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Electronic and Structural Properties of Metallic Microclusters 

Amitesh Maiti 

Abstract 

The first part of this thesis presents a first-order 

pseudopotential calculation at T=O of the total energy of small sodium 

clusters of size N<BOO. The calculation is based on a local­

pseudopotential scheme and local-density correlation and exchange. A 

temperature-size (T-N) phase-diagram is then derived using the T=O 

results and Lindemann's criterion for melting. The phase-diagram 

contains three regions of stability: (1) a liquid Uellium) phase at 

temperatures above the melting line TM(N) where cluster-stability 

occurs at electronic magic numbers: (2) a phase related to complete 

geometrical shells of body-centered-cubic structure at temperatures 

below the melting line: and (3) a close-packed structure at very low 

temperatures and sufficiently large N. The melting line drops to 

TM(NJ=O for N<65. where electronic magic numbers are stable even at 

T=O. The phase diagram reduces asymptotically to the known phases 

of sodium as N~oo. including the known martensitic transformation at 

T-5 K. The second and the last part of this thesis consists of a study of 

small-cluster many-body systems by means of an on-site "local" 

chemical potential which allows the continuous variation of local 

electron-density. This method yields a criterion to distinguish 

particular features of a small cluster that are likely to survive in the 

large-N thermodynamic limit from those discontinuities that arise only 
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from finite-size effects. The Matt-insulating state, spin-polarized state, 

and electron-pairing conditions are, in particular, examined. Two four­

site Hubbard-model clusters -- a ring and a tetrahedron -- are 

considered as examples. 
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Chapter-1: Introduction 

... these atoms exist in the unbound void, being entirely separate from each 

other ... they differ in shape, size, position, and arrangement ... they move through the 

void, overtaking each other and colliding ... because they fit together in shape, size, 

position, or arrangement, they become interlocked and so remain in association ... this 

is the origin of composite bodies ... Leukippos (500 b.c.) 

From the ancient times, the human mind has wondered at the 

unfathomable depth of the vast universe on one end, and the mysteries 

of the microworld of "atoms" at the other. Although, it was not possible 

to think about "internal structure" of atoms even in the middle of last 

century, it was clear that any macroscopic object was made up of 

microscopic entities carrying its signature. Only in the first quarter of 

this century was the internal structure of an isolated atom understood 

in terms of a negatively charged "cloud" of quantum mechanical 

particles, the electrons, surrounding a heavy nucleus with a positive 

charge of equal magnitude. This simple picture set the stepping stone 

to further studies concerning atoms or aggregates of atoms, and for 

practical reasons evolved in two extreme directions: (i) Solid State 

Physics -- the study of solid crystalline objects modeled typically by an 

infinite periodic array of atoms; and (ii) Atomic and Molecular Physics 

(and Chemistry) -- the study of a single atom or a molecular cluster. 

What made these two branches of study almost completely separate 

disciplines of physics is the large differences in the physical nature of 

electrons in the two systems. As an illustration let us consider the 

element iron. An isolated iron atom has all its electrons confined to 
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well within a few atomic units, and the net electron spin in the ground 

state is 4.0/-LB· In an ideal metallic solid (free of surface, domain 

boundaries or point defects, and at T=O), on the other hand, all the 

valence (4-s and 3-d) electrons are believed to be completely itinerant 

throughout the entire solid, and the average electron spin per atom is 

only 2.2/-LB· Development of theoretical and experimental techniques in 

the study of surfaces, defects, interfaces and low-dimensional systems 

in the last couple of decades have raised many interesting questions 

and problems that directly fall in neither of the two categories of 

physical studies mentioned above, but rather somewhere in between. 

The physics of clusters, elemental or compound, of size from a few 

atoms to a few thousand, is primarily aimed at addressing questions 

regarding how the physical nature of electrons and the accompanying 

structure of solids evolve from an isolated atomic or molecular limit to 

the bulk as one goes up in cluster size by successive addition of atoms. 

Many interesting questions come to mind : Are the electrons in a 

silicon cluster itinerant below a critical size? What is the critical size 

of a given cluster above which the arrangement of atoms begin to look 

like a bulk structure? Is it possible to have a martensitic 

transformation or a metal-insulator transition as a function of cluster­

size? Or, in case of a magnetic cluster, how does the magnetization 

per atom change as one goes to larger and larger clusters? In order to 

understand the development of different kinds of crystals, clusters 

with inherently different electronic structures are being investigated. 

A broad classification of the inorganic clusters, along with the 

commonly accepted intuitive picture of them are listed below: 

(i) "Metallic" clusters (simple alkali metal clusters --- described by 
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free electrons, jellium model); 

(ii) "Inert gas" clusters ( --- billiard ball atoms, pairwise Van der 

Waals interaction. icosahedral packing); 

(iii) "Covalent clusters" (e.g. C [the Ceo clusters or buckeyballs 

being of particular interest at the time of this writing), Si, Ge 

clusters --- ball and stick models); 

(iv) "Noble-metal clusters" ( --- metallic, with a discernible 

influence of the d-electrons in the form of s-d mixing); 

(v) 'Transition-metal clusters" (e.g. Fe, Co clusters --- magnetic, d­

electrons play a major role). 

A major part of this thesis (chapters II and III) deals with 

electronic and structural properties of the simple metal clusters of 

class (i) listed above. It is therefore relevant to review some of the 

experimental and theoretical results on these clusters obtained over 

the last few years. 

A. Simple metal clusters --- some experimental background 

The recent interest of the scientific community in metallic 

clusters started in 1984 from a major discoveryl,2 of Walter Knight 

and his collaborators at the University of California, Berkeley. Using a 

supersonic nozzle source the group produced stable sodium clusters 

by seeding an inert carrier gas (Helium) with a low concentration of 

nearly saturated metal vapor, which was then cooled by adiabatic 

expansion of the gas in vacuum. Clusters were formed when cooling 

resulted in supersaturation. The mass of the clusters could then be 

determined using a time-of-flight mass spectrometer. The relative 
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number of clusters of different sizes could be easily determined by 

adjusting the spectrometer to various mass-selective "windows". The 

"abundance spectrum" thus obtained by Knight's group for sodium 

clusters up to a size N-100 had sharp local maxima --- clusters of 

certain particular sizes were found to be strikingly more abundant 

than the others. Since the relative abundance of a given cluster size is 

related directly to its stability, the spikes in Knight's data represented 

the most stable clusters under experimental conditions. Usually, such 

stable structures are thought of as those for which the atoms, 

considered stationary, form a particularly robust low energy 

configuration. However, the amazing finding of Knight's experiment 

was that the series of stable cluster-sizes (N = 8, 20, 40, 58, 92, ... ) 

corresponded to filled electronic angular-momentum shells in a 

spherically symmetric geometry. and did not seem to depend on the 

details of ionic positions. The resulting picture was very similar to 

what had been known about nuclear stability for a long time : the 

nucleus is relatively more stable for certain numbers of nucleons, 

called the "magic numbers", corresponding to filled "nuclear shells". 

In analogy, the term "electronic magic numbers" was coined to 

describe the most stable cluster-sizes in Knight's experiment. More 

recently, in 1990, a group in Copenhagen headed by S. Bj¢rnholm3, 

and a group in Stuttgart headed by T. P. Martin4,5 have extended the 

Berkeley experiment to larger clusters and clusters of other alkali 

metals. While the Danish group observed electronic magic numbers for 

clusters up to a size of several hundred, the German group made 

another startling discovery : while the small sodium clusters (up to N 

- 1,500) show peaks in the abundance spectrum at electronic magic 
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numbers, the most stable clusters for N between about 1, 500 and their 

upper limit of observation (-22,000) are those governed by 

geometrical closing of icosahedral structures. 

B. Theoretical status 

In order to understand theoretically cluster stability at 

electronic magic numbers, most calculations so far have embarked 

upon the philosophy that detailed ionic positions are not important for 

low-energy structures. This starting assumption, coupled with the fact 

that electron angular-momentum shells play a prominent role, led 

theorists to approximate the ions not by discrete, charged particles, 

but by a sphere of evenly smeared out, positively charged 'jelly". Such a 

conceptual object, popularly known as ']ellium", was meant to provide 

a spherically symmetric environment to the itinerant electrons. With 

the jellium constructed, density functional theory was used to 

minimize the total energy of the cluster and determine self­

consistently the associated electronic charge-density. Such a 

calculation, known as the spherical jellium background model6-8 

(SJBM) could generate stability at the electronic magic numbers. 

However, it suffers from some serious drawbacks ---

(1) the ions are discrete charges, and cannot be replaced by a 

positive background, particularly in a "solidlike" cluster, where the 

ions vibrate with a small amplitude about their mean positions; and 

(2) the spherical jellium model, by its very construction, cannot 

explain stability at "geometrical" shell closings as is observed in 

Martin's experiments. 

It is clear that in order to understand a cross-over of cluster 
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stability from electronic magic numbers to those governed by 

geometrical shell closings of atoms, one must include, in a total energy 

calculation, discrete ionic cores from the very beginning. Molecular­

dynamics or similar calculations9-14 are able to treat the problem of 

determining the lowest energy configuration of the ions. However, 

such calculations are computationally taxing, and even with present 

day computers one cannot go to clusters of more than -50 atoms. In 

order to address the kind of cross-over described above, it is 

necessary to adopt some kind of an approximate scheme15. 

The main points of the approach taken in this thesis, and 

described in technical detail in chapter-11, are: 

( 1) The electronic charge-density is calculated in an effective 

potential due to a positive jellium background. 

( 2) The distortion in the calculated electronic charge-density due to 

actual discreteness of ions and the accompanying change in 

energy are taken into account in the first-order perturbation of a 

local pseudopotential. 

( 3) Density functional theory is used to calculate the total energy; 

electron correlation and exchange are treated in the local 

density approximation. 

(4) The electron-background interaction of a jellium model 

calculation is now replaced by the bare Coulomb interaction of 

electrons with discrete ions, while the term corresponding to 

background interaction with itself in an SJBM is relegated to 

calculating the ion-ion Madelung energy. 

( 5) The ions are displaced in a fixed electronic background in 

search for a configuration of minimum total energy. 
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Chapter-11 describes a zero-temperature total energy 

calculation on sodium clusters of size up to -200. A cross-over from 

stable electronic magic numbers to stable numbers corresponding to 

geometrically closed structures occurs at N -1 00. Chapter III extends 

the calculation to finite temperatures and larger sizes (up to N-800). 

It is found that the zero-temperature structure for most stable clusters 

of size N> 100 is always a "solidlike" geometrically closed, close­

packed one. The experimentally observed electronic magic numbers, 

on the other hand, are "liquidlike" clusters. This structure is caused by 

the relatively rapid ionic motion at the experimental temperatures; 

treating them in a jellium background model is not as drastic an 

approximation as seems at first thought. 

