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Abstract 

QeD-evolution of the parton distributions in nuclei is studied by using distributions 

at an initial scale Qo = 2 GeV which conserve baryon charge and momentum. Two 

different Ansatze for shadowing of gluons are considered. The main conclusion in both 

cases is that shadowing of gluons vanishes much more rapidly with increasing scales Q 

than shadowing of quarks and antiquarks. We also find that antishadowing of gluons 

for x ~ 0.1 is likely to be limited to :S 20 %. As an application, we compute the 

average inclusive one-jet cross sections in pA and AA collisions at Vs = 200 and 6500 

GeV for A = 196. 
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1. Introduction 

In PP and pp collisions at very high energies, VB ~ 200 Ge V, semihard QCD-
. processes producing minijets, i.e. gluons and (anti)quarks with momentum transfer 
Pr ~. Po '" 2 Ge V, become increasingly important. This is seen e.g. in the rapid rise 
of the total inelastic cross sections and in particle multiplicities [1-3]. With increasing 
energy, information on parton number densities at smaller and smaller x's is needed. 
For instance, to produce two back-to-back gluon-jets with transverse momentum Pr '" 
2 GeV and rapidity y = 0, typically involves partons with x = XBj = 2Pr / VB = 0.2, 
0.02, 6 . 10-4 for 'VB = 20, 200, 6500 Ge V, respectively. 

The growing importance of semihard processes, in the form of copius produc­
tion of minijets, is also expected to happen in ultrarelativistic heavy ion collisions 
at VB ~ 200 GeV /nucleon [3,4]. Most of the produced 2 GeV minijets are gluons, and 
these gluons are expected to contribute significantly to the pre-equilibrium transverse 
energy densities [3,4] at very high energies. Gluonic minijets may also be important 
for reaching thermal equilibrium as rapidly as possible [5] to increase the chances of 
forming a quark-gluon-plasma. The initial temperature is crucial for the rates of ther­
mal photons and dileptons [6]. Thus, it is clear that the initial nuclear gluon structure 
9A(X, Q2) at small x and scales Q '" Po must be well known to estimate energy densities 
and temperatures in AA collisions. 

In pp collisions at VB . 200 Ge V minijets with Pr ;S 5 Ge V are very difficult 
to observe due to large multiplicities [7], and in ultrarelativistic heavy ion collisions 
the situation will be even worse. However, jets with larger PT may be observed. For 
computing of inclusive Pr-distributions of jets, it is essential to know the parton distri­
butions in nuclei, f A(X, Q2), at scales Q '" Pr. Also predictions for other observational 
quanta which are produced in hard processes of nuclear partons, such as direct pho­
tons, primary dileptons and bound states of heavy quarks, require information of the 
parton distributions in nuclei at higher scales than Q '" Po. 

In deeply inelastic lepton-nucleus scattering experiments it has been observed that 
there are significant nuclear modifications to the distributions of quarks and antiquarks 
in free nucleons [8-14]. This means that parton distributions in a nucleus A are not 
simply given by Ii/A(X, Q2) = AIi/N(X, Q2), where Ii/N(X, Q2) is the probability of 
finding a parton i with a momentum fraction x of the momentum of the nucleon N. 
The scale Q is the momentum scale up to which the parton has QCD-evolved. In these 
experiments the electromagnetic charge content of quarks and antiquarks in a nucleus, 
described by the structure function F.f(x, Q2), is probed via a virtual photon. The 
deep inelastic lA cross sections are proportional to F.f(x, Q2), and the ratio F.f / AFf 
provides us direct information on the nuclear modifications to the quark and antiquark 
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distributions in nuclei. According to the measurements of the ratio ~ Fl I !FP there 
is a clear depletion from unity at x ;S ,0.1 (shadowing) [12-14], and at 0.3 ;S x ;S 0.7 
(EMC-effect)[S-13]. An increase in this ratio occurs at 0.1 ;S x ;S 0.3 (antishadowing) 
and at 0.S5 ;S x ;S 1 (Fermi motion) [10,13]. 

Experimentally, it is observed that shadowing in the F2-ratio does not vanish when 
the scale Q2 is increased from 1 - 2 GeV2 up to 10 GeV2 [13,14]. Theoretically, it 
was shown by Qiu [15] that solving the Q2-evolution of the parton densities from the 
modified Altarelli-Parisi equations [16] leads to the same conclusion. Since quarks and 
antiquarks have this property, it might seem natural to assume that also gluons would 
behave in the same way with ,increasing Q2, that is, that even at higher scales, like 
Q2 "" m~ "" 100 Ge V2

, one might expect to have strongly shadowed gluons. In this 
paper we show that in fact the Q2-evolution, i.e. the QCD-evolution of the gluon 
distributions in nuclei is most likely significantly different from that of the quark and 
antiquark distributions. The main conclusion of this study is that shadowing of gluons 
vanishes much more rapidly with increasing Q2 than shadowing of quarks and anti­
quarks. This should not be neglected when making predictions for the hard processes 
in high energy hadron-nucleus and nucleus-nucleus collisions which involve gluon dis­
tributions at higher scales than Q = 1 - 2 Ge V. Examples of these kind of processes 
are jet and direct photon production, where Q is basically the transverse momentum 
exchange between the partons involved, J IiI! and'll' and certainly T production, where 
Q is the mass of the produced bound state, as well as heavy quark and Drell-Yan dilep­
ton production at high invariant masses, where Q is represented by the invariant mass ' 
of the pair. 

In section 2 we describe how we incorporate the NMC and SLAC deep inelastic 
lepton-nucleus data for ~ Fl I !FP [14,10], the E772 data for dilepton production [17] 
in pA vs. pD collisions and the baryon charge conservation sum rule to determine the 
valence and sea quark distributions in nuclei at an initial scale Qo = 2 GeV, motivated 
by the analysis of ref. [IS]. The main problem with the gluon distributions is that 
there is no direct data for the distributions. What we can actually determine, without 
using or developing any detailed model for the reduction of the gluon densities at Q~, 
is only the total momentum carried by the gluons. In spite of many attempts [18-21] 
there does not seem to be any conclusive model from which gluon shadowing could be 
rigorously predicted. Therefore, we consider two different Ansatze for 9A(X, Q~). For 
Ansatz 1, we assume that shadowing of gluons and the ratio ~Fl/!FP are identical. 
For Ansatz 2, we assume an extreme gluon shadowing, motivated by recent provocative 
analysis of J I'll and iI!' production in pA and 7r A [22]. 

