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1. Inmxiuction 

Plasma levels of high-density lipoproteins (HDL) and distributions of HDL subclasses, 

most notably among HDL2 and HDL3, are recognized increasingly as imponant determinants of 

atherosclerosis susceptibility. Numerous epidemiologic studies have shown an inverse relation­

ship between plasma HDL cholesterol concentrations and the occurrence of coronary artery disease 

(CAD). HDL and HDL subclass levels vary in relation to constituitive and environmental factors 

and may represent a final pathway by which many of these factors influence CAD risk. Although 

properties underlying the apparent antiatherogenicity ofHDL are as yet unknown, participation of 

this lipoprotein in the removal of excess cholesterol from cells and other circulating lipoproteins for 

return to the liver, a process known as 'reverse cholesterol transpon', has been cited as a possible 

mechanism. Alternately, HDL levels may provide a surrogate measure of other compounds and/or 

metabolic events which influence the disease process. The purpose of this review is to examine the 

relationship between HDL and atherosclerosis by considering the physicochemical and metabolic 

propenies of HDL and surveying evidence of the involvement of HDL in CAD in human 

populations. 

2. Definition and Characterization of HDL 

Plasma lipoproteins, of which HDL represent a major class, are spherical lipid-protein 

complexes consisting of a core of esterified cholesterol and variable amounts of triglycerides 

surrounded by a phospholipid monolayer with interdigitated free cholesterol and apolipoproteins. 

HDL are the smallest and most dense of the lipoprotein classes. Panicles range in diameter from 

75-120 A, molecular mass from 200-400 (x 1Q3) daltons, and density from 1.063-1.21 g!ml 

(Krauss, 1982). The increased density ofHDL relative to other lipoproteins is attributed to the 

greater protein content, which ranges from 40 to 60% of HDL mass, with reciprocal variations in 

the percent contribution of lipids including phospholipids (PL), cholesterol esters (CE), unesteri­

fied cholesterol (UC), and triglycerides (TG). Apolipoproteins (apo) A-I and A-II constitute the 

major protein constituents and are found almost exclusively in the HDL fraction in normal fasting 

plasma. Apo E and apo C (C-I, C-II, C-III) are minor protein constituents ofHDL, and also are 
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associated with other lipoproteins. :The enzyme lecithin:cholesterol acyl transferase (LCA T) and 

lipid transfer proteins are important protein constituents, and are predominantly responsible for the 

intense metabolic activity associated with HDL. 

HDL include a heterogenous collection ofparticles, the bulk of which can be separated into 

discrete molecular entities of characteristic size, density, and composition (Krauss, 1982; Musliner 

and Krauss, 1988). By analytical ultracentrifugation, HDL appears as a spectrum of particles with 

flotation (F) rates ranging from 0 to 9 which is often bimodal in distribution with particles 

clustering at Frates between 0 and 3.5 and 3.5 and 9. This bimodality distinquishes the two major 

HDL subclasses, HDL3 and HDL2 respectively, which also can be separated by preparative ultra­

centrifugation at d=l.125 g/ml (Krauss, 1982; Musliner and Krauss, 1988). The larger, more 

bouyant HDL2 particles are characterized by a relative enrichment of cholesteryl esters (-50% 

more than HDL3) and the presence of an additional molecule of apo A-I (Eisenberg, 1985). 

Distinctions between HDL2 and IIDL3 are important not only from a physicochemical standpoint 

but also with regard to CAD risk as indicated by several studies which show that HDL2 levels are 

somewhat more predictive of risk than HDL3 (Miller, 1987 A). Subspecies within these two sub­

classes have recently been identified by density gradient ultracentrifugation and gradient poly­

acrylamide gel electrophoresis, including at least two HDL2 (Anderson et al, 1978) and three 

HDL3 subspecies (Blanche et al, 1981). HDL3 heterogeneity also has been demonstrated by zonal 

ultracentrifugation (Patsch et al, 1980). A third relatively minor subclass, designated HDLt. has 

been separated on the basis of density (Albers et al, 1972). This subclass floats at d<l.063 

overlapping with the low density lipoprotein distribution. 

Further sources of HDL heterogeneity are indicated by other techniques, including column 

chromatography (Kostner and Holasek, 1977) and isoelectric focusing (Mackenzie et al, 1973). 

Subfractionation of HDL particles on the basis of apoprotein composition has recently been 

accomplished. HDL subspecies containing apo A-I without apo A-II (designated Lp A-I) are 

separated from HDL containing apo A-I and apo A-II (Lp A-I:A-m by immunoaffinity chroma­

tography (Cheung and Albers, 1984; Cheung et al, 1988). These two HDL species exhibit distinct 
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metabolic characteristics (Barbaras et al, 1987; Radar et al, 1991), and appear to be differentially 

predictive of CAD risk (Brunzell et al, 1984; Koren et al, 1987; Maciejko et al, 1983; Miller, 

1987A). An apo E-containing HDL subspecies (HDLc) within the HDL2 distribution has been 

isolated from cholesterol-fed animals, and has been shown to exhibit distinct metabolic properties 

(Mahley et al, 1975; 1978). However, in general, the biological roles and cardiovascular 

significance of HDL subspecies remains unclear. 

3. Clinical Measurement ofHDL 

Clinical quantification ofHDL is typically accomplished by measurement of one or more of 

its chemical constituents following separation from the other lipoprotein classes. Although 

numerous approaches are utilized to separate lipoproteins for research purposes, most are too 

cumbersome for routine clinical use (see Warnick and Dominiczak, 1990). Sequential density 

centrifugation, which separates the three major lipoprotein classes in fasting plasma (VLDL, LDL, 

and HDL) on the basis of hydrated density, has been a cornerstone in research laboratories. 

However, centrifugal separations are laborious and technically demanding, and require expensive 

insoumentation not available in many clinical laboratories. It has now become commonplace to use 

chemical precipitation, either in conjunction with centrifugation or alone, as a means of separating 

lipoproteins for quantification. Lipoproteins can be precipitated directly from plasma or serum by 

addition of a polyanion (heparin, dextran sulfate, sodium phosphotungstate) and a divalent cation 

(Mn2+, Mg2+). Using incremental additions and/or various combinations of these agents, proce­

dures have been developed to sequentially precipitate apo B-containing lipoproteins (VLDL, IDL, 

LDL, and Lp(a)) and HDL2. leaving total HDL and HDL3, respectively, in the supernatant for 

quantification (Bachorik, 1989; Gidez et al, 1982; Sjoblom et al, 1989; Warnick and Dominiczak, 

1990). Estimates of total HDL and HDL subclass concentrations obtained by this approach are 

highly correlated with those obtained using centrifugal (Gidez et al, 1982; Patsch et al, 1989) or 

other techniques (Sjoblom et al, 1989) . 