C. "Many-body'' small clusters 

Apart from "real" atomic clusters described above, the concept of 

"hypothetical" small clusters has also been extremely useful in a 

completely different context. Ever since the inception of Quantum 

mechanics, a major part of Solid-State (Condensed-Matter) and 

Statistical Physics have been involved in solving Model Hamiltonians 

on lattices of different structures and dimensions. Simple models 

describing complicated many-body effects in a large range of materials 

have been particularly popular over the last thirty years. Some of these, 

for instance, are the ones associated with names of Ising, Heisenberg, 

Hubbard, Anderson, Falicov-Kimball, Kondo and so on. Unfortunately, 

even these simplified models are not amenable to exact solutions 

except under very special circumstances which are usually not very 

meaningful. Traditional ways out have involved taking recourse to 
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directl6·18 or diagrammatic perturbation methodsl9,20 or making a 

one-particle approximation in some mean-field scheme21 and solving 

the problem approximately on a full, infinite lattice. Such a procedure, 

however, often leads to wrong results in systems where electron 

correlation is important. An alternative approach has been to keep the 

electron-correlation completely in the Hamiltonian, and solve its 

spectrum exactly on a small "cluster" that is a representative subset of 

the lattice one originally starts with22,23. The main drawback of this 

approach is that size effects are overwhelming in such a system, even 

with periodic boundary conditions, and one might obtain results that 

probably cannot be generalized to the large-N, thermodynamic limit. 

This point is taken up in chapter-IV where the Hubbard model is 

exactly solved on a couple of small clusters. Thermodynamic local­

occupation averages and local-number-occupation fluctuations are 

studied by introducing a single-site chemical potential at a particular 

site24. This procedure allows the study of differential properties of 

thermodynamic functions by providing continuous variation of local 

occupation. The method gives a criterion to distinguish particular 

features of the small cluster that are likely to survive in the 

thermodynamic limit from those discontinuities that are characteristic 

of the finiteness of the cluster and the resulting discreteness of the 

energy-spectrum. In particular the Mott-Insulator state (a 

discontinuity of chemical potential at a particular electron-density) 

can be clearly tested this way. Similar indications are obtained for 

spin-polarized states and for particle-pairing conditions. 
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Chapter-II : Pseudopotential calculation of the total energy. of small 

sodium clusters: Cross-over from electronic closed shells to 

geometrical-structure stability 

A. Introduction 

Ever since the discovery by Knight et al.l of quantal shell 

structure in small droplets of sodium metal, with characteristic "magic 

numbers", metal-cluster physics has become an active field of 

theoretical and experimental investigation. Many properties of a large 

variety of clusters have been examined2 -- mass abundance spectra, 

fragmentation spectra and binding energy, supershell structureS, 

ionization potential, photoelectron spectra and electron affinity, static 

electric polarizability4, plasma resonance spectra, and thermal 

properties5, to name a few. Because a cluster lies somewhere between 

a solid and a molecule, the problem has been approached from two 

extreme directions -- solid-state theorists employ modified quantum 

models of bulk solid2,6, 7, whereas molecular chemists and atomic 

physicists attempt molecular-dynamical calculations in which one 

builds up clusters atom by atom. A compelling stimulus throughout has 

been the desire to understand how an extended crystalline solid 

develops from growing cluster aggregates. Two major experimental 

results in this regard have been (i) the observation of cluster stability 

exactly at the so-called electronic magic numbersl.S-lL_ which 

correspond to electronic shell-closings -- for cluster sizes less than 

200 • and (ii) the more recent discovery by Martin et az.12 of cluster­

stability at magic numbers corresponding to closed-packed atomic 

shell arrangements in icosahedral or cuboctahedral packings for 
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clusters of size between - 1,500 and 22,000. The stability 

characteristics of the small clusters are well supported by the 

calculations of Cohen et az.13 and of Ekardt14, based on the self­

consistent jellium background model (SJBM). Although jellium-like 

mean-field calculations exist for cluster-sizes of the order of several 

hundred 15, in order to study properly this transition in stability from 

electronic to atomic magic numbers, one needs to incorporate the 

atomic structure, i.e. the ions must be explicitly included for any 

cluster-size. One would, in principle, like to approach the problem by 

self-consistently determining atomic configurations and the associated 

electronic charge density that yield the minimum total energy for each 

cluster size in question. Several systematic methods have been 

developed in this regard by solid-state theorists6 and molecular 

chemists16. Unfortunately, because of the enormous computational 

tax, these calculations as of now are limited to sizes well below a 

hundred ions. Work has also been done on statistical descriptions of 

the electronic level structure17 and the asymptotic size-dependence of 

the energy in large clusters 18. However, no successful theory of the 

observed transition from electronic to atomic dominance in the 

structure have appeared in print, as far as the author is aware. 

The present chapter attempts to study these clusters by means 

of a pseudopotential approach, for which one can easily tackle clusters 

of size up to a few thousand with reasonable computational effort. By 

comparing the numerical results for total energy per atom obtained at 

several electronic and atomic magic numbers, a pattern emerges 

which clearly shows that for small clusters the electronic structure 

dominates, whereas at larger sizes the closing of ionic crystal-like 
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shells becomes paramount. A cross-over is thus found. It should be 

pointed out that in all cases the clusters are small, in the traditional 

sense of the concept, since all atoms are, in all cases, within a few 

Angstrom from the surface, Le. far away from what can be considered 

the bulk limit. 

B. The model 

The model consists of approximating the self-consistent Kahn­

Sham (KS) potential observed by each electron with an infinite well, 

the shape of whose boundary is defined, in principle, by the surface of 

the outermost ions in the cluster. Because of the observation that the 

spherical jellium model works well for small clusters (N < 200), 

coupled to the convenience of separability of co-ordinates in a 

spherical geometry, the electron confining regions for any cluster size 

are taken to be infinite spherical wells. Two different schemes of 

choosing the cluster sizes for the purpose of calculation are 

considered, in conformity with the spherical boundary : 

(A) The clusters representative of the geometrically closed shells of 

atoms (hereafter described as the ones with atomic magic numbers) 

are made up of finite, perfect periodic lattices cut off by the surface of 

the spherical well and then allowed to relax; and 

(B) The clusters representative of electronic magic numbers consist 

of the ions placed within the electron confining spherical well so as to 

minimize (numerically) the total energy of the cluster. 
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For the atomic magic number structures four different types of 

finite lattices have been considered in this calculation : 

(Al) Finite body-centered-cubic (bee) lattices (the bulk structure of 

sodium at low temperatures) with an atom at the center of the 

electron confining sphere; 

(A2) Finite face-centered-cubic lfcc) lattices with the sphere 

centered at an atom in the lattice (henceforth referred to as Type-! 

fcc clusters); 

(A3) Finite fcc lattices with the sphere centered at the center of a 

conventional unit cube (referred to hereafter as Type-11 fcc clusters) 

and, 

(A4) Finite fcc lattices with the sphere centered at the center of a 

tetrahedron of nearest-neighbor atoms (Type-III fcc clusters). 

Each type of cluster, initially arranged according to schemes 

(Al-4) and (B) described above, correspond to different distributions 

of atoms in the sphere and, accordingly, yield separate sets of magic 

numbers. There are a few numbers that are common to two or more 

cluster types, e.g. 68, which is common to schemes (A3), (A4) and 

(B), and 92, common to schemes (A4) and (B). 

All schemes (Al-4) and (B) are starting points for relaxing the 

structures in search of an energy minimum. The relaxation is such that 

certain constraints, listed below, are obeyed. 

(I) No two ions lie within a distance 2rc of one another, rc being the 

effective 'hard-core' radius for the metallic ion under consideration, 
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i.e. sodium. One could estimate rc from the effective two-body 

interaction between two sodium atoms in a lattice obtained by second­

order perturbation theory of the pseudopotential19. The curve 

resulting from such a calculation20 is shown in Fig. 2.1. In this way, 2rc 

has been estimated to be -0.82 a, where a=4.225 A is the bulk lattice­

constant for sodium in the bee structure. 

(2) No ions should lie outside the effective jellium surface, a sphere of 

radius R+. 

(3) The jellium (uniform positive-charge background) sphere, of radius 

R+ lies inside an infinite-potential spherical well that confines the 

electrons; the latter has radius R (Fig. 2.2). The difference in radii 8 = 

R - R+ physically represents the 'decay length' of electronic wave­

functions outside the actual surface of a solid or cluster, which is 

bound by a finite potential well. The value of (8/ a) is taken to be a 

constant, equal to 0.29. independent of cluster size. This is a very 

good approximation21, as seen from the SJBM results of Ref. 14. 

Lattice relaxations that obey the above constraints are allowed 

on the way to finding the lowest energy states of the various clusters. 

Several comments are relevant : 

(1) The electronic charge-density calculated here is not far from that 

calculated by SJBM. A direct comparison of the graphs in Fig. 2.3 with 

counterparts of those in Figure 3 of Ref.l4 makes this fact apparent. 

(2) The modification of the electronic wave-function at the ionic sites 
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is taken into account in the first-order perturbation of the 

pseudopotential. Any higher-order perturbation, which is 

computationally forbidding, should have (for alkali-atom clusters) an 

insignificant effect on the trend of results for the total energy . 

The total energy Etot per atom, in the model considered here, 

is a sum of several contributions given by: 

Etot = Eel-el + Eel-ion + Eion-ion + Ekin + Exc · (2.1) 

The various terms on the right hand side of the above equation· 

are self-explanatory and are calculated for a cluster of size N using the 

following formulas : 

For the electron-electron Coulomb interaction 

e2 Jp(r) p(r') 
Eel-el = N 2 1 r _ r'l dr dr' (2.2) 

for the electron-ion Coulomb interaction 

~~ p(r) 
Eel-ion = - e2 £.J 1 r _ Ri 1 dr + Epsfll (2.3) 

i 

where Eps(lJ is defined below; the ion-ion Coulomb interaction 

E =2e2N~ ion-ion £.J 
1 

(2.4) 

i~J 

for the electron kinetic energy 
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Ekin = 2 ~N ,L J tj!* au(r) V2 tjl au(r) dr (2.5) 

a,a 

and for the electron exchange and correlation energy in the local­

density approximation 

Exc = J dr p(r) Excfp(r)) (2.6) 

In equations (2.2-6) tJ!au(r) stands for the wave-function of the 

electron in the quantum state a with spin cr. Also introduced above are 

the electronic number density p(r) normalized to one, 

p(r) 
1 = N 

a,u 

1 = J dr p(r) 

the first-order pseudopotential contribution EpsflJ is 

EpilJ = ,L J dr p(r) V(l r- Ril) 
i 

with the local pseudopotential function V(r) given by22 

V(r) 
e2 

= ro u, r< ro 

e2 
r r > ro 

18 
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(2. 7b) 

(2.8a) 
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where u and ro are phenomenological parameters: and the exchange­

correlation local density functional is 

Exc(p(r)) = - 0.9162/r5 (r) - 0.0666 G[r5 (r)/ 11.4] (2.9) 

where the quantity r5 (r) and the function G are given by14: 

1 
r5 (r) = l1B [3/ 4np(r)Jl /3 • 

and where aB = 0.529 A is the Bohr radius. and 

[ 1 X 11 G(x) = ( 1 + x3) ln { 1 + x } - x 2 + 2 - 3 

The values of the pseudopotential parameters u and ro are 

taken from the results known22 in the thermodynamic limit: 

u = - 0.3632 Ry. and ro = 1.097 A 

respectively. The only difference between the small clusters and the 

bulk arises from the drastic changes in the electronic charge­

densities. 
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C. calculations and results 

For clusters corresponding to electronic magic numbers there 

is complete spherical symmetry in the charge density of the electrons 

i.e. p(r) is only a function of r= I r I. This simplifies the computation 

enormously, because the integrals in (2.2) and (2.3) now get reduced 

respectively to one and two-dimensional integrals. A further 

considerable reduction in computational effort occurs in the 

calculation of Eel-ion when one relaxes the ion positions (in any 

scheme) against the stationary spherically symmetric electronic 

background to get to the lowest energy configuration. Unfortunately, 

the charge density arising from electrons at the outermost -- partially 

filled -- shell (i.e. the Fermi level) does not possess a complete 

spherical symmetry for clusters with numbers other than the 

electronic magic numbers. However, simple electrostatic 

considerations show that, for large N, the correction to the total 

energy per atom, if one symmetrically averages over all electron states 

at the Fermi level in configurations with partially filled outer 

electronic shell, can be easily estimated. It is of the order of L1Eel-el -

0.1 (nfN2JEel-el· as seen in the Appendix to this chapter; here n is the 

smallest of the numbers of filled and unfilled states in the shell at the 

Fermi level. In most situations n << N, and spherical averaging over all 

states at the Fermi level involves errors which are always tolerable and 

usually very small. The calculations were, therefore, performed with 

spherically averaged charge distributions. Tables 2.1-5 respectively 

display results for the various components of energy and the total 

energy per atom for a set of magic numbers corresponding to filled 

electronic and atomic shells for the different cluster types considered. 
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Fig. 2.4 graphically displays the results for the total energy per 

atom as a function of N for both electronic and atomic magic numbers. 

