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Consideration is made of a free-electron laser with many optical cavities where the cavities

communicate with each other, not optically, but through the electron beam. Analysis is made in the

one-dimensional approximation. A general expression is given for the growth rate in the

exponential (high current) regime. In the regime where lethargy is important expressions are given

in the two opposite limits of small and large numbers of cavities and bunches. Numerical

simulation results, still in the one-dimensional approximation, but including non-linearities, are

presented. The multi-cavity free-electron laser (MC/FEL) can be employed to avoid the slippage

phenomena, and thus to make pico-second pulses of infra-red radiation. Three examples of this

application are presented.
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1. Introduction

There are many uses for brief, intense pulses of radiation. At long wavelengths it is not

possible to directly employ a free-electron laser (PEL) for this purpose since the intrinsic slippage

in a FEL, between light and electrons, implies that the light pulse will not be as brief as the electron

pulse. One can modify the group velocity (readily done when the wavelength is of the order of the

light pipe) and thus make the light pulse stay with the electron pulse, and this has been shown,

experimentally, to be possible [1]. This method, group velocity modification, is, however, difficult

and, most importantly, limited to rather long wavelengths. Another possibility is to "chirp" the

light pulse and then compress it, but this technique is difficult to employ with intense pulses.

Still another possibility is to employ a Multi-Cavity Free-Electron Laser (MC/FEL), and it

is this possibility that we want to explore in the present paper. The idea is rather straightforward.

One simply makes the FEL optical cavities sufficiently shon that the slippage length, in one optical

cavity, is less than the electron pulse width. When the electrons reach the end of one cavity they go

on to the next, but the radiation remains trapped within that cavity.

In Section 2 we amplify the discussion of the concept; in Section 3 we present the one

dimensional linear analysis; and in Section 4 we describe the numerical simulation and present

examples. The final_section, Section 5, contains our conclusions.

2. The Concept

The MC/FEL consists of a number of shon optical cavities, each with a length less than the

slippage distance between the electrons and the radiation. A small hole is drilled at the center of the

walls separating the cavities so that the electrons can pass through from one cavity to the next;

however, the radiation emined with a particular cavity remains largely confined within that cavity.

Coherent radiation is extracted only from the last cavity. A schematic of the proposed layout is

given in Fig. 1.

At first, one might think that the FEL, in a MC/FEL, will not work very well, for its

effective length is just an optical cavity length and therefore not very long. However, the electrons,

which move on to the next cavity, are bunched and the FEL action in the next cavity is significant.

2



One is reminded of an optical klystron [2] or of the "gain cavities" in a regular klystron. In fact, in

our numerical studies we see that even when the fIrst few cavities have a net loss (so t..h.at the gain

is not adequate to overcome the mirror losses) the MC/FEL still "works", i.e., the later cavities

(which now experience bunched electrons and thus have more gain) are soon experiencing a build

up of radiation to a very high value.

By making the optical cavities confocal, one can reduce the radiation moving from one

cavity into the next; i.e., improve the reflection coefficient from the end mirrors (which must have

holes for the electron beam to go through). One should note that radiation moving from one cavity

to the next is not a serious matter, since the radiation will have slipped out of the electron pulse and

therefore no longer be amplified. Just as in a regular klystron, the light is only removed from the

last cavity and, thus, the reflection coefficient for this last cavity is much lower than for the other

cavities.

3. Linear Analysis

A. Generalities

In this subsection we derive the linearized equations of motion for dynamics in a MC/FEL.

We start with the full nonlinear equations of motion which, following the notation of Bonifacio,

Pellegrini, and Narducci [3], are

(
dy .) -ec1( [ ( ) ]
_J = 2 [If] aexp -iBj + c.c.
dt 2mc Yj

(la)

(lb)

(lc)
1 da 1( / e-i8

j
)

;; dt = 2nno L \~ .

