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1 Introduction 

In this paper we discuss a new effect appearing in the differential calculus on euclidean 
q-spaces. Namely, although the conjugation rules for the coordinates look like those in the 
classical case, the conjugation of the derivatives and the differentials turns out to be non
linear. For the Minkowski q-space these conjugation rules were discussed in [1]. Here we 
generalize the results of [1] to the higher dimensional euclidean q-spaces. The nonlinearity 
in the relation between the derivatives and their conjugates turn out to be quite simple. 
Classically, the derivatives are proportional to the commutator of the Laplacian with the 
coordinates. On the quantum level these are however two different objects. Our main 
result is that the commutator of the Laplacian with the coordinates is now proportional 
to the conjugates of the derivatives.· The coefficient of the proportionality is no longer a 
number. It is a scaling operator introduced in [2]. It q-commutes with all the coordinates 
and derivatives. 

Our treatment relies on the papers [3], [4]. The prescription for the differential calculus 
on q-spaces, given in [4] works when the commutation relations for coordinates of a q-space 
are given by a single projector entering the R-matrix. This is the case for q-orthogonal 
spaces. Although the R-matrices have different structure for even and odd dimensional 
q-orthogonal spaces, the results have the same form in both cases and we treat them 
simultaneously. 

The paper is organized as follows. Section 2 contains basic facts about the orthogonal 
q-spaces and differential calculus on them. In section 3 we give the reality structure for 
the derivatives and discuss reality properties of the Laplacian. Section .4 is devoted to 
the differentials and reality properties of the exterior derivative. Also, there we comment 
briefly on the relation between two versions of the differential calculus in the SLq case. In 
Appendix A we collected relevant relations used in the text. 

The q-metric 9ii is not symmetric and throughout the text we use the following rules 
of lowering and raising an index of any one-index quantity mi: 

mi- giim· m·- g··mi - }l t- t] • (1.1) 

Conjugation reverses the order of factors. Finally, we use the notation ,\ = q - q- 1
. 

2 Preliminaries 

Here we list necessary facts about the R-matrix for the orthogonal q-group SO~(X), 
euclidean q-spaces and differential calculus on q-spaces. For motivations and details we 
refer to [3],[4]. See also [5] for the discussion of the differential calculus on orthogonal 
q-spaces. 
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1. The projector decomposition of the R-matrix for the orthogonal q-group SOq(N) 
IS: 

RA p+ -1p- + 1-Npo =q -q q . (2.1) 

Here p+ is the traceless part of the q-analogue of the symmetriser, p- is the q-analogue 
of the antisymmetriser and po is the trace projector. The projector po is built out of the 
q-metric g;j, 

P o ij ij 
kl = vg 9kl , 

A 
1/ = --------

(qN -1)(q1-N + q-1) 
(2.2) 

The R-matrix has the following symmetry properties: 

R
A -1 ij imRA jn RAmi nj 

kl = 9 mk9nl = 9km In 9 (2.3) 

and 
(2.4) 

2. The orthogonal q-space is the algebra with generators xi, z = 1, ... , N satisfying 
quadratic relations 

or 

The length 

P - ij k I O 
klx x = 

RA ij k I i j ). ij k I 
kiX X = qx X - N 2g 9k1X X • 

. 1 + q -

1 . . 
L = g;·x'x3 

1 + qN-2 J 

is the central element in the algebra of the coordinates, Lxi = xi L. 

The projectors p+, po define the quadratic relations for the differentials ~;: 

The derivatives 8; are defined by 

p+ ~e~~ = o, 

po ~1ee1 = o. 

The commutation relations between xi and ei are 

iti RA ii ck 1 
X'> = q kl'> X. 

We need also the commutation relations between 8; and ei: 

a.ci _ -IRA -1 jk cia 
'"' - q il"' k· 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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The algebra of the derivatives is 
(2.13) 

The element 
1 .. 

