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Abstract 

The spin-orbit coupling in a deformed system is studied by approxi­
mating the Schrodinger equation semi classically. The discrete charac­
ter of spin is preserved and WKB techniques are used for the coupled 
two-component wave equations. Thus, contrary to other approaches, 
spin is not treated similar to a classical angular momentum. Infor­
mation about the periodic orbits is extracted from Fourier transforms 
of the quantum mechanical spectra and compared to classical calcu­
lations. Planar motion exhibiting mode conversion and non-planar 
motion, for which Berry's phase is important, are investigated. For 
planar orbits, the semiclassical method is successfully corrected for 
mode conversion. 
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1 Introduction 

In quantum mechanics, the physical concept of spin is well incorporated into 
the theory, at least from a technical viewpoint. The spin and its SU(2) char­
acter are inherent properties of the Dirac equation. In the presence of elec­
tromagnetic couplings a nonrelativistic approximation of the Dirac equation 
gives to lowest order the two-component Pauli equation and the spin-orbit 
interaction appears in next order [1]. Alternatively, the spin-orbit coupling 
appears in the adiabatic effective Hamiltonian for the orbital motion of the 
Dirac particle [2]. The original motivation for a spin-orbit term in the nu­
clear case was phenomenological. As well known, the inclusion of this term 
was a crucial step in the development of the nuclear shell model [3,4]. How­
ever, nucleons are not point Dirac particles and therefore the microscopical 
description of the spin-orbit interaction is a complex issue [5]. 

On the other hand, a direct and obvious classical anology of spin is lack­
ing. Spin correlation experiments show highly non-classical features [6] and 
it is thus not clear what aspects of spin are relevant in a classical model. The 
most nearlying classical picture for the concept of a quantum particle with 
spin is the motion of a top or a gyroscope with an intrinsic angular momen­
tum besides the orbital one. In other words, the SU(2) spin is interpreted 
as an SO(3) angular momentum. This gives indeed for many aspects a very 
instructive picture, for a detailed review see Corben's book [7]. A way to 
justify this replacement of a quantal concept by a classical one is to derive 
classical equations of motion by a variational principle using coherent state 
wave functions [8]. This gives a classical model with two additional angles 
and two conjugate momenta in the classical phase space whereas the length 
of this intrinsic angular momentum is fixed [8, 9]. 

However, in this paper we abandon the SO(3) picture and go a different 
way. The Schrodinger equation for a spinor wave function is nothing else 
but a system of coupled wave equations whose semiclassical approximation 
has to be found. Thus, we preserve the discrete nature of spin and treat 
only the orbital motion semiclassically. The merit of this method is that no 
extended phase space is needed, the effect of spin is just an additional force 
on the orbital motion. The mathematical tool that we need, the Wentzel­
Kramers-Brillouin (WKB) theory for multi component wave equations, has 
been worked out by Yabana and Horiuchi [10] in the one dimensional case. 
This theory is essentially an adiabatic approximation which in our case means 
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that the orbital·motion is assumed to be much slower than the spin motion. 
Besides Berry's phase [11] an additional phase correction to the WKB wave 
function was found in reference [10]. This theory has recently been consider­
ably improved and extended to arbitrary dimensions by Littlejohn and Flynn 
who used the Weyl symbol calculus [12]. In the course of our work we discov­
ered that our approach is in the spirit of early, brief considerations by Balian 
and Bloch [13]. As an application of the improved WKB theory Littlejohn 
and Flynn have in great detail investigated the case of spin-orbit coupling in 
spherical potentials [14]. Here, we focus attention on spin-orbit interaction 
in deformed systems for which the atomic nuclei provide an obvious physical 
motivation [4]. The deformation causes interesting new effects which are 
not present in the spherical case. For example, diabatic transitions between 
spin polarizations, in the following called mode conversion, take place and 
are associated with the breakdown of the WKB theory. 

In our investigations we rely on the theory of trace formulas as first de­
veloped by Gutzwiller [15] and later by Balian and Bloch [16] and Berry and 
Tabor [17]. The trace of the semiclassical Green function expresses the den­
sity of eigenenergies for a bound quantal system as a sum over the periodic 
orbits in the corresponding classical system. It is the only tool available for 
semiclassical quantization of chaotic systems [15]. If only the smooth oscil­
lations of the level density are of interest, as for example in shell structure 
calculations, the shortest periodic orbits give very accurate and valuable in­
formation [18, 19]. Despite severe difficulties with the inclusion of the long 
periodic orbits progress has been made recently [20]. However, the perspec­
tive for a periodic orbit formula for the eigenstates [21] is not bright since 
numerical results strongly call for an improvement of the present theory [22]. 
Much of the work in this field has dealt with fermions but until recently only 
little attention has been paid to the problem of incorporating spiri into the 
formalism, except for the work of Balian and Bloch [13] mentioned above. 
The starting point for Gutzwiller's semiclassical approximations is the path 
integral, where, in the original formulation, spin was not included in a con­
vincing way [23]. Schulman was the first to make real progress [24]. In the 
framework of a gyroscope like picture, he quantized the spherical top and 
used the freedom to choose the relative phase factor between paths belong­
ing to the two homotopy classes to obtain half-integer spin. However, such 
models with additional intrinsic degrees of freedom like 80(3) are difficult 
to extend to a quantized relativistic theory. For that reason an alternative 
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approach "Was developed by Polyakov [25]. He realized that the effect of spin 
can be incorporated by a weight, or spin factor, attached to each path and 
that this weight depends only on the geometrical properties of the path itself. 
This weight is related to a Berry's phase [26]. Thus, the focus is here on the 
influence of the spin on the geometry of the paths and no intrinsic structure 
of the particle is assumed. Our approach is obviously in the same spirit. 

We would like to emphasize that our investigation although motivated by 
nuclear physics is more the object of a general discussion to shed light on 
the role of the spin in semiclassical theories. At this stage we do not intend 
to perform quantitative nuclear structure calculations. However, in rotating 
nuclei with extreme, superdeformed shapes an integer, or half-integer, quan­
tization of the rotational angular momentum has been reported recently [27]. 
This remarkable observation encourages a careful study of the spin properties 
in these systems. Hence, at a further stage, our approach might be of some 
relevance in concrete applications. 

We tried to write this paper in a readable form also for those with little 
background in semiclassical physics. Thus, section 2 is a detailed selfcon­
tained presentation of our model and the procedures we use. To test our 
approach, we perform classical and quantal numerical calculations as well, 
the results are compared in section 3. We discuss our findings in section 4. 
Two special calculations are shifted into the appendix. 

2 Semiclassical Theory and Procedure 

After formulating the problem in subsection 2.1, we give a brief summary of 
the WKB methods in subsection 2.2 and apply these to our system in sub­
section 2.3. In subsection 2.4 we choose the potential, thereby constructing a 
scaling system. The Fourier transform technique which is our tool to analyze 
the quantal calculations is discussed in subsection 2.5. 