Here a is the complex amplitude of the electric field, Bj is the phase of the ph electron

relative to the electromagnetic field, and Yj is its energy in units of me2. W() is the wiggler

frequency, 1(is the wiggler parameter, and Ais the wavelength of the radiation field. The resonant
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energy is /R, the electron density is no and Xis the effective transverse cross-section of the beam,

describing the overlap of the beam with the radiation field. The average (...) is carried over all

electrons in the bunch. [JJ] is the usual Bessel function factor that is unity for helical wigglers.

To proceed to a linear analysis, we drop the second tenn in Eq. (la) and introduce the

variables

(2)

(3)

where np is the plasma frequency and p is the PEL parameter. We also rescale the dynamical

variables as follows:

Ij = 'Yj / (Pro)

where 'Yo is the input energy.

(4a)

(4b)

(4c)

(4d)

After recasting the nonlinear equations of motion in these scaled variables, we linearize

them around the equilibrium state AD =0, IJ =1/p, (exp (- in1jfo» =O. We penurb around this

equilibrium state by letting A =a, IJ =(l / p) (l + l1j) and Vfj = 1jfOj + 0Vfj, where 0 = .1/p, and.1 is

the usual detuning parameter. Then, the linearized equations of motion are [Ref. 3, Eqs. 19-21],

ax=y
dr

dy
-=-a
dr
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t:k:L =- ilia - ix - py
d'r '

where the variables x and y are given by

(7)

(8a)

(8b)

We look for solutions with an exponential time-dependence, exp CiA:r), which leads to the

characteristic equation

3 2
A - SA + PA + 1 = 0 . (9)

Let the solutions to this equation, Le. the eigenvalues, be AI, A2, A3. Then the general

solutions can be written as

(lOa)

(lOb)

(lOc)

where Xl'X2,X3'Yl'Y2'Y3'~'~'lZ:3 are constants. Using the original differential equations (Eqs. 5-

7), six of these can be expressed in tenns of the remaining three-say XI,x2,X3. These in turn can

be expressed in terms of the initial conditions. At 't' =0, let x =Xin, Y =Yin and a =ain. Then, from

the general solutions, (Eqs. 10), we fmd that

(lla)

(lIb)

(l1c)
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from which we can solve for (Xl,x2,x3) in terms of (Xin, Yin, ain).

B. Exponential Gain Regime

We now assume that the PEL is operating in the exponential regime, which corresponds to

one of the eigen-functions dominating over the other two; for concreteness we choose it to be the one

associated with A.I. In this regime the solutions Eqs. (10) reduce to

(12a)

(12b)

(12c)

where the explicit form ofXl is

Single bunch: We now apply these results to an analysis of the multicavity FEL. Consider

such an FEL consisting of N cavities, each of length L = cT. Consider a single bunch of electrons

passing through the FEL. At the entrance to the fIrst cavity let the initial conditions be Xin = xo,

Yin =YO, ain =ao· We assume that the growth is exponential within the cavity and the dynamics is

governed by Eqs. (12). At the end of the cavity the values ofX, Y and a are

(14)

(15)

(16)

where in x; ,Y; I a; the superscript indexes the cavity number a_od the subscript the bunch number.
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The electrons make their way to the second cavity without experiencing any perturbation, so

that for the second cavity Xi" =X; and y", =Y; .The radiation, on the other hand, remains trapped

within the first cavity, so that ain =aO. Applying Eq. (12) again, one can calculate the values

x;,y; and a~ at the end of the second cavity. Repeating this for N cavities one can show that

(17)

where
(18a)

(18b)

(18c)

It is instructive to compare this expression with that for a single cavity of length L = cNT:

(19)

We see that in either case the growth rate is the same, and is proportional to the number of cavities.

The difference is quantitative, and lies in the numerical pre-factors:

(20)

The factor (Cx + iA..1Cy ) / D is typically of order unity, and for reasonable values of N (-5), there is

only around an order of magnitude decrease in the amplitude of the [mal radiation field.

