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DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 
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In many updating algorithms it is required to accumulate a product of the 
form 

Xk = Ql'" Qk-1Qk, 

where the matrices Qi are orthogonal. Although mathematically speaking X k 

must be orthogonal, in practice rounding error will cause it to drift from orthog
onality with increasing k. If we take the deviation of xl X k from the identity as 
a measure of the loss of orthogonality, then typically 

where II . IIF is the Frobenius norm, EM is the rounding unit for the arithmetic in 
question, and On is a slowly growing function of the size n of Xk (e.g. n1.5). 

As a cure for this problem DeGroat and Roberts [1] have proposed that each 
X k be subjected to a partial reorthogonalization in which the second column is 
orthogonalized against the first, the third against the second, and so on with all 
the columns being renormalized after orthogonalization. In a subsequent note 
on their paper Moonen, Van Dooren, and Vandewalle [2] pointed out that the 
normalization alone is sufficient to maintain orthogonality and supported their 
claim with a heuristic argument. In a reply DeGroat pointed out that normaliza
tion "does not yield working precision orthogonality." However, the error remains 
quite small. 

The purpose of this note is to give a more complete analysis of the method, 
one that explains the phenomena mentioned in the last paragraph. In particular, 
we show that this method succeeds when the Qi manage to transfer off-diagonal 
error in the matrices I - Xl Xi to the diagonal. We also show that normalizing 
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is the best possible scaling up to to first order. However, it can actually decrease 
orthogonality in certain unlikely circumstances. 

For notational convenience we will drop subscripts and write 

where X is scaled so that its its column norms are one and Q is orthogonal (for 
the moment we ignore rounding error). Since X is normalized, we can write 

A =XTX = I +E, 

where the diagonals of E are zero. Write 

where 
(1) 

is a decomposition of QT EQ into its diagonal and off-diagonal parts. In this 
notation, the scaling of X amounts to setting 

(2) 

and 
_ A Al 

X = XS'2. 

The deviation from orthogonality of X is the Frobenius norm of 

(3) 

The above equations define a recurrence for E, E, etc., which we are going to 
analyze. But first we will motivate the scaling by comparing it with the optimal 
scaling, which is characterized in the following theorem. 

Theorem 1 For any diagonal matrix Diet diag(D) denote the vector consisting 
of the diagonal element of D. Then for all sufficiently small E, the optimal scaling 
matrix S satisfies 

A oA diag(S) = diag(I + D), (4) 

where AoA is the component-wise product (a.k.a., the Schur or Hadamard product) 
of A with itself. 
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Proof. Regarded as a function of the elements of S, the function list Est II~ is 
a quadratic function that is bounded below by zero. Differentiating this function 
and setting the results to zero, we obtain (4). It follows that if (4) has a positive 
solution, then that solution will provide the optimal scaling. Now limE-+o A oA = 
(I + D)2. Consequently, 

lim diag(S) = lim (A oA)-Idiag(I + D) = diag[(I + D)-I] = diag(S) > O. (5) 
E-+O E-+O 

Hence for all sufficiently small E, the solution of (4) is positive. 

Equation (5) provides a heuristic justification for the method, since it says 
that to first order in E our scaling approximates the optimal scaling. Howe,;,er, 
the matrix 

A = ( 1 - f2 f ) 
f 1 - f2 

shows that the method is not guaranteed to increase orthogonality for all small 
E. Nevertheless, this situation is quite unlikely, as we will now demonstrate by 
an analysis of the recurrence (3). 

First note that from (1) and the unitary invariance of the Frobenius norm we 
have 

IIEII~ = IIDII~ + IIEII~· (6) 

Now the square of the (i, j) element of jj; is 

Here di is the ith element of D, and we assume that IIDIIF < 1. Hence 

(7) 

Setting 

we have from (6) and (7) 

2 c2 

II -112 -2 - f - u 
EF<f= A. 

- (1 - 8)2 
(8) 
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A little extra notation will help us decide when the scaling results in an increase 
of orthogonality. Since from (6) we have h ::; f, we can write 

h = ,f, 0::;,::;1. 

In this notation the equality in (8) becomes 

-2 2 [ 1 - ,2 ]_ 2 ( ) 
f = f (1 _ ,fF = f c.p , . (9) 

Thus the problem is to ascertain when c.pb) is less than one. The following facts 
are easily verified. 

1. c.pb) 2:: 1 in the interval [0, 2f/(1 + f2)]. At, = f it assumes a maximum of 
(1 - f2)-1. 

2. c.pb) decreases monotonically from one to zero on the interval [2f/ (1 + f2), 1]. 

In terms of our iteration, if h is too small, roughly less than 2f2, then the 
scaling has the potential to reduce orthogonality- but not by very much if E 

is at all small. For larger h the scaling is guaranteed to increase orthogonality. 
Otherwise put, multiplication by the matrix Q moves part of E to the diagonal 
where it is eliminated by the scaling. The more of E that is moved to the diagonal 
the better. 

The amount of E that is moved will depend on Q, which in turn depends on 
the application in question. However, it is interesting to note what happens when 
Q is chosen at random uniformly from the group of orthogonal matrices. To do 
so we prove 

Theorem 2 Let Q = (qI, ... ,qn) be a random orthogonal matrix, uniformly dis
tributed over the group of orthogonal matrices. Then for any symmetric matrix 
E -

E (t(q! EqJ2) = -1-[trace(E)2 + 2I1EII~], 
i=l n + 2 

where E is the expectation operator. 

Proof. Let u denote a random vector of n independent standard normals. Let 
r denote lIull and v = u/r (n.b., v is a typical column of Q). It is well known 
that v is distributed uniformly over the sphere, while r2 is independent with X~ 
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distribution. Thus using standard results on the moments of the normal and X 2 

distributions, we have 

Ev~ = Eu; = 3 
, Er4 n(n + 2) 

and 

i =I j. 

It is clearly sufficient to prove the lemma for diagonal matrices, say 

For this case the result follows easily on expanding L:i=l (q; Eqi)2 and using the 
above formulas to take expectations (recall that trace(E)2 = IIEII} + L:i#;j AiAj). 

In our application, the trace of E is zero and we have on the average 

i.e., ,2 = 2/(n + 2). Thus, 8 is of the same order as E, and by the second 
observations following (9) we can expect to observe an increase of orthogonality. 
However, this increase decreases as n grows. For if E is small enough so that the 
denominator in 'Pb) can be ignored, an iteration will reduce E2 on the average by 
a factor of of only n/(n + 2). _ 

Finally, returning to the role of rounding error, its effect is to add errors to E. 
The Frobenius norm of this error will be proportional to the rounding unit EM, 

say OnEMo Thus the recurrence (9) must be rewritten in the form 

If we assume that, is constant, then this recurrence has the fixed point 

the last approximation holding for small gamma. For example, with random Q 
we should not expect to reduce the measure of orthogonality much below (n + 
2)OnEM. These considerations perhaps explain the lack of orthogonality to working 
precision noticed by DeGroat. 
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