Once separated, lipoproteins are usually quantified by measuring associated cholesterol. 

Enzymatic cholesterol detenninations are convenient, and are reasonably accurate and precise when 
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appropriate quality control measures are performed. (Bachorik, 1989; Warnick et al, 1990). 

However, use of cholesterol as a means of evaluating HDL (and other lipoproteins) has several 

inherent problems. Error due to incomplete separation can be potentiated by reliance on cholesterol 

as the means of quantification. Whereas cholesterol contributes -15% and -50% of total HDL and 

LDL mass, respectively, any cross-contamination with LDL could lead to gross overestimates of 

HDL. Additionally, cholesterol measures fail to account for variations in lipoprotein composition 

which are independent of variations in total lipoprotein mass or particle number. Nonetheless, 

since most epidemiological studies relating lipoproteins to CAD risk have been based on 

lipoprotein cholesterol and therapeutic action levels of the National Cholesterol Education Program 

(NCEP) were developed accordingly, HDL-C levels are currently the most appropriate means of 

HDL quantification for the clinician. 

More recently, methods for measurement of apolipoproteins have been developed, and 

numerous studies have suggested that apolipoproteins are independent markers of CAD risk 

(Miller, 1987 A). When analyzed in conjunction with lipoprotein cholesterol, apolipoprotein 

measurements provide information regarding lipoprotein particle size, and thus are useful for 

identifying several metabolic syndromes not apparent from cholesterol levels alone (Brunzell et al, 

1983; Grundy et al, 1987; Sniderman et al, 1980). Apolipoproteins are measured using various 

immunochemical techniques which can be performed directly on plasma, thereby circumventing 

problems inherent lipoprotein separations. However, differences exist among methods in use with 

respect to technical ease, sensitivity, and susceptibility to variations in reagent and sample charac­

teristics (see Albers et al, 1989). As a result, considerable variations in apolipoprotein estimates 

exist across laboratories (Smith et al, 1987). Efforts are currently being directed towards national 
J; 

and international standardization of apolipoprotein measurements and identification of age- and 

race-specific population-based reference values (Albers et al, 1989; Albers and Marcovina, 1989). 

Until such time, apoprotein estimates have limited clinical applicability. 

Since small errors in lipoprotein estimates can result in misclassification of individual risk 

status, lipoprotein determinations should be performed in competent laboratories which participate 
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in appropriate standardization programs. To reduce misclassification due to methodological errors 

as well as intraindividual variations, multiple measurements should be performed on a single 

individual. In addition, attention should be given to minimizing other sources of variability by 

standardizing sample collection, processing and storage (see Bachorik, 1989). 

4. HDL Metabolism 

Multiple pathways have been identified for the synthesis, maturation and catabolism of 

HDL particles. This multiplicity conaibutes a metabolic flexibility and responsiveness which may 

be essential to the key role of HDL in plasma lipid metabolism. 

A. Metabolic Origins of HDL 

HDL apolipoproteins originate in both the liver and small intestine, and are secreted free or 

complexed with lipid in the form of 'nascent' HDL or in association with TG-rich lipoproteins 

(chylomicrons and VLDL) (Eisenberg, 1985). HDL particles are formed post-secretion upon 

interaction of free apolipoproteins and phospholipids, possibly in the aqueous phase, and release 

of lipid-apolipoprotein complexes from the surface of TG-rich lipoproteins. Free fatty acids may 

promote the formation of nascent HDL complexes on the lipoprotein surface (Musliner et al, 

1991). Newly formed HDL appear as either spherical or discoidal particles (Green et al, 1976). 

The former are suggested to represent HDL which is produced intracellularly and secreted intact, 

and evidence of the presence of these particles in secretory organelles of hepatocytes and 

enterocytes has been demonstrated (Forester et al, 1983). Discoidal particles comprise lipid-poor 

complexes which arise from extracellular assembly and can be distinquished from spherical HDL 

by the absence of core lipids (i.e., CE). Maturation of nascent HDL particles involves uptake of 

UC with its conversion to CE by HDL-associated LCAT activity. These molecules are subse­

quently displaced to the hydrophobic domain of the PL bilayer forming the lipoprotein core. The 

central role of LCAT in discoidal to spherical transformations is indicated by the lack of mature 

HDL in patients with familial LCAT deficiency (Glomset and Norum, 1973). 
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B. Intravascular Remodeling. of HDL 

HDL lipids and apolipoproteins represent dynamic pools characterized by continuous entry 

followed by metabolic consumption or exchange, and thus, the HDL particle is subject to continu­

ous modification while in circulation. Through the remodeling process, HDL serves as a repository 

of lipids and apolipoproteins from chylomicrons and VLDL, which appear to contribute the bulk of 

HDL mass (Eisenberg, 1985). Cells also serve as sources of HDL lipids, primarily UC, which is 

transferred to HDL in association with a process known as "reverse cholesterol transport". While 

in many cases this does not lead to net changes in lipoprotein composition, augmentation or shifts 

may occur, including those involved in the interconversions among HDL subclasses. 

1. Interactions of HDL with Other Lipoproteins and Cells 

TG-rich lipoproteins donate surface lipids to HDL during lipolysis. Net transfer of PL to 

HDL is driven by PL consumption, predominantly via the LCA T reaction, and to a lesser extent by 

the phospholipase activity of hepatic and lipoprotein lipase (HI.. and LPL) (Eisenberg, 1985; 

Krauss, 1982). PL exchange without net mass transfer may be facilitated by plasma PL exchange 

protein. HDL UC is derived from VLDL as well as LDL and may involve bidirectional exchange 

or unidirectional transfer with net mass cholesterol movement to HDL. Net cholesterol transfer is 

driven by HDL-associated LCAT activity, producing CE with the subsequent transfer of these 

molecules to the hydrophobic core. HDL TG also are contributed by TG-rich lipoproteins. HDL 

TG flux appears to be determined by the relative amounts of this component in HDL and donor 

lipoproteins. The fate of HDL TG is unknown although TG-enriched HDL may be subject to 

hydrolysis with removal ofTG and PL by HL. 