Multiple bunches. Next consider a second bunch passing through the PEL. As it enters the

first cavity it has the same bunching as did the first bunch (typically none, unless a prebuncher is

used), so that the initial conditions are Xin = xo and Yin = YO. However, the initial radiation field is

not ao. In its passage through the first cavity the first bunch left behind radiation of amplitude a{

given by Eq. (16). This radiation bounces off two walls before being seen by the second bunch

(assuming the spacing between bunches is equal to twice the length of the cavity). Modelling the
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loss at each wall by a reflection coefficient R, the initial value of the radiation field seen by the

second bunch entering the first cavity is aU. = R2ai .
One can now use Eq. (12) to calculate the quantities x~ ,y~ and a~ for the second bunch at

the end of the first cavity. At the entrance to the second cavity, the initial values of the bunching are

those at the end of the first cavity (x~ and y~) while the initial value of the radiation is detennined

by that left behind in the cavity by the previous bunch (R 2a:). Proceeding thus we can write

down, with some effort, a general expression for the Mth bunch at the end of the Nfl1 cavity:

N (R2t-l(llnM-l N(N + 1)...(N + M - 2) (c .'] C )N-l
X =. + II\, X
M DM+N-2 (M -I)! x 1 y (21)

( ) "1 (M+N-l)T
x~ ~,~,he ,

Again, to compare with the expression for the Mth bunch at the end of a single cavity of

length L = c(NT),

(22)

We notice a big difference between the growth-rates in the two cases. For a single-cavity PEL the

growth rate goes as the product of M and N, whereas for the multi-cavity it goes much slower-

only as their sum. However, Eq. (21) tells us that in the MC/FEL there is still exponential growth.

Though this growth may be slower than in the single-cavity case, we have derived the advantage of

getting around the problem of gain degradation due to slippage effects. Further, since these effects

are not included in Eq. (22) for the single-cavity FEL, the comparative performances of multi- and

single-cavity PELs would be more equitable than Eqs. (21) and (22) suggest.

Because of the slower growth-rate, a MC/FEL would require operation with a greater

number of bunches than would a single-cavity PEL. However, because the cavity length is now
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smaller, the bunches can be more closely spaced. The total pulse width would therefore be the

same (oc MN), but not, of course, the average current (or charge) in a pulse.

The above analysis, in the exponential regime, is simple and revealing, and indeed

provided the original motivation for the concept of a MC/FEL. However we found, in multi

particle simulations, that for practical parameters this regime seldom persists for periods long

enough that a comparison may be made between theory and simulation. Usually, the system starts

out in the lethargy regime, where all three eigen-functions contribute, and very quickly reaches the

non-linear regime. In the next sub-section, therefore, we look at the lethargy regime.

C, Lethar~Re~me

We now tum our analysis to the lethargy regime, in which all three eigen-values contribute

comparably, and the approximation leading to Eq. (12) can no longer be made. We therefore go

back to the general solutions, Eq. (10). Here we expand the exponentials in those equations and,

arguing that the growth is slow, keep terms only up to the cubic (the usual approximation).

Further, we assume that the detuning is small, so that the terms proportional to 0 and p in Eq. (7)

can be neglected. Then the eigenvalues are just those derived in standard treatments (e.g. Colson

[4]),

'1 • i+-J3/\, = -1(J)--
1 2

'1 • i--f3
/\, =-I(J)--

2 2

It =-(J)3 ,

where

(
')1/3

(J) = ~ 2';oL'

and) is the dimensionless current density given by [4]:
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(24b)

Using the explicit fonns of the eigenvalues, and using the initial conditions x =Xin, Y =Yin and a =ain

at 't' =0, the solutions in this regime, within the framework of the approximations made above, can be

written as

(25a)

(25b)

(25c)

We could now proceed as we did in the previous section, considering fIrst a single bunch

through N cavities and then M bunches. Unfortunately, the analysis is now much more complicated,

and it turns out not to be possible to write down a general expression for N cavities and M bunches.

To simplify matters and to facilitate comparison with simulation, we consider the case when there is no

pre-bunching, Le. Xo =Yo =O. Then, proceeding as in the previous sub-section, and in the same

notation, the value of the radiation for the Mth bunch at the end of the Nth cavity can be written as

(26)

Here we have retained only the lower-order terms in an expansion in W3T3, and consequently these

expressions are only valid for small M and N ($ 10). Eq. (26) can be rewritten in tenns of the power

(P =a""a):

(27)
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where Po is the initial input power into the first cavity.

