
LBL-32205 
UC-350 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

ENERGY & ENVIRONMENT 
DIVISION 

Presented at the Third Eurographics on Rendering Workshop, 
Bristol, England, May 18-20, 1992, 
and to be published in the Proceedings 

Irradiance Gradients 

G. Ward and P.S. Heckbert 

April1992 

ENERGY & ENVIRONMENT 
DIVISION 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

::0 
Pl 

n "1:1 
.... OPl 
t'10::0 
OIDPl 
CDl:Z: 
..... n 
ID:Z:Pl 
rt'O 
IDrt'O 

0 ., 
t"' < i ..... o.---p 
~· 

~ n 
0 

'tS 
"< 

.... 

r 
ttl 
r 
I 

(,) 
1\) 
1\) 
s 
U1 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSTRACT 

A new method for improving the accuracy of a diffuse interreflection calculation is 
introduced in a ray tracing contexL The information from a hemispherical sampling of 
the luminous environment is interpreted in a new way to predict the change in irradiance 
as a function of position and surface orientation. The additional computation involved is 
modest and the benefit is substantial. An improved interpolation of irradiance resulting 
from the gradient calculation produces smoother, more accurate renderings. This result 
is achieved through better utilization of ray samples rather than additional samples or 
alternate sampling strategies. Thus, the technique is applicable to a variety of global 
illumination algorithms that use hemicubes or Monte Carlo sampling techniques. 

1. Introduction 

Global illumination can be simulated using both ray tracing and radiosity algorithms. Both approaches typ
ically rely on calculations of patch irradiances which are used to revise other patch irradiances ·iteratively 
or to render a final imaget. In most radiosity algorithms, patch radiosities are considered constant during 
the solution stage, and bilinear interpolation (Gouraud shading) is used to compute pixel values during 
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tlrradiance is the energy flux per unit area arriving on a surface. Radiosity is the emissive flux per unit area, plus the irradi
ance times lhe diffuse surface reflectance. 
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rendering. It has been shown that these piecewise-constant approximations are quite inaccurate, and that 
much more accurate approximations can be simulated using linear, quadratic, and higher order approxima
tion [Heckbert9lb]. Linear approximations have recently been implemented for 3-D radiosity [Max92) 
and 2-D radiosity [Heckbert9_la) [Lischinski91]. 

Higher order approximations require more information about the irradiance function in order to be 
worthwhile, however; one must increase either the number of samples or the information content of each 
sample. If higher order interpolation were used without additional information, the resulting shading 
would look smoother, but it would be objectively no more accurate than standard bilinear interpolation. 

Rather than increase the number of samples, as more brute-force algorithms have done, our method 
increases the information content of each sample to include estimates of the first derivative, or gradient, of 
the irradiance. 

In this paper, we will show how the irradiance gradient at a point can be computed during a standard 
Monte Carlo evaluation of irradiance at almost no additional cost. The key to this innovation is the wealth 
of information contained in a sampling of the hemisphere. During the sampling process, the distances, 
brightnesses, and directions of the visible surfaces are all known, and from this knowledge it is possible to 

deduce with reasonable accuracy how the irradiance will change with respect to position and orientation of 
the test surface element. The gradient approximation given here is based on minimal, intuitive assumptions -
of geometric continuity. 

Knowing the irradiance gradient along with the irradiance value at a point allows us to justify a bicubic or 
like-order interpolation method, and produces not only smoother but significantly more accurate results. 
The irradiance gradient method will be demonstrated in the context of a meshless irradiance caching 
scheme [Ward88b], though the technique may also be applied in mesh-dependent radiosity algorithms. 

2. The RADIANCE Simulation 

Radiance is a physically-based lighting simulation system developed over the past seven years at the 
Lawrence Berkeley Laboratory in California and the Ecole Polytechnique Federate de Lausanne in 
Switzerland. The software is free and publicly available from anonymous ftp sites at both locations. Since 
the algorithm described in this paper has been implemented in the context of the Radiance program, it is 
necessary to briefly explain the workings of this simulation before delving into the irradiance gradient cal
culation itself. 