The contribution of cells to HDL PL turnover appears to be minor as indicated by the 

disparity between HDL and cell membrane PL composition. In contrast, cells are important donors 

of HDL UC. In addition to serving as a cholesterol acceptor, HDL plays a regulatory role in 

cellular cholesterol efflux by stimulating the translocation of intracellular cholesterol to an 

exchangable plasma membrane domain (Schroeder et al, 1991; Slotte et al, 1987). Both mobiliza­

tion and transfer of cellular cholesterol to HDL are enhanced by its binding to specific cell surface 

;-, 
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receptors (Oram et al, 1991). Stimulation by HDL appears to be mediated by a signal transduction 

process involving protein kinase C, as indicated by the ability of sphingosine to inhibit this process 

(Mendez et al, 1989). 

HDL also may serve as lipid donors. Net mass transfer of CE from HDL to TG-rich 

lipoproteins and LDL is mediated by cholesteryl ester transfer protein (CETP) and involves 

exchange with TG (Barter et al, 1990). While CETP also may promote cellular uptake ofHDL CE 

(Granot et al, 1987), this effect appears to require intermediate transfer of CE to LDL. HDL also 

may donate UC and PLunder cenain conditions. For example, HDL UC may be transferred to 

cells which consume high amounts, such as cells of steroidogenic tissues or liver cells for use in 

bile acid synthesis (Eisenberg, 1985; Krauss, 1982). 

Although HDL apolipoproteins are not static, these panicles generally remain associated 

with the HDL fraction whiie in circulation (Eisenberg, 1985). Apo A-I has been shown to 

exchange between HDL panicles. This is suggested to involve dissociation from and reassociation 

with HDL particles, with intermediate residence in a rapidly turning over plasma 'free' apolipopro­

tein pool. HDL apolipoproteins appear to possess an avidity for the HDL surface, which may be 

related to the surface curvature, and are less likely to associate with other lipoproteins. Displace­

ment of apo A-I by other apolipoproteins, such as apo A-II, apo C and apo E, also occurs. HDL 

serves as a repository for the latter two groups of apolipoproteins, with apo C-II providing a signal 

for lipolysis upon transfer to TG-rich lipoproteins. 

2. Interconversions Among HDL Subclasses 

Interconversions among HDL subclasses involve lipid and protein uptake or loss with 

concomitant enlargement or reduction of the HDL panicle (Eisenberg, 1985). HDL enlargement 

occurs upon influx of PL and UC from TG-rich lipoproteins during lipolysis, UC from cell 

membranes, and apolipoproteins released from TG-rich lipoproteins and possibly directly from 

cells (Deckelbaum et al, 1982A). Conversion ofHDL3 to HDL2 involves a 2- to 3-fold enrichment 

of core CE molecules, and addition of sufficient surface lipids to accommodate the expanded 

surface area as well as an additional apo A-I molecule. This process is suggested to occur in two 
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stages (Eisenberg, 1985). Conversion of HDL3 to a lipid-enriched intennediate species, which is 

subsequently transfonned into HDL2 upon production of CE by LCAT. An apo A-1 molecule 

associates with the lipid-enriched particle surface at some point in this process. and appears to 

accelerate CE accumulation. Intravascular conversion ofHDL2 to a larger panicle, HDLt, may 

occur as a result of further accumulation of CE and enrichment with apo E. 

Evidence indicates that transitions from larger to smaller HDL species also occur 

(Deckelbaum et al, 1982B). Conversion of HDL2 to HDL3 is envisioned as a two-stage process 

with CETP-mediated exchange of HDL CE for TG. The TG-rich intennediate is a substrate for 

HL, which catalyzes the removal of both TG and PL (i.e., both core and surface lipids) (Hopkins 

et al, 1985; Hopkins and Barter, 1986). HDL2 to HDL3 conversion also must involve exclusion 

of an apo A-1 molecule. 

C. Plasma Clearance and Catabolism of HDL and HDL Constituents 

An understanding ofHDL catabolism is complicated by the dynamic nature ofHDL con­

stituent pools, each exhibiting unique kinetic parameters which do not reflect the kinetic behavior 

of the entire lipoprotein particle. As a result, none of the constituents can serve as a stable marker 

of catabolism of the HDL particle. This situation is further encumbered by multiple mechanisms 

for degradation of HDL constituents, which vary among cell types and are affected differentially by 

numerous metabolic factors. 

Cholesterol and PL from TG-rich lipoproteins and cells cycle through the HDL system, 

being converted to CE by LCAT, on route primarily to lower density lipoproteins from which 

greater than 80% of HDL-synthesized CE can be recovered (Neste! et al, 1979). The HDL CE 

pool completely turns over within about 24 hours (Glomset and Norum, 1973). The LCAT 

reaction utilizes an equivalent of 5-10 times the UC mass and essentially the total PL mass (i.e., 5-

10 mmol) for this process, although with little effect on the HDL mass of these lipids due to con­

tinual replacement. In contrast, apolipoproteins do not undergo metabolic alterations and remain 

associated with the HDL pool while in circulation (Krauss. 1982). Thus, apolipoprotein kinetic 

behavior is suggested to provide a reasonable approximation of HDL turnover rates (Schaefer et al, 
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1978), although degradation of the~e constitutents may occur independently of intact HDL. HDL­

associated lipoproteins exhibit a plasma half-life of several days with a greater plasma residence 

time noted for apo A-I. In a recent study, Rader et al (1991) showed that the plasma residence time 

of apo A-I associated with Lp A-I was substantially shoner than that associated with Lp A-I:A-II. 
" 

Evidence is inconclusive regarding major tissue sites for apolipoprotein uptake and degradation. 

Several examples of cellular uptake and degradation of intact HDL particles have been 

presented, although sites and mechanisms involved and the extent to which this process contributes 

to HDL turnover are poorly understood (Bradley and Gianturco, 1990). Examination of the 

accumulation of labelled HDL constituents suggests that liver and intestines are primary sites of 

HDL catabolism, although several repons have indicated a more modest hepatic contribution 

(Krauss, 1982). Hepatocytes isolated from rats and humans have a high capacity for HDL uptake 

and degradation (Nakai et al, 1976; Van Berkel et al, 1977; Shouten et al, 1989). Uptake and 

degradation of apo E-containing HDL2 subspecies by a saturable process has been attributed to the 

interaction of these particles with receptors recognizing apolipoprotein B (Mahley et al, 1978). 

Shouten et al (1989) reponed saturable high-affinity, binding and uptake of apo E-free HDL by 

hepatocytes which did not compete with LDL but did compete with VLDL binding suggesting a 

possible role for apo C. Tozuka and Fidge ( 1989) recently reponed purification of two structurally 

distinct proteins from rat and human liver plasma membrane which recognize apo A-I and A-II. 