Since, in any practical realization of t..he MC/FF----L, a large number of bunches will be needed to

achieve saturation, we now consider the opposite limit, i.e. when M and N are very large. From this

macroscopic point of view, within a single cavity, during a single pass, the power level can be taken to

be approximately constant Similarly, the bunching within a particular cavity is negligible compared to

the cumulative effect of bunching over many cavities. Consequently, one can identify two distinct

time-scales of importance in the problem. One, say z, measures distance along the MC/FEL and is

proportional to N, the number of cavities. The other, say t, measures time from pass to pass and is

proportional to M, the number of bunches. Further, since the bunching changes only down the

MC/FEL and starts afresh for each new bunch, its direct dependence is only on z. Similarly, since the

radiation within a particular cavity does not couple to that within another cavity (except via the electron

beam), its direct dependence is only on t.

With these considerations in mind Eq. (25) can be replaced, in the continuous limit, by partial

differential equations that give the variation ofx and y as a function of Z and of a as a function of t:

ax
az = y(t,z)

~ =-a(z,t)

aa . 3 ( )- = -zm x t zat ' ,

(28a)

(28b)

(28c)

where we have kept only the lowest-order terms in (j) 3T3. Solving these equations in the asymptotic

limit and extracting only the leading order term, one fmds that a(z,t) - exp[az2
/
3t1

/
3

], where a is some

undetermined constant. Interpreting z as N and t as M, one can write for the power P,

(29)
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Eqs. (27) and (29) give predictions for the dependence of the power level upon M and N in two

different limits. We now turn to multi-particle simulations to test these predictions in the lethargy

regime, and to explore the behavior of the system in the nonlinear regime.

4. Numerical Simulations

In this section, we numerically study the performance of three MC/FELs. The full

nonlinear equations of motion given in Eq. (1) are used in the simulations. Parameters for the three

MC/FEL examples are listed in Table 1. In all these cases, the reflection coefficient R is taken to be

equal to 0.98. However, the reflection coefficient for the right-hand wall of the output (Le., final)

cavity is taken to be equal to 0.95 to allow for outcoupling of radiation.

Before proceeding further, we first verify the theoretical prediction given in Eq. (27). A

comparison of the theory with numerical simulation is given in Fig. 2. We see that the power

output predicted by theory agrees well with that found in simulations. The agreement is good even

when there is a net loss of power due to reflections (see Fig. 2b). However, the agreement starts

getting worse as we go to larger values of M and N. Next, we check the prediction given in Eq.

(29). Since Eq. (29) is an asymptotic formula and we have only a few cavities, we are not able to

check the dependence on cavity number N. However, we have verified the dependence on M for a

fixed N. With these comparisons, we have enough confidence in the validity of the MC/FEL

concept to embark on a detailed numerical study.

First, we obtain the power output from a single optical cavity with the wiggler length given

in Table 1. In contrast to conventional FEL oscillators, the length of the optical cavity is equal to

the wiggler length in our case. Next, we study a MC/FEL whose total length is equal to the length

of the single cavity considered above. The length of individual optical cavities in the MC/FEL is

taken to be slightly smaller than the slippage length. All other parameters remain the same. The first

(N-I) cavities are used to bunch the electrons. Output power is extracted from the [mal (Nth)

cavity.

12



In the [mal two rows of Table 1, we compare the output power obtained in a single long

cavity wiLh Lhat obtained in Lhe corresponrling MC/FEL. in ::111 Lhree eX::Imples stunied, we see t.hat

the power output in the final cavity of the MC/FEL is larger than the power output in a single long

cavity. A more detailed comparison of the power evolution in the two cases is given in Figs. 3 and

4. Only the second example (As =100 J1m) is considered. Figure 3 shows the evolution of power

as a function of electron bunch number in the single cavity case. Figures 4a, 4b and 4c show the

corresponding evolution in cavities 1,4 and 7, respectively, for the MC/FEL. As noted earlier,

power output in the [mal cavity of the MC/FEL (see Fig. 4c) is higher than the corresponding

power output in a single long cavity (see Fig. 3). We observe that the MC/FEL works despite

losing power in the first cavity (see Fig. 4a). This is because the first cavity manages to bunch the

electrons slightly even though it is losing power. Figures 5a and 5b show the evolution of the

bunching factor /(ei8 )1 in a MC/FEL. As expected, the bunching factor is seen to increase both as a

function of cavity number and bunch number.