In section 3 we plug the parton distributions at the initial scale into the modified 
Altarelli-Parisi equations, derived by Mueller and Qiu [16]. We then solve the equations 
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numerically, following footsteps of Qiu [15], to obtain the QCD-evolution towards larger 
scales Q2. In this section we present the results in form of the ratios of the parton 
distributions in a nucleus vs. free nucleons. We also show that the mainline of QCD­
evolution in the Q2-range from 4 GeV2 to 100 GeV2 is given by the 'traditional' 
Altarelli-Parisi equations [24]. Finally, in section 4, -we give an application of the 
obtained scale-dependent parton distributions to the one-jet inclusive cross sections in 
pA and AA collisions at -JS == 200 and 6500 GeV. Other observational consequences . pp 
of the QCD-evolution of the scale dependence of nuclear gluon structure are discussed 
in section 5. 

2. Parton distributions at an initial scale Q5 

When determining parton distributions in heavy nuclei we are faced with a three­
variable problem. In a nucleus A at each fixed momentum scale Q2, nuclear modi­
fications to the parton distributions are functions of x. Then we have to deal with 
different momentum scales Q2, in other words, with QCD.,evolution towards higher 
scales. These two variables are present already at the nucleon . level, in the nucleus 
level the third variable is the mass number A: we have to know the behavior of the 
parton distributions with increasing A also, since our ultimate goal are the parton 
distributions in heavy nuclei with A '" 200, like gold (196), lead (209) or uranium 
(238). 

Let us begin our analysis from the deep inelastic lepton-nucleus scattering. In one­
photon exchange approximation, the differential cross section per nucleon of a deep 
inelastic charged lepton scattering from an unpolarized target A is given by 

(1), 

where the standard deep inelastic variables are x = XBj = Q2 /(2Mv), y = vIE with 
E being the incident lepton energy and v the energy difference between the incident 
and scattered lepton in the laboratory frame. The squared 4-momentum of the virtual 
photon is denoted by q; = _Q2, the free mass of a nucleon in the target A by M and the 
ratio of the longitudinally and transversally polarized virtual photon absorption cross 
sections by R(x, Q2). Now, if it is assumed that the ratio R(x, Q2) does not depend on 
the mass number A of the target, the ratio of cross sections (1) for the nucleus A and 
_D( A = 2), gives directly the ratio of the structure functions, ! Ff It FP. Experimental 
results for this ratio, as measured by NMC in p,A collisions with 200 GeV muons [14] 
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and by SLAC in eA collisions with 8-24 GeV electrons [10], are shown in figs. 1 for 
12C and 40Ca. 

In the QCD-improved parton model the electromagnetic structure function of the 
nucleons in the target A takes the form 

~ F2A(x, Q2) = L [xqi/A(X; Q2) + xiji/A(X, Q2)] (2) 
i=fla.vors 

where we have neglected the target-mass corrections [23] and the corrections due to 
MA =I AM. Here x is the momentum fraction which a massless parton carries of the 
total momentum of the nucleus in a frame where the nucleus is moving very fast. The 
quantity qi/A(X, Q2) is probability of finding a quark of flavor i with a fraction x of the 
total momentum of a nucleon in target A. In this context the scale Q is the momentum 
scale up to which the parton has evolved by emitting QCD-quanta. In principle, if the 
parton distributions can be determined at some initial scale Qo, the evolution in Q2 is 
predicted by perturbative QCD [24,16]. 

For a nucleus A with Z protons. the structure function F,f(x, Q2) can be written as 

F,f(x, Q2) = ZFf/A(x, Q2) + (A _ Z)F2
n/A(X, Q2) 

1 1 (3) 
. = A'2 [Ff/A(x, Q2) + F2n/A(x, Q2)] + '2(A - 2Z) [Ff/A(x, Q2) _ F2n/A(x, Q2)], 

where Ff,n/A are the structure functions in protons and neutrons of the nucleus, re­
spectively. We define the valence quark distributions (in free protons as well as in the 
protons of the nucleus) Uv and dv by , 

u(x, Q2) = [u(x, Q2) _ u(x, Q2)] + u(x, Q2) = uv(x, Q2) + u(x, Q2) 

d(x, Q2) = [d(x, Q2) _ (l(x, Q2)] + (l(x, Q2) = dv(x, Q2) + (l(x, Q2). 
(4) 

In addition, we shall assume that the antiquark sea is flavor symmetric, i.e. u(x, Q2) = 
(l(x, Q2) = sex, Q2), and, that sex, Q2) = sex, Q2) both in free and bound nucleons. In 
fact, it is probable that, in a nucleus, seaquarks and sea-antiquarks may have different 
interactions with the probing photon, and therefore slightly different distributions at 
small x [25]. Since the net charge and the net strangeness of sea must vanish, we 
expect this difference to be small enough so that we .can neglect this complication in 
the present analysis. With these approximations the ratio of the structure functions 
of a nucleus A and deuterium becomes 

RA (x Q2) = -5r F,f(x, Q2) 
F 2

, tFP(x, Q2) 

= 5VA(x, Q2) + 4SA(X, Q2) 3(1 _ 2Z) d~(x, Q2) - u~(x, Q2) 
5V(x_, Q2) + 4S(x, Q2) + A 5V(x, Q2) + 4S(x, Q2)' 

(5) 

4 

.. 



,-

" 

where the deuterium is considered as twice an average free nucleon, D = p + n, the 
valence distributions are defined as 

(6) 

and the sea distributions as 

(7) 

Neglecting of nuclear effects in deuterium is justified since it has been shown that e.g. 
shadowing in D is at 'most a few per cents [26]. 

Let us next determine the valence and sea distributions in isoscalar targets. At 
the moment there are several different models which ,are successful in describing the 
data for 1 Fl / !FP, separately in different x-regions (shadowing [18-21, 29,30], EMC 
effect [31]). However, there is no unique model, and since none of the models covers 
reliably the whole x-range, we do not want to stick to any particular model at this 
point, but rather try to see what could be inferred directly from the measured data. 
Therefore, we first parametrize the deep inelastic lepton-nucleus data of NMC [14] and 
SLAC [10] for the F2-ratio (see fig. 1) in the somewhat complicated form described 
in Appendix. As shown in eq. (AI), we expect the shadowing modifications to R~2 
to behave as Al/3 - 1, whereas the A-scaling of the EMC-region is determined from 
the extensive SLAC data which reaches up to Au. We want the distributions at a 
lowest scale Qo which is still perturbative. The distributions at this scale will then 
serve as an input data for the QCD-scale-evolution (cf. next section). We shall use 
Qo = 2 GeV, since this is the lowest scale one can use when applying the parametrized 
parton distributions of Duke and Owens [32], and it satisfies the requirement of a 
perturbative scale [1,2,16,33]. Typically, for the measured points at small x the scales 
are less than 2 GeV, and at x~, 0.3 they are higher than that. However, the scale 
dependence of the ratio R~2(X, Q2) is experimentally observed to be very weak [13,14]. 
Therefore the choice of the initial scale should not have an essential effect in what 
follows for quarks and antiquarks. For brevity, let us define the ratios of valence, sea 
and gluon distributions of protons in a nucleus vs. free proton by 

(8) 

Besides the deep inelastic lepton data and eq. (5), we have the baryon charge 
conservation sum rule to restrict the valence quark distribution in nuclei, as pointed 
out in ref. [18]: ' 

(9) 
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From eq. (5) we see, that R"ff.2 ~ R¢ at large x for an isoscalar nucleus. At very small 
x we have R~2 ~ R~, since at the limit x --+ 0 eq. (9) gives x VA --+ O. The baryon' 
charge conservation immediately rules out the naivest guess that R" could be the same 
as R"ff.2 also at the small-x region: about 20% of the total baryon charge would then 
be missing for 40 Ca, if R¢(x) = R~2 (x) at all x. 