The convex hulls of the lowest energies found for the A(electronic) 

and B(atomic) magic numbers are drawn in Fig. 2.5. A global "hull" 

encompassing all calculations, has a well defined transtition from the 

"A" hull to the "B" hull at N-100. These hulls, similarly to the ones 

drawn in the theory of heterogeneous alloys, corresponds to states of 

total stability under the assumption of conservation of the number of 

clusters, i.e. under the assumption that clusters can only change in 

relations of the type 

c(N 1l + c(N2l ~ c(N3} + c(N4} , 

where, 

N 1 + N2 = N3 + N4 , 

and not of the type of fusion or fission reactions, such as 

c(N1l + c(N2l ~ c(N3} , 

or 

N1 + N2 = N3, 

c(N1l ~ c(N2l + c(N3} , 

N1 =N2+N3 . 

The clusters on the global hull are, in any case, very stable clusters 

over an extended local size. 

There is a clear cross-over of cluster stability from electronic 

magic numbers at smaller cluster-sizes to the atomic magic numbers 

at larger cluster-sizes. The cross-over appears to occur at N-100. A 

number of key features from the numerical results presented in tables 

2.1-5 are to be noted: 
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(1) For very small clusters (N<50) the kinetic energy Ektn plays a very 

important role in favoring stability at electronic rather than atomic 

magic numbers in their vicinity. Closed electronic shells always yield 

lower kinetic energy per atom than open ones. 

(2) A complete outer atomic shell structure always lowers the 

electrostatic part of the energy. For this reason, even for cluster-sizes 

N< 1 00 -- dominated by the electronic magic numbers -- clusters with 

atomic magic numbers close to one with an electronic magic number 

have large binding energies. The most unstable clusters are the ones 

with near half-filled d, for g shells of electrons. This clearly shows 

that even though atomic positions are extremely important for any 

cluster-size, the stability for small cluster size is completely 

dominated by the closing of the electronic shells. 

(3) For sizes N> 100 the most stable clusters are clearly not those 

corresponding to the electronic magic numbers. Although it is hard to 

detect any underlying pattern of atomic shell closings in this region, 

the most stable clusters are always found to belong to one of the three 

fcc structures built according to schemes (A2-4). Investigation on 

clusters of larger sizes seems to indicate that the ground state of a 

"solidlike" cluster of any size is always a close-packed one. 

(4) For N<100, the binding energy per atom for the electronic magic 

numbers increases, in general, with increasing cluter-size. For the 

N> 100 region the situation is more complicated as supershell 

structures might come into play3, 15. 

22 

• 



:r-

(5) In the region where electronic magic numbers dominate (N<IOO) 

the lattice always relaxes inward, so that the effective inter-atomic 

distances are smaller than the corresponding value for the bulk. This 

fact is in agreement with the experimentally observed lattice 

shrinkage23 for small clusters. As the cluster size increases, the 

inward lattice relaxation becomes gradually smaller. Thus the 

equilibrium lattice constant increases from about 96% of the bulk 

value for the smallest clusters to about 99% for cluster-sizes -200. 

(6) In contrast to the results of the spherical jellium calculations, 

where the total energy rapidly converges to the bulk value, the present 

calculations clearly show that even for sizes up to -200 the total 

electrostatic interaction energy is very different from the bulk value. 

The reason is that all the atoms, even in the largest clusters 

considered here, are only a few Angstroms from the surface. This 

surface dominance is also reflected in the sizeable non-uniformity in 

the electronic charge-density shown in Figure I. 
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D. Conclusion 

A total energy calculation based on the local pseudopotential 

scheme, with correlation and exchange energies taken in the local 

density functional approach, yields a clear transition in the stability 

regime of small sodium clusters. For small clusters, N<lOO, clusters 

corresponding to closed electronic shells (electronic magic numbers) 

are considerably more stable than all others in their vicinity. For larger 

numbers, N> 100, the most stable clusters are those for which the 

geometric configuration of the ions correspond to well defined 

polyhedral configurations (atomic magic numbers). A major effect 

contributing to this transition is the dominance of electronic kinetic 

energy terms for low N, and the electrostatic contribution at large N. 

The stability of the highly coordinated fcc over bee clusters indicates a 

close-packed ground state for "solidlike" clusters of all sizes up to the 

bulk limit. The main reason for obtaining the transition of stability 

from electronic to atomic magic numbers at a size much smaller than 

that observed experimentally is neglecting the effect of finite 

temperature: experiments are done not at T=O for which the present 

calculation is applicable, but on rather "hot" clusters, pretty much at 

and above the "melting" temperatures of clusters. Finite temperature 

effects are taken up in detail in Chapter III of this thesis. The zero­

temperature calculations described here could possibly be made more 

accurate by using a more realistic Kohn-Sham potential e.g. a finite 

square-well or the Woods-Saxon potentials as used in nuclear physics. 

Use of a simple infinite well approximation is responsible for the 

electronic charge density differ in finer details, despite agreeing in 

overall features with the SJBM resultsl4. 
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It should be mentioned that the cross-over effect is a 

consequence of a smooth relative change in the influence of various 

contributions, and therefore the transition cannot be considered to be 

sharp. It is possible that "beats" between the two effects could be 

observed with an electronic magic number becoming observable 

between (and probably sufficiently removed from) consecutive atomic 

magic numbers. It must be finally remarked that the calculation has 

not attempted to determine the overall shape of the cluster of absolute 

minimum energy : it has simply demonstrated that geometrical 

structural considerations overtake electronic-shell arguments when 

the number of atoms in the cluster becomes larger than a typical 

"critical" value . 

25 



E. Appendix to chapter-n. 

This appendix gives an estimate of the error involved in the 

total energy calculation when one uses a spherically symmetrized 

charge density of electrons, by averaging over the states at the last 

(partially occupied) level. The two contributions to the total energy 

per atom that are most affected are Eel-el and the electrostatic part of 

Eel-ton . The pseudopotential contribution Epill and the exchange­

correlation energy Exc are themselves at least an order of magnitude 

smaller than either of the two electrostatic terms: corrections to 

these terms are negligibly small. 

Let 8p(r) be the deviation at position r of the actual total 

number density of the electrons per ion from the used spherically 

symmetric one. Clearly, 

J 8p(r) dr = 0 (A.l) 

Now, it is evident that the contribution to the total number 

density arising from all closed shells of electrons, i.e. due to those 

states below the Fermi level, is already spherically symmetric. 

Therefore 8p(r) arises only from those electrons on the outermost 

shell. Therefore 8p(r) can be written as the difference of the number 

density of the electrons at the Fermi level from the spherically 

symmetric electronic number density obtained by averaging over all 

states at the Fermi level. The same quantity could be equivalently 

written in terms of unoccupied states at the Fermi level. It is 

convenient to use the description in terms of either occupied or 

empty states, whichever number is smaller at the Fermi level. Let this 

numberbe n. 
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It should be noted that separability in the radial co-ordinate r 

and angular variables n = (8,(/J) allows a decomposition of op(r) into two 

factors: 

op(r) = j(r) g(!l) ' (A.2) 

where j(r) = ljvfkvz r) I 2 is the same for all electrons at the Fermi level 

characterized by the principal and total angular-momentum quantum 

numbers n and l respectively: here jy is the spherical Bessel's function 

of order v and kvz is the (l+ l)th zero of jy. 

Equations (A.l) and (A.2) therefore imply, 

f g(!l) d.Q = 0 . (A.3) 

The correction to the electron-electron contribution Eez-ez is 

given by, 

e2 J {p 0(r)+op(r)} (p0(r'J+op(r'JJ 
L1Eez-ez = N 2 1 r _ r'l dr dr' 

_ N e2 j po(r) po(r'J d d , 
2 I r- r'l r r • 

= 1\T 2 J po(r') op(r) d d , N e2 J op(r) op(r') d d , 
ne I r- r'l r r + 2 I r- r'l r r • 

where po(r) is the spherically symmetrized number density of 

electrons per ion obtained by averaging over all states at the Fermi 

level. 

Since 
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f po(r') dr' 
V(r) = lr- r'l 

is a function of I r I =r only, the first term on the right hand side of the 

last equation becomes, 

Ne2 j op(r) V(r) dr = Ne2 j j(r)V(r)r2dr. j g(.Q) d.Q = 0 , 

where equation (A.3) has been used. Therefore, 

Also, 
L1Eel-el 

e2 f op(r) op(r') d d , 
= N 2 I r - r' I r r > 0 · 

2 ~! op(r) 
L1Eez-ton = e ~ I r - Rt I dr 

t 

where corrections to EpsflJ have been neglected. 

(A.4) 

(A.5) 

It is important to note that L1Eel-el is always positive 

irrespective of op(r) . On the other hand, L1Eez-ton has both positive 

and negative contributions. Even though (A.5) is first-order in op(r), 

whereas (A.4) second-order, it should be emphasized that (A.5) 

vanishes for a partially filled outer shell in jellium, whereas (A.4) does 

not. The term (A.4) is, in fact, responsible for the ellipsoidal 

distortion24 of jellium clusters for fillings other than electronic magic 

numbers. 