Radiance is basically a light-backwards ray tracing program [Whitted80] that uses irradiance caching to 
efficiently account for diffuse interreflection between surfaces. The basic algorithms used in Radiance are 
described in [Ward88a] and a general overview of the software is provided in [Ward90]. Basically, Radi
ance uses ray tracing in a recursive evaluation of the radiance equationt: 

211: 1112 

L, (e, ,cjl,) = J J L; (e, .$,)I (e, .$, ;e, ,cj),) cose, sine, de, d $; 
0 0 

where: 

e is the polar angle measured from the surface normal 

cj) is the azimuthal angle measured about the surface normal 

L, (e, ,cjl,) is the reflected radiance (watts/steradian/mete? in SI units) 

L; (e, ,cj);) is the incident radiance 

I (e, ,cjl, ;e, ,cjl,) is the bidirectional reflectance-transmittance distribution function (steradian -t) 

tThe radiance equation is essentially Kajiya's rendering equation. (Kajiya86) with the notion of energy transfer between 
two points replaced by energy passing through a point in a specific direction. 
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To reduce the variance between samples and speed convergence of Monte Carlo integration, light sources 
arc accounted for separately using an adaptive sampling scheme [Ward91]. As in most r:I)' tracing algo
rithms, specular contributions are computed with separate rays in the appropriate directions. Once the 
direct and specular contributions have been removed from the integral, the indirect diffuse contribution is 
computed using a Monte Carlo sampling of the hemisphere. Since this "indirect irradiance" value is view
independent, and it changes slowly over surfaces in most scenes, it is more efficient to perform the calcula
tion only occasionally, caching the computed values for local interpolation. This caching of irradiance 
samples is a significant optimization of more brute-force Monte Carlo ray tracing algorithms such as 
Kajiya's [Kajiya86]. 

In the meshless caching scheme described in [Ward88b], the location of the computed indirect irradiance 
values is determined by the proximity and curvature of the surfaces, and does not fall on a regular grid, so a 
weighted sum is used in place of a more standard bilinear interpolation. Furthermore, since values are only 
computed as needed by the algorithm, extrapolation may occur in a region where no previous values 
existed, until the need for a new value is strong enough to trigger another Monte Carlo calculation. This 
process can result in some rather disturbing artifacts in a single pass scanline rendering, as shown in Figure 
la The commonly applied solution to this problem involves a low-resolution overture calculation to fill 
the desired view with indirect irradiance values prior to the final high-resolution pass. Although this 
prepass requires only a modest additional expense, it is rather annoying that it should be required by an 
otherwise elegant rendering algorithm. 

The benefit of calculating the irradiance gradient is two-fold for the caching scheme used by Radiance. 
First, we are able to produce more accurate interpolated values because we can use the gradient informa
tion effectively in a higher order interpolating function. Second, we are able to produce more accurate 
extrapolated values and thus greatly reduce caching artifacts. Figure lb shows the same single-pass calcu
lation, this time using estimates of the irradiance gradient to more accurately extrapolate values in unsarn
pled regions of the image. We emphasize that the second image took approximately the same time to pro
duce as the first, and used the same hemisphere samples to compute the irradiances. The only difference is 
that the second image extracted additional information from the hemisphere samples to deduce the irradi
ance gradient at each sample point, and these gradients were used to better interpolate and extrapolate irra
diance values for the image. (Since the test environment contains no specular surfaces and no direct 
illumination sources, changes in the diffuse interreflection calculation are more evident here than in most 
scenes.) . 

Figure lc plots interpolated irradiance values for a vertical line passing just under the right side of the 
sphere. The difference between the actual irradiance and the cubic interpolation is too small to see in this 
plot, but the poor match of the linearly interpolated irradiance is clearly evident The relative errors shown 
in Figure ld amply demonstrate that a cubic interpolation of irradiance based on gradient information is 
much more accurate than a standard linear interpolation. 

2.1. Indirect Irradiance Calculation 

The indirect irradiance is calculated in Radiance using a fixed number of samples in a uniformly weighted, 
stratified Monte Carlo sampling: 

1t M-1 N-1 

E = - L L L ".k (2) . 
M·N j-=iJ A:-=1) I 

where: 

L i> ;, the Uulirect rnd;.,ce ;n tile direction (0 i ,9,) = [s;n -• ~· 2lt k-;; •] 
X; ,YA: are uniformly distributed random variables in the range [0,1) 

M N is the total number of samples and N ::: 1t M 

Note that sample rays that intersect light sources m,ust be excluded from the above summation because 
direct illumination is accounted for in a separate step. The resulting sum is the indirect contribution to 
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irradiancc at a specific point on a surface. 

lrradiance samples, consisting of a point, a normal vector, and an irradiance value, arc stored in an octrce 
for later interpolation. This irradiancc octree is separate from the octree used to optimize ray-surface inter
section. In the original implementation, interpolation was a simple weighted sum over usable irradiance 
values. The weight of a sample decreased as the interpolation point or normal vector deviated away from 
the sample's point and normal. A sample was considered usable if the estimated error of its contribution to 
the approximation was less than a user-specified accuracy tolerance. The error was estimated from the 
local geometry using the "split sphere model" to compute an upper bound on the magnitude of the irradi
ance gradienL 

The split sphere model is only a crude estimate of the gradient magnitude. It may be sufficient to decide 
the spacing of irradiance calculations, but to improve our interpolation we need to know the actual irradi
ance gradient, not just a directionless upper bound. Fortunately, the information we need is already con
tained in the hemisphere sampling. 