The role of these proteins in HDL turnover is presently unknown. 

HDL bind to other cell types, and in some cases, evidence of uptake and degradation of 

intact particles has been presented. Rat aonic smooth muscle cells, human fibroblasts, and 

cultured rat adrenocortical cells are capable of binding and internalizing intact HDL, although in the 

latter tissue, preferential uptake of cholesterol for sterol synthesis without entry of the HDL particle 

may occur (see Krauss, 1982). HDL binding without internalization leading to partial degradation 

appears to represent an imponant means of clearance of HDL constituents (Pittman et al, 1987). 
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5. Regulation of Plasma HDL Concentrations 

Levels of HDL and distributions among HDL subclasses reflect the interplay between 

synthesis and/or catabolism of HDL and HDL constituents and processes involved in HDL mat­

uration and remodeling in plasma. The extent to which HDL and HDL subclass levels vary among 

and within individuals will depend on the relative contributions of these processes to HDL metab­

olism, and factors which influence HDL levels will operate through effects on these processes. 

A. Metabolic Considerations 

Rates of synthesis and catabolism of HDL apolipoproteins determine the amounts of these 

constituents available for formation ofHDL. Although several exceptions have been presented, 

catabolic rates appear to exert greater control over plasma apolipoprotein and HDL levels than 

synthetic rates. The latter may be more important in determining responses to environmental 

factors, such as dietary fat intake. Regulation of plasma levels by catabolic rates is true primarily 

for apo A-I, whereas recent evidence in normolipemic females has shown that plasma apo A-ll 

levels are correlated with the synthetic rate of this apolipoprotein (Brinton et al, 1989). Notable 

differences in the influence of apolipoprotei.n synthesis versus catabolism also exist among 

normolipemic and hypertriglyceridemic individuals. Reduced apo A-1 synthetic rates have been 

observed in normolipemic subjects with low apo A-1 and HDL C, as opposed to increased 

fractional catabolic rates (FCR) for apo A-1 in hypertriglyceridemic subjects with low apo A-I and 

HDL C (Le and Ginsburg, 1988). Apolipoprotein kinetics also may influence HDL subclass 

distributions (Eisenberg, 1990). HDL apolipoprotein FCR have been shown to be associated with 

the degree of HDL lipid enrichment. Several molecular mechanisms are suggested to govern 

apolipoprotein turnover. In addition to direct regulation of synthesis and secretion, apolipoprotein 

catabolism may occur secondary to HDL lipid metabolism (Goldberg et al, 1989; see Tall, 1990). 

HDL formation and remodeling are inexorably tied to the metabolism ofTG-rich lipopro­

teins and, thus, HDL and HDL subclass levels are highly influenced by factors which affect the 

efficiency of TG hydrolysis, as indicated by the inverse relationships between plasma HDL and the 

concentrations (Chang et al, 1985), FCR, and metabolic fluxes of plasma triglycerides (Krauss, 
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1982). During hydrolysis ofTG-rich lipoproteins, surface lipids and apo A-I are transferred to 

HDL. TG hydrolysis is catalyzed by LPL, and the activity of this enzyme in adipose tissue, 

skeletal muscle, and post-heparin plasma has been shown to correlate with plasma levels of HDL­

C (Krauss, 1982). Plasma LPL levels also are correlated with HDL2-cholesterol and HDL2 mass, 

reflective of the possible conversion ofHDL3 to HDL2 upon transfer of TG-rich lipoprotein 

surface lipids to HDL. Tissue LPL activity may be regulated at the transcriptional, translational, 

and post-translational level, and these processes may be variously affected by constitutive and 

environmental factors (Eckel, 1989; Olivecrona and Bengtsson-Olivecrona, 1990). 

In contrast to LPL which acts on chylomicra and VLDL, hepatic lipase (HL) catalyzes the 

hydrolysis of both TG and PL in HDL and appears to play a major role in degradation of HDL 

constitutents, particularly those in HDL2 (Clay et al, 1989). The activity of this enzyme is 

inversely correlated with levels of HDL and HDL2, and is reduced in several conditions 

characterized by elevated HDL2 levels (Krauss, 1982; Kuusi et al, 1989). 

LCA T and CETP are two additional enzymes which play a role in the regulation ofHDL and 

HDL subclass levels. LCAT, which is activated by apo A-I (Fielding et al, 1972), promotes CE 

enrichment of HDL. Smaller HDL particles are preferred substrates for LCAT and may be con­

verted to HDL2 by the activity of this enzyme (Barter et al, 1985). CETP promotes exchange of 

HDL CE for TG facilitating the redistribution of CE from HDL to VLDL and LDL. This leads to 

CE depletion and TG enrichment ofHDL, and in the presence ofHL which hydrolyzes HDL TG, 

results in a reduction in HDL particle size (Barter, 1990; Newnham and Barter, 1990). The ability 

of CETP to promote lipid transfers and changes in HDL particle size may be modulated by free 

fatty acids (Barter et al, 1990). The influence of CETP on HDL and HDL subclass levels is 

reflected in humans with an inherited CETP deficiency who exhibit markedly increased concentra­

tions ofHDL-C and enlarged CE-enriched and TG-depleted HDL particles (Brown et al, 1990). 

B. Factors Influencing Plasma HDL and HDL Subclass Levels 

Plasma levels of HDL and HDL subclasses are affected by numerous intrinsic or consti­

tuitive factors including genetic predisposition, gender and age, and extrinsic or environmental 
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factors such as dietary and exercise habits. Interactive effects have been noted, particularly 

between constituitive and environmental factors. Although all of these factors are expected to 

operate through the mechanisms described above, those operating under specific circumstances are 

still poorly defined. 

1. Intrinsic Factors 

Genetic Predisposition. Several relatively rare lipid disorders affecting HDL are genetically 

determined, including Tangier's disease, CETP and LCA T deficiency disorders, and familial 

hypercholesterolemia, and in some cases specific gene alterations have been identified (Thompson 

et al, 1989). However, the mild to moderate lipid and lipoprotein perturbations encountered in 

human populations have yet to be attributed to specific genetic factors. Nonetheless, a major role 

for heredity in determining intraindividual differences in plasma HDL-C concentrations and apo A­

I levels has been indicated by numerous studies examining correlations of these variables between 

parents and offspring and among siblings (Mollet al, 1986; McGue et al, 1985; Burns et al, 1989; 

Namboodiri et al, 1985; Rao et al, 1987). Familial HDL transmission involves specific HDL sub­

classes, with higher heritability estimates for HDL2 than HDL3 (Hasstedt et al, 1985; Kuusi et al, 

1987). Both genetic and cultural heritability have been implicated, albiet with a greater contribution 

from the former (McGue et al, 1985; Hasstedt et al, 1984). Proposed genetic transmission 

schemes for HDL-C and apoplipoprotein levels variously include polygenic, additive major genes, 

recessive and dominant (Amos et al, 1986; Hasstedt et al, 1984; Mollet al, 1986). 