2.1 Formulation of the Problem 

The time independent Schrodinger equation for a particle with spin that is 
described by a two component spinor wave function 'if; can be written in the 
form 

I]'if; = 0 where D - H -E1 (1) 
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is interpreted as a dispersion tensor, If is the Hamiltonian operator and 
E the energy. Here and in the following, variables underlined with _ are 
quantum mechanical operators. In a deformed mean field potential V(f) the 
Hamiltonian including an interaction between orbit and spin § is give~ by 

H 
1 2 .... .... 

- -p + V(i) - 2", B . S 
2m- - - -

jj - aVso C) .... -- r xp af - - (2) 

The form of .§ is the simplest possible for a pseudovector assuming a coupling 
proportional to a gradient of a potential [4]. The function Vso(f) is called 
spin-orbit potential and 2", is an adjustable spin-orbit parameter. The usual 
choice is Vso(f) = V(f), but in the nuclear case the two potentials can take 
different forms [28], of course, the deformation should be the same. In the 
spherical case we find the familiar expression 

jj = ~ dVso (r) l 
- r dr - -

if (3) 

where l = f x P is the angular momentum operator. 
The- compon;nts of the spin vector § are one half times the Pauli spin 

matrices, hence we arrive at a 2 x 2 matrix representation of the dispersion 
tensor 

D = (_1_p2 + V(r) - E1) 12 - '" [i}z 
- 2m- - - B -+ 

(4) 

where 12 is the 2 x 2 unit matrix and i}± = i}x ± ii}y. 
We are aiming now at a semiclassical solution of the Schrodinger equa­

tion (1), i.e. of a two component coupled wave equation, with 12 given by (4). 
In order to achieve this goal we apply the powerful method of Littlejohn and 
Flynn [12]. In the following subsection, we briefly sketch the main ideas, 
presentation and notation follow closely reference [12]. 

2.2 WKB for Multicomponent Wave Equations 

A wave equation of type (1) with an, in general, M-component spinor 'lj; 
and an M x M dispersion tensor 12 is not easily eligible for semiclassical 
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methods, since it is actually a coupled system of M equations. However, 
if 12 is Hermitean, those can be decoupled by diagonalization. Hence, we 
require the existence of an unitary matrix TI with the property 

utnu = A where (5) 

This yields M decoupled equations because ~ is diagonal, 

where (6) 

These equations can now be analysed with standard scalar WKB meth­
ods [29]. Unfortunately, the diagonalization is highly nontrivial since the 
elements of 12 are operators. The Weyl symbol calculus, however, provides 
a tool to solve this problem by an expansion [12]. The Weyl symbol of an 
operator ~ is the phase-space function [30] 

i.e., the Wigner-transform. The symbol of the product of two operators ~ 
and l} is given by the Moyal-formula [30] 

implying the following relation between the quantum mechanical commutator 
[,] and the classical Poisson-brackets {, } 

[~, l}]w(r,p) = iii {Aw(r,p), Bw(r,p)} + O(li2) (9) 

The first order approximation is reasonable if Aw(r,p) and Bw(r,p) are 
slowly varying functions on phase space. In the following the subscript W will 
be omitted from the Weyl symbol and we write A(f,p) instead of Aw(r,p). 

To obtain the Weyl symbol corresponding to equation (5) one introduces 
the following ansatz as power series in Ii, 

00 

X(r,p) = I: lin x(n)(r,p) (10) 
n=O 
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where X stands- for either of the symbol matrices U and A. To be more 
precise, the true expansion parameter is nl So where So is a typical action 
of the system. By employing the unitarity condition on the diagonalizing 
matrix and the Moyal formula this ansatz yields systems of equations for 
each power of n. In zeroth order we have 

A(O)( - -) - U(O)t( - -) D( - -) U(O) (- -) T,p - T,p T,p T,p (11) 

The eigenvectors to the eigenvalue ,x,~O)(f',p), i.e. 

J1. = 1, ... , M (12) 

are called polarization vectors and J1. is the polarization index. Up to first 
order in n we have 

The first order term is a sum of two contributions 

whose components are given by 

,x,(IB) 
I-' 

M 
-i "" r(I-')* {r(l-') ,x,(0)} 

L-tOt Ot'1-' 
Ot=l 

M d (I-') 
. "" (1-')* rOt = -z L-t r --

Ot=l Ot dt 

,x,(INN) 
I-' -~ L:(DOt13 - ,x,~0)6OtI3) {r~I-')*, rJI-')} 

Ot,13 

(13) 

(14) 

(15) 

The first of these we call Berry's contribution since it is associated with 
Berry's phase [11]. It often appears when a system is divided into "slow" 
and "fast" parts as in the Born-Oppenheimer treatment of molecules. Here 
it is assumed that the orbital and spin degrees of freedom can be treated 
separately. The second term is sometimes called the "no name" contribution 
and therefore labeled NN. It vanishes if the polarization vector depends only 
on r or p. Note that the Poisson bracket appearing in Berry's contribution 
can be written as a time derivative since ,x,~0) is the zeroth order Hamiltonian 
up to a constant. 

Besides the condition that the Weyl symbols are slowly varying functions 
on phase space one must exclude degeneracies of the eigenvalues of the symbol 
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matrix D(r,i) to make the procedure meaningful [12]. Those lead to mode 
conversion points and we will have to deal with them in our application. The 
decoupled wave equations are now eligible to the standard WKB analysis. 
Since Hamilton's equations can be formulated as a variational principle on 
phase space we have the following M conditions, one for each eigenvalue 

Some problems arise since the total WKB wave function has to be invari­
ant under gauge transformations r(#)(r,p) -+ -r(#)(r,p)exp(i0(r,p)) where 
0(r ,i) is the gauge function. It turns. out that the "no name" part .A~INN) 
is invariant under those transformations whereas Berry's part transforms as 
.A~IB) -+ .A~IB) + {0, .A~O)}. In order to remedy this problem new non-canonical 
coordinates (r',p') are introduced [12] in such a way that Berry's contribu­
tion is absorbed in the symplectic form p' . dr' where it gives rise to Berry's 
phase [11]. To first order in n, the new equations of motion have the form 

d [r'] 
dt i' 

J 

J 8 (, (0) of:. '(INN)) 
8( r', p') Ap. + ItAp. 

[ 0 h] + nJ(I) . 
-h 0 

(17) 

The 6 x 6 matrix J(1) vanishes in the case of canonical coordinates. In their 
one dimensional WKB theory for multi component wave fields, Yabana and 
Horiuchi [10] include alson.A~INN) in the symplectic form. Then only .A~O) is 
used as Hamiltonian in the equations of motion yielding a system similar to 
equations (17) but with a different J(l). 

2.3 Application to the Spin-Orbit Problem 

The symbol matrix D( r, p) corresponding to the dispersion tensor (4) has 
the zeroth order eigenvalues 

... 2 

L + V(r) ± KB - E 
2m 

8l~O("') ... - --r xp 8r: . 