The estimation of errors can therefore be made based on (A.4), which 

yields, for some simple choices of op(r) for a few values of l (>0) and 

small v, and considering only non-magnetic states, 

L1Eez-ez - 0.1 (n/N2)Eez-ez • (A.6) 
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G. Tables for chapter-n 

N 

8 

18 

20 

34 

40 

58 

68 

90 

92 

106 

132 

138 

168 

186 

196 

198 

232 

Table 2.1 

ENERGY PER ATOM FOR ELECTRONIC MAGIC NUMBERS 

[ All energy components are in Rydbergs/ Atom ] 

E Eel-lou 
E E E el-el lou-ion k1D zc 

1.2391 - 2.3050 0.8100 0.1699 - 0.2910 

2.1018 -4.1532 1.7793 0.1650 - 0.2950 

2.2927 - 4.5329 1.9677 0.1636 -0.2953 

3.2017 -6.3382 2.8527 0.1603 -0.2973 

3.6536 - 7.2733 3.3355 0.1603 - 0.2981 

4.5780 - 9.1332 4.2724 0.1569 -0.2988 

5.1930 -10.3257 4.8566 0.1581 -0.2997 

6.1319 -12.2224 5.8122 0.1552 - 0.3001 

6.2477 -12.4628 5.9348 0.1546 - 0.3001 

6.9693 -13.8930 6.6458 0.1556 -0.3009 

7.9155 -15.7607 7.5732 0.1537 - 0.3010 

8.2188 -16.3133 7.8164 0.1532 - 0.3011 

9.2127 -18.4019 8.9168 0.1539 -0.3018 

9.9586 -19.8399 9.6047 0.1524 - 0.3018 

10.4032 -20.7524 10.0719 0.1523 - 0.3019 

10.4950 -20.9515 10.1824 0.1524 -0.3020 

11.4760 -22.9042 11.1480 0.1523 -0.3024 

32 

Etot 

-0.3770 

- 0.4021 

-0.4042 

-0.4208 

-0.4220 

- 0.4247 

- 0.4177 

-0.4232 

- 0.4258 

- 0.4232 

- 0.4193 

- 0.4260 

-0.4203 

- 0.4260 

- 0.4269 

- 0.4237 

- 0.4303 



Table 2.2 

ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 

[ Corresponding to finite bee lattice clusters I 

N Eel-el E E E E Etot el-lon lOD•iOD kiD J:C 

9 1.3347 - 2.4834 0.8942 0.1756 - 0.2906 - 0.3695 

15 1.8653 - 3.7496 1.6100 0.1725 - 0.2932 - 0.3950 

27 2.7594 - 5.5036 2.4774 0.1662 -0.2956 - 0.3962 

51 4.2270 - 8.5267 4.0327 0.1600 -0.2981 - 0.4051 

59 4.6407 -9.1784 4.2556 0.1572 - 0.2988 - 0.4237 

65 5.0171 -10.0526 4.7625 0.1582 -0.2992 - 0.4140 

89 6.0903 -12.3516 5.9925 0.1555 -0.3000 - 0.4133 

113 7.2265 -14.6726 7.1688 0.1561 -0.3007 - 0.4219 

137 8.1683 -16.6656 8.2216 0.1533 - 0.3011 - 0.4235 

169 9.2546 -18.4671 8.9386 0.1539 - 0.3018 - 0.4218 

181 9.7532 -19.3720 9.3444 0.1529 -0.3017 - 0.4232 
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Table 2.3 

ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 

[corresponding to finite Type-I fcc lattice clusters) 

N E E E E E Etot el-el el-lon ion-loa kiD J:C 

13 1.6896 - 3.2914 1.3263 0.1766 - 0.2920 - 0.3909 

19 2.1970 - 4.3470 1.8778 0.1644 - 0.2947 - 0.4025 

43 3.8117 - 7.5802 3.4905 0.1611 - 0.2979 - 0.4148 

55 4.4281 - 8.8099 4.1072 0.1584 - 0.2985 - 0.4147 

79 5.6673 -11.2833 5.3438 0.1577 - 0.2996 - 0.4141 

87 6.0062 -11.9582 5.6743 0.1560 -0.2999 - 0.4216 

135 8.0670 -16.0499 7.7075 0.1535 - 0.3010 -0.4229 

141 8.3192 -16.6369 8.0351 0.1536 - 0.3011 ' -0.4301 

177 9.5880 -19.0662 9.1990 0.1533 - 0.3017 -0.4276 

201 10.5821 -21.1489 10.2932 0.1525 - 0.3020 - 0.4231 
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Table 2.4 

ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 

[corresponding to finite Type-11 fcc lattice clusters) 

N E E E E E Etot el-el el-lon lon-lon kiD J:C 

16 1.9409 - 3.8357 1.6303 0.1700 - 0.2938 - 0.3883 

28 2.8240 - 5.6009 2.5076 0.1656 -0.2958 - 0.3995 

44 3.8641 - 7.6843 3.5448 0.1612 - 0.2978 - 0.4120 

68 5.1930 -10.3257 4.8566 0.1581 - 0.2997 - 0.4177 

80 5.7100 -11.2459 5.2609 0.1576 - 0.2996 - 0.4170 

104 6.8678 -13.6798 6.5375 0.1561 -0.3007 - 0.4191 

140 8.2857 -16.5144 7.9477 0.1535 -0.3011 -0.4286 

152 8.6857 -17.3414 8.3773 0.1543 - 0.3013 - 0.4254 

180 9.7120 -19.3947 9.4122 0.1530 -0.3017 - 0.4192 
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Table 2.5 

ENERGY PER ATOM FOR ATOMIC MAGIC NUMBERS 

[corresponding to fmite Type-III fcc lattice clusters) 

N E E E E E Etot el-el el-iou I on-Ion ldD J:C 

14 1.7748 -3.4752 1.4315 0.1747 -0.2926 -0.3868 

38 3.5040 - 7.0220 3.2353 0.1607 -0.2974 - 0.4194 

68 5.1930 -10.3257 4.8566 0.1581 -0.2997 -0.4177 

92 6.2477 -12.4628 5.9348 0.1546 -0.3001 -0.4258 

116 7.3363 -14.6532 7.0340 0.1559 -0.3007 -0.4277 

164 9.0816 -18.0950 8.7420 0.1541 -0.3017 - 0.4190 

188 10.0476 -20.0052 9.6792 0.1524 -0.3018 -0.4278 

236 11.6235 -23.2000 11.2918 0.1522 -0.3023 - 0.4348 
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H. Figures for chapter-n 

Figure 2.1 The effective pair-potential V(r) (in milli 

Rydbergs) for bulk sodium as a function of radial 

distance r (in units of Bohr radius a B). It was 

obtained in the second order perturbation 19 of 

the local pseudopotential used. 
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Figure 2.2 The approximate Kohn-sham potential used to 

confine the electrons in a cluster. The inner 

circle of radius R+ is a 2-D projection of the 

effective spherical jellium boundary, while the 

outer circle of radius R represents the hard 

spherical wall. The difference in radii 8 = R - R+ is 

a measure of the characteristic decay-length 

through which the electronic charge spills out in 

a more realistic finite confining potential. 
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Figure 2.3 The electronic number density in the model 

under consideration for various electronic magic 

numbers as a function of the radial distance from 

the center of the spherical cluster. The number 

density is in units of the corresponding jellium 

density Po, shown by the dashed line. The radial 

distance is in units of the total radius R of the 

electron confining sphere (infinite potential well). 

(a) N = 8; (b) N = 34; (c) N = 58; (d) N = 92; and 

(e) N = 168. 
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Figure 2.4 

.• 

Plot of the total energy per atom as a function of 

cluster size N for various electronic and atomic 

magic numbers (Tables 1 and 2). The crosses 

represent the points corresponding to the 

electronic magic numbers and the squares, 

correspond to the atomic magic numbers . 
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Figure 2.5 The convex "hulls" of minimum energy drawn 

separately for the electronic (crosses) and the 

atomic (squares) magic numbers, with a line 

joining them to form the overall minimum-energy 

hull. The clusters on this hull are the most stable 

ones. A clear transition in the nature of stability is 

observed between N = 58 (electronic magic 

number) and N = 141 (atomic magic number). 
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Chapter-lll. Phase diagram for small sodium clusters 

A. Introduction 

The zero-temperature calculations of chapter II clearly show a 

transition of cluster stability from "electronic" magic numbers at small 

sizes to geometrically closed "atomic" magic numbers at sizes larger 

than a critical value. This critical value of N, estimated to be - 100, is 

much lower than the value - 1,500 where the cross-over described 

above had been experimentally established by Martinl,2. Moreover, 

Bj(l)rnholm's group in Denmark, at experimental temperatures 

presumably higher than that of Martin's, did not observe geometrically 

closed stable structures3: based on theoretical estimates4-6 they 

expected no atomic structural effects even for clusters as large as 

several thousand. The abundance spectra in the two experiments 

differed also for cluster sizes less than a thousand -- both in the 

sharpness of features and in the exact location of the electronic magic 

numbers2,3. Martin's data, for instance, had many more "spikes" i.e. 

local maxima at sizes that cannot be interpreted as electronic shell­

closings. At the same time, the stable electronic magic numbers in the 

two spectra differ significantly, notwithstanding finite limits of size­

resolution in the two experiments. It is clear that finite temperature, 

neglected in the calculation of chapter-II, plays an important role, and 

consideration of finite temperature effects is essential in addressing 

the discrepancies discussed above. The model used in chapter II is 

superior to molecular-dynamics or similar "classical" calculations7-12 

in this regard, not only because of the much less computational effort 

involved, but also because it is inherently a quantum mechanical 
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calculation. This model, for instance, is able to describe quantum 

phenomena such as zero-point oscillations of the ions that cannot be, 

in principle, estimated in a molecular-dynamics simulation. It is 

important to note here, however, that the dynamical details of cluster 

formation, growth and fragmentation might and, in fact, do influence 

the experimentally observed cluster stability. Unfortunately, these 

complicated dynamic processes lie well beyond the realm of 

calculational techniques described in this thesis, and perfect thermal 

equilibrium has been assumed on the time scale of all experiments. 

The present chapter extends the calculations of chapter II to 

larger clusters (200 < N < 800). and finite temperatures. It confirms 

the earlier results at T=O: fcc lattice-induced (close-packed) clusters 

are the stable phase in this size regime. For finite temperatures a new 

picture emerges: at "high temperatures" the experimentally observed 

stable clusters are to be interpreted as solely caused by thermal 

melting of the clusters. Jellium becomes an appropriate starting point 

for total-energy calculations at temperatures beyond melting. For a 

large range of intermediate temperatures (i.e. below the cluster 

melting point) bee lattice-induced structures appear to be the most 

stable ones, as is seen in the schematic phase diagram reported below. 

A new physical interpretation of the electronic magic numbers, 

where cluster stability is observed in high-temperature experiments, 

is also obtained in terms of an enhanced uniformity of calculated 

electronic charge density for these particularly stable cluster sizes. 

B. The model 

The model system and the hamiltonian for total energy 
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calculation are described in detail in the previous chapter. The 

starting point for any given cluster size N is to place the ionic cores at 

regular finite lattice sites. Density functional theory is used and the 

effective Kohn-Sham potential seen by each electron is approXimated 

by a flat potential well bounded by an infinite wall, the shape of which 

is, in principle, determined by the position of the outermost atoms of 

the cluster. The finite lattice is then relaxed in a "rigid" electronic 

background to get to the ionic structure corresponding to the lowest 

energy configuration. Only wells of spherical shapes are considered 

because of practical, calculational requirements. For concreteness, bee 

(bulk crystalline structure of metallic sodium above 5 K) and fcc 

(representative of a close-packed structure) lattices truncated by the 

electron-confining sphere are used as starting-point structures for the 

clusters. In conformity with the high (spherical) symmetry of the 

electron environment, truncated lattices of only tetrahedral or higher 

point-group symmetry are included. The electronic charge outside the 

jellium sphere, caused by the finiteness of the cluster work-function, 

is taken into account by placing the effective uniform jellium sphere a 

"decay-length" o = 0.29a inside the electron confining wall, where a 

is the bulk lattice-constant for Na. The energy involved in the 

distortion of the electronic charge density at and around the ionic 

sites is calculated in the first-order perturbation of the local 

pseudopotential; exchange and correlation effects are handled in the 

local-density approximation (LDA) schemel3. The total energy consists 

of electronic kinetic energy, exchange-correlation energy, the first­

order pseudopotential contribution, and the electrostatic energy. The 

last contribution is a sum of three tern1s: the electron-electron 
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Coulomb repulsion, the ion-ion Madelung energy, and the electron-ion 

Coulomb attraction. For any given cluster size, the spherical shells of 

atoms are radially and angularly relaxed to reach the lowest energy 

configuration compatible with the chosen spherical symmetry of the 

electronic charge. 