To proceed, we need further restrictions for the antiquark distribution. This is 
provided by 'the Drell-Yan cross sections at large XF. In fig. 1 we display the ratio 
for Drell-Yan lepto~ pair yield in 40Ca per nucleon versus the yield in deuterium as 
measured by the E772 pA experiment with 800 Ge V protons [17]. This ratio, at 
relatively large XF, gives direct information on the ratio of the anti quark content of a 
nucleus vs. deuterium. This is easy to see by writing down the lowest order result for 
the ratio of the differential cross sections per nucleon for Drell-Yan pair production in 
pA versus pD: 

[
1 dO"b-t ] [1 dO"b~ ] -1 _ 

A dxFdM2 . 2 dXFdM2 

{ R~(X2' M2) . [5V(Xl' M2) + 4S(xI, M2)] S(X2' M2) + RV(X2' ~2) . 58(X1' M 2) . 

. V(X2, M2)} . { [5V(x" M2) + 4S(X1, M2)]S(X2' M2) + 5S(x" M")V(X2, M2) } -1, 

(10) 
where X1,2 = ~(Jx} + 4M2/s ± XF), with M the invariant mass of the lepton pair 
and VB the hadron-hadron CMS energy. In (10) we used the same approximations and 
definitions as described above and expressed the ratio for an isoscalar target. At large 
XF (x F ~ 2M/VB) the first term in the nominator clearly dominates, and the ratio 
(10) gives directly R~(X2) . 

. Since no clear antishadowing is seen in the E772 data, we assume that R~ rv 1 
at 0.08 ;S x ;S 0.3. Clearly, the data is not conclusive at x ~ 0.15, and we don't get 

. experimental information on the sea distributions in this region from the SLAC data 
since R"ff.

2 
is dominated by valence distributions. Therefore we simply assume that R~ 

coincides with R"ff.
2 

at x ~ 0.3. In practice, in all the applications we are interested in, 
antiquark distributions at large x do not contribute, and have a negligible contribution 
to the total momentum, too. 

Now, we can use ou~ parameterization (A 1) of R"ff.
2 

to determine R~ and R~: the 
missing antishadowing in Rf results an excess in R~ with respect to R"ff.

2 
around 

x rv 0.1. Then the baryon charge conservation rule (9) forces .. Rv to be. much-less 
shadowed than R~, as seen in fig. 1, which in turn determines R~ at small x from eq. 
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(5). For RC. at small x we use the form of the parameterization (AI) with adjusted 
parameters. At this point we do not agree with ref. [18], where the shadowing of 
valence quarks is claimed to be stronger than shadowing of seaquarks at very small x. 
The physical reason for the smaller shadowing of valence quarks is, as far as we can 
see, simply the smaller number densities at small x. In the recombination explanation 
of shadowing [20] the corrections to the parton distributions should be proportional to 
the distributions of recombining partons, and, at small x the valence quark densities 
are far less thail the corresponding seaquark densities. In addition to this, antiquarks 
reflect also the shadowing of gluons. Furthermore, it should be kept in mind that the 
division of the quark-distribution into valence and sea (eq. (4)) is somewhat artificial; 
our result simply implies that quarks are less shadowed in a nucleus than antiquarks, 
which seems like a natural consequence of the production mechanism of antiquarks 
from gluons and interactions with them. 

We get quite a good harmony between the NMC and SLAC lA data for R~2' E772 
Drell-Yan pA data for R-t, combined to our parameterization of R~2' eq. (AI), and 
to the baryon charge conservation (9), as seen in figs. 1a and b. According to eq. 
(5) in non-isoscalar targets the correction term due to difference in the numbers of 
protons and neutrons is small: at very small x it vanishes, and at larger x, for e.g. 
A=196, the relative contribution is at most a few per cent. We therefore neglect the 
correction term in eq. (4) and extrapolate from A = 40 up to A '" 200 by using the 
parameterization (AI). Ratios of the parton distributions in a gold nucleus are shown 
in figs. 2 and 3 (the lines with Q=2 GeV). In theses figures, we have also displayedthe 
ratio R-t from the E772 Drell-Yan data in pW and the ratio R~2 from the SLAC deep 
inelastic scattering data in eAu collisions. The extrapolation to heavy nuclei seems to 
work well for the seaquarks also. To further test applicability of our parameterization, 
we have checked e.g. that while the baryon charge is conserved for 40 Ca, it is still 
conserved within 3.5% when extrapolating to A = 196. 

In the following, let us move on to gluons in nuclei. Using the momentum conser­
vation sum rule, again as stressed in ref. [18]: 

1 ' 

1 = 1 dx [x VA(x, Q2) + XSA(X, Q2) + xG(x, Q2)] 

. = 11 dx [x vex, Q2) + xS(x, Q2) + xG(x, Q2)]. 
(11) 

We can now compute the proportion of the total momentum that is carried by gluons 
at the initial scale Qo = 2 GeV. We find that gluons carry 2-3% more momentum in 
40Ca (about 4% in 196 Au) than they do in a free proton. 
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If there were no x-structure in the ratio R~ at all, there should be a horizontal line 
at 1.02 at fig. lb. However, most probably this is not the case, but also gluons exhibit 
nuclear modifications besides the small amount of momentum flown from quarks and 
antiquarks into gluons (see also discussion). None of the present models [18-21] is 
capable to reliably predict the exact amount of shadowing of gluons as a function of 
x (at Qo), not to mention the mid-x region b~havior of R~. Further c.omplication is 
that there is no such direct experimental data for the ratio R~ as there exists for R~2 
and R~. Therefore we wish to treat two possible Ansatze for the gluon distributions 
at the initial scale. 