.8 

(18) 



where B = lEI. The polarization indices plus and minus correspond to 
the situations energetically unfavoured and favoured by the spin-orbit force, 
respectively. The relevant matrix structure of D( r, p) is precisely the quater­
nion representation of the vector E implying that the diagonalizing matrix 
is only a function of its orientation eB = E IB, i.e., U = U(eB) and thus 
only an implicit function of the phase space coordinates (r,p). Hence, the 
same is true for the polarization vectors, r(±) = r(±)(€.a). An underlying 
assumption in the semiclassical procedure presented above was that the sym­
bol matrices are slowly varying functions on phase space. Since the relevant 
quantities for the diagonalization depend only on eB, this condition is ful­
filled if E moves slowly. Our semiclassical WKB-analysis is in that sense 
an adiabatic approximation. However, a special situation occurs if the mo­
mentum p and the gradient of the spin orbit potential 8Vso18r' happen to be 
parallel or antiparallel. In that case, E vanishes. Equation (18) shows that 
at these points the eigenvalues ).~) are degenerate which is equivalent to the 
total breakdown of the whole WKB treatment. These points are precisely 
the mode conversion points. 

Berry's contribution is easily calculated by introducing spherical coordi­
nates in E-space, eB = (cos <p sind, sin <p sind, cos d), 

(19) 

where we chose the north standard gauge, see appendix. The gauge indepen­
dent "no name" contribution is given by 

).(lNN) _ K -='I' 82 Vso ~ 
± - -eB eB 

2 8r'8r'T 
(20) 

the somewhat lengthy calculation is briefly sketched in the appendix. It is 
worthwhile to emphasize that both first order contributions depend only on 
the direction of E but not on its magnitude. Moreover, they only implicitly 
depend on the mean field potential V{r). 

It is very instructive to consider the spherical case Vso{r) = Vso{r) for a 
moment. We have 

E = ~ dVso (r ) l 
r dr 

where l r'xp (21) 
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is the angular momentum. Since t is now a constant of motion Berry's 
contribution vanishes in any gauge. The matrix of the double derivatives is 
given by 

o2Vso(r) = (d2Vso (r) _ ~ dVso) .... -='1' 1 dVso 1 
T erer + --d 3 

or Or dr2 r dr r r 
(22) 

with er - r /r. Since t· r = 0 we find 

A~NN) = .!3:.. dVso(r) 
2r dr 

(23) 

Only a first order derivative of the spin-orbit potential, precisely ",/2 times 
the radial function in the spin-orbit coupling term contributes. This is in 
perfect agreement with the analysis of the spherical problem by Littlejohn 
and Flynn [14]. Note that the exact result for the spin-orbit splitting is found 
by using the semiclassical quantization rule L = h(1 + 1/2), I = 0,1,2, ... , 

p2 V ± 1 dVso h (1 1) h '" dYso 
2m + "';: dr +"2 + 2r dr 

p2 V h", dVso {-I favoured 
2m + + -; dr 1 + 1 unfavoured 

(24) 

The reason for this agreement is the perfect fulfillment of the adiabaticity 
assumption since eB is a constant of motion. 

We now have to evaluate the equations of motion. Either of the two 
methods of dealing with the first order contributions to the eigenvalues of 
the dispersion tensor described at the end of the last subsection implies h 
corrections to the equations of motion. In our application, however, we as­
sume that the coordinates can be chosen in such a way that these corrections 
are negligible. This leads us to the following recipe: Use the zeroth order 
eigenvalue A~) as Hamiltonian in the canonical equations of motion and add 
the whole first order part h(A~B) + A~NN») dt to the symplectic form. The 
possible marginal loss of accuracy in some of our results due to this recipe is 
not too serious a drawback since we are aiming more at a general and qual­
itative understanding of the semiclassical analysis of the spin-orbit problem 
and less at a quantitative one. Hence, for our purposes, the shortcomings 
due to this neglect of the first order corrections are certainly outweighted 
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by the advantage of having a clear and simple structure of the equations of 
motion. 

Using this recipe, the two Hamiltonians are according to (18) given by 

-2 

H(f',p) = ;m + V(f') - KB . (25) 

To simplify the notation, we dropped the polarization indices and the plus 
minus sign in front of KB. We allow K to take positive and negative values 
and can thereby discuss both Hamiltonians at the same time. The equations 
of motion are 

P 8Vso_ - - + K-_- X eB 
m 8r 

:. 8H 
r - + 8p 

P 
8H 
8;: 

8V 82Vso (_ _) 
- - 8;: + K 8;:8;:T p x eB (26) 

Again, only the direction of the vector jj enters, not its magnitude. 

2.4 Choice of Potentials and Scaling 

All results derived so far are valid for sufficiently smooth but otherwise arbi­
trary, deformed potentials V(f') and V80(f'). In order to perform numerical 
calculations, we now have to specify them explicitly. Since our model system 
is motivated by nuclear physics, we choose an ellipsoidal deformation defined 
by the half axes RJ. in the (x, y) plane and Rz in the z-direction. For no­
tational purposes we introduce the matrix C = diag(R:i\ Rl\ R;l). Only 
prolate shapes are considered such that the axis ratio p, = Rz / RJ. is not 
less than unity. For normal deformed nuclei one has p, ~ 1.2 ... 1.3 while 
for superdeformed nuclei [4, 31] one finds p, ~ 1.6 ... 2.0. We define an aver­
age radius Ro by the volume conserving condition m = Rl Rz which yields 
RJ. = p,-1/3 Ro and Rz = p,2/3 Ro. 

The next step is to choose the functional form of the potentials. As it is 
well known, scaling properties simplify numerical calculations tremendously. 
Such a scaling property can be achieved by choosing an infinite square well 
as mean field potential. Since rrc2;: = IC;:12 = 1 describes the ellipsoid 
we set 

V(r) = {~ if IC;:I < 1 
if IC;:I;::: 1 

11 
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as a cavity with.ideally reflecting boundary. The scaling transformation we 
have in mind is the simultaneous mapping 

and (28) 

where (7 is any real dimensionless number. From (25) and (27) we find that 
under this transformation the energy behaves as E -+ (72 E. Hence the 
parameter m E 

TJ = -- (29) 
mR2 ",2 

z 

is scaling invariant. The prefactors in this definition are choosen such that TJ 
is dimensionless. Thereby we made the spin-orbit potential Vso(r) dimension­
less by absorbing all strength constants into", which now has the dimension 
him, i.e., area over time. The equations of motion remain unchanged under 
the scaling if the time t is replaced by (7t. In other words, all trajectories 
look the same along the parabola with constant TJ in the (E, "') plane. The 
action for a trajectory can thus be decomposed into 

where k = v'2mElh (30) 

is the wave number. The function fso(TJ) has the dimension length and goes 
towards the geometrical length of the trajectory if TJ -+ 00, i.e. for vanishing 
spin-orbit interaction strength '" -+ O. In a realistic nuclear potential the 
coupling strength decreases with nucleon number A as A -2/3 and a typical TJ 
value for a normally deformed actinide nucleus is TJ ~ 600. 