C. Calculations and Results 

In chapter II it is shown that when a zero-temperature total 

energy hull is constructed for all cluster sizes N, the nature of the 

most stable clusters, Le., those on the hull, changes as a function of N. 

For smaller sizes the clusters on the hull owe their stability to quanta! 

effects and correspond to complete electronic angular-momentum 

shells. Such clusters comprise a series of so-called electronic magic 

numbers. The larger clusters, on the other hand, always belong to an 

fcc cluster truncated by the electron-confining sphere, with complete 

spherical shells of atoms. Such clusters form a series of geometrically­

closed fcc lattice-induced numbers. The largest of the electronic 

magic-number series and the smallest of the fcc series on the total­

energy hull are 58 and 141 respectively, i.e.,the dividing line between 

the two series is approximately at N- 100. Calculations for N > 200 

show that the electronic magic numbers are always less stable, at T = 
0, than the structures with complete atomic shells. Figure 3.1 shows 

the total energy hull, at T = 0. of the lattice-induced geometrically­

closed structures only. All clusters on this hull (solid line) are found to 

belong to an fcc (close-packed) series. In view of the finite­

temperature effects discussed below, a separate hull (dashed line) is 

also drawn for the geometrically closed bee series. Some of the 
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clusters very close to the hulls in energy are also shown. Fits to the 

two hulls (at T=O) as a function of cluster size N in the asymptotic 

form 14 are given by: 

Ejcc [Ry/atom]= - 0.45804 + 0.10486 n + 0.22905 n2, (3.1) 

Ebcc [Ry/atom]= - 0.45770 + 0.10516 n + 0.33005 n2, (3.2) 

where n = N -1/3, and the results for total energy per atom in the bulk 

(n=O) fcc and bee crystalline phases of sodium have been used 13,15. 

In order to obtain the amplitude of lattice vibrations at 

arbitrary temperatures the vibrational frequency spectrum is 

approximated by the angular modes of oscillation of the complete 

spherical shells of atoms. The melting point of a cluster is determined 

by applying the Lindemann criterion to this shear mode, i.e., to the 

angular oscillation of an atom on the outermost shell: the lattice melts 

if the amplitude of such oscillations relative to the layer below is 10% 

or more of the distance to the nearest neighbor. All other modes (e.g., 

radial) or displacements (e.g., inner shells) are stiffer, corresponding 

to smaller displacements and not contributing substantially to the 

melting of the cluster16. The melting temperaturesTM(NJ thus 

calculated for several cluster sizes are : TM(51} = TM(65} = 0 K: 

TM(89} = 158 K: TM(137} = 253 K: TM(259} = 285 K: TM(411} 

= 317 K. The known result TM(oo} = 372 K has also been used to 

ensure proper asymptotic limit. 

It should be noted that TM = 0 for N < 65, i.e., the melting is 

produced by the zero-point vibrations for the smallest clusters, a pure 

quantum-mechanical effect; TM increases sharply between N- 65 and 
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N- 200. For larger N it rises slowly, with a few oscillations, and it 

reaches asymptotically the bulk value of TM = 372 K as N approaches 

infinity. Figure 3.2 shows an interpolated melting curve (with the 

oscillations removed) as the lower bound of the phase termed 

']ellium". Physically. the higher polarizability of smaller clusters17 

implies larger screening, lower oscillation frequencies, and larger 

lattice vibrations at a given temperature: hence lower melting points. 

For N < 65, the zero-point motion of the ionic cores is large enough to 

cause lattice melting, and jellium becomes a good model even at T=O. 

For N > 65, however, the stability at the electronic magic numbers 

predicted from SJBM calculations should be observed only at 

temperatures above the melting curve. In the experiments of Ref. 4, 

the cluster temperatures have been estimated to be - 400-500 K, 

clearly above the melting curve of Fig. 3.2. Another important feature 

of Fig. 3.2 is the existence of a large region just below the melting 

curve where the geometrically-closed bee lattice-induced structures 

become energetically favorable. This result is in agreement with the 

Landau theory of solidification 18,19. 

For the curve separating the bee and fcc (close-packed) phases 

in Fig. 3.2, one notes that the difference in free energy between the 

two phases, as a function of temperature T and n = N -113 is given 

by L1F(n,T) = L1U (n,T) - T. L1S(n,T), where L1U and L1S are the 

corresponding differences in internal energy and entropy per atom 

respectively. Calculations using the shear and radial frequency modes 

show conclusively that for all n, the difference in internal energy L1U 

does not change significantly with temperature. This result, coupled 

with the assumption that L1S does not strongly depend on T and n 
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yields the temperature at which a transition from one structure to the 

other takes place. Such a cross-over temperature, obtained by solving 

the equation LlF{n,T)= 0 is given by Tcross-over (n)= LlU(n,O)/ LlS(O,O). 

The entropy difference LlS(O,O) between the two phases for the bulk 

at zero temperature is estimated from the temperature T - 5 K at 

which bulk sodium has a martensitic transformation from hcp to bee , 

and the known fact that both close-packed structures, hcp and fcc , 

are very close in energyl5. Therefore this fcc-bee crossover 

temperature as a function of n is given by: 

T cross-overfn) 
= Ebcc(n) - Erccfn) 

5 
K 

Ebcc(O) - Ejcc(O) · 
(3.3) 

where Ebccfn) and Ejccfn) are given by Eqns. (3.1) and (3. 2) 

respectively. 

The existence of the bee phase is well supported by the 

experimental results of Ref. 2, where the cluster temperatures are 

lower than those of Ref. 3, presumably close to the melting curve of 

Fig. 3.2. The maxima in the abundance spectrum of Ref. 2, although 

interpreted as electronic magic numbers, are all consistently shifted 

away from the magic numbers of Ref. 3 towards the bee magic 

numbers of the present calculation, i.e. those on the dashed hull of Fig. 

3.1. Also the lower temperature data exhibit local stability at perhaps 

other types of geometrically closed structures not considered here. 

A new physical interpretation of the experimentally observed 

electronic magic numbers is obtained by plotting the quantity, 
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Ap = Min J I p(r)-<p> I 4nr2dr (3.4) 

<p> 

as a function of cluster size· between 200 and 800 for N with complete 

electronic angular-momentum shells (Fig. 3.3). In (3.4) above, p(r) is 

the electronic number density normalized in terms of the uniform 

jellium density; <p> is a constant density that minimizes Ap. If a hull 

for ~p is constructed, one obtains a series of cluster sizes at which the 

electronic charge density is more uniform. These numbers, shown in 

Fig. 3.3 are exactly the ones identified as the electronic magic 

numbers in uniform SJBM calculations2,3. Physically, uniform jellium 

does the most efficient job of electrostatic charge cancellation in these 

particular clusters, with a lowering of the electrostatic energy and 

enhancement of cluster stability. This result lends a strong support to 

the notion that these experimentally observed jellium clusters at high 

temperatures are "liquidlike" clusters, where relatively rapid ionic 

motion gives rise to an effective continuous positive background rather 

than a static distribution of sodium-ion potentials. 

D. Conclusion 

The total energy calculation of sodium clusters based on the 

model described in chapter II has been extended to clusters of larger 

sizes, up to N-800. The calculation performed at T=O emphasizes 

once again the result that for N> 100 geometrically closed clusters are 

more stable than the ones with closed electronic angular-momentum 

shells. Moreover, geometrically closed fcc (close-packed) structures 

turn out to have lower energies than the geometrically closed bee 

clusters. Two separate energy hulls have been contructed for the most 
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stable fcc and bee clusters and large N asymptotic fits to each hull 

indicates no cross-over at a finite N. This result is supported by the 

existence of a stable close-packed phase of bulk sodium below 5K, and 

use has been made of this experimental fact to determine a bee-fcc 

cross-over curve as a function of cluster-size. 

To investigate the nature (i.e. whether "solidlike" or 

"liquidlike") of any cluster at a given temperature, the low-lying 

angular (shear) modes of the outermost shell have been considered. 

Statistical mechanics has been used to compute the mean square 

displacement of a given atom on the outer shell, and the Lindemann 

criterion to determine whether the cluster is "solidlike" or 

"liquidlike". Such a calculation enables one to determine the melting 

point as a function of cluster size N. It is found that for N<65 atoms 

have large zero-point motion, and clusters are "liquidlike" even at T=O. 

For N>65, the melting temperature increases on the whole as a 

function of N with a few oscillations. It is to be recalled from results in 

chapter II that in the region N<65 electronic magic numbers are the 

stable clusters at T=O, and these are also the same magic numbers 

obtained from calculations based on uniform jellium models. The 

stable jellium magic number clusters observed experimentally as peaks 

in the abundance spectra are, therefore, to be identified as liquidlike 

clusters. The existence of a bee phase just below the melting curve is 

in accord with trends in shift of the abundance spectrum peaks with 

temperature. 

Finally, the electronic charge density is found to be the most 

uniform for clusters corresponding to some electronic magic numbers 

viz. precisely the ones obtained as energetically stable uniform jellium 
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clusters. This fact is consistent with the picture depicted above : the 

observed stable electronic magic number clusters are "liquidlike" 

clusters indeed, where a time-averaged rapid ionic motion effectively 

mimics a uniform jellium background, that cancels out the uniform 

electronic charge density to lower the electrostatic energy 

substantially. 
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F. Figures for chapter-ill 

Figure 3.1 Total energy hull at T = 0 (solid line) for the 

geometrically closed lattice-induced structures 

for cluster sizes 200 < N < 800. Only fcc lattice­

induced structures denoted by black squares are 

on this hull. The most stable geometrically closed 

bee clusters (denoted by· '+ 's) and the 

corresponding hull (dashed line) are indicated. 

Clusters very close to the hulls are also shown. 
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Figure 3.2 Temperature-size phase diagram for clusters of 

size N < 1000. The monotonically increasing 

curve separating the ']ellium" and "bee" phases is 

the "interpolated" melting curve of sodium 

clusters as a function of size -N:--wfth -fine_r __ 

oscillatory features removed. It intersects the N-

axis at N-65. The bee-fcc cross-over curve is 

obtained from equation (3.3). 
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Figure 3.3 Non-uniformity in electron density L1p (defined in 

the text), in arbitrary units, for clusters with 

complete electronic angular-momentum shells. 