In the first Ansatz for gluons we assume that gluons are shadowed by about the 
same amount as the ratio R~2. This fulfills the plausible expectation that R~ ~ R~ 
at small x [15,20]. Since seaquarks are produced by gluons their shadowing should 
be of the same order as of gluons. In addition, seaquarks may recombine with gluons 
and antiquarks, i.e. they have an additional mechanism for suppression, and therefore 
they should be more shadowed than gluons. The assumption R~ ~ R~2· at small x 
is also in agreement with the claims in refs. [18,19], as well. We want to consider 
the simplest possible case for gluons, i.e. we assume that all the momentum what is 
missing at small x is evenly distributed into the region of larger x. Strictly speaking 
this is of course not quite true, since near x '" 1 the ratio R~ should shoot up anyway, 
because of the zero-gluon-density in a free proton. But, again, from our point of view 
this is not an essential point, since the large-x region does not practically contribute 
to the momentum conservation, nor to the perturbatively calculable hard processes. 
Consequently, this simplification is accurate enough an approximation for our purposes, 
and does not affect the main line of this study. The gluon ratios R~(x, Q5) obtained 
in this way are shown in figs. 1. 

In the second Ansatz for gluons we make use of the E772 data on J /'I! and 'I!' 
production in pW collisions [34] and the NA3 data on J/'I! production in 7rA and pA 
collisions [35]. As discussed in ref. [22], for Xp ;S 0.4 the cross sections of producing 
J /'I! and 'I!' are strongly dominated by the gluon-gluon fusion, and therefore the ratio 
of the cross sections of e.g. J /iI! production in pA vs. in pD describe R~(X2' M'J 1'11) 
with corrections less than 10% in this x-region, if all the final state interactions of 
the produced heavy-quark pair can be neglected. Following ref. [22], we convert the 
measured ratios of the yields in heavy nuclei vs. deuterium for J /'I! and 'I!' resonances 
with x F ;S 0.4 into functions of xr' = ~( vi x} + 4M2 / s-xp). The converted datappints 
are shown in fig. 3a. It should be noticed, that in this way we get information on the 
gluon distributions in nuclei only at Q '" MJI'I1 '" 3 GeV, i.e. not at our lower initial 
scale Qo = 2 Ge V (this point will be clarified in the next section where the scale 
evolution is discussed). However, since the errorbars of the data for 'I!' are relatively 

8 



large, and since final state effects of the resonances were neglected, we let the data 
only be our guide, and we draw the gluon ratio at small x as shown in fig. 3a by the 
line with Q = 2 GeY. Conservation of momentum, eq. (11), causes the excess again at 
larger values of x. By claiming that gluons could be this strongly shadowed, we have 
to give up the expectation that R~ ~ R~ at small x and at relatively low values of 
the scale Q2. The Ansatz 2 is thus an extreme case for gluon shadowing. 

3. Scale evolution of the parton distributions in nuclei 

Next thing to worry about, after determining the parton distributions in nuclei at an 
initial scale Q5, is their QCD-evolution towards higher values of Q2. In the case of free 
protons, this can be obtained from perturbative QCD, in form of the Altarelli-Parisi 
(AP)-equations [24]. In nuclei, however, the evolution is not just independent emission 
of QCD-quanta from A nucleons, but there are several recombination processes· to 
reduce the number of partons in nuclei at small x as discussed in detail in ref. [16]. 
Mueller and Qiu [16] have calculated the recombination probabilities for gluons to 
go into gluons or into quarks in the low density limit (Q ;::: Qo '" 2 GeY), resulting 
modification terms to the 'usual' AP-equations of seaquarks and gluons. However, 
also in the case of nuclei, the mainline of QCD-evolution is given by the traditional 
AP-equations, as will be seen. 

For the ratio R"ff,2' evolution in Q2 should be quite slow, which is evident from the 
data [13,14]; R~2 does not alter .very much when the scale is increased from Q2 = 

1 Gey2 to Q2 = 10 Gey2. This was confirmed by Qiu in ref. [15]. On the other 
hand, we know from the AP-scale-evolution of the parton densities in a free proton 
that there is a momentum flow from quarks and antiquarks into gluons, as well as a 
change in the number densities of partons towards smaller x's when Q2 grows. The 
same QCD-evolution happens also in nuclei: momentum is flowing into gluons, and 
the gluon distribution becomes more peaked at low x. Can momentum conservation 
anymore hold if R~ does not change at higher scales? Even if quarks and antiquarks 
may maintain roughly the same ratios R~ and R~ with increasing scale it is not at all 
obvious that this should apply for gluons as well. In the following, we shall see that, 
indeed, R~ beha.yes differently from R~2. 

The modified AP-equations [16] were first solved numerically by Qiu [15], but at 
that time there was not as high precision data available as we have today, and realistic 
determination of the parton distributions at an initial scale was fairly impossible. Since 
~ow we believe we have relatively good control over the parton distributions at Qo, 
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except for the gluons, it is a meaningful task to solve the (modified) evolution equations 
numerically again and report the results as ratios R~(x, Q2), R~(x, Q2) and R~(x, Q2) 
and compare the ratio R"'ff.

2 
to the one obtained from the deep inelastic lepton-nucleus 

data. 

In the following"we write down the lowest order QeD-evolution equations in terms 
of the splitting functions Pij [24] and take the MQ-modification terms from ref. [16]. 
As done in ref. [15], also we write down the equations separately for flavor nonsinglet 
part XVA, flavor singlet sea part XSA and gluons xG4: 

(12) 

(13) 
2 O 2 Q s ( Q2 ) t dy [ { " 2 2 } 

Q OQ2 xG A(X, Q ) = 211" lx 11 ZPgq(z). yVA(y, Q ) + ySA(Y, Q ) 

-A 
+ ZPgg(z) . yG A(y, Q2)] - ~2 ngg-+g(x, Q2), 

(14) 

h / d -A 9 A were Z = x y an n2 = 8" 71" R~ , 

(15) 

n(l) (x Q"2) = 4a;(Q2)Tf 1l" [~N2 _~] [ G ( Q2)]2 
gg-+q' N(N2 _ 1) 15 5 x A x, (16) 

n(2) (x 'Q2) ~ _ 2Qs (Q
2
)Tf 11 dy - () GHT( Q2) gg-+q' - ZiFG Z YAY, 

11" x y 
(17) 

where Tf = t, CA = N = 3, 'YFG(x) = -2x + 15x2 - 30x3 + 18x4 and 

"(18) 
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For the higher dimensional gluon input distribution at the initial scale we have 

used an ansatz xG~T(x,Q5) = [xGA(x,Q5)]2 of ref. [15]. As discussed by Qiu, this 
function is basically uncalculable, but its effect relatively small as compared to the 
leading AP-terms, and does not have a crucial effect to the final results. We consider 
only light quarks, so we solve the eqs. (12-14) ~ith Nf = 3. 