.6. = g'JfJ.fJ; 
1 + qN-2 J 

(2.14) 

is central in the algebra of the derivatives, D.f)i = 8;.6.. 

3. The compact form of SOq(N) is defined for a real q. In this case we have R = R. 
The conjugation of the coordinates has a form 

X i_ g··xi - Jl • (2.15) 

It defines the euclidean q-space. The length L is real under this conjugation, L = L. 

3 Conjugate Derivatives 

In this section we find the action of the conjugate derivatives and express the conjugate 
derivatives in terms of the derivatives themselves. Also, we construct a real Laplacian. 

According to [4] the covariant and consistent derivatives are defined by the expression 
(2.10) involving R-matrix. One can define another set of consistent and covariant deriva
tives using .R-1 instead. First of all we show that in the q-orthogonal case this gives the 
conjugate derivatives. 

Lemma. 
(3.1) 

where 
(3.2) 

Proof To write relations conjugated to (2.10) in the form (3.1) one finds first a tensor 
<I>~~' inverse to R~'b in indices (v,s). Put 

;t,.k6 RA kl U6 

';l'nv = 9nl uv9 · (3.3) 

Using relations (2.3) one finds 

(3.4) 

Now one proves (3.1) by a straightforward calculation using (2.15) and (3.2). 

Comparing (3.1) with (2.10) one sees that the derivatives 8; and iJ; act in the same 
way on the linear functions of xi but their actions on higher order polynomials do not 
coincide. Therefore the conjugate derivatives cannot be expressed linearly in terms of 
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the derivatives themselves. It turns out that tJi can be expressed nonlinearly in 8;. To 
write this expression we need the scalar operators L, /:j. and E = xiai. The commutation 
relations of these operators with the coordinates and the derivatives are 

Lxk - xkL 
' 

akL - q2 Lak + q2-N xk, 

f:j.xk - q2xk f:j. + q2-N 8k, 

8kf:j. - f:j.8k, 

Exk - q2xk E + xk- q>..L8k, 

akE - q2 E8k + 8k - q>..xk/:j.· 

Finally we will use the operator A, introduced in (2]: 

It obeys homogeneous relations with both the coordinates and the derivatives, 

Now we are ready to formulate the main result of this section. 

Theorem. 
aA N-2A-1 [A ] k = q i..l.' Xk · 

Proof Denote Tk = qN-2 (/:j., Xk]· Using (3.5) we can write 

Tk = ak + qN-1 >..xk/:j. . 

Compute 
0 

A 1 'k I 
TiX3 - qR- ~I X Tk = 

of+ qR{Ikx18k + qN+I AXi(xif:j. + q-Nai)- qR-
1

17x18k- qN;...k-
1 17x 1Xk~. 

For the terms with xx/:j. we have 

( a j auRA -1 jk I 8) 
9ia qx X - g ul9klfX X = 

( ]. RA )aj I s 
9ia q - Is X X = 

( 1-N)po aj I s _ ci 'L 9ia q- q Is X X - Uj A • 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

In the second equality we used (2.3). In the third equality we used (2.1), (2.5), and the 
completness of the set of the projectors p+, p-, po, 

]. = p+ + p- + po . (3.12) 
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In the fourth - equations (2.2) and (2. 7) were used. For the terms with xa \Ve have 

A 'k A 1 'k 'k 1 
(qRir -qR- ~~ +q>.g;rfl )xok= 

((q2 -l)P+ + (q2 -l)P- + (q2-N- qN + q>.v-1)Po){txt8k = 

q>.SfE, 

(3.13) 

where v is given by (2.2). Here in the first equality we used (2.1) and (2.2), and in the 
second - (3.12). Collecting all terms together we obtain 

T. j ciA+ RA-1 jk IT 
;X = oi q il X k • (3.14) 

Now multiplying by A - 1 from the left, using (3.7) and comparing with (3.1) we conclude 
that the lhs and rhs of (3.8) have the same commutation relations with xi, which completes 
the proof. 