The scaling properties discussed above make it possible to analyse our 
numerical results by the Fourier transform method to be explained in the next 
subsection. All these considerations are true for arbitrary functional form of 
the spin-orbit potential. For the numerical calculations we choose it different 
from the mean field potential. One might argue that this is an unusual choice 
since in many nuclear physics calculations they are assumed to be the same. 
Firstly, a fit of the Woods-Saxon model to experimental levels shows that 
the two potentials can differ from each other [28]. Secondly and much more 
important, we are aiming at a model study in order to eludicate the role 
of spin in semiclassical approaches. At this stage of our investigations, we 
do not try to compete with full fledged quantitative quantum mechanical 
calculations. Hence we are convinced that our choice of the potentials which 
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make our model numerically feasible still gives the right picture. For the 
numerical calculations we choose 

(31) 

For aso = 1 this is a deformed harmonic oscillator. In this special case the 
"no name" part also becomes a deformed oscillator but in eB-space, 

>.~NN) = K ~ C2 eB (32) 

If, in addition, the shape is spherical, the radial part of the spin-orbit inter­
action and the "no name" part are constants. Numerically, we also consider 
the case aso = 0.65 besides aso = 1. 

2.5 Fourier Transform Technique 

Trace formulas [15] provide a connection between the classical periodic orbits 
and the quantum mechanical density of energy levels. More precise, the trace 
of the semiclassical Green function gives approximately the level density p(k) 
as a sum of the smooth Thomas-Fermi part PTF(k) plus a fluctuating part 
that is a sum over the periodic orbits 

(k) () "~ () (Smn(k) mr _ _ 11" ) P ~ PTF k + L..J L..J Am,n k cos 'Ii - ""2Qm . m + -13m 
m n=l 4 

(33) 
where k = v'2mE/1i denotes the wave number. This particular sum is 
valid for integrable systems [17]. The vector m describes the topology of the 
periodic orbit. For example, a plane triangular orbit in a circular potential 
oscillates mr = 3 times in the radial coordinate and m", = 1 times in the 
angular coordinate, thus m = (3,1) for this orbit. A plane pentagram like 
orbit has m = (5,2) and so on. For three dimensional orbits, m has of 
course three components. The index n gives the number of repetitions of the 
basic orbit characterized by m. The components of the vector am are related 
to the number of conjugate points in the corresponding coordinates [32]. 
The number 13m comes from a stationary phase approximation and can take 
the values 0 and ±1. Details about the amplitude Am,n(k) can be found in 
reference [17]. For our purposes, an important result is the factorization of 
the action in the case of cavities, 

Sm,n(k) - liknfm (34) 
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where fm is the geometrical length of the basic periodic orbit. 
A second connection between the periodic orbits and the level density 

suitable for cavities, is derived by taking a weighted Fourier transform [16] 
of the exact level density, 

F(f) = 10
00 

p(k) kq exp(ikf) dk . (35) 

The meaning of the weight function k q will be explained below. The level 
density is a sum of h-functions 

00 mOO! 
p(k) = ~ h(E(k) - E(kll )) = h2 ~ 'kh(k - kll ) (36) 

11=1 11=1 II 

this yields in equation (35) 

mOO 
F(f) = h2?; k~-1 exp(ikllf) (37) 

In practice the integration in equation (35) must be terminated at a cer­
tain cutoff kmax • An absolute minimum for a good resolution of the Fourier 
spectrum is to include levels up to kmax = 50/ flo which for spherical shape 
means up to about the first state with angular momentum L = 44h. Obvi­
ously, the complex valued function F(f) is strongly oscillating. If, however, 
the trace formula (33) is a good approximation, the dominant peaks of the 
modulus IF(f)1 will be according to equation (34) situated at points l* that 
are close to the lenghts nfm of the periodic orbits. Furthermore, at the peak 
positions f* the argument r(f) = argF(f) will approximately take the value 
mram . iii/2 - 7r{3m/4. The weight functionk q in equation (35) is introduced 
in order to compensate for the k dependence of the amplitude Am.n (k) in the 
trace formula (33). 

Hence, in this paper, we will extract information about the classical pe­
riodic orbits from the Fourier transform of the level density calculated quan­
tum mechanically and we will compare these findings with the calculation 
of periodic orbits using the classical equations of motion derived in the pre­
ceeding subsections. Due to the scaling property of our spin-orbit model 
discussed above we have effectively a cavity problem for a given fixed value 
of the parameter 17. Consequently, the quantum mechanical eigenvalues used 
in the Fourier transform must lie along the parabola for constant 17 defined 
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by equation (29) in the (E, K) plane. Since, for fixed "I, equation (30) is of 
the same type as equation (34) we will find peak positions f:o(TJ) for a given 
value of "I. A further modification is the presence of the first order terms 
in the symplectic structure. According to our recipe discussed in subsection 
2.3, we expect that the argument of F(f) takes the value 

n7r .... .... 7r J ((IB) (INN)) r(.t:o(TJ)) ~ TOm' m - 4f3m + A± + A± dt (38) 

at the peak positions where the time integration is along the periodic orbit. 
Berry's phase is purely geometrical, it is half the solid angle traced out by 
eB on the unit sphere [11], and is therefore constant along the parabola in 
the (E,K) plane with "I constant. Moreover, the "no name" phase is also 
independent of the position on the parabola. 

3 Classical and Quantal Results 

The results of our classical and quantal numerical calculations are presented 
in subsections 3.1 and 3.2, respectively. 

3.1 Classical Orbits 

Defined by the initial conditions (fQ,pc,), there are three geometrically dif­
ferent classes of trajectories and orbits: those that live in the circle in the 
equatorial (x, y) plane, those in the ellipse in an arbitrary fixed plane con­
taining the symmetry axis, i.e. the z-axis, and all others that are truely three 
dimensional. We discuss them separately in the following. 