First we solve the full evolution equations above for partons in free protons and 
partons in protons of a nuclei. In figs. 2 and 3. we show the obtained ratios R~(x, Q2), 
R~(x, Q2) and R~(x, Q2) as well as R#2 (x, Q2) for A = 196 in the two Ansatze we 
have for gluons. We have plotted the results at Q = 2, 3,5, 7 and 10 GeV. As expected, 
we confirm the results of Qiu about the very slow vanishing of shadowing for the ratio 
R#2: both in fig. 2c and 3c the difference between the curves with Q = 2 Ge V and 
Q = 3 GeV is small. The curves for 40Ca are not shown but we have checked that 
the scale evolution in the ratio R~: from Qo = 2 GeV toQ = 3 GeV indeed is slow 
enough to agree with the measured data [14]. We conclude that the scale evolution 
of R~2 falls well inside the errorbars of the NMC-data [14] at respective scales in the 
experiments (Q2 = 0.5-10 GeV2 at the shadowing region). In addition, from fig. 3 we 
see that the more shadowed gluons are, the slowlier does the shadowing in the F2-ratio 
vanish. The physical reason for this is simply that since there are fewer gluons filling 
up the small-x region, there are also fewer sea-quarks produced in the same region, so 
the filling of the seaquark-shadowing region is thereby slower. 

To check the effect of the MQ-modifications, we solved eqs. (12;,.14) also without 
the f'V 1'4/Q2 terms. The results are shown in figs. 4. We find that, e.g. for A = 196 
at Q = 2-10 GeV, the AP-equations alone describe the QCD-evolution with accuracy 
of 6-7% when the Ansatz 2 for gluons is considered. However, the MQ-modifications 
drive parton distributions towards slower Q2-evolution, i.e. towards the trend observed 
experimentally for R~2. 

Our picture seems to be consistent also with the E772 Drell-Yan data [17], since 
the scales in that experiment were somewhat higher (Q = M ~ 4) than our initial 
scale: when Q2 is increased from 4 GeV2 to 16 GeV2

, we get even better fit to' the 
shadowing part of the E772 data, as seen in figs 2-3. 

Nonvanishing of shadowing in the valence quark distributions at very small x can 
be understood as follows. We can analytically solve from eq.(12) 

Q2 aR~(x, Q2) Q2 ax VA Q2 axV 
R~(x, Q2) aQ2 - xVA(x, Q2) aQ2 - xV(~, Q2) aQ2 

2G s 1 ,r1 
1 + (x/y)2 [R~(Y, Q2) 1 2 

= 311" V(x, Q2) ix dy y _ x R~(x, Q2) - 1 V(y, Q ), 

(19) 
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where we used the expression 

(20) 

for the quark-quark splitting function [24]. The integration gives a finite number at 
each x, and thus 8Rv(x, Q2)/8Q2 --+ 0 when x --+ O. 

So, we have been able to show that the three data sets we have used (NMC, SLAC 
deep inelastic scattering, E772 Drell-Yan production) and our parameterization of the 
ratio R~2 are comparable, and to confirm the results by Qiu. What is not report~d 
before, though very probably computed already by Qiu, is the different behavior of the 
ratio R(j(x, Q). As seen in figures 2-4, gluons exhibit a clear diminishing of shadowing 
when the scale is increased from Q2 = 4, GeV2 to 100 GeV2

• The conclusion is the 
same with both Ansatze for gluons we have, both for (OCa and 196 Au: shadowing of 
gluons vanishes more rapidly than shadowing of quarks and antiquarks. Note that in 
spite of our somewhat naive initial distributions for gluons, the evolution equations 
rapidly give us more realistic distributions at higher scales, i.e. we get a rapid rise at 
x "'"' 1, and a bump is formated into the mid-x region. ' 

Clearly, based simply on the conservation of momentum and the QCD-evolution in 
free protons, we can understand the result for gluons: if the ratio R(j the mid-x region 
remains roughly the same at higher scales, and if at the same time more momentum is 
flowing into gluons from quarks and antiquarks, there has to be a rapid rising of the 
ratio R(j in the shadowing region. In fact, we should be able to predict the behaviour 
of R~ and R(j already from the usual AP-equations which govern the QCD-evolution, 
as verified in figs. 4. Let us therefore consider the following case analytically. For 
simplicity, we consider 'shadowing of the flavor singlet distribution, 

and define R~(x, Q2) ~A(X, Q2)/~(x, Q2). Then, proceeding as in eq. (19) we 
obtain from the usual AP-equations for gluons 

Q2 8R(j = Q S 11 dY{zp (z)[R~(Y,Q2) -1] y~(y,Q2) 
R(j 8Q2 27r x Y gq R(j(x, Q2) xG(x, Q2) 

[
R(j(y, Q2) ] yG(y, Q2) } 

+ ZPgg(z) R(j(x, Q2) - 1 xG(x, Q2) 

(22) 
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and for the singlet 

(23) 

where again Z = x/yo For the sake of argument, let us make the simplifying approxima­
tion that at the initial scale R~(x, Q5) ~ Rt(x, Q5) ~ K~8(XA -x )+RA(X )8(x -XA), _ 
where x A is some small value of x after which the ratios are constants, K ~ is the depth 
of shadowing in this saturation region, and RA (x) is some function describing the ra­
tios at larger x's. Let us consider the derivatives at the initial scale Q2 = Q5 and at 
a region where x < XA. Then we get rid of the c5-functions in Pqq and in Pgg and eqs. 
(22) and (23) become simpler, 

= as t dy [RA(y) -1] {Zp (z) y~(y, Q5) + zp (z) yG(y, Q5)} 
27l" JXA y K~· gq xG(x, Q5) gg xG(x, Q5) 

(24) 
and 

]{ ( ) Y~(Y,Q~) N P ( )YG(Y,Q5)} 
1 ZPqq Z x~(x, Q5) +2 jZ qg Z x~(x, Q5) . 

(25) 
Notice that now the lower limit of the integrations is XA. The splitting functions are 
expressed in the '+'-prescription [24], and the integrands vanish at the limit y -+ XA 
since the term RA(y)/ K~ -1 gives zero. In the limit x -+ 0, at all y ~ XA, the splitting 
functions behave as follows (z = x/y): 

2 

ZPgq(z) '" 1 + (1 - z) -+ 2, ZPgg(z) '" _z_ + (1 + z2)(1 - z) -+ 1, 
l-z 

z(1 + z2) 
ZPqq(z) '" -+ 0, zPqg(i) '" z3 + z(l-'- z)2 -+ 0, 

1- Z . 

(26) 

At the initial scale xG(x, Q5) and x~(x, Q~) are finite at this limit, and we get thethe 
expected result, 8R~/8Q2 ~ 8Rt/8Q2 at small x. We thus conclude that already 
from the unmodified AP-equations one can obtain the result that shadowing for gluons 
vanishes more rapidly at low values of Q2 than it does for quarks and antiquarks. 