Gender. Premenopausal females exhibit higher HDL-C levels than males, with elevations of 

the HDL2 subclass (Nichols, 1967), absolute levels of apo A-I and the ratio of apo A-I to apo A-II 

(Cheung and Albers, 1977). Eunuchs have higher HDL-C levels than normal adult males (Furman 

et al, 1956), and in longitudinal studies of adolescent males, reductions in HDL-C accompany 

sexual maturation (Morrison et al, 1979). These gender differences are attributed to hormonal 

influences and evidence of the direct effects of estrogens and androgens has appeared. Exogenous 

estrogen leads to elevations in plasma HDL-C and HDL2-C concentrations (Nichols, 1967; Krauss 

et al, 1979; Furman et al, 1967; Schaefer et al, 1983; Tikkanen et al, 1981). Conversely, androgen 
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administration lowers HDL-C concentrations in both hypogonal and normal men (Furman et al, 

1958; Furman et al, 1967; Webb et al, 1984). While several cross-sectional studies have shown a 

positive association between testosterone and HDL-C concentrations in mature males (Nordoy et 

al, 1979; Gutai et al; 1981; Heller et al, 1981), this may actually be reflective of an underlying 

metabolic relationship between HDL and sex hormone-binding globulin (SHBG), which is related 

to testosterone levels (Stefanick et al, 1987A). HDL-C raising effects also have been suggested for 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH) based on strong correlations 

between plasma levels of these hormones and HDL-C concentrations in post-menopausal women 

irrespective of estrogen- administration (Krauss et al, 1979 A). 

Metabolic events responsible for gender differences appear to involve apolipoprotein 

kinetics. Synthetic rates of apoproteins A-I and A-II are significantly greater in females than 

males. Schaefer et al (1982) reponed respective values of 13.6 and 2.5 mg/kg/day for females,and 

11.1 and 2.1 mg!kg/day for males. Estrogen administration causes a 25% increase in the synthesis 

of apo A-I, but not apo A-II, in premenopausal females (Schaefer et al, 1983). In addition, higher 

activites of LPL and lower activities of HL have been observed in females (Krauss, 1982). 

Administration of estrogen reduces HL activity in post-heparin plasma and this is accompanied by 

elevations in HDLz-C concentrations (Applebaum et al, 1977; Tikkanen et al, 1981). 

Age. Population studies have indicated that HDL-C levels vary with age, with notable 

differences in age-effects among men and women (Heiss et al, 1980). In males populations, 

reductions in HDL-C levels occur during pubeny and adolescence, followed by a steady decline 

through middle age (ages 55-60), after which an increase is noted. The latter may reflect an 

underrepresentation of older-aged individuals with low HDL-C levels due to cardiovascular 

mortality. In contrast, women exhibit a small, steady increase in HDL-C from pubescence through 

about age 60, which may be related to observations of linear increases in levels ofLPL through the 

sixth decade in females (Krauss et al, 1974). 

Adiposity and Fat Distribution. An inverse association between adiposity and HDL, HDLz 

and HDL3 cholesterol levels has been observed in both children and adults (Aristimuno et al, 1984; 
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Lupien et al, 1985; Foster et al, 19.87; Anderson et al, 1988; Despres et al, 1988; Terry et al, 

1989). Individuals with centralized or upper body (android) obesity as compared with lower body 

(gynoid) obesity exhibit more marked dyslipoproteinemias including reduced HDL levels and 

hypertriglyceridemia (see Stem and Haffner, 1986). Measurements of upper body obesity (e.g., 

abdominal skinfold thickness, waist-to-hip ratio) are more strongly predictive of plasma HDL and 

HDL subclass levels than body weight or body mass index (Foster et al, 1987; Anderson et al. 

1988; Despres et al, 1988; Terry et al, 1989). Both androgen excess and insulin resistance are 

suggested to mediate lipid and lipoprotein abnonnaliries including reduced HDL levels associated 

with upper body obesity (Stern and Haffner, 1986). Women exhibiting primarily upper body 

obesity have increased levels of free testosterone and SHBG relative to women of similar weight 

with predominantly lower body fat deposition (Evans et al, 1983). Upper body obesity is 

suggested to predispose to diabetes (Ohlson et al, 1985), a well-known CAD risk factor, and 

several repons have shown that subjects with upper as opposed to lower body obesity are more 

insulin-resistant (Stern and Haffner, 1986). Insulin-resistance has recently gained prominence as 

an important independent predictor ofHDL levels (Laws et al, 1991; Laws and Reaven, 1992). 

2. Extrinsic Factors 

Diet. In addition to elevating atherogenic lipoproteins, high cholesterol intake increases plasma 

HDL-C and HDLz-C, and elicits the fonnarion of an apo E-containing HDL subspecies (HDLc) which 

exhibits increased cell surface binding (Mahley et al, 1975, 1978; Beynen and Katan, 1985). High-fat 

diets enriched in saturated fatty acids (SFA) have been shown to raise HDL-C and apo A-1 levels, and this 

may be related to observed increases in hepatic apo A-I synthesis (Tan et al, 1980). Isocaloric 

substitutions of SFA with either polyunsaturated fatty acids (PUFA) or carbohydrates bring about 

reductions in plasma HDL-C, HDLz-C and apo A-I levels (Schaefer et al, 1981; Zanni et al, 1987; Enholm 

et al, 1982), although the HDL-lowering effects of PUFA substitution may not occur when total fat is 

relatively low (Dreon et al, 1990). Turnover studies have indicated that changes in the synthesis or 

fractional catabolic rate of HDL-associated apolipoproteins may account for reductions in HDL with PUFA 

or carbohydrate enrichment, respectively (Blum et al, 1977; Chong et al, 1987; Nestel et al, 1981; Brinton 
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et al, 1990). Thus, although beneficial effects have been noted with respect to total-C and LDL-C levels, 

assumption of PUPA-enriched or low-fat, high-carbohydrate diets produce less than optimal changes in 

plasma HDL. 