Cluster sizes on the stability hull are indicated by 

the proper number labels. It is to be noted that 

these numbers are all "electronic" magic 

numbers. 
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Chapter- IV : Local chemical potential approach to small cluster many­

body systems 

A. Introduction 

Since its introduction1 in 1963 the Hubbard model has been 

frequently used in the literature to investigate a whole range of many­

body effects: ferromagnetism, antiferromagnetism, metal-insulator 

transition, charge-density waves and spin-density waves to name only a 

few1-6. The model has been applied to a variety of lattices of different 

dimensions2,3, 7 and general theorems have been proved in some 

casesS. Unfortunately, no three-dimensional macroscopic Hubbard 

system is susceptible to exact treatment. However, considerable 

insight into macroscopic systems can be obtained from the exact 

solution of small subsystems, which, though not expected to unfold the 

whole story, can sometimes provide important clues to the problem. 

This exact small-cluster approach has been used successfully in 

situations where local many-body effects are important: clusters of 

size two to eight9-25, photoemission 13 behavior in Ni, intermediate­

valence14,15 behavior in Ce, magnetic behavior16 in Fe, alloying in Cu­

Au system 17, many-body effects in a heavy-fermion system 18, 

thermodynamic properties19 , valence-bond formation20 as well as in 

understanding of the two-dimensional (2D) electronic properties in 

the Cu-0 planes of high-temperature superconductors21. 

This chapter focuses on the study of properties of a small open 

subsystem of the cluster, one that exchanges particles with the rest of 

the system, in order to infer the behavior of the global properties of 
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the system as a whole. In particular, an attempt is made to extract 

physical properties out of the analysis of the quantum mechanical 

particle number fluctuation in the subsystem as a function of various 

parameters. Exact calculations are performed on two systems: a four­

atom linear chain with periodic boundary conditions26 and a four­

atom tetrahedral cluster with periodic boundary conditions, the 

smallest non-trivial fcc cluster. The ·hamiltonian chosen is the 

Hubbard model with hopping matrix element t > 0 between nearest 

neighbors only and an on-site interaction U, which can be repulsive 

or attractive: 

Ho = - t L (ctt, CJa + CJ[, Ctu) + U L fitt fia . (4.la) 

< ij > (] i 

where i,j are the atomic site indices, < ... > indicates nearest-neighbor 

pairs and a is the spin index. For notational simplicity, henceforth, it 

is convenient to choose I t I as the unit of energy and express H o. U 

and temperature T in dimensionless form : H = Ho I I t I , x = U I I t I 

and -r = kBTI It I respectively, where kB is Boltzmann's co~stant. Thus 

the hamiltonian can be recast in the form: 

(4.1 b) 

< ij > (j i 

Since the many-body correlations are short-range in the 

Hubbard model, it is interesting to study the local particle-number 

fluctuation ..1 at a particular site, labelled a, as a function of n, x and -r. 

Here n, the average number of electrons at the a-site, is given by 

67 



<<l'f>>. the ensemble average of rl' = liar + fla.t. the particle number 

operator at the relevant site. The local particle fluctuation L1 is defined 

as: 

(4.2) 

The generalized grand canonical ensemble average of any 

observable g is defined by : 

<4>> = 
Tr[ A' exp (- ( H - M]Q - J.l 11 ) I -r } 1 
Tr [ exp (- ( H - M]Q- J.l 11 )/ -r} 1 

(4.3) 

where M is the chemical potential associated with the total particle 

number operator {:) =Lt ftt in the system, and J.l is an 'extra' local 

chemical potential associated with the a-site, the usefulness of which 

is discussed below. In these expressions, the subscript i in the 

summation over fit runs over No sites, where No is the total number of 

sites in the system. 

It should be noted that the ordinary grand canonical ensemble 

corresponds to the particular value J.l = 0. In that particular case the 

averages shown in (4.3) reduce, for -r ~o. to averages over expectation 

values in the ground states of (4.1 b) belonging to various total number 

of electrons. N, which is the eigenvalue of /J. and takes only integral 

values from 0 to 2No. To determine which ground states of given 

integral N values do actually contribute to this average, the ground­

state energy eigenvalues of (4.1 b) should be plotted as a function of the 

integer N. A "hull" is then constructed by joining these points in pairs 

such that all points lie either on the "hull" or above it. Only the ground 
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states for those integral number of electrons that lie on the hull do 

contribute to the averages in (4.3); ground states which are above the 

hull do not contribute. For example if the ground states for N = 2, N 

= 3, and N = 4, are such that 

1 
Eo (N=3) > 2 { Eo (N = 2) + Eo (N = 4) } 

then the contribution to (4.3) for 11 = 0,-r ~o and for the average total 

particle number <<~ >> (integral or fractional, including <<~ >> = 2, 

<<h >> = 3, and <<~ >> = 4,) in the range 2 ~ <<h >> ~ 4, arise solely 

from the ground states of N = 2 and N = 4, without participation of the 

N = 3 ground state. 

In the ensemble with 11 = 0, M is a monotonically increasing 

function of n, as is required by the chemical stability of the system. In 

view of the discussion to follow, it is to be noted that a discontinuity in 

the chemical potential Mat a given value n=n*, i.e., 

M+- M- > 0 , (4.4) 

where M+ and M- are the values of M as n * is approached respectively 

from the positive and negative sides, characterizes, by definition, a 

Mott insulator at the occupation n *. 

B. Calculations and results 

In order to calculate the local particle-number fluctuation L1 for 

general values of n and x, one has to take recourse to numerical 

calculations. To perform the ensemble averages (4.3) it is convenient 

to work in the basis of the eigenstates of the generalized hamiltonian 
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H'=(H-M~-J.Lf\). Reduction in the size of the matrices to be diagonalized 

can be achieved by taking note of the following quantities that 

commute with the generalized hamiltonian H' : 

(i) fJ , the total number operator; 

(ii) Sz , the z-component of the total spin angular-momentum; 

(iii) S2, the total spin operator; and 

(iv) the permutation operator of some site-indices. 

For convenience, the calculations reported here have made use 

of the constants of motion (i), (ii) and (iv) only, which reduces the 

original problem of diagonalizing a 256 x 256 matrix to ones of size no 

greater than 18 x 18. Exact analytical results, however, are obtained 

for certain limiting values of n, x and -r. Thus, one has the following 

results: 

A(n, x=O, -r) = n (2 - n) /2 (4.5) 

A(n, x~oo. -r) = n (1 - n) , O~ns1 ' 

(n - 1) (2 - n), 1~ns2 . (4.6) ' 

A(n, X~ -oo, -r) = n (2- n) (4. 7) 

. 
A(n, X, 't' ~oo) = n (2- n) I 2 (4.8) 

It is also straightforward to show that, for bipartite27 lattices .1 

is symmetric about n =1, i.e., 

A{n, X, 't') = .1(2 - n, X, 't') (4.9) 

Equation (4.9) holds for the four-atom ring, but not in general for the 
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tetrahedral cluster, because fcc is not a bipartite lattice27. It should be 

noted here that Ll for a fully spin-polarized (loosely speaking 

ferromagnetic) state, for all interaction strengths, assume the value 

equal to that of the x~oo limit as given by equation (4.6). 

In the rest of the chapter, attention is confined only to the 

zero temperature ( 't' ~o) properties in order to deal with some of the 

difficulties involved in extrapolating small-cluster results to the 

thermodynamic limit at low temperatures. The difficulties arise from 

the discreteness of the energy spectra of finite clusters. In particular, 

use is made of the additional local chemical potential J1 to distinguish 

between the 'genuine' singularities in Ll (those that survive as the 

number of sites is increased up to the thermodynamic limit) and the 

'spurious' singularities (those that are present only because of the 

finiteness of the cluster). 

In the following, use is made of a zero-temperature identity 

that relates the local particle-number fluctuation to a derivative of the 

ground-state energy : 

Ll(n, x, 't'=O) = n (1- n) + 2 
aEa(n,x) 

ax (4.10) 

where Ea(n,x) is the ground state energy per site corresponding to 

the occupation n. This result is proven in Appendix-1 of this chapter. 

It is to be noted that when J1=0, i.e., in the exact grand canonical 

ensemble average, all sites are equivalent, so that n =<<'#>>/No is the 

fractional occupation, i.e., the number of electrons per site. An 

important result to study the Matt insulator state is obtained by taking 

the derivative of (4.1 0) with respect to n and then the difference 
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between values obtained by approaching the point of discontinuity 

from the positive and the negative sides; this procedure yields: 

d.1 d.1 
farJ+ - farJ- = (4.11) 

where M± = (dEa{n,x) I dnl± , corresponding to the partial derivatives 

on the right and left respectively. Equation (4.11) establishes a direct 

relationship between the discontinuity in the slope of .1 with that of 

the chemical potential M (both sides of (4.11) are zero in case of no 

discontinuity). Analyticity as a function of x has been assumed, as 

(M+ - M-) is found to change smoothly with x, except at x=O and at 

other isolated points. 

Let us concentrate first on an analysis of the two small-cluster 

systems in the exact grand canonical ensemble (J.L=O). Figures 4.1 and 

4.2 display graphical tabulations of the eigenvalues N of the total 

particle number operator that contribute to the relevant ground states 

at each point in the n-x plane, for the ring and the tetrahedral cluster 

respectively when the interaction is repulsive (x > 0). Figure 4.3 gives 

the corresponding description in the attractive interaction (x < OJ 

case for either system. The solid black lines correspond to the values 

where ground states belong to the subspace of a single N. The region 

in between are 'mixed' domains where relevant ground states belong 

to subspaces of more than one N. Several important results associated 

with the above structure follow : 

(i) Results for x~O and x=O are different for finite-cluster systems 

and approach each other only in the thermodynamic limit. This 
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discontinuity arises from the presence of several 'accidental 

degeneracies' for the particular value x=O. The singular x=O line is, 

therefore, omitted in Figs. 4.1, 2 and 3. 

(ii) The local particle fluctuation is a continuous function of n with a 

continuous partial derivative at1/ an an~ a negative second derivative 

a2111 an2 for all regions of phase-space except at the solid black 

(single N) lines. 

(iii) On the solid black lines, where a single N value contributes, the 

local particle fluctuation t1(x,n) exhibit discontinuities in at1/ an 

(kinks) as a function of n (for fixed x) with the vertex pointing 

either upwards or downwards. On these lines, the chemical 

potential takes a finite range of values MN(min) ~ M ~ MN(max) and, 

when plotted as a function of M, kinks in t1(x,M J occur at 

M=MN(min) and M=MN(max). 

(iv) Ground states belonging to all N from 0 to 2N o are not, in 

general, sampled as n increases from 0 to 2 for a fixed x. No odd N, 

for instance, contributes to the ground states for an attractive 

interaction (x<O) for either system. Also for a repulsive interaction 

(x>O), the N=3 and N=5 states do not contribute for x<4.6 in case 

of the four-atom ring whereas the N=3 state does not contribute for 

any X>O in the tetrahedral cluster28 . 

(v) In a white region, where more than a single N contribute, only 

the two N values corresponding to the two solid black lines 

bordering the relevant white region contribute in general. For 

specific models and/or specific values of the parameters, however, 

it is possible to have extra accidental degeneracies, where more 

than two values of N contribute to the ground state. [Such case can 
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be seen, for example, in the tetrahedral cluster for 1.25 < n < 2 for 

all X> 0.) 