13 



4. In~lusive I-jet cross sections in pA and AA collisions 

As an example of various applications of parton distributions in nuclei, we consider 
inclusive l-(mini)jet production in pA and AA collisions at very high energies. The 
inclusive differential cross section per nuclen-nucleon collision for producing one jet, 
with transverse momentum PT and rapidity Y = 0, in a collision of A and B, is given 
in the lowest order perturbative QCD by the u, i -symmetrized formula [36]: 

where, since Y = 0; the kinematical variables are 

Xl = P;"(l + e±Y2), Yo = In( ..;slpT - 1), 
2 yS 

(27) 

(28) 

The hats refer to parton-parton sub collision and Vs is the CMS energy of a hadron­
hadron subcollision. The cross sections of the eight different subprocess ij --4 kl which 
contribute to the cross section are denoted by a- ij -+k1 = 1. d~ ij-+kl and they can be 

. , 7!" dt' 
found e.g. in ref. [37]. The number density of a parton i in A is denoted by Ii/A. 
The cross section (27) is an average quantity, i.e. it is considered as averaged over the 
impact parameter between A and B. Cross sections and parton distributions which 
depend on the impact parameter have been discussed in refs. [38]. 

We want to express the formula (27) in a form from which we can see the effect of 
the modification functions, defined as Rt(x, Q2) = Ii/A(x, Q2)1 fi(X, Q2). Therefore, 
we divide the -integration into negative and positive Y2. In the negative Y2-integrand 
we change Y2 --4 -Y2 and use the property XI,2( -Y2) = X2,1 (Y2), s( -Y2) = S(Y2), 
i( -Y2) = U(Y2) and u( -Y2) = i(Y2). Then, by changing the indices i +-+ j, and using 
a-ji-+k1(s,u,i) = a-ij-+k1(s,i,u), we get the common factor a-ij-+k1(s,i,u) and eq. (27) 
becomes 

(29) 
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It is perhaps illustrative to express the jet production cross section also as an integral 
over the variable Xl, then we explicitly see which x-range of the parton densities the 
jet and minijet production probes: 

9,11,9 

(30) 

where Xo = 2PrI.jS and X2 = xI/(xI.jSIPT -1). 

Most of the cross section (30) is due to the gluonic subprocess gg -+ gg. Obviously, 
the differential cross section is also peaked around Xl '" X2 '" Xo. Since X2 changes in eq. 
(30) from Xo to 1/( .jSIPr -1) ~ Pr 1.jS, gluons at X2 come always from the shadowing 
region, if PT is sufficiently low and .jS high. Therefore, it would be a tempting idea 
to use jet production to measure shadowing of glupns also. However, if the results of 
this paper are correct, as we expect, the scale evolution of gluon distributions seems 
to make it rather unlikely that jet production in pA or in AA could be used for that 
purpose at .jS '" 200 Ge V. This is indicated in figs. 5, where we show the cross section 
(30) versus PT at .jS = 200 GeV in the two scenarios we have for gluons. 

Let us consider more closely jet production in for example pA collisions. In eq. (30) 
we substitute R: = 1. In the minijet production region (PT '" Po '" 2 Ge V) the effect 
of shadowing could be seen if one were able to detect the minijets. Unfortunately, 
already in pp collisions it is hard to find any jets below PT < 5 GeV due to large 
multiplicities [7], and in case of a nucleus the situation is even worse. In fig. 7 we have 
illustrated the effect of increasing PT of jets. The diamonds (triangles) mark the lowest 
values of Xl in the integration of eq (30) at at each Q = PT, and at the same time 
the regions where the integrand in (30) is peaked (larger Xl'S contribute also, since 
we have to integrate over all Xl'S). Moving towards larger PT increases x's as well, as 
seen in the figure. We see that for .jS = 200 GeV, even if gluons at Q = Pr- = Po are 
strongly shadowed, the observable jets with PT ~ 5 GeV are practically not anymore 
suppressed. This is reflected to the ratio of the cross sections in fig. 5a and b. In AA 
experiments the transverse momenta of observable jets are most probably higher than 
5 GeV, which means that we move further away from the shadowing region of gluons. 

For Js = 6500 GeV, see fig. 6, the situation may be different, since then typically 
X '" 0.0015 when PT '" 5 GeV, and gluons should still be clearly shadowed (see also 
figs 2-4 and 7). Unfortunately enough, at the LHC one will not be able to dopA 
experiments. A word of caution is perhaps appropriate in here. A bold extrapolation 
from .jS = 200 Ge V to 6500 Ge V by using Duke-Owens distributions and the ratio~ 
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of figs. 2-3 may not be quite correct: at extremely small x one expects shadowing of 
gluons to take place already in protons [39]. However, at Vs = 200 GeV we are mainly 
not probing such small x's, and hence the prediction presented here is more reliable 
for the RHIC energies. 

As a conclusion, we state that unless gluons are a lot more shadowed than in 
our Ansatz 2 (fig. 3a), it will most probably be very difficult to measure shadowing 
of gluons with the in:clusive I-jet production in pA or in AA at Vs =200 GeV. 
Consequently, we would like to stress that even if one would not observe any shadowing 
(of gluons)via the jet production at RHIC (or even at LHC), one should not draw the 
conclusion that there would not be a possibly strong shadowing of gluons at lower 
momentum scales. 

5. Discussion 

In this paper, we have studied QCD-evolution of parton distributions in heavy 
nuclei with distributions constrained to conserve both baryon charge and momentum. 
The parton distributions at an initial scale Qo = 2 GeV were further constrained by the 
available data on ~ F.f I !FP, from deep inelastic lepton-nucleus collisions [14,10] and 
by the data on the antiC sea )quarks from the Drell-Van lepton pair production in proton­
nucleus collisions [17]. For the gluon distributions, we considered two different Ansatze 
for gluon shadowing. The QCD-evolution was then computed using the Altarelli­
Parisi-equations [24], modified by terms calculated by Mueller and Qiu [16]. 'The main 
conclusion in each case is the same: gluon shadowing vanishes much more rapidly 
than that of quarks and antiquarks. In addition, the greater the gluon shadowing, the 
slower does the shadowing of seaquarks vanish. This confirms the results of Qiu [15]. 
The slow Q2 dependence in the ratio ~ F2A I ! FP is in accord with the experimenta~ 
observations [13,14], especially also at small values of x and 4 GeV2 ~ Q2 ~ 10 GeV2

• 

We recall the underlying approximations in the present analysis. In analyzing the 
deep inelastic scattering data [14,10], we assumed that the ratio of absorption cross 
sections of longitudinally and transversally polarized virtual photons does not depend 
on the target. With this approximation the ratio ~ F2A I!FP is directly given by the 
ratio of differential deep inelastic lepton-nucleon scattering cross sections in A and D 
[14]. We neglect the target-mass corrections [23], and small shad0'Xing effects in D as 
well [26]. We also assume that, in the first approximation, seaquarks and sea anti quarks 
have the same nuclear distributions. Since the net charge and strangeness of sea has to 
vanish, we do not expect corrections to this to be significant. The difference between 
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the distributions of quarks and antiquarks in nuclei would nevertheless be interesting to 
look at [25]. As stated in section 2, our initial distributions were construct to conserve 
the baryon charge within 3.5 % in a wide range of nuclei, from A = 12 to A = 196. 
We neglected the few per cent corrections due to different numbers of protons and 
neutrons in non-isoscalar nuclei. For our purposes, more accurate error analysis is not 
needed here, since the main uncertainty comes from the gluons, especially from the 
unknown gluon shadowing part. 