3. The Gradient Calculation 

Since the irradiance in a scene is a function of five variables, three for the position and two for the direc
tion, the irradiance gradient should be a five-dimensional vector. For computational convenience, we will 
compute instead two separate three-dimensional vectors. One will correspond to the expected direction 
and magnitude of the rotational gradient and the other to the direction and magnitude of the translational 
gradient. Both gradient vectors will lie in the base plane of the sample hemisphere, which is the tangent 
plane of the sample. Thus, each vector will in fact represent only two degrees of freedom. This represen
tation of the gradient is used because we only interpolate across a surface. Furthermore, the irradiance 
above and below most surfaces is discontinuous, and the gradient with respect to displacement in the polar 
direction is therefore undefined. 

Our calculations of the rotational and translational irracliance gradients are based on very simple observa
tions about the sampled environment. The sampling of rays over a hemisphere tells us much more than the 
total light falling on the surface. It tells us the distance, direction, and brightness of each contribution. 

The directions and brightnesses tell us how irracliance changes as the sample hemisphere is rotated because 
they indicate how the cosine projection of those contributions affects the overall sum. To take a simple 
example, Figure 2a shows a single contributing surface. The background is assumed to be darker than the 
surface. If we rotate our sample hemisphere to face this surface, its contribution becomes proportionally 
larger than other contributions. If we rotate away from the surface, its overall contribution is diminished. 
By summing over all such potential changes, we can compute the total rotational gradient for the hemi
sphere. 

For the translational gradient. the distances to the contributing surfaces must be considered because occlu
sion plays an important role. In Figure 2b, a darker surface occludes a brighter surface in the background. 
As the sample hemisphere is moved to the right in the diagram, the influence of the brighter background 
surface becomes stronger, and therefore the translational gradient is positive in this direction. By summing 
over at all such changes, we can compute the overall gradient with respect to translation. 

As an example of the kind of information available during the hemisphere sampling, see Figure 3. Figure 
3a shows a projected hemisphere as seen from a point on the floor of a conference room. Figure 3b is a 
false color image showing the distances to the surfaces as determined by a ray tracing calculation. If we 
were to move towards the chair in the upper left of the image, we would note a decrease in the overall irra
diance as the chair's dark underside covered more of our view of the ceiling. Figure 3c shows a uniformly 
weighted stratification of about 2000 samples as computed by the Radiance interreflection calculation. 
Notice that the light sources appear dark, as they must be excluded from the indirect contributions. Notice 
also that this image appears very crude as a rendering, yet it contains many more samples than are typically 
used to calculate the indirect irradiance. 
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Figure 2a. As our point is rotated counter-clockwise, 
the surface's contribution increases. 

Figure 2b. Translational Gradient. As our point 
moves to the right, irradiance increases. 

7 



,.... 
"<t 
Ol 
(") 

I co 
C\J 
Ol 
(.) 
CI) 
X 

Figure 3a . A hemispherical view from the floor of a conference room. 

Figure 3b. The distances to surfaces visible in 
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Figure 3c . A stratified Monte Carlo sampling of the same hem i sphere . 
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3.1. The Rotational Gradient 

The rotational gradient formula simply sums the differential of the cosine for each contribution sample. 
For the hemisphere sampling given in Equation (2), the formula is: 

fi,E = ~ :1: vt :1: -t.an8i"Li..t 
N-1{ M-1 } 

M N f='J j='J 
(3) 

where: 

vk is the base plane unit vector in the <l>t + ..!£. direction 
. 2 

The tangent function appears in the summation because the differential of the cosine is negative sine and 
our sampling contains the cosine weighting implicitly, thus it is necessary to multiply the sample values by 
the tangent (sine over cosine) to get back a sine weighting. 

3.2. The Translational Gradient 

To compute the translational irradiance gradient, we consider how the projected solid angle of each of the 
MN hemisphere cells is affected by a translation of the hemisphere center. The change in projected solid 
angle, when multiplied by the radiance of a cell, will give the change in that cell's contribution. This rate 

of change is determined in part by the distance to the contributing surface. The closer the surface, the 
higher the rate of change with respect to a displacement perpendicular to the boundary between neighbor
ing cells. In fact, it is always the distance to the closer surface that determines the rate of change in occlu
sion, since the relative motion of a foreground surface is greater than that of a background surface. 