In Section 3 we have provided formulae for the power achieved in two different

approximations: Eq. (27) in the limit of small (.$ 10) M, N, and Eq. (29) in the limit of very large

M, N. The actual saturated power obtained in the numerical simulations can also be estimated.

Assuming that the incoming electron beam sees a static potential "bucket" at saturation, and

assuming that the maximum energy lost by an electron is equal to the bucket height, one can show

[5] that the extraction efficiency (for a single electron) is given by 17 =_1_, where Nw is the
2Nw

number of wiggler periods. Then, if the power in the electron beam is Pbeam, the saturated power

level is given by,

1
P =-Psat ~am •

2Nw

(30)

It is important to note here that Nw is the number of wiggler periods within the last cavity, and not

of the MC/FEL as a whole.
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Applying this formula to the three numerical examples considered in this section, we find

the estimated saturation levels to be 3,12 and 6 MW, respectively, as compared to the actual

saturation levels of 3.5, 8 and 4 MW, respectively. The estimates are thus quite good

5. Conclusions

There are a number of conclusions to be drawn from this work:

First, that the concept (see Fig. 1) of a Multi-Cavity Free-Electron Laser (MC/FEL) is a

valid concept, i.e., that a MC/FEL can be expected to work.

Second, that a MC/FEL will overcome the slippage between radiation and particle beam so that

it can produce radiation pulses as brief as electron pulses (even when slippage would suggest that the

radiation pulse is longer than the particle pulse).

The third conclusion is that the peak power produced in a MC/FEL can be even higher than

in a single cavity FEL, because the saturation condition implies that power increases as the optical

cavity is reduced in length. In practice one should design an FEL so that the optical cavity is made

as short as possible, while still having a net gain per pass, so as to produce the maximum peak

power.

Further work of a theoretical nature, which remains yet to be done, is to study the concept

in 2D, including diffraction phenomena, proper study of optical mode structure and reflectivity,

etc. (We don't expect the principle of the MC/FEL to be modified, but the "real numbers" will

surely be different.)

Finally, then, it seems likely that MClFELs will provide an interesting new capabilty of FELs.

First, however, some experimental study of the concept is called upon.
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Table 1.

Three examples of Multi-Cavity Free-Electron Lasers

Parameters First Example Second Example Third Example

A(,um) 10 100 1000

't'pulse (ps) 1 2 10

Au, (em) 1.0 2.0 2.5

aw 1.0 1.0 1.0

Wiggler length (m) 1.5 0.7 0.3

Cavity length (em) 25 10 5

N 6 7 6

7bearn (mm) 1.0 1.0 1.0

Ipeak (A) 5 10 5

r 27.4 12.2 4.3

Slippage length (em) 30 12 7.5

P 3xl0-3 lxl0-2 3xl0-2

P beam (MW) 140 124 22

Pout (MW) 3.5 8.0 4.0

Pout (MW) (for single 1.2 2.6 1.2
cavity)
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Fi~re Captions

Conceptual layout of a multi-cavity PEL.

Normalized power output (Pour/Pin) as a function of bunch number in the second

cavity of a multi-cavity PEL. The parameters used are those given for the second

example in Table 1. Results from the theory (Eq. 27) and numerical simulation are

compared. Figures 2a and 2b differ in the value of reflection coefficient (R) used

for the cavity walls. Figure 2a is for R = 1.0 and Figure 2b is for R = 0.98.

Power output as a function of bunch number for a single optical cavity whose

length is equal to the total wiggler length of the corresponding multi-cavity PEL. All

other parameters used are those given for the second example in Table 1.