Attention has recently focused on the possible cardiovascular benefits of monounsaturated 

(MUFA) and w-3 fatty acids. When substituted for SFA within moderate to high fat diets, MUFA 

bring about reductions in plasma total- and LDL-C without concomitant reductions in HDL-C 

(Mattson and Grundy, 1985; Grundy, 1986; Mensink and Katan, 1987; Grundy et al, 1988). In 

contrast to w-6 fatty acids in vegetable oils, (1)-3 fatty acids in fish oils exert a mild HDL-C-

elevating effect when moderate amounts are consumed (see Harris, 1989). This may be related to 

alterations in TG metabolism. Some reports have shown fish oil-induced reductions in HDL-C, 

albiet generally at higher intakes, and increased HDL turnover has been noted. 

Total calorie intake, fiber and coffee consumption, and dietary carbohydrate and protein 

composition also are suggested to influence HDL levels. The effects of these and other dietary 

constituents on plasma lipid and lipoproteins including HDL are detailed in a recent review (Kris­

Etherton et al, 1988). 

Exercise. Numerous epidemiological studies have indicated a strong association between 

plasma levels of HDL-C, particularly HDL2-C, and habitual physical activity level (see Krauss, 

1989; Wood et al, 1985; Pelletier and Baker, 1987). Adoption of a moderate to strenuous exercise 

program leads to elevations in HDL in association with reduced TG levels, although such effects 

have been reported consistently only for longer-term studies (i.e., greater than 3 months) and with 

activity regimens unlikely to be achieved by most individuals. In many studies, exercise-induced 

elevations in HDL and HDL subfractions have been attributed to accompanying losses of body 

weight and/or fat mass (see Williams, 1990; Wood et al, 1988). Elevated adipose tissue LPL 

levels with weight loss may be involved in this relationship (Schwartz and Brunzell, 1981 ). 

Modest elevations in HDL and LPL activity in post-heparin plasma have been observed with 

exercise training in the absence of weight loss (Thompson et al, 1988), and elevations in HDL 

have been noted following short-term exercise (Kantor et al, 1987), indicating that exercise per se 
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can influence HDL metabolism. Measurement ofHDL aneriovenous flux across exercising muscle 

have shown acute elevations in HDL3 (Ruys et al, 1989). This response occurs in association with 

transient, localized elevations in muscle LPL activity (Kiens et al, 1989), and is dependent on the 

delivery of chylomicra and VLDL to LPL in the muscle vasculature (Kiens and Lithell, 1989; Ruys 

et al, 1989). Accordingly, intravenous fat clearance is greater after an exercise session (Annuzzi et 

al, 1987), and exercise-induced elevations of HDL-C have been shown to be greater after fat 

ingestion and in individuals consuming moderate- to high-fat diets (Ruys et al, 1989). Alterations 

in the clearance of HDL constituents resulting from lower levels of m... also may contribute to 

elevated HDL-C and HDL2-C levels associated with regular physical activity (Krauss et al, 1979B; 

Stefanick et al, 1987B). 

Alcohol. HDL elevations may be responsible for the reduced CAD risk associated with 

low to moderate alcohol intake (Crique et al, 1987). Alcohol raises plasma levels ofHDL-C and 

apos A-I and A-II (Kannel et al, 1988), and epidemiological associations indicate a relationship 

between alcohol intake and HDL-C and apo A-I and A-II levels (Meilahn et al, 1988). In the LRC 

prevalence study, alcohol consumption was reponed to account for as much as 4 to 6 % of the 

population variance in HDL-C levels (Ernst et al, 1980). Alcohol effects have been suggested 

variously to involve predominantly either HDL3 or HDL2 (Kris-Etherton et al, 1989). Elevated 

LPL activity has been noted with chronic alcohol intake and may be involved in elevating HDL-C 

(Belfrage et al, 1977). A possible role for alterations in hepatic synthesis of HDL constituents also 

has been suggested (Krauss, 1982). Despite the beneficial effects of alcohol on HDL levels and 

CAD risk, recommendations to increase consumption are contraindicated by the well-known 

adverse effects of this agent. Further, sustained heavy alcohol intake can induce dyslipopro­

teinemias, such as hypertriglyceridemia in susceptible subjects, which may increase CAD risk 

(Clark et al, 1988). 

Smoking. Cigarette smoking is associated with an increased ratio of total- to HDL-C and 

reduced plasma HDL levels (Craig et al, 1989). The effect of smoking on HDL levels appears to 

be dose-dependent (Criqui et al, 1980) and is more pronounced in women (Bush et al, 1988). 
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Although smoking affects HDL levels independently of other factors, this relationship is con­

founded by differences in body fat mass, alcohol consumption, and dietary intake among smokers 

and nonsmokers (Simons et al, 1984; Quensel et al, 1989). Elevations in HDL-C levels have been 

noted within thirty days after smoking cessation (Mofatt, 1988; Quensel et al, 1989), although a 

recent repon suggests that this may be panially attributable to accompanying changes in dietary 

habits (Quensel et al, 1989). 

Drugs. Numerous drugs in common clinical use have been shown to influence HDL 

levels. Examples include steroid hormones with estrogenic, progestogenic, or androgenic activity, 

some of the effects of which were discussed in a previous section. For a detailed discussion of 

inadvertant drug-induced alterations in plasma lipids and lipoproteins including HDL, the reader is 

referred to a recent review by Henkin et al (1992). 

Pharmacological treatments specific for dyslipidemias are designed for lipid-lowering 

(e.g., of hyperbetalipoproteinemia), although several are additionally effective in raising HDL 

levels. HDL elevations by various lipid-lowering agents in common use range from 5-30% (Tall, 

1990). Nicotinic acid exens the greatest and most consistent effects on HDL, which occur in 

association with decreased FCR and increased synthesis rates for apo A-I and apo A-II (Blum et al, 

1977; Krauss, 1982; Miller, 1990). The effects of nicotinic acid are noted primarily within the 

HDL2 subclass (Paoletti et al, 1983). Gemfibrozil results in fairly substantial elevations in HDL 

by increasing the synthesis of apo A-I and the activity of LPL (Glueck, 1983A). The latter prop­

eny also has been demonstrated for fibrates (e.g., clofibrate and bezafibrate) which produce more 

modest HDL elevations concomitant with reductions in VLDL (Glueck, 1983B). Inhibition of 

endogenous cholesterol synthesis by HMG CoA reductase inhibitors (e.g., lovastatin) also reduces 

VLDL and TG and modestly elevates HDL-C levels. Modest HDL elevations have been acheived 

inconsistently with bile acid resins such as cholestyramine (Glueck, 1983B). In contrast, 

consistent and substantial reductions in HDL levels have been observed with Probucol, a drug with 

LDL-reducing properties, which has consequently been relegated to second line status (Glueck, 

1983B; Miller, 1990). While most of these pharmacological treatments beneficially alter HDL, 
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most are associated with untoward.side effects which prohibit their liberal use, and current NCEP 

guidelines do not advocate such treatments for individuals with low HDL levels independent of 

other lipid or lipoprotein abnormalities. 