3.1.1 Orbits in the Circle 

For initial conditions with (zo, Pzo) = (0,0) the equations of motion (26) 
restrict the trajectories to the circle in the equatorial plane. The adiabaticity 
assumption is obviously perfectly fulfilled since land eB are constants of 
motion pointing in the direction of +ez or -ez • 

It is very helpful to consider the case aso = 1 which allows an easy direct 
calculation of the trajectories. Introducing p = (x,y) and if - (Px,py) we 
can write 

.... if I .... p - - +wc p 
m 

and 
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where we have defined the matrix 

I = [0 1] 
-1 0 

and K • B 
We = 2 Ri sIgn z (40) 

is a frequency. Note that sign Bz = signLz is a constant of motion. The so­
lution of the equations between two reflexions with initial conditions (Po, io) 
are simply straight lines seen from a rotating frame, 

p(t) = exp(wetI) (po + :t) and i(t) - exp(wetI) io 

( tJ) _ [ cos wet sin wet] 
exp We - _ sin wet cos wet ( 41) 

It is now possible to find the periodic orbits semianalytically. For a given 7], 

the orbit characterized by the topology vector iii = (mr, m<p) is defined by 
the angle 'Pm appearing in the initial conditions in the form Po = (Rl.,O) 
and io = ?T'o( - cos 'Pm, sin 'Pm). The angle 'Pm, which can be restricted to lie 
between 0 and ?T' /2, is the solution of the implicit equation 

cos 'Pm (1 m<p .) 
-------';======= + 'Pm =?T' - - - + J 
sin 'Pm + (sign We) JSin2 'Pm + j.l2/37]/2 2 mr 

(42) 

where j is any integer, see the appendix for a derivation. Except for iii = 
(2,1) there are for high 7] values two solutions for 'Pm, with j = 0, corre­
sponding to the energetically favoured and unfavoured situation, respectively. 
For the motion along the diameter only the unfavoured case, i.e. negative 
We, is possible. At extremely low 7] values more solutions with j =f:. 0 for a 
given m are possible [33]. As an illustration we show the two triangle orbits 
m = (3,1) for 7] = 189 in figure 1. Observe that the unfavoured orbit is 
convex seen from outside and the favoured one concave. 

3.1.2 Orbits in the Ellipse 

All planes that contain the symmetry axis, i.e. the z-axis, are equivalent. 
Once defined by the initial conditions, the trajectories will leave neither of 
these ellipses. Contrary to the circle, neither l nor eB are constants of 
motion. 
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It is again helpful to consider the case aSO = 1. We choose the (y, z) 
plane and define p = (y,z) and i = (py,Pz). The equations of motion (26) 
reduce to ... 

:... 7r 1M'" p = - + We P 
m 

where we have introduced 

We = 2 R:Rz sign Ex 

and (43) 

and (44) 

Unless TJ is extremely low the classical motion falls into two categories. One 
type is bounded between the wall and an invisible inner ellipse, elliptic caus­
tic [15], and we call this rotational like motion. The other type is bounded 
between the wall and two invisible hyperbolas, hyperbolic caustic, and is of 
vibrational type [19]. For the rotational type We is a constant of motion. As 
an example of such motion two m = (4, 1) orbits are shown in figure 2 for 
Jl = 1.6 and TJ = 212. Since for these parameter values our system is not 
integrable, only isolated periodic orbits remain from the continous family of 
periodic orbits in the integrable case. In this and all other extreme adiabatic 
cases where the orientation of eB is fixed the gauge potential vanishes and 
no Berry's phase is obtained. Thus noncanonical coordinates are not needed 
unless multiplicities of quantum levels or wave functions are of interest [14]. 
However, for vibrational like motion We is not a constant of motion. For this 
type eB happens to flip from +ex to -tx, and the frequency We changes sign. 
These sign changes are only possible if there is one point in between where 
the vector B is zero. Hence, according to our discussion above, the flips 
indicate precisely the mode conversion points. Since the relevant B-space is 
reduced to the x-axis we are in the fortunate situation that the mode con­
version points are really points in an one dimensional space. These special 
cirumstances make the orbits in the ellipse a beautiful and instructive exam­
ple of mode conversion that we find worth to be discussed in more detail in 
the following. Between two mode conversion points occuring at times tl and 
t2 and no reflexion at the boundary in between, equations (43) can be solved 
analytically, 

p(t) = exp(we(t - tl)I M) P(tl) 

i t i(tt} + exp(we(t - t')I M) exp(we(t' - tdM 1) -- dt' 
tl m 

i(t) - exp(we(t - tdM 1) i(tl) (45) 
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where the matrices involved are not simple rotations, 

exp(wetIM) - [ cos wet 
I-' sin wet 

- 1-'-1 sin wet] 
cos wet 

exp(wetMI) - [ cos wet 
1-'-1 ·sin wet 

-I-' sinwet] 
cos wet 

(46) 

The integral in equation (45) yields combinations of trigonometric functions. 
At the time t 2 , the sign of We changes suddenly, thus, according to equa­
tion (43), the velocity po changes direction by 21we lI M p producing strange 
kinks in the trajectories which are obviously unphysical. In this case the 
WKB treatment breaks down. Our special one dimensional situation how­
ever, allows an easy remedy for this problem: The eB flips are equivalent to 
jumping from the Hamiltonian sheet for, say, spin up to that for spin down 
and vice versa. Hence, we simply have to get rid of sign Bz . Instead of the 
adiabatic Hamiltonian (25) we now introduce the diabatic Hamiltonian in . 
the ellipse, 

(47) 

by replacing IBzl with Bz. In our discussion for aSO - 1 the resulting equa­
tions of motion remain formally unchanged if we replace in equations (43) 
the frequency We by 

(48) 

which is obviously a constant of motion. Thus, under the same replacement, 
the solutions (45) are now valid everywhere except, of course, the reflexions 
at the boundary. The flips can now be interpreted as change of polarization. 
The new trajectories are kink free and physically reasonable, they are either 
fully diabatic or fully adiabatic depending on whether the spin flip occurs or 
not. As an example of a diabatically corrected orbit we show a member of 
the bowtie family in figure 3. 

The impact of our diabatic correction procedure becomes most obvious 
in the changes of the organization of the phase space. Three Poincare maps 
are plotted in figure 4 for a deformation I-' = 1.6 and a spin-orbit interaction 
with TJ = 2121 and aSO = 1. We use the familiar Birkhoff coordinates, s is 
the circumference and Q' the tangent angle after the reflexion at the boundary. 
The upper two maps are calculated using the adiabatic Hamiltonian (25) for 
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the two different signs of /\', the lower one is calculated using the diabatically 
corrected Hamiltonian (47). The latter map contains both the energetically 
favoured and unfavoured situations for a less and larger 900

, respectively. 
The two types of motion in the ellipse divide the phase space, the rotational 
like motion with elliptic caustic is confined to the upper and lower parts 
whereas the vibrational like motion with hyperbolic caustic appears in the 
middle. Obviously, the correction procedure changes the organization of the 
phase space drastically. 

3.1.3 Three Dimensional Orbits 

The remaining orbits are truely three dimensional. The equations of mo­
tion (26) can not be simplified since eB is now moving continously. We are 
now generally in an intermediate situation between adiabatic and diabatic 
motion. Note that mode conversion does not take place since Bz is a constant 
of motion and non-zero. An estimate of the degree of adiabaticity is given 
by the quantity 

mR5 i:h 
"Y = ----

Ii B (49) 

where Bl. is the component of E perpendicular to E. The motion is expected 
to be adiabatic if always "y ~ 1 along the path while diabatic transitions most 
likely will occur whenever "y ~ 1. 