Power output in a multi-cavity PEL. The parameters used are those given for the

second example in Table 1. Figures 4a, 4b and 4c show the power output as a

function of bunch number in the first, fourth and seventh cavity, respectively.

Evolution of the bunching factor l(ei6 )1 in a multi-cavity PEL. The parameters used

are those given for the second example in Table 1. Figure 5a shows the bunching

factor at the end of the last cavity as a function of bunch number. Figure 5b shows

the bunching factor for the last bunch as a function of cavity number.

17



E
ctI

,CD
CDoC

18

'tJC
CD.Ec.-c. .!!!
ctI'tJ... ca
1- ...



80 ...----------------------------,

Theory
Numerical simulation

•
•

,,
•,

-'_.
•••••••••••••

••••
••••••••••••-.-.-.-.-.••••••-.••••.:.-.-.-:.-..:..:.

••.-.-...=..::..:.
•=',.,

,I',.,",
"~f'_.",,-

••••••••
O~;;.:,:.---,...------.----........----_.__----r-----~

40 -

o 30 60 90

Bunch number

Fig. 2a

19



1.2 .......----------------------------,

Theory
Numerical simulation•

••• •..11.
1.0 - • •• ·1.• ,e e.., ·1.. ~ ~

••••• :. ·1
.". l

II
I
II

I,
•,

I ,
••,

•,
•••,

•
""••••••••••••••••••

•••••••••••••••

0.2 -

0.8 -

~
0
~

£
13 0.6-
N.-
~

E
0
Z

0.4 •

0.0+---......---.,-----r----.,.-----r-----r.----.,......---.,r----~
o 20 40 60 80

Bunch number

Fig. 2b

20



3"'T'""-..........-----------------------~

•••••••+••••••••+••+ •• • •••••••++. +.+ ••••••••••••••••••••••••••••••••
• + •••••••••

••
•

•
•

•2

•

•

•

9030o
o-r-+---...-------;r------.-----,----.....-----lI

60

Bunch number

Fig. 3

21



0.0012 ----------------------------,

0.0010 - •

•

•
0.0008

~ 0.0006 -
I-c
0
~

~

0.0004 •

•
•
•
•
•
•
•
•
•
•

0.0002 -

•
•••••••••••••••••• •••••

••••••
OOסס.0•••••••••••••••••••• -I-------.----__...-I ....-_.:.:.:.:.::~~~l*.I:.l*.I:................................._~

o 30

Bunch number

Fig. 4a

22

60 90



0.06 ---------------------------,

•

•

•

•
•

•

.................
• + +•

• + +••.+ +.• •• ••• •• ••• •+ •
• +.

+ +
• ••

• •••••••+••••••••

•
•

•
•

•

•

0.05 -

0.04 •

[
0.03

I-<
Q)

~
0

Po..

0.02 -

•
•

•

•

•0.01

•••

•

•

0.00 +------.-------"r-----oy-------r-------.------!
o 30 60 90

Bunch number

Fig. 4b

23



6

8-

10---:...-------------------------,

••••••••••
••••••••

••••••••
•••+

••••••
•••••+•••••••••••••

+
•

••
+

•••
+

••+
•+

••••
• +

•••••..........o4-+......:t.=.:::~--..,...-----r_.----.......-----"'T"------.......----__t
o 30

Bunch number

Fig. 4c

24

60 90



0.8 ..,..----------------------------,

•••••••••••••••••
••••••••••••••••••••••••••••••••••••••

•••••
••••••••••

•
c; •

0.5 •-u •.;s •
bJ)

•c.-..c •u 0.4 -c •
~

!Xl •
•

•
0.3 • •

•
•

•
0.2- •

•
••

0.1
0

I

30

Bunch number

Fig. Sa

25

60 90



0.8 ---.......----------------------------.,

•

0.4

•

0.2

•

•
864

0.0 +---+----.-T---II...~---_r_I---..------,-------r'----l
o 2

Cavity number

Fig. 5b

26