We note that although the conjugation rule (3.8) is nonlinear, on conjugating twice 
all nonlinearities disappear and 8i = 8;. The map inverse to (3.8) is 

(3.15) 

To complete the treatment we find the reality properties of the operators E, ..0., A. By a 
somewhat lengthy but straightforward calculation one finds: 

..0. = q-N-2 A -1..0. ' (3.16) 

( N 1)( 1-N + -1) 
E = -q-N A -1((qN + q>.)E + q - q q + qN+1 >.(1 + qN-2)L~) . (3.17) 

). 

Therefore, using (A.1), we obtain 

A -2N \-1 = q i . (3.18) 

Equation (3.16) shows that the Laplace operator ..0. built out of the derivatives 8; only is 
not real. However, for 

.D.R = A -1/2 ~ (3.19) 

we have 
,D.R = _6.R • (3.20) 

Therefore, !:l.R is a good candidate for a real Laplacian. 
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4 Conjugate Differentials 

In this section we express the conjugate differentials in terms of the differentials them
selves, and find the reality property of the exterior derivative. 

Conjugating the relation (2.12) and defining fi by 

~j - g· .ii 
1:. - 1)1:. ' (4.1) 

we find using (2.1), 
(4.2) 

To find the relation. between ak and 8, we used scalar operators obtained by contraction 
of indices of xi, 8;. Now we need two more scalar operators, the exterior derivative d and 
the operator 

vV = ~ixi. (4.3) 

The commutation relations of L, b., E with ~i are simple: 

L~i - q2eL, 
_D.~i - q-2e_D. , ( 4.4) 

E~i - ~iE. 

The new operators d and W have the following commutation relations with xi, 8i, and ~i: 

dxi - ~i + xid' 

d8i - q28id- qN-1 ).~i_D. ' 

d~i - -~id' 
Wxi xilV- qN-1 ).~i L ' 

(4.5) 
-

8·W ) - vV8; + qN-2~i- q-1 >.x;d + qN-1 >.e;E ' 

wei -q2eivv. 

As for relations (3.5) we leave a check of these relations to the reader. This check can be 
redu~ed to manipulations with the symmetry properties and projector decomposition of 
the R-matrix. 

We introduce also a quantity 

(-!.6) 

which commutes with all coordinates, 

(-!.7) 
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while with the derivatives and differentials it obeys 

uai + qN-2~iA , 
-q-2ue. (4.8) 

The commutation relations of ~i with xi or ak are homogeneous. Hence rescaling e by a 
numerical factor does not change any of them. This shows that the commutation relations 
with xi imply the expression of {1 in terms of ~i only up to a factor. Demanding the square 
of conjugation to be unity, one fixes the absolute value of this factor. 

Theorem. 
{i = aqN A(~i + q-1 >.xid- qi-N >.ufi) , 

where a is a pure phase, a = ei<P. 

(4.9) 

Proof Again, once the rhs of (4.9) is written, one can check (using the projector 
decomposition and the symmetries of the R-matrix) that it has the same commutation 
relations with xi as ti do. 

To prove that a is a pure phase, we find the square of the conjugation. To this end 
we need the expressions ford and ~V. A straightforward calculation shows that 

d = -aqN (Ad- q>.U ~), ( 4.10) 

and 
(4.11) 

It then follows that 
U=aU. (4.12) 

Conjugating (4.12) we find that a is a pure phase as stated. One more checkshows that 
the square of the conjugation is unity on ~i as well. This finishes the proof. 

The mapping inverse to (4.9) is 

( 4.13) 

As in the discussion of the reality properties of the Laplacian, one may build a combi~ 
nation of operators which reduces to d in the classical limit and has a linear conjugation 
law. One choice is 

( 4.14) 

Then 
do= -ado. ( 4.15) 

However this choice destroys the fundamental nilpotency property of the exterior deriva-. . 
tive. Another possibility is simply to take 

1 - 1 N • 
d1 = 2(d- ad)= 2((1 + q A)d- q>.u ~) . ( 4.16) 
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Then 
d1 = -ad1 , ( 4.17) 

as in (4.15). Moreover, one finds 
dd + dd = 0. ( 4.18) 

Therefore 

d~ = 0. (4.19) 

We note that rescaling ei by a phase one can eliminate the factor a in the above 
formulas. 