For finite clusters, only two behaviors (i.e. negative second 

derivative in a white region and kinks on the solid black lines) of 

L!{x,n) are found, as discussed above. 

As the number of sites No increases, the structures of Figs. 

4.1, 2 and 3 may change in a number of ways to lead to the following 

possible scenarios in the limit No~oo: 

(1) The number of solid black lines might increase with the attendant 

rearrangement of the mixed-N contribution and, in the 

thermodynamic limit, the n-x plane may consist of a continuous 

plane of single N contributions, Le., a "black" plane. 

(2) The number of solid black lines might increase but remain a 

discrete set; in the thermodynamic limit the n-x plane would 

still look similar to Figs. 4.1, 2 and 3, but possibly with many 

more solid black lines separated by "white"(mixed N) areas. 

(3) In general it is expected in the thermodynamic limit No~oo, that, 

the n-x plane will exhibit regions of 

(3a) continuous N values ("black" areas) 

(3b) continuous admixture of two N values ("white" areas) 

(3c) isolated lines of single N values (solid black lines) 

(3d) perhaps regions of dense but discrete black lines (e.g. all 

rational values of n allowed, all irrational ones not present22). 

In the thermodynamic limit (No~oo). in a "white" region, 

where more than one N contribute, L1 is always a continuous function, 
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with a continuous a.11 an, and with a negative second derivative 

a2.11 an2 . This property is proven in Appendix-H. In a "black" area or 

line, where a single N contributes, there is a possibility of tl behaving 

differently: either it may develop positive second derivatives with 

respect to n, discontinuities in atl/ an, -- i.e., kinks -- at discrete 

values of n or possibly other types of pathological behavior. Not all 

structures are physically possible, and each requires individual 

analysis. A kink, however, by necessity arises from the discontinuity in 

the slope, which along with (4.11) implies a Mott insulator. Other 

singular structures may be characteristic of other phases for the values 

(n*, x*) where they appear. 

In the finite clusters under consideration here, the 

discontinuities in a.11 an occur only on the solid black lines. This 

behavior is shown in Figures 4.4 and 4.5. The discontinuities 

correspond to a single N at a particular value of n, labelled n*. It is 

along these lines that the "local" chemical potential J.L can be effectively 

used to test the stability of the single-N structures and to distinguish 

between kinks that are "genuine" and those that are "spurious" -- i.e., 

induced by the finiteness of the cluster. The "local" chemical 

potential J.L allows a local variation of n at the site in question, whereas 

the value of N in the cluster as a whole remains constant. This 

procedure "opens up" the a-site to be less dependent on its 

environment, which in this case is the small cluster. This partial 

decoupling emphasizes the local aspects of the many-body problem 

and may shed light into the behavior of the system in the 

thermodynamic limit, when the environment becomes 

macroscopically large. 
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The resulting analysis is valid only in "single-N" regions, i.e., 

along the isolated black lines, or in a black region, -- a finite interval of 

n around n=n * -- if that is the case in the thermodynamic limit. The 

analysis therefore, in the finite clusters, is carried out not only for the 

discrete values of n where a single N contributes, but also in their 

immediate neighborhoods. 

The working assumption is that, by looking at the behavior of 

L1 as a function of n, as J1 is varied from a small negative to a small 

positive value, one can decide whether the structure of {}L\f an at that 

occupation n is genuine or just an effect of the finiteness of the 

cluster. The result of this analysis may produce the following 

situations in the thermodynamic limit : 

(A) The curve L\(n) takes at n=n* one of the limiting forms described 

in (4.5)-(4. 7); in particular the form (4.6) is taken for the 

ferromagnetic case. In such a situation, the exact grand 

canonical ensemble (p=O) itself yields the appropriate limiting 

form at the occupations in question. 

(B) There is a positive second derivative of L1 with respect to n at 

n= n *: this is a strong indication of instability, with the 

formation, in the thermodynamic limit, of an energy gap in the 

spectrum, i.e., a real kink, as shown in (4.11). 

(C) If L1 exhibits a negative second derivative with respect to n several 

possibilities other than case (A) arise. 

(C 1) Even though the second derivative with respect to n is negative 

at n=n * , it becomes positive for values of n reasonably close to 

n* . 

(C2) The second derivative with respect to n is negative everywhere 
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in the immediate Vicinity of n=n* . 

Case (A) should be interpreted as a possible magnetic phase at 

n=n*: case (Cl) as a tendency to the formation of a Mott insulator 

state -- in the thermodynamic limit -- at a value of n close or even 

equal to n*; case (C2) as a "spurious" singularity, Le., a consequence of 

the finiteness of the cluster. 

Figures 4.6 and 4. 7 display the variation of L1 with n on and 

around each of the solid black lines for the four-atom ring and the 

tetrahedral cluster respectively, for various fixed values of x and at 

zero temperature. Both attractive (x<O) and repulsive (x>O) values of 

the interaction are considered. The case x>O is more interesting and . 

is considered first. For the four-atom ring the following features are 

worth noticing : 

(i) The curve L1 versus n has positive second derivative at and around 

n= 1 (i.e. half-filled band) for all values of x>O (case (B)). This 

indicates a Mott insulator at that concentration, setting in at 

arbitrarily small repulsive interactions, in agreement with the 

results of Lieb and Wu 7. Because of its isomorphism26,29 to lattices 

in 2D and 3D, this result seems to indicate a Mott transition for all 

x>O at n= 1 for all bipartite lattices27 in one, two or three 

dimensions. 

It is interesting to note that if the second-nearest neighbor 

hopping is included, the positive second derivative does not 

appear at n= 1, for small positive values of x, but only in a small 

neighborhood of n=l, i.e., case (Cl). Whether that happens for 

n>1 or n<1 depends on the sign of the second-nearest neighbor. 

hopping element relative to the first-nearest neighbor hopping 
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parameter. As x increases, the interval of positive second 

derivative grows, and covers the n=1 point i.e., case (B). In any 

case, the formation of a Mott insulator at the n=1 concentration for 

all X>O is clearly indicated by the test. 

(ii) The N=3 (n=O. 75 ) and N=5 (n=1.25 ) cases exhibit a transition 

to a ferromagnetic state as a function of x for x=x*=18.5. For J..L=O, 

i.e., in the exact grand canonical ensemble, as x increases the 

local particle fluctuation ..1 discontinuously drops from a value 

-0.1946 for x<x* to the value 0.1875 given by equation (II.2) for 

X>x* and remains constant for any greater value of x. 

(iii) The curve has negative second derivative at and around all other 

solid black lines. They all belong to the case (C2) discussed above 

except for N=1 and N=7 . 

(iv) For N= 1 and N= 7, Ll takes the limiting form given by (II.2) [ case 

(A) ]. The reason is a trivial transition to a spin-polarized behavior 

when a single carrier (electron or hole) exists in the finite lattice. 

For larger clusters this property appears at n=1/No and n=2-1/No 

which, in the thermodynamic limit, are the empty n=O and fully 

occupied n=2 lattices. 

From the analysis of the four-atom ring, it is possible to state 

that in the seven partial occupations where Matt-insulator singularities 

may occur for the infinite one-dimensional chain or the perfect square 

lattice, only n= 1 should exhibit insulating behavior for all x>O. This 

behavior agrees with the Monte Carlo calculations for the infinite chain 

and the 2D square lattice30,31. 

The tetrahedral cluster has a more complicated and 

interesting structure. The main features are : 

78 



• 

• 

(i) The structure at n=1 falls in the category (Cl) discussed above. 

For infinitesimal x (>OJ a small portion of the curve has positive 

second derivative at n-1.05. As x increases, the interval of positive 

second derivative gradually grows, and includes the n= 1 point for 

x> 1. 2. This result should be considered as a signature of a Mott 

insulator occurring at n=1 for arbitrarily small positive values of x. 

Interestingly, this behavior at n= 1 is similar to that of the four­

atom ring with positive second-nearest-neighbor hopping: when 

the second nearest-neighbor hopping parameter in the ring is 

equal to the nearest-neighbor hopping parameter, one obtains a 

system topologically identical to the tetrahedral cluster. 

(ii) There is a transition to a ferromagnetic state for all x>O as a 

function of n at n=1.25 (N=5). The curve around the solid black 

line at this occupation assumes the limiting form of (4.6). This 

behavior is not observed for the ring with second nearest neighbor 

hopping {¢ t) and seems to be intrinsic to the tetrahedral cluster 

and possibly, in the thermodynamic limit, to the fcc lattice of 

which the tetrahedral cluster is the basic building block. 

(iii) The curve L1(n) has the form (4.6) in the full interval 1.25 ~ n ~ 

2. This behavior is related to the accidental degeneracies shown in 

Fig 4.2. 

(iv) There is the small-cluster induced spin-polarization behavior at 

N=1 (n=0.25) and N=7 (n=1. 75), characteristic of all four-atom 

clusters. 

In order to ascertain whether a spin-polarized (ferromagnetic) 

state exists at a given occupation in the thermodynamic limit, one 

could use an extension of the analysis with the local chemical potential 
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J.L. Thus, for instance, one could increase n from n= 1 by increasing J.L 

to the proper value corresponding to n=1.25 while staying within the 

N=4 subspace. One then looks for a 'flow' of the ground state from a 

spin-'unpolarized' state at n=1 to a fully spin-polarized (ferromagnetic) 

state at n=1.25, and as a result whether ..1 at n=1.25 assumes a value 

given by (4.6). The result holds for the tetrahedral cluster, indicating 

that the ferromagnetic transition in the tetrahedral cluster might 

survive in the thermodynamic limit possibly at an occupation close to 

n=1.25. On the other hand, similar analysis at n=0.25 (N=1), by 

changing the occupation from n=0.5 down to n=0.25 by decreasing J.L 

while remaining within the N=2 subspace33 shows that the ground 

state does not 'flow' into a spin-polarized state at n=0.25 indicating 

that the transition to a magnetic state is 'spurious', Le., a consequence 

of the finite number of sites in the cluster. Similar analysis by 

decreasing n from n=1 to n=O. 75 while remaining within the N=4 

subspace for x>18.5 for the four-atom ring does not also result in a 

'flow' into spin-polarized state. This implies that in the 

thermodynamic limit, this transition to a fully spin-polarized 

(ferromagnetic) state does not occur at n=O. 75 (or 1.25) but at 

N=No:t1 in accordance with the results of Nagaoka34. 

For an attractive interaction x<O, on the other hand, the ..1-n 

curve always has a negative second derivative everywhere in the 

vicinity of each solid black line (case (C2)), implying that there are no 

Matt insulators or magnetized states. The only interesting feature is 

the absence of the N=odd values for either system at all values of x<O. 

This result indicates a tendency of the electrons to pair, which might 

imply superconductivity (Cooper pairing) or physically bound 
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bielectrons, which might lead to Bose-condensation. 

C. Discussion 

By introducing a local chemical potential at a single site of a 

small cluster, the local occupation of that site can be allowed to vary 

with respect to the average site-occupation of the cluster as a whole. 

This partial decoupling of one site from the rest should be more 

sensitive to the local environment of the particular site than to the 

overall size and shape of the cluster. 