Figure 4. Cells of an example hemisphere sampling. 

Figure 4 shows the projection of a stratified hemisphere sampling onto the t.'lngent plane of the surface. 

Each cell has an equal projected solid angle (ie . ~ steradians). thus each cell should cover the same area 
MN 9 



in this diagram. To determine how the irradiance changes with translation in this L1ngcnt plane, we sum 
the marginal changes for each cell. For cell (j,k) shown in the diagram, we consider two approximately 
perpendicular directions. (Note that we have shown the sample direction at the center of the cell, but in 
fact it lies at some random location in the cell.) One direction is polar, the other is azimuthal. Computing 
the marginal change in irradiance for this cell reduces to computing the marginal change in the two 
highlighted cell walls with respect to translation. 

The change in irradiance with respect to translation for each cell wall is simply the length of the cell wall 
multiplied by the rate of motion of the wall with respect to motion in a specific direction. For the wall 
separating the two adjacent cells with the same e, the length of the cell wall is given by the integral of 
cos(e) from e;_ to e;.· This is simply (sine;. - sine;)- For motion perpendicular to this wall (ie. in the 
direction vt.. defined below), it is simple to show that motion of the cell wall is proportional to 
liM in (r; .AJ; .k-1), where '; .J: is the intersection distance in cell (j,k). Thus, the change in irradiance with 
respect to motion along vL for cell (ij) is: 

sine . - sine . 
I· 1- ) 

. ·(L;.J: -L; ,H 
Mm (r;.J:.r;.J:-l) 

Since we have computed the change in the location of the cell wall, we must use the difference in the adja
cent radiance samples to determine how this will affect the overall irradiance sum. 

For the cell wall separating the two adjacent cells in the polar direction, the length of the cell wall is 

~·sine;-· The motion of the wall with respect to the vector perpendicular to it (ie. zik defined below) is 

cos:ze · 
equal to . ,_ . One cosine comes from the projection of the hemisphere's tangent into the 

Mm (r;.J: •'i-I.J:) 
plane, and the other cosine comes from the reduced change in e as a function of angle. (A rigorous proof 
of this formula is left as an exercise for the reader.) Combining these terms, we arrive at the following for
mula for the change in irradiance with respect to motion along zit for the cell (ij): 

27t sine ;:cos2e;. 
. ·(L;.J: - L;-l.J:) 

N Mm(r;.J:•'i-i.J:) 

Combining these terms into a sum over all cells, we arrive at the following formula for the translational 
irradiance gradient: 

N-1{. 27t M-1 sine;:cos:ze;. 
\!,E = L "tN L M' ( ) ·(L;.J: -Lj-1):) + 

J:=O i=l zn '; .J: • ';-1.1: 

where: 

ul: is the unit vector in the ci>J: direction 

vJ:_ is the unit vector in the cpk_ + ~ direction 

e;_ is the polar angle at the previous boundary, sin-1 # 
e;. is the polar angle at the next boundary, sin-!* 

ci>J:. is the azimuthal angle at the previous boundary, 27t ~ 

';;: is the intersection distance for cell (j,k) 

(4) 

This summation has been regrouped to use the differences in radiance between neighboring samples, sum
ming over the boundaries rather than the cells themselves. This yields a much simpler formula. 
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Figure Sa. Interpolation without gradients. 

Figure 5b. Interpolation with gradients. 
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image is smoother around the doorway, where the indirect component is most influential. Both images 
took roughly the same time to compute. 

The gradient calculation as described in this paper is appropriate to any global illumination method where 
surface brightnesses are being sampled over a hemisphere, such as a gathering radiosity or Monte Carlo 
algorithm. Z-buffer methods such as the hemicube also yield the information necessary to compute gra
dients, so the aperoach is not limited to ray tracing algorithms. 

It may also be possible to use hemisphere sampling information to speed convergence of a progressive 
radiosity or shooting Monte Carlo algorithm by noting the arrangement of visible surfaces and subdividing 
shooting patches where a shadow boundary is indicated. Since the final radiance of samples is not known 
in such a technique, subdivision would have to be based mainly on geometric considerations. Neverthe
less, the information contained in a hemisphere sampling is considerable, and it seems wasteful to ignore iL 
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6. Software Availability 

The Radiance software discussed in this paper is available from anonymous ftp at the following sites: 

hobbes.lbl.gov 128.3.12.38 Berkeley, California 
dasun2.epft.ch 128.178.62.2 Lausanne, Switzerland 
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