In the cavity without spin-orbit coupling all non-planar periodic motion 
originates from bifurcations of the periodic orbits in the equatorial circle. 
The shortest one bifurcates from the m = (5,2) pentagram in the equatorial 
circle at I-l = 1.618. It performs one oscillation along the third axis and is 
consequent ely denoted by m = (5,2,1). We show the two orbits, favoured 
and unfavoured, in figure 5 for the extremely deformed case J.l = 2.0 using a 
spin-orbit interaction with TJ = 792 and aso = 1. As seen in figure 5(a), much 
of the pentagram structure remains in the equatorial plane. In figure 5(b) 
the projection onto the (x, z) plane is shown. The variation of the angle 
i) = arccos(Bz / B) along the orbit is displayed in figure 6. The Berry's 
phase is, up to a sign, equal to half the solid angle traced out by E [11] and 
an estimate from figure 6 gives ±90°. 
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3.2 Fourier Transforms 

In this section some typical Fourier transforms are presented and the infor­
mation extracted from them is compared to the classical calculations. The 
quantum mechanical spectrum is obtained by introducing new stretched co­
ordinates in which the ellipsoidal cavity is mapped onto a sphere whereas 
the kinetic energy becomes anisotropic [34]. In these new coordinates B is 
equal to the angular momentum times a radial function. The Hamiltonian is 
diagonalized for a set of K, values and we then interpolate to find the crossing 
of the energy levels with the parabola with 1] constant. 

In figure 7 we show a Fourier transform for spherical shape J.t = 1, a 
strong spin orbit force 1] = 189 and for aso = 0.65 as a thick line. For 
comparison we also plotted the Fourier transform for zero spin orbit force 
1] ~ 00 as a thin line. The corresponding classical motion was described in 
subsection 3.1.1 since for spherical shape all motion is planar. Each peak 
with mr ;::: 3 for infinite 1] is split into two peaks at 1] = 189, one peak for 
each sign of K, in the Hamiltonian (25). Due to the cutoff of (37) this split 
is not seen for all periodic orbits in the shown fso interval. This limited res­
olution gives also a misleading picture of the relative importance of some of 
the periodic orbits. The two triangular orbits, shown in figure 1, are anyhow 
clearly resolved. In table 1 some values for the reduced action fso( 1]) and the 
phase f( fso( 1]» derived classically and from the Fourier transform are com­
pared. To obtain the phase contribution from the "no name" part ..\~NN) the 
difference f(fso(1]» - f(fso(oo)) should be taken. The discrepancy between 
the classical and quantal values for fso( 1]) is not larger with 'spin orbit force 
than without. When judging the agreement for the phase one should have 
in mind that it is a very sensitive quantity. Typically ~f / ~fso ~ 141r / Ro 
in the fso( 1]) intervall considered. The dicrepancy between the classical and 
quantal values for the "no name" phase is just a few degrees except for the 
iii = (5,1) orbit favoured by the spin-orbit force. In the deformed cavity 
this extreme adiabatic motion takes place in the equatorial circle and the 
ellipses containing the symmetry axis if the caustic is elliptic. We have re­
solved some of these peaks and found a good agreement with the classical 
values for fso( 1]) but we have not enough of reliable eigenenergies to provide 
a fair comparison for f ( fso ( 1] ) ). 

In figure 8 we investigate the diabatic orbits. The thin peak in figure 8 
corresponds to zero spin-orbit force and is associated with a bowtie like family 
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of periodic orbits of which each member flips the orientation of B twice every 
period. This continous family of periodic orbits has in elliptical coordinates 
m = (4,1) and hyperbolic caustic. Observe that the peak is not split into 
two when the spin orbit force is turned on with TJ = 212 as shown by the thick 
line. From the discussion in subsection 3.1.2 we understand that the reason is 
that the spin does not follow the flips of B but instead switches polarization 
at each mode conversion point B = O. A classical orbit corresponding to this 
peak was shown in figure 3. The corresponding results in the table show that 
the diabatically corrected orbit is in good agreement with the quantal values. 
The reduction of the amplitude in figure 8 is due to the loss of symmetry for 
finite TJ. 

An example of the intermediate situation is given in figure 9. The peak 
associated with the shortest non-planar orbit in the case of zero spin-orbit 
force is shown as thin line. It is the m = (5,2,1) orbit that bifurcates 
from the m = (5,2) pentagram in the equatorial plane at J.l = 1.618 as 
mentioned above. A very interesting question is now if one or two peaks will 
be seen in the Fourier transform when the spin-orbit coupling is turned on. 
From the discussion so far we draw the conclusion that adiabatic orbits cause 
a split into two peaks whereas diabatic orbits show up as one single peak. 
For the orbit in question, however, it is hard to tell what kind of behavior 
to expect since the quantity "f defined in equation (49) stays close to unity 
along the path. Thus, apriori it is unclear if the spin can follow B, but as 
the solid curve calculated with TJ = 792 in figure 9 shows this is indeed the 
case. However, the agreement between the classical and quantal quantities 
is not of the same quality as for the other cases discussed above as follows 
from table 1. The difference between the fso( TJ) values for the energetically 
unfavoured orbit is large and the discrepancy for th~phase contribution that 
comes from the whole first order part A~B) + A~NN) in the Hamiltonian is 
about 40° in both cases. A likely explanation is given in the discussion below. 
The orbits that correspond to the two thick peaks were shown in figure 5. 

4 Summary and Discussion 

We presented a semiclassical analysis of a system with spin-orbit interaction. 
In our approach, spin is not interpreted as the 50(3) angular momentum of a 
top or gyroscope. We rather save the 5U(2) character of spin by approximat-
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ing the multi component Schrodinger equation for the spinor wave function 
semi classically. For this purpose we benefitted from the recent improvement 
of the WKB theory by Littlejohn and Flynn [12]. The diagonalization of the 
dispersion tensor gives two distinct Hamiltonians, one for each spin polar­
ization. The effect of the spin on the orbital motion is an additional force 
and no extended phase space is needed. This is a great advantage of our ap­
proach compared to SO(3) like pictures. Another helpful feature is that our 
method allows planar motion: which, as shown by our numerical results, influ­
ences the quantum spectra strongly. This does not occur generally in SO(3) 
like models due to the occurence of a precessional motion [8]. The classical 
equations of motion are an adiabatic approximation because of the use of 
WKB techniques. Motivated by nuclear physics we studied a deformed sys­
tem with axial symmetry. In this model, the adiabaticity assumption means 
that the vector lj appearing in the spin-orbit interaction has to move slowly. 
We chose a cavity with ideally reflecting boundary as mean field potential 
in order to furnish our model system with a scaling property. This implies 
enormous simplifications for our numerical calculations. We chose the spin­
orbit potential different from the mean field. This might be unusual from 
the nuclear physice viewpoint although it is known that the potentials can 
differ from each other. However, we feel free in our choice of potential since 
we are not aiming at quantitative nuclear structure calculations but rather 
at a general study of spin in semiclassical theories. Our results convince us 
that our model gives the right physical insight. 