6. Epidemiological Evidence of a Relationship between HDL and Coronarv Anerv. Disease 

Numerous case-control and epidemiologic studies have indicated an inverse association 

between plasma HDL levels and cardiovascular disease endpoints in Western populations which 

generally remains significant following covariance adjustment (e.g., for TG levels, body mass 

index) (see reviews by Miller, 1987A; Gordon et al, 1989). Relative to age- and sex"matched 

controls, survivors of myocardial infarction (MI) exhibit significantly reduced levels of total HDL­

C and often either or both HDLz-C and HDL3-C. In prospective studies, these parameters also 

have been shown to predict rates of future disease events, with a 1 mg/dl increment in HDL-C 

associated with a 2- to 3-percent decrement in risk (Gordon et al, 1989; Stampler et al, 1991). A 

greater percent decrease in risk has been noted among women, for whom HDL-C levels appear to 

be a more prominent CAD risk factor (see review by Bush et al, 1988). 

In some studies, the HDL2 subclass has been shown to be more predictive of risk than 

HDL3 (Laakso et al, 1985; Hamsten et al, 1986; Miller, 1987A; Wallentine and Sundin, 1985), 

although significant associations between CAD and levels ofHDL3 also have been noted (Buring 

et al, 1992; Levy et al, 1984; Kempen et al, 1987). In the prospective Physician's Health Study, 

Stampfer et al ( 1991) found that although HDL-C and HDL2-C predicted risk of myocardial 

infarction (MI) in men, HDL3-C levels appeared to be the best risk indicator of the three. The 

basis for such discrepancies may become obvious with more precise characterization of subspecies 

within the HDL2 and HDL3 subclasses. For example, recent evidence suggests that the HDL3b 

component may actually be associated with increased CAD risk (Wilson et al, 1991; Williams et al, 

in press), and thus unmeasured variations in this component may underlie conflicting results 

regarding the relative CAD predictive capacity ofHDL2 and HDL3 obtained in earlier studies. 

Measures of HDL-associated apolipoproteins appear to be useful for evaluating CAD risk, 

although it is unclear whether and the extent to which these are superior to HDL-C values (Miller, 
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1987 A). Lower levels of apo A-I .have been reported consistently in MI survivors, and in 

longitudinal studies have been found to predict future events. Results regarding apo A-ll have 

been conflicting, with several reported observations of an inverse and no relationship of apo A-ll 

levels to heart disease (Miller, 1987A). In a recent study, Lp A-I but not Lp A-I:A-11 levels were 

shown to be inversely correlated with arteriographically proven CAD (Puchois et al, 1987). In the 

prospective Physician's Health Study, both HDL-associated apolipoproteins were found to be 

associated inversely with decreased risk of MI (Stampfer et al, 1991), although neither of these 

measurements added to the ability of standard risk factors and the ratio of total-C to HDL-C to 

predict risk. Conversely, Buring et al (1992) recently reported that apos A-I and A-II substantially 

added to the predictive information provided by standard lipid and lipoprotein measurements based 

on a case-control study of patients with a first MI versus neighborhood controls. 

7. Direct Evidence of a Relationship between HDL and Coronarv Arterv Disease 

Direct experimental testing of a protective role for HDL in humans has been precluded by 

the inability to manipulate HDL levels without simultaneously influencing other factors which may 

play a role in atherosclerosis. There is evidence, however, from studies of genetic variants in 

humans and animals, and from pharmacologic studies in humans, that HDL may reduce CAD 

independently of other known risk factors. 

A. Animal models 

Several major genetic loci have been identified in mice which appear to influence suscepti­

bility to development of aortic and coronary atherosclerosis on high-fat, high-cholesterol diets 

supplemented with cholic acid (Ishida et al, 1989). One such locus, designated ath-1, has been 

mapped to a chromosomal site near the apo A-II gene (Paigen et al, 1987 A, B). Atherosclerosis 

susceptibility in affected mouse strains is strongly associated with reduced levels of HDL on high­

fat diets, whereas resistant strains have normal HDL levels, and comparable levels of apo B-con­

taining lipoproteins (Paigen et al, 1987 A,B; LeBeoeuf et al, 1990). A second gene determining 

atherosclerosis susceptibility and HDL levels in mice (ath-2), also has been described by Paigen at 

a1 (1989). Recently, Rubin et al (1991A) generated a transgenic strain of atherosclerosis-suscep-
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tible C57 /BL6 mice expressing human apo A-1. These animals have approximately twice-nonnal 

levels ofHDL which are similar in size to human apo A-I-containing HDL subclasses. HDL levels 

remain elevated on high-fat diets, and the extent of aortic fatty streaks is markedly reduced in 

comparison with nontransgenic littennates (Rubin et al, 1991B). Metabolic studies in other mouse 

strains expressing similar levels of human apo A-I have demonstrated increased apo A-I production 

rates (Rubin et al, 1991B). Thus, while funher studies will be required to establish the relevance of 

these studies to CAD in humans, it appears that increased synthesis of human apo A-1 in this 

genetic model directly retards atherogenesis. 

B. Human genetic diseases 

Premature atherosclerosis has been found to characterize individuals affected with rare 

mutations in the apo A-I-apo C-III-apo A-IV locus which result in undetectable plasma apo A-I 

levels (Norum et al, 1986; Schaefer et al, 1982). Other uncommon genetic disorders resulting in 

altered HDL metabolism and reduced plasma HDL levels are not clearly associated with increased 

risk of CAD. These include apoAIMilano. Tangier's disease , and "fish-eye" disease (Breslow et 

al, 1988). Recently, a dominant mutation in the apo A-1 gene resulting in reduced HDL levels has 

been described (Deeb ett al, 1991), again with no evidence of increased risk of disease. In one 

family, the absence of apo A-II due to a gene defect was not found to be associated with any 

clinical abnormalities (Takata et al, 1990). The rarity of these disorders makes it difficult to reach 

firm conclusions regarding the relation of particular genetic defects to CAD. Nevertheless, the 

available infonnation supports the notion that apo A-I may have a direct protective effect. 