To conclude, we stress once more that the mappings (3.8) and ( 4.9) are covariant 
under the quantum group SOq(N). 

Remark. In the SLq(n, JR) case the action of the conjugate derivatives is given by the 
R-matrix itself and therefore the conjugation rules for the derivatives are linear [4), [6). 
However still there is another set of covariant and consistent derivatives defined with the 
help of A-I, 

and one may ask how they are related to the original ones. Using the relation 

R = A-1 +A' 

( 4.20) 

(4.21) 

valid in the SL case, we may rewrite the action of the original derivatives in the form 

·a i ci + RA -1 jk 1a + , ci 1a ci RA -1 jk 1a 
iX = Oi q il X k q AOi X I = J.ll Oi + q il X k , ( 4.22) 

where J.L 1 = 1 + qAE. The operator J.L 1 is multiplicative [2): 

i 2 i a -2a 
J.liX = q X J.l1 , J.li i = q iJ.ll • ( 4.23) 

Multiplying ( 4.22) by J.L11 from the left we see that the operators J.L11 ai satisfy the same 
commutation relations with the coordinates as a;. Therefore we may set 

a, -~a 
i = J.li i • (4.24) 

This is the needed relation between the original and primed derivatives. 

The primed differentials, defined by 

it'i _ -1RA -1 ij t'k I 
X~ - q kl~ X ' ( 4.25) 

can be expressed in terms of the original differentials as well. One checks that the quan
tities J.L 1 (ei + q-1 >.xi d) satisfy the same commutation relations with the coordinates as 
e'i. As in the q-orthogonal case this gives the relation between the primed and original 
differentials up to an overall numerical factor c, 

(4.26) 
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One now checks that p1 commutes with ~i. Therefore we also find the relation 

( 4.27) 

between the primed and original exterior derivatives. 

A Useful Formulas 

Here we collect various identities and commutation relations needed for checks and proofs 
of the statements in Sections 2 and 3. 

The action of the scalar operators on the coordinates, derivatives and differentials 
was given in the text. Here are some useful commutators between the scalar operators 
themselves. 

EL - q 2 LE + (q2-N + l)L , 
.t::.E - q2 E.t::. + (q2-N + 1).6. ' 

2-N 2-2N 

.t::.L q4 L.t::. + q4-N E + q - q 
q-1_\ 

dL - q-N+2 ~V + Ld , 

dW - -Wd, (A.l) 
dE - q 2 Ed+ d- q.\ ~v .t::. , 

.t::.W - ~V.t::. + q-Nd, 

.t::.U - U.t::.+Ad, 

.t::.d - -2df::. q ' 
dU - -q-2Ud. 

Also, the following summation rules 

aixi 
(qN-l)(q1-N+q-1) N 

- . ,\ +q E, 

ai~i - -Nd q ' 
xi~i q2-N~v, (A.2) 

[i[)i - -d ' A A 

(1 + qN-2)qN-2A-1f::. 8i8i -

were used. 

Remark. The operators 

(A.3) 
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satisfy the relations of the q-deformed s/(2)-algebra, 

q-1he- qeh - (q + q-1 )e 
q-ljh-qhf- (q+q-l)J 
q-2 fe- q2ej - h . 

Note that the operator entering A,. 

qN A= 1 + ..\h h = qh + q2 ..\ef 

has an algebraic meaning as well. We have 

q-2he- q2eh - (q + q-1)e 
q-2 fh- q2hj = (q + q-l)j ' 

q-I fe- qef = h ' 

which is another form of the slq(2)-algebra. 

(A.4) 

(A.5) 

(A.6) 
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