To extract classical information from quantum mechanical spectra we 
were guided by the trace formula and used Fourier transform technique. Our 
numerical calculations show that the WKB approximation for the spin-orbit 
coupling works as well as the standard scalar WKB method if the motion of 
the vector jj is sufficiently slow. A large part of our Fourier spectra consists 
of peaks associated with planar orbits. They belong to the adiabatic limit or, 
if mode conversions occur, the diabatic limit. We were able to construct a 
diabatic correction of the classical Hamiltonian in the case of the latter and 
the numerical calculations for the bowtie orbit confirm our considerations. 
From our Fourier transforms we draw the conclusion that as the spin-orbit 
interaction is turned on a peak corresponding to an adiabatic orbit generally 
splits up into two whereas a peak associated with a diabatic orbit stays on 
its position almost unchanged. In the case of the three dimensional orbits 
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we are in an intermediate regime between adiabatic and diabatic motion, so 
the situation is less clear. The non-planar orbit we investigated is, despite 
that I in (49) is about unity, surprisingly of the adiabatic type. However, 
the phase is about 40° off. 

From the semiclassical theory follows that for zero spin-orbit force, i.e. 
"l -+ 00 no Berry's phase should be included but for any finite "l it must 
be. This transition is abrupt but our experience from similar situations 
tells us that a gradual transition takes place in the quantal case. Here, 
we have in mind, for example, the transition from spherical to deformed 
potential where, in the evaluation of traces formulas, the stationary phase 
approximation gives rise to abrupt phase changes. Hence, we conclude that 
there is a region of the parameter "l were semiclassical mechanics can not work 
well. The finding that 40° are missing for both phase values is most probably 
due to the fact that Berry's phase is not fully developed at our parameter 
value "l = 792. To clarify this situation, further and detailed numerical 
calculations have to be performed. From the results available now for the 
intermediate situation we believe that only very close to a mode conversion, 
jj = 0, jumps between the Hamiltonian sheets corresponding to different 
spin polarizations will occur. All these considerations allow the conclusion 
that our recipe, i.e. the simplyfing assumptions to interprete the zeroth 
order WKB approximation ).~) + E as classical Hamiltonian for the canonical 
equations of motion whereas the full first order contribution ).~B) + ).~NN) 
is included in the symplectic form, turned out to be very resonable. Hence, 
despite some technical difficulties with the three dimensional orbits, it seems 
that our method gives an easier handle on spin problems than extended phase 
space approaches of the SO(3) type [8, 9]. 

From a nuclear physics point of view the results show that the effect of 
the spin-orbit force at large deformations, compared to spherical shape, is 
reduced since the orbits with hyperbolic caustic are insensitive to a change of 
the coupling strength. This effect is even more pronounced in the case of the 
anisotropic harmonic oscillator where all planar motion within the ellipse 
is of this type. Our Hamiltonian (25) is similar to the cranking Hamilto­
nian investigated in reference [33] and therefore we, contrary to reference [9], 
claim that a realistic spin-orbit force is only slightly chaos producing. If the 
mean field gives rise to strongly chaotic motion most orbits will be of the 
diabatic type. Our study shows that the superdeformed potential, where the 
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adiabatic, intermediate and diabatic motion are all important, is an unique 
system to study spin properties. At a further stage our investigations might 
be important for concrete nuclear physics applications, for example for the 
understanding of new effects in rotating superdeformed nuclei [27]. 

In our opinion the basic notion is the coupled wave fields, two in our 
case and four in the Dirac equation. The Pauli matrices provide the most 
general coupling of the wave fields. By means of a diagonalization proce­
dure we can work with two Hamiltonians separately. As for the outcome of 
Stern-Gerlach experiments, these Hamiltonians can not be understood from 
a picture of the particle as a spinning magnet. However, as already pointed 
out in reference [13] these two subsystems, or three if mode conversion takes 
place, give rise to interference effects in the eigenfunctions. It is at this stage 
gyroscope like considerations become useful. For semiclassical calculations it 
is, as demonstrated in this paper, most convenient to work with the under­
lying discrete subsystems. 

Appendix 

The "no name" contribution is calculated in appendix A. The implicit equa~ 
tion (42) is derived in appendix B. 

A Evaluation of the "No Name" Contribution 
First we calculate the Poisson-brackets of the components of the vector B, 

(50) 

The left hand side can be considered as the element of a dyadic matrix, thus 
we have in an index free notation 

(51) 

where the components of the vector J are the generators of the group 0(3), 
i.e. 3 x 3 matrices. These Poisson bracket relations are obviously related to 
those of the angular momentum which are recovered if the spin orbit potential 
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Vso(f') is an isotropic harmonic oscillator. The next step is to calculate the 
Poisson-brackets of two functions F = F(B) and G = G(B) that depend 
on B, but not explicitly on the phase space coordinates (r,p), 

8BT 8F 8BT 8G 8BT 8G 8BT 8F 
8r 8B· 8p 8 B - 8r 8 B· 8p 8 B 

{F(B),G(B)} 

, 8F (8B 8BT 8B 8BT) 8G 
8BT 8rT 8p - 8pT 8r 8B 

8F {- -T} 8G -_- B ,B --:; . 
8BT 8B 

(52) 

Since the vector j generates the vector product we find after inserting equa­
tion (51) into equation (52) 

{F(B) G(B)} = (8e: x 8
2

Yso B) . 8~ = (8~ x 8e:). 8
2

Yso B . 
, 8B 8r8rT 8B 8B 8B 8r8rT 

(53) 
This result can now be used for the evaluation of the "no name" contribution. 
In an index free notation, the second of equations (15) can be rewritten as 

~ tr (D - A~)12) {T(±), T(±)t} 

_ . ~ t [Bz ± B B_] {(±) (±)t} 
z 2 r B+ -Bz ± B T ,T (54) 

In order to calculate the Poisson brackets of the polarization vectors with 
the help of equation (53) we use the spherical coordinates introduced in 
subsection 2.2. Hence we have Bz = Bcos{} and B± = Bexp(±icp)sin{}, 
the gradient operator is given by 

8 _ 8 e19 8 er.p 8 
--.:; = eB - + - - + -
8B 8B B 8{} B sin {} 8cp 

(55) 

For the polarization vectors we choose the north standard gauge 

T(-) - [ cos( {} /2) ] 
exp( +icp) sin( {} /2) 

T(+) [ - exp( -icp) sin( {} /2) ] 
cos ( {} /2) (56) 
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It is obvious that the vector products of the gradients of the components of 
these vectors must be parallel to eB. A direct calculation yields 

{r(+) r(+)t} _ ~ [ 2 exp(-i<p)tan(19/2)] 
, - 4B exp( +icp) tan( 19 /2) 0 

-='I' a2Vso .... 
eB ararT eB 

(57) 

and similar for r(-). Collecting everything and evaluating the trace in equa­
tion (54) gives the desired result 

A (INN) _ K -='I' a2Vso .... 
± - '2 e B ar arT e B (58) 

which is independent of the polarization index. 

