
matrix in the hope of forcing the near tie to have the desired outcome. We 
must, however, be careful not to change the element too much or we run the 
risk of destroying the delicate structure that gives large growth. 

6 Computers and Mathematical Proofs 

Ever since the proof of the four color-color conjecture there has been a lively 
debate over the applicability of computer-aided proofs. Such questions have 
even appeared in the lay press (see [Kalata 1991] for one recent article). We 
take the pragmatic view that people will (and even should) use whatever 
tools are available, provided that such tools can be verified for correctness. 

In our case, we were not satisfied with Mathematica's verification of the 
counterexample so we wrote a program for another symbolic system, Maple. 
We found that Maple's results for the 13 x 13 matrix agreed perfectly with 
those from Mathematica. One might still legitimately philosophize about 
whether this confirmation constitutes a proof. However, from our pragmatic 
point of view, for two completely different software systems to give precisely 
the same answer to the same question is an overwhelming verification of 
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its correctness. While one software system could have a bug, it is almost 
certainly impossible for two different widely used systems to lead to the 
same erroneous conclusion on correct programs. At least, I would argue, it 
is more likely that humans would err. 

7 Appendix: Maple program 

Here is a Maple program to verify results found with Mathematica: 

with(linalg): Digits := 100: 
# Begin by defining the Gould matrix 
1 := 10-18: 
A := matrix(13, 13, 

[1, -1, -1, 660848918578853640, 350768677240296530, 139130936348087710, 
1, -1, 945463095088536990, -64358761317393848, -47259056539260776, 
981447528786957180, 1, 1, 1, -1, -1, -882625441488454570, 
-793497892195840220, -1, -700496337540687080, 1, 1, -1, 1, 
-651498589419302720, 1, 493218479970826740, 1, 523219868894640230, 1, 

931478025815019150, -1, -1, -1, 906340171404097510, 1, 196359942450215320, 
520200438016106050, -852377236166545040, 1, -799595937286409320, 1, 

-613950298735988050, -1, -1, 1, 1, 1, 1, -1, 1, -641979766159483270, 1, 
-823477739209516720, -1, 1, -1, -1, 1, -1, -1, -980475145622109130, 
1, 1, -757461144210523130, 876253886818607830, -1, -1, 

-814104693902053870, 1, 1, -1, -1, 1, 
-1, -1, 1, 1, 1, 1, 588225298469760790, 1, -1, 117806934515049340, 
-1, 1, -1, -1, -1, 1, 1, 1, -123654398954411060, -1, -1, 1, 1, 1, 1, -1, 1, 
1, 1, -1, 167280198905618540, -1, -1, 1, 670377079454039460, -1, 

-1, 1, -1, 1, -1, -1, -1, 1, 734512344136362240, 
774209922789794840, 1, 1, 1, 1, 1, 1, -1, 1, 

-1, -1, -322948030097235110, 1, -1, 59471427088948606, -1, 1, 
-773051215153670920, 1, 1, 1, 1, 1, -1, -170078579523277070, 1, 1, 
-1, 1, -1, -1, 918980310122519350, -1, -1, 250493402326499640, 1, 

961431109359263460, -1, 724092990184259320, -1, 1, 1, -1, 1, 1, 
1, -1, -1, 1]): 

A := evalm(A/1): 

# Choice 1 -- The line below if uncommented will give a matrix with large 
# growth in exact arithmetic. 
A[11,10]:=1-10·(-7): 

# Define a maxindex function 
maxindex := proc(A, iO, jO) 

local m; 
m := abs(A[1,1]);i0:=1;j0:=1; 
for i to n do for j to n do 

if abs(A[i,j]) > m then m := abs(A[i,j]); iO:=i; jO:=j; fi; 
od;od; 

end: 

# The basic elimination step 
elim : = proc (A) 

local i,j; 
# Choice 2--Perform Pivoting (comment out the next three lines for no pivoting) 

maxindex(A, i, j); 

8 



A := svaprov(A, 1, i); 
A := svapcol(A, 1, j); 
D := submatrix(A, 2 .. n, 1 .. 1) l• submatrix(A, 1 .. 1, 2 .. n); 
print(convert(A[1,1],float)); 
A := evalm(submatrix(A, 2 .. n, 2 .. n)- D/A[1,1]); 

end: 

# Main program 
for n from rovdim(A) by -1 to 2 do 

elim(A); 
od: 

convert(A[1,1],float); 
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Pivot Complete Pivoting No Pivoting 
1 1 = 
2 2 = 
3 2 = 
4 2.5964300000000003429555442 = 
5 2.3776999999999999370719964 = 
6 2.3038700000000000410065317 2.3038699999999999397929678 
7 4.4163321272515367596933451 2.9587400000000000482926402 
8 3.8552767929754123988079185 3.5890399999999999939571234 
9 4.0185942254812673817312640 4.1163800000000001153146980 
10 5.0293415272986442173884056 3.3550400000000000307580270 
11 5.7152002451610692471571681 6.5102699999999996365037028 
12 5.5949255626529073239265750 6.5102699999999998941614154 
13 7.3552186391545473364176438 13.0205000013724194933200652 

Table 1: Gaussian elimination in exact arithmetic on Gould's 13 by 13 
example 
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