What was not discussed here at all, though potentially an important subject in 
heavy nuclei, was the effect of nuclear geometry to the parton densities: nuclear parton 
structure is most likely different in the center of the nu~leus than in peripheral regions 
[38]. Inclusion of nuclear geometry is not necessarily an easy task, since different x­
regions require different treatments, and also the QCD-evolution is affected by the 
geometry. 

Next, we comment on some observational consequences of the nuclear parton, es­
pecially gluon, distributions. Inclusive (mini)jet production was discussed in section 4. 
We found (figs. 5) that the observable jets at RHIC are influenced by the antishadow­
ing region. However, the present analysis indicated that gluon antishadowing is likely 
to remain small, ~ 20 % even for the extreme anSatz 2 considered here. 

Of course, 2-3 Ge V minijets may be quite strongly affected by the gluon shadowing 
already at RHIC energies. This reduces the pre-equilibrium energy densities (see e.g. 
[38,3,4]) and lowers the initial temperature of the system. Because of shadowing there 
are fewer semi hard gluons formed, and thermalization of the gluon-quark-system may 
also be slowered [40], which lowers the initial temperature as well. A high initial 
temperature is important for production of thermal photons and dileptons, which are 
one of the suggested signatures of quark-gluon plasma [6]. Thermal rates must be 
compared to the background, which at transverse momenta PT ~ 2 Ge V is dominantly 
due to the primary (pre-equilibrium) hard collisions. Hard collisions are sensitive to 
the changes of the scale in the nuclear parton densIties (see fig. 7), especially when 
gluons are involved, e.g. depletion due to gluon shadowing in the direct photon rates 
will decrease with inreasing PT. It will be interesting to study to what extent the scale 
dependence of gluon shadowing affects the possibility of observing thermal: photons 
and dileptons. 

• 
As seen in figs. 2 and 3, the depth of gluon shadowing affects the rate with which 

shadowing in sea( anti)quarks and in the F2-ratio is decreasing when evolving towards 
larger Q2. If it were possible to measure accurately enough the scale dependence of 
R~2 and R: at fixed x,one could constrain the amount of the gluon shadowing at 
Qo = 2 GeV. For instance, in pA collisions at RHIC energies the differences in Drell­
Van dilepton production at large xF(corresponds to small X2) at different fixed scales 
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Q = M, from 2 Ge V to lOGe V, should tell whether the gluonsare strongly shadowed 
(relatively small difference between R~(x,M2 .:.... 4 GeV2) and R~(x, M2 = 100 GeV2), 
see fig. 3) or moderately shadowed (larger difference). However, it may be difficult to 
get high enough dilepton statistics to make such a precision measurement. Of course, 
before this, one must also include a proper analysis of the QCD-correctios to the Drell- . 
Van cross sections [41] to carry out such a program. 

As discussed in [22], gluon shadowing can be studied via production of heavy quark 
bound states, J/'iJ!, 'iJ!' and Y. If done so, especially if we wish to compare J/'iJ! and 
Y production cross sections in pA collisions at very high energies (low values of X2), 
the scale dependence of nuclear gluon structure has to be taken into acount. If the 
final state interactions of these bound states could be computed [42], and if their effect 
could be subtracted, then one could obtain information on the gluon densities at scales 
Qt/J '" M\l! '" 3 GeV and QT "" MT "" 10 GeV. For instance, in the case of Y one 
has to do backwards scale evolution down to Q '" 3 Ge V and only then compare the 
obtained gluon distributions. 

We believe we have now been able to shed some light on the problem of gluon struc­
ture in heavy nuclei, at least on the behaviour with increasing scales. Clearly, from the 
point of view of perturbative prqcesses, the most important and urgent improvement 
to the present analysis is a reliable determination of gluon shadowing at low (initial) 
values of the scale Q. 

Acknowledgements: 

I would like to thank Miklos Gyulassy for suggesting the study of this subject as well 
as for several helpful discussions. I also wish to thank Xin-Nian Wang and Sourendu 
Gupta for correspondence and for motivating discussions. Finally, I would like to thank 
the Academy of Fin,land, Emil Aaltonen foundation and Magnus Ehrnrooth foundation 
for financial support. 

. .. 

18 



Appendix 

A. Parameterization of the ratio ~ F.f / ~ Ff 

We parameterize the deep inelastic lepton scattering data [14,10] for the ratio R~2 = 

~ F.f / ~ Ff in the following way: 

R~2 = 1 

. _ K(A1/3 _ l){e-(X/xA)1.2 + (1 _ e-(X/XA)1.2)l.4as In(x/x;4) }e-(x/xo.)2 
In(xA/x:) 

+ {(ao -1) + a1x + a2x2 + a3x3 }(1- e-(x/xoe )2)8(xm - x) 

+ 8(x - x m){ (1- fm)[(x - Xm)/(XFm - X~)]2 + Um -I)}, 

(AI) 

i.e. we divide the x range basically into three regions: shadowing at x < XO s , EMC­
effect at XOe < X < Xm and Fermi motion at Xm < X < 1. The exponentials play t~e 
role of smooth 8-functions here. 