While less extreme reductions in HDL levels have been reported to aggregate in families 

with increased prevalence of hean disease (Third et al, 1984), the available data do not establish 

that the reductions in HDL are primary or independent of alterations in metabolism ofTG-rich 

lipoproteins that may have a direct relationship to CAD (Austin et al, 1991). 

C. Pharmacologic interventions in humans 

Variable increases in HDL levels have been observed in interventional trials for primary or 

secondary prevention of CAD. However, the therapeutic effects have involved reductions in levels 



of atherogenic lipoproteins, and a specific benefit due to increased HDL levels cannot be deter­

mined with certainty. In the LRC Primary Prevention Trial (Lipid Research Clinics Program, 

1984), as well as in the arteriographic NHLBI Type II Intervention Trial (Levy et al, 1984), small 

changes in HDL-C in subjects on diet± cholestyramine therapy were associated with reduced 

disease risk. In the Cholesterol Lowering Atherosclerosis Study, the strongest lipoprotein index of 

reduced angiographic progression in patients treated with colestipol and nicotinic acid was a 

relative increase in the amount of apo C-III in HDL vs. the non-HDL lipoprotein fraction 

(Blankenhorn et al, 1990). This result again emphasizes the reciprocity of changes in levels or 

composition of HDL and apo B-containing lipoproteins, and the difficulty of dissociating their 

effects on CAD risk. A similar problem arises in assessing the benefit ascribed to gemfibrozil­

induced increases in HDL in the Helsinki Heart Trial, in which there were also major reductions in 

TG levels (Manninen et al, 1988). A recent reanalysis of the results of this trial has indicated that a 

lipoprotein profile consisting of TG levels greater than 2.3 mM and an LDL-C/HDL-C ratio greater 

than 5 identified a subgroup of 10% of moderately hypercholesterolemic men that had a relative 

risk for coronary disease of 3.8 and accounted for 71% of the benefit of drug therapy (Manninen et 

al, 1991). Statistical manipulations of the relation of such highly intercorrelated features of lipo­

protein metabolism to coronary disease risk (Austin et al, 1988; Campos et al, 1992) are of 

minimal value in identifying primary pathophysiologic mechanisms (Austin, 1991). Nevertheless, 

the consistency of HDL-C as an index of CAD risk in cross-sectional, observational, and interven­

tional trials argues for its utility and importance in identifying high-risk individuals. While the 

benefits and optimal means of raising HDL per se remain open to question, it is reasonable to 

assume that increases in HDL may be desirable in conjunction with other approaches to lipid­

lowering therapy. 

8. Proposed Mechanisms Underlving the Antiatherogenic Properties ofHDL 

Much attention has been given to the reverse cholesterol transport (RCT) hypothesis as a 

plausable explanation for the apparent antiatherogenic properties of HDL (see review by Miller, 

1987B). RCT refers to the cycle of tissue cholesterol uptake by HDL and its subsequent transfer 
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to liver, either directly from HDL, :or following transfer to VLDL or LDL, which are subsequently 

taken up by liver via receptor-mediated endocytosis. Through this process, HDL plays a critical 

role in cellular cholesterol homeostasis. Mobilization of lysozomal cholesterol is suggested to 

prevent the formation of cholesterol-laden foam cells whereas mobilization of cholesterol from 

cholesteryl ester stores appears to reverse formation of these cells. Through these processes, HDL 

may play a key in preventing progression and stimulating regression of atherosclerotic plaques. 

Although an attractive hypothesis, evidence that variations of HDL-C levels within physio­

logic ranges determine the rate and/or amount of tissue cholesterol removal is equivocal. Several 

small studies have indicated inverse associations between body cholesterol pool sizes and HDL 

cholesterol (Miller, 1987B). However, Blum et al (1985) were unable to demonstrate a relation­

ship between HDL cholesterol or apolipoprotein levels and the tissue mass of exchangable 

cholesterol in a major physiological study in man. It appears possible that HDL may mediate 

selective tissue cholesterol removal, such as from lipid-rich cells in the arterial intima, and this may 

not be reflected in whole body studies. 

Recent repons have indicated that HDL may protect LDL against atherogenic oxidative 

changes (Ohta et al, 1989; Panhasarathy et al, 1990), although the basis of these antioxidant effects 

is unknown. Given the compelling evidence of a critical role for LDL oxidation in atherogenesis, 

this promises to be an area of intense research activity in the coming years. 

As discussed above, in addition to a direct anriatherogenic role, levels of HDL and HDL 

subclasses may provide an index_ of other metabolic factors which influence atherogenesis. HDL 

levels are related to the proficiency of metabolism of TG-rich lipoproteins, and thus may indirectly 

reflect the extent to which these lipoproteins are available to promote disease. Although the 

atherogenicity of TG-rich lipoproteins has been the subject of considerable controversy, these 

lipoproteins have been shown to perturb endothelial cell metabolism and cause massive lipid 

accumulation in macrophages even when unmodified (in contrast to LDL) (see Gianturco and 

Bradley, 1991; Gianturco et al, 1986; Huff et al, 1991; Booyse et al, 1988). Low HDL-C levels 

also occur in association with a lipoprotein profile characterized by a predominance of small, dense 
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LDL particles, along with elevated TG and IDL levels, and thus, may represent a marker of this 

atherogenic lipoprotein phenotype and associated pathophysiologic processes. Affected 

individuals exhibit a three-fold increased risk of MI (Austin et al, 1988). 

9. Concluding Remarks 

Of the major plasma lipoprotein classes, HDL uniquely show an inverse association with 

CAD. Some evidence is available to suggest that this may be indicative of direct antiatherogenic 

properties ofHDL. Although much is known about the metabolic behavior ofHDL, specific 

properties which may underlie the protective effects are still in question. Further characterization 

of the metabolic and preventive features of individual HDL subclasses may be particularly useful 

for discerning the antiatherogenic properties ofHDL. Elevations in plasma HDL and HDL 

subclasses, either independently of or in addition to other beneficial lipoprotein changes, are 

expected to reduce CAD risk. Numerous factors, including modifiable behaviors such as diet, 

exercise or smoking cessation, are known to influence HDL and thereby are suggested to influence 

CAD risk, although direct evidence of the effects of specific interventions is still sparse. Nonethe­

less, promotion of behaviors which exert a beneficial influence on HDL levels represents a key 

strategy for reducing CAD risk and should be encouraged, particularly in individuals with initially 

low HDL levels. 
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