B Derivation of Equation (42) 
Starting from, for example, po = (Rl.' 0) the trajectory will hit the boundary 
again at the time tR and at the point p(tR) with the property Ri = p2(tR). 
Using equation (41) and writing iro = 1ro(-coscpm,sin<pm), where we can 
restrict ourselves to the regime 0 ::; CPm ::; 1r /2, we find 

mRl. 
tR = 2 -- cos <Pm (59) 

1ro 

Moreover, for a periodic orbit with topology vector m - (mr, mcp) it is 
geometrically easy to see that 

This yields, again with the help of equation (41), after some algebra the 
equation 

1 (1 mcp 0) - cos <Pm + <Pm = 1r -? - - + ) u _ mr 
where u = (61) 

and j is an integer. We now have to express the dimensionless parameter u 
as a function of 1]. From definition (29) we find 

1] = m~K2 (;! -KBzsign Bz) = 2j.l-2/3 (u2 - 2u sin <pm) (62) 
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which can be solved for u. Hence, we arrive at 

cos c.pm (1 mcp .) 
-----;.====== + c.pm = 1(' - - - + J 
sinc.pm ± JSin2 c.pm + p2/3TJ/2 2 mr 

(63) 

with the plus and minus sign for orbits favoured and unfavoured in energy by 
the spin-orbit coupling, respectively. For very small TJ values solutions with 
j 1= 0 are possible [33]. 
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Table 1: Reduced actions £80("') and phases f(£80("')) for five periodic orbits, 
associated with peaks in the Fourier transforms. The classical and quantal 
results are given. In every column the values for zero spin-orbit force are 
on the left and those for finite spin-orbit force on the right. The first three 
orbits are planar, the triangle, the rectangle and the pentagon. They ap­
pear in two versions for the energetically unfavoured and favoured situation, 
corresponding to upper and lower row, respectively. The fourth orbit is the 
planar bowtie in the ellipse with hyperbolic caustic, it is diabatic and hence 
does not split up. The last orbit is the non-planar one that bifurcates from 
the pentagram in the equatorial circle. It is of the intermediate type but 
does split up. This orbit is the only one where Berry's phase contributes. 

m £80("') f( £80 ( .,,)) 
classical quantal classical quantal 

4.879 4.882 243 256 
(3,1) 5.196 5.201 225 241 

5.438 5.441 240 250 
5.121 5.123 157 166 

( 4,1) 5.657 5.658 135 147 
6.129 6.135 154 171 
5.218 70 

(5,1) 5.878 5.874 45 48 
6.512 6.520 67 85 

(4,1 )h 7.010 7.002 7.007 7.006 ,180 199 190 203 
7.847 7.883 19 95 

(5,2,1) 7.979 7.987 90 124 
8.109 8.097 188 185 
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Figure 1: The two triangular orbits in the equatorial circle, J.L = 1, for 
a strong spin-orbit interaction with." = 189 and aSO = 0.65. The thick 
and the thin solid lines show the orbits favoured and unfavoured in energy, 
respectively. The first is concave from outside, the second convex. 

Figure 2: Two rectangular orbits in the ellipse, J.L = 1.6, for a spin-orbit 
interaction with." = 212 and aSO = 1.0. The thick and the thin solid lines 
show the orbits favoured and unfavoured in energy, respectively. Here and 
in the following figures, the ellipses are rotated by 900

, hence the z axis is 
horizontal. 

Figure 3: An diabatically corrected bowtie like orbit which is member of a 
family in the ellipse, J.L = 1.6, for a spin-orbit interaction with." = 212 and 
aSO = 1.0. 

Figure 4: Poincare maps in Birkhoff coordinates for the planar motion in 
the ellipse, J.L = 1.6 employing a spin-orbit interaction with." = 212 and 
aso = = 1. The top and the middle figure are calculated using the adiabatic 
Hamiltonian (25) in the unfavoured and favoured case, respectively. The 
bottom figure is calculated using the diabatically corrected Hamiltonian (47). 
Observe the drastic differences. 

Figure 5: The shortest non-planar orbit, here shown for." = 792, J.L = 
2.0 and aSO = 1.0. The thick and the thin solid lines correspond to the 
situation favoured and unfavoured in energy, respectively. (a) Projected onto 
the equatorial (x, y) plane. (b ) Projected onto the (x, z) plane. 

Figure 6: The motion of the vector jj for the orbit shown in figure 5, the 
thick and the thin solid lines correspond to situation favoured and unfavoured 
in energy, respectively. The angle iJ = arccos(Bzl B) is plotted versus the 
normalized time tiT where T is the total period. 
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Figure 7: Fourier transforms of the level density for a spherical cavity with­
out spin-orbit interaction and with a strong spin-orbit interaction, TJ = 189 
and aso = 0.65, as thin and thick lines, respectively. All levels below 
k = 86.6/ Ro are included and the exponent in equation (35) is q = -1/2. 
The abscissa is the reduced action lso( TJ) which goes towards the geometrical 
length when TJ ~ 00. In the thick peak to the right all orbits with mr ~ 6 
and m", = 1 are merged together. The thin line shows that the each peak 
is splitted into two, one for each spin polarization, when the spin-orbit in­
teraction is turned on. The subscripts u and f denote orbits. unfavoured and 
favoured in energy by the spin-orbit force, respectively. Observe that (4, l)u 
and (7, l)r are not fully resolved. 

Figure 8: Fourier transforms for a superdeformed potential, J.t = 1.6 without 
spin-orbit interaction and with a realistic spin-orbit interaction, TJ = 212 and 
aso = 1, as thin and thick lines, respectively. All levels below k = 50/ Ro are 
included and the exponent in equation (35) is q = O. The thin peak comes 
from a bowtie like family of planar periodic orbits with hyperbolic caustic 
for which the vector B changes orientation 1800 twice a period. This process 
is too fast for the spin which then changes polarization. Thus the thick line 
does not show two peaks. The peak position remains essentially fixed but 
the height and phase of the Fourier transforms change. 

Figure 9: Fourier transforms for a superdeformed potential, J.t = 2.0 without 
spin-orbit interaction and with a spin-orbit interaction, TJ = 792 and aso = 
1, as thin and thick lines, respectively. The exponent in equation (35) is 
q = o. The thin peak is due to a non-planar orbit for which the motion 
of the vector B is intermediate between the cases shown in figures 2 and 3. 
This orbit bifurcates from the pentagram orbit in the equatorial plane at 
J.t ~ 1.6. Despite that , ~ 1 two peaks are seen for the thick line when 
the spin-orbit interaction is turned-on. This shows that indeed the spin can 
follow the vector B. 
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