In the shadowing region, we assume the corrections to unity to be mainly from 
two-parton interactions and we expect the correction to vanish in the case of A = 1, 
hence the scaling A 1/3 -1 [15]. This picture does probably not hold down 'to extremely 
low x's [16] but gives us pretty good first approximation to start with. We also expect 
a saturation of shadowing at x < XA, and we assume that XA = xCa(A/40)-(1/3). In 
the infinite momentum frame in this picture saturation is motivated when x gets so 
small that the partonic wavelength exceeds the Lorentz contracted size of the nucleus, 
and this results the A -(1/3Lscaling [15] (for alternative suggestions, see [18-19]). We 
use XCa = 0.004, since the NMC data [14] does not show any signs of saturation 
at larger x's for A = 40. Then, the exponentials in eq. (AI) will help to give us 
both saturation and a smooth change into linear (at log-scale) behaviour. We do 
not expect the shadowing corrections to be important at x. > XO s , and we also fix 
XOs = 0.13. The parameter x;4 describes the point where the shadowing correction 
disappears, and, based on ref. [43], we write x;4 = x~ak(40)/k(A), where the function 
k(A) = 1 +3(2A-(1/3») - 3(2A-(1/3»)2 + (2A-(1/3»)3. The physical idea behind this is 
that the effective distance between two nucleons is shortened because of the nucleons 
located in the surface of the nucleus. Therefore one expects shadowing at slightly larger 
x for larger nuclei. This effect, however, is very small. The remaining three parameters, 
K, as and x~a, we determine by minimizing the sum of X2 's of the shadowing region 
of the NMC data for isoscalar targets. A = 12 and A = 40. In this way we obtain: 
K ~ 1.06(1.065), as ~ 0.86(0.857) and x~a ~ 0.072(0.0717). . 
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In the EMC region, XOe < x < X m , we fit simply a third order polynomial f(x) = 
ao +alx + a2x2 + a3x3 to the quite extensive data of ref. [10]. We impose the following 
conditions for the fit f( x): 

Based on the data over the wide range of nuclei [10], we fix Xe ~ 0.3 and fe = 1.0, 
XOe = 0.12, and the location of the minimum to Xm ~ 0.7 for all A. Depth of the 
minimum atxm depends on A, and we find, again by minimizing the X2 in the EMC 
region, that fm ~ 0.86(A/40)-O.044 gives reasonable description of the A scaling in 
this region. 

For our purposes the Fermi motion region at x > Xm is completely uninteresting 
since practically it does dot contain much momentum or baryon charge. Therefore 
we simply fix XFm ~ 0.84 for all A, which is the point where the correction to unity 
vanishes at large x. The simple parabolic fit coincides smoothly to the polynomial fit 
at the minimum·xm. 
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Figure captions 

Figs. 1 a,b. The ratios of the parton distributions in a nucleus A to the ones 
in deuteron (a: 12C, b: 40Ca) at an initial scale Q = Qo = 2 GeV, as defined in eqs. 
(5) and (8). Only our 'Ansatz l' is shown for gluon ratio R-a (solid line). The data 
points shown are the deep inelastic NMC 200 GeV J.1A data [14] (diamonds) and the 
SLAC 8, .. 24.5 GeV eA data [10] for the ratio R~2 (crosses), and the E772 800 GeV pA 
Drell-Yandata [17] corresponding to the ratio R~ (boxes). The' parameterization (A 1 ) 
of R~2 is plotted with a dashed line. Valence quarks, R~, are shown by the dotted 
line, and seaquarks, R~ by the dotted-dashed line. . 

Fig. 2 a,b,c. Scale evolution of the ratios R-a(x, Q2), R~(x,Q2), R~(x, Q2) and 
Rj (x, Q2) for A = 196, as predicted by the modified AltareHi-Parisi equations [16] of 

2 . 

eqs (12-14). The ratios are shown as functions of x at scales Q = 2, 3, 5,7, and 10 GeV, 
which are indicated on the respective curves. The initial distributions at Q = 2 Ge V 
are obtained by using our parameterization (AI) with A = 196 and neglecting small 
corrections due to the non-isoscalarness (cf. eq.(5)) and the procedure described in, 
sec. 2. The initial distribution for gluons in fig. 2a is our Ansatz 1. The data shown 
is the deep inelastic SLAC 8-24.5 Ge V eA data [10] for the ratio R:

2 
(crosses), and 

the E772 800 GeV pA Drell-Yan data [17] for the ratio R~ (boxes). Notice 1) that 
the evolution of R~2 from Q = 2 GeV to Q = 3 GeV is slow [15], and thus coincides 
with the nonvanishing of shadowing observed at small scales in the deep inelastic data 
for 40Ca [14], 2) that the shadowing of gluons vanishes much more rapidly tha~ the 
shadowing of quarks and antiquarks. 

Fig. 3 a,b,c. The same as figs. 2 but with gluons in the Ansatz 2 at the initial 
scale Q = 2 Ge V. The data shown in fig. 3a is the E772 800 Ge V pA data for J /'If 
(diamonds) and 'If' (boxes) production [34] and the NA3 200 GeV 7rPt (triangles), 200 
GeV 7rPt (x) and 200 GeV pPt (+) for J/'If production [35], as plotted in ref. [22]. 
Here the evolution of sea, and hence R~2 is clearly slower than with the gluons of 
'Ansat'z 1': the stronger shadowing of gluons is reflected to the behavior of R~ since 
the evolution equations (13) and (14) are coupled. 

Fig. 4 a,b,c. The same as figs. 3 a,b,c but with the scale evolution given by the 
traditional Altarelli-Parisi-terms only (eqs. (12-14) without the modifications). By 
comparing figs. 3 and 4 we see that the mainline of QCD-evolution is determined by 
the unmodified Altarelli-Parisi equation; the Mueller-Qiu modifications give then the 
corrections to this evolution by slowering down the relative evolution of partons [15,16]. 

Fig. 5 a,b. The average inclusive one~jet cross sections per nucleon-nucleon 
collision in pp, pA and AA collisions at Vs = 200 GeV with A = 196 and y = 0, 
plotted as a function of the transverse momentum PT of a jet, computed from eq. 
(27). The data shown is the minijet data of VAl collaboration from pp collisions at 
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\ 

Vs = 200 GeV [7]. c, d. The ratio of the pA and AA one-jet cross sections to pp one-. 
jet cross section versus PT. a and c: Ansatz 1, b and d: Ansatz 2 for gluons. For the 
parton distributions in a free proton we used Duke-Owens set 1 [32] with AQCD = 200 
MeV. K-factor K = 2 was also used, this( is cancels out in figs c and d. 

Fig. 6. The same as in fig. 5 but for Js = 6500 Ge V. 

Fig. 7. An illustration of what region of the gluon ratio R~( x, Q2) the inclusive 
one-jet production, eqs. (27-30), probes. The diamonds (triangles) are the lower limits 
of integration in eq. (30) for Vs = 200 (6500) GeV and at the same time the x-values 
into which the integrands are peaked at each Q = PT. The lines shown are only for 
guiding the eye and for showing how the shadowing of gluons vanishes when PT is 
increased. 
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Distributions at Qo 
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AP+MQ-evolution 
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AP-evolution only 
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Inclusive I-jet distributions in pp, pA and AA at.[S = 200 Ge V 
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Inclusive I-jet distributions in pp, pA and AA at./i = 6500 Ge V 
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