This technique has been applied to clusters with varying 

occupation of particles, after the analysis of particular global states has 

been completed. Since the smallness of the cluster allows only a finite 

number of average occupations, the method proposed here introduces 

additional continuity into an essentially discrete system. It is thus 

possible to analyze differential properties of occupations, and analyze 

the local stability of particular solutions, distinguishing behaviors 

which are 'genuine' properties of the system as a whole (those that 

might survive in the thermodynamic limit) from those 'spurious' 

properties which are caused exclusively by the finiteness of the 

cluster. 

Two examples were analyzed. Both are Hubbard models in four­

atom clusters with different connectivities : a four-atom ring 

(representative of the infinite chain, 2D square lattice and the bee 

lattice) and a tetrahedral cluster (representative of the fcc structure). 

The following results were obtained : 

(1) The n=l half-filled band exhibits for all cases 'genuine' Mott-
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insulating states for all repulsive interactions. 

(2) In bipartite lattices, the inclusion of an arbitrarily small second­

nearest neighbor hopping seems to decrease the stability of the 

Matt-insulating state, although no supression has been observed. 

(3) The intervals 0 ~n ~ 0.25 (0 5'n 5'1 /No for an arbitrary cluster of 

size No ) and 1. 75 5'n ~ 2 (2 - 1 /No 5' n ~ 2) yield trivial 

uninteresting result corresponding to a single electron or a 

single hole. The states are always fully spin-polarized and may or 

may not represent the behavior in the thermodynamic limit. 

(4) The tetrahedral cluster exhibits a ferromagnetic state in the 

interval 1.25 ~n ~ 2, which remains stable under the test of the 

flow of states with changing local chemical potential p . 

(5) The four-atom ring exhibits a ferromagnetic state at n=O. 75 and 

n=1.25 in the exact grand canonical ensemble (p=O} for x>18.5. 

Such state at the above fractional occupations is the well-known 

Nagaoka ferromagnetic state at N=No±1 , and is not stable under 

the applied variable J.L test; in the thermodynamic limit, in 

accordance with Nagaoka's theorem34 this feeble ferromagnet 

could only occur at n=1, Le., only (exactly) at N=No±1 . 

(6) Attractive interactions lead to 'genuine' instabilities of odd N 

number states and 'genuine' stable conditions for even N. No 

magnetic solutions or Mott insulators appear in this case. 

Indication of electron pairing (i.e., either Cooper pairs or 

bielectrons) is clearly evident. 
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D. Appendix-! to chapter-IV 

Proof of equation (4.1 OJ . 

ft2 = (fta; + ftaJ)2 

= ft + 2 fta; hat ' 
because fta; and ftaJ are projection operators, e.g. (ftar )2 = fta; . 

Thus (1.2) yields : 

At -r-0, 

..1 = <<f12>> - n2 = n(1- n) + 2 <<fta; flaJ >> . 

N oEa = <H> = <Hr> + x L <htr ftu > • 
i 

= <Hr> + x No <fta; flaJ> • 

(AI. I) 

(AI.2) 

where use has been made of the assumption that all the No sites have 

identical occupations and the ground state does not have any 

spontaneously broken symmetry, i.e .. there are no spin-density waves 

or spiral spin arrangements. In the equation above, < ... > denotes the 

quantum mechanical expectation in the ground state, Hr is the 

(nearest neighbor) hopping part of the hamiltonian H and is 

independent of interaction parameter x. Use of the Feynman-Hellman 

theorem on (AI.2) together with (AI.1) at zero temperature proves 

result (4.10). 
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E. Apperidix-n to chapter-IV 

This appendix proves that in a 'white' region (ignoring the 

special case of accidental degeneracies) L1 has a negative second 

derivative with respect to n. For a given value of x, let n- and n+ (n- < 

n+) be the occupations containing the solid black lines that border the 

'white' region in question to the left and right respectively. An 

arbitrary occupation n, and the local particle fluctuation L1 at n inside 

the white region (i.e., n- < n < n+) are given by the interpolation 

formulas: 

n = A n- + ( 1 - A) ~ . 
' 

L1 = A <<f12>>- + (1 -A) <<fl2>>+ - n2 , 

(AII.l) 

= A (L1- + n- 2) + (1 - A) (L1+ + ~ 2) - n2, (AII.2) 

where subscripts - and + refer to averages on the solid black lines at 

n- and n+ respectively. Inversion of (AII.1) and use of that result in 

(AII.2) yields, 

L1 = n - n- 2 --- (L1- + n- ) + 
n+- n-

(AII.3) 

The first two terms on the RHS of (AII.3) are linear in n and, 

therefore, 

which is the result quoted. 

84 



• 

.. 

F. References for chapter-IV 

1. J. Hubbard, Proc. R. Soc. London, Ser. A276, 238 (1963): 227, 

237 (1964): 281, 401 (1964): 285, 542 (1965): 296, 100 (1967). 

2. D. R. Penn, Phys. Rev. 142, 350 (1966). 

3. D.Denley and L. M. Falicov, Phys. Rev. B17, 1289 (1978). 

4. D. Adler, in Solid State Physics, ed. by H. Ehrenreich, F. Seitz and 

D. Turnbull (Academic, New York, 1968), vol.21, p.l. 

5. Proceedings of the International Conference on Metal-nonmetal 

Transitions, San Francisco, 1968 [Rev. Mod. Phys. 40, 673 

(1968)]. 

6. N. F. Mott and Z. Zimmerman, Rep. Prog. Phys. 33, 881 (1970). 

7. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968). 

8. E. H. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962) . 

9. H. Shiba and P. A. Pincus, Phys. Rev. B5, 1966 (1972) . 

10. H. Shiba, Prog. Theor. Phys., 48, 6B, 2171 (1972). 

85 



11. L. M. Falicov and R. A. Harris, J. Chern.. Phys. 51, 3153 (1969). 

12. L. M. Falicov and R. H. Victora, Phys. Rev. B 30, 1695 (1984). 

13. R. H. Victora and L. M. Falicov, Phys. Rev. Lett. 55, 1140 (1985). 

14. A. Reich and L. M. Falicov, Phys. Rev. B34, 6752 (1986). 

15. J. C. Parlebas. R. H. Victora and L. M. Falicov, J. Phys. (Paris) 47, 

1029 (1986). 

16. E. C. Sowa and L. M. Falicov, Phys. Rev. B35, 3765 (1987). 

17. A. Reich and L. M. Falicov, Phys. Rev. B36, 3117 1987). 

18. A. Reich and L. M. Falicov, Phys. Rev. B37, 5560 (1988). 

19. J. Callaway, D.P. Chen and R. Tang, Z. Phys. DS, 91 (1986); Phys. 

Rev. B35, 3705 (1987). 

20. J. Callaway, Phys. Rev. B35, 8723 (1987). 

21. M. Ogata and H. Shiba, J. Phys. Soc. Jpn. 57, 9, 3074 (1988). 

22. J. K. Freericks and L. M. Falicov, Phys. Rev. B41, 2163 (1990). 

23. D. J. Newman, K. S. Chan, and B. Ng, J. Phys. Chern. Solids, 45, 6, 

86 

• 



.• 

643 (1984). 

24. A.M. Oles, B. Oles, and K. A. Chao, J. Phys. C13, L979 (1980): J. 

Rossler and B. Fernandez, Phys. Rev. B24, 5299 (1981). 

25. L. M. Falicov in Recent Progress in Many-body Theories Vol. 1, ed. 

by A. J. Kallio, E. Pajanne, and R. F. Bishop (Plenum Publishing 

Corp., New York (1988), p. 275 : J. Callaway, Physica B149, 17 

(1988). 

26. It could also be thought of as a four-atom 'square' in two 

dimensions with 'box' boundary conditions, or a square lattice 

with periodic boundary conditions if the substitution t~ 2t is 

made. It could also be shown to be isomorphic to the four-atom 

bee cluster23 in three dimensions under the substitution t~4t . 

27. Bipartite lattices are the ones which break up into two sublattices 

A and B with non-zero hopping from AHB but not from AHA or 

BHB, so that the energy spectrum is symmetric in tH-t, e.g., the 

linear chain, square lattice, simple cubic, bee etc. It is important 

to note that fcc is not a bipartite lattice . 

28. This is one example of the lack of participation of a given-N 

ground state mentioned in section-!. In this particular case of 

the tetrahedral, the ground state energies are: 

(a) for x = 4.0 : 

Ea (N=2)=-5.29150, Ea (N=3)=-3.64681, Ea (N=4)=-2.1 0275 

87 



(b) for x = 8.0 : Eo (N=2)=-4.92820, Eo (N=3)=-3.06808, Eo 

(N=4)=-1.32023 ; 

in both cases (and it is true for all x>O) 
1 

Eo (N=3J > 2 { Eo (N = 2) + Ea (N = 4) J 

and the N = 3 ground state does not contribute to the ensemble 

averages as 't' ~o . 

29. Any four-atom cluster with a symmetric 1-2-1 one-electron 

energy structure should exhibit the same behavior; in addition to 

the linear chain, the isolated square and the simple square (2D) 

lattice, this property is found in the bee structure with a 

sampling of four atoms. For further details see ref 23. 

30. J. E. Hirsch, Phys. Rev. B31, 4403 (1985). 

31. J. E. Hirsch, Phys. Rev. B35, 1851 (1987). 

32. The result is first due to E. P. Wigner; for details see ref. 8. 

33. Because of the result regarding the N=2 being a very special case 

where the ground state is spin-unpolarized under very general 

conditions32, the analysis was also done by studying 'flow' in the 

N=3 and N=4 subspaces to n=0.25. No spin-polarization was 

observed. 

88 

.. 

• 



34. Y. Nagaoka, Solid State Com. 3, 409 (1965): D. J. Thouless, Proc. 

Phys. Soc. London 86, 893 (1965): Y. Nagaoka, Phys. Rev. 147, . 
392 (1966): H. Tasaki, Phys. Rev. B40 , 9192 (1989). 

" 

' 

89 



G. Figures for chapter-IV 

Figure 4.1 The "solid" (black) lines where a single N 

contributes to the ground state, for the four-atom 

ring and repulsive interactions (x > 0). The white 

areas are regions where more than one value of N 

contribute. The dashed line indicates the value 

x=4.6 above which the solid lines at N=3 and N=5 

appear. Note they-axis (t1) is in the LOG scale. 
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Figure 4.2 Same as Figure 4.1 for the tetrahedral cluster. 

Note the assymetry about half-filling. 
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Figure 4.3 Same as Figure 4.1 for either cluster and 

attractive interactions (x < 0). Note only the even 

number of electrons conform to energetically 

stable configurations of the system. 
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Figure 4.4 Quantum mechanical particle fluctuation L1 in the 

four-atom ring at the a-site in the exact grand 

canonical ensemble (J.L=O). "Solid" black lines 

where discontinuities in iJL1/ an occur are drawn. 

Both attractive and repulsive interactions are 

considered and values of x are indicated. 
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Figure 4.5 Same as Figure 4.4 for the tetrahedral cluster. 
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Figure 4.6 Quantum mechanical particle fluctuation L\ caused 

by the variation of the local chemical potential J.l 

at the a-site in the four-atom ring on and around 

the "solid" black lines of Figure 4. Grey areas are 

regions away from the solid black lines where the 

analysis with non-zero J.l is not appropriate. 
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Figure 4.7 Same as Figure 4.6 for the tetrahedral cluster 

(Figure 4.5). 
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