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1 Introduction 

In the last decade two elements have strongly influenced the description of 
nuclear systems. First there has been growing interest in describing nuclear 
systems within a relativistic framework. One of the most popular models is 
the relativistic mean field theory by Walecka (for a review, see Ref. [1]). It 
is a phenomenological approach including nucleonic and mesonic degrees of 
freedom, in which the coupling constants and some meson masses are taken 
as free parameters and are adjusted to fit the properties of nuclear matter 
and finite nuclei. In the original Walecka model the incompressibility of 
nuclear matter is considerably too large. Therefore Boguta and Bodmer [2] 
included two additional free parameters through cubic and quartic terms in 
the scalar field which shift the incompressibility to more reasonable values in 
comparison with the experimental data. In addition, one obtains the freedom 
to fix the value of the nuclear matter effective mass M* which, for fixed 
saturation density and binding energy, determines completely the energy 
dependence of the optical potential. The nonlinear u-w model has been 
widely and successfully used in nuclear matter and finite nuclei calculations 
(see, for instance, Refs. [3, 4]) to describe ground state properties. 

Second the use of "temperature" in the description of excited systems 
has obtained a growing importance. In the relativistic scheme several authors 
have used quantum statistical methods for infinite systems [1,5-11], since one 
is strongly interested in the equation of state, which is of great importance for 
astrophysical problems. For finite systems various authors have investigated 
the thermal properties of hot nuclei within nonrelativistic models [12-18] 
because heavy ion collisions at intermediate bombarding energies (10-100 
Me V / A) give strong experimental evidence for the formation of highly excited 
nuclei [19]. 

In a recent paper we developed a relativistic thermal Hartree-Fock model 
and its semiclassical approximation [20]. The purpose of this paper is to 
present relativistic thermal Thomas-Fermi calculations of hot nuclei; i.e. 
calculations within a semiclassical approximation of the Hartree part of the 
model in Ref. [20], neglecting exchange terms. To our knowledge, so far 
one has not tried such kind of calculations. Thomas-Fermi approximation 
means to assume that the meson fields vary slowly enough in space so that 
the nucleons can be treated as moving in locally constant fields at each point. 
This approximation becomes more and more valid with increasing temper-
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ature because the spatial dependence of the meson fields smooths out. In 
addition shell effects are vanishing at higher temperatures. Suraud [15] com
pared in the nonrelativistic scheme in detail semiclassical results with the 
Hartree-Fock calculations of Bonche et.al. [12, 13] and found good agree
ment for "high" temperatures (T>3 MeV). Moreover,at "low" temperatures 
(T<3 MeV), when shell effects are still present, the average quantal values 
were found to be correctly reproduced within the semiclassical framework. 
These integrated/average physical properties such as the excitation energy 
and the entropy are the quantities we are mostly interested in. In addition, 
the general advantage of semiclassical approaches which consists in the avoid
ance of numerically involved wave function calculations, holds in particular 
in the thermal case, because the number of states accessible to the hot nu
cleus increases as an exponential of the temperature [21]. Therefore it seems 
worthwhile to investigate hot nuclei in the framework of a relativistic ther
mal Thomas-Fermi approximation which provides a relatively simple model 
along with a tractable numerical effort for the selfconsistent solution. 

The paper is organized as follows: in section 2 we derive the relativistic 
thermal Thomas-Fermi approximation (RTTFA). The subtraction mecha
nism to obtain thermostatic properties of hot nuclei which are independent 
on the size of the box in which the calculations are performed is described 
in section 3. Section 4 is devoted to the presentation of the results. In par
ticular we discuss the thermostatic properties of 208Pb. Special attention is 
paid to the level density parameter; we compare our results with those of a 
recent paper by de Lima Medeiros and Randrup [18], who used a nonrela
tivistic modified Seyler-Blanchard potential. In section 5 we give our main 
conclusions. 
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2 The relativistic thermal Thomas-Fermi 
approximation (RTTFA) 

We want to investigate nuclear systems whose dynamics are governed by the 
following extended Walecka-Lagrangian [1]: 

.c = .c~ + L [.c~ + .cMN] + .c£1NL (2.1) 
M=£1,w,e,A 

with the free nucleon- and meson-Lagrangians 

.c~(x) - -$(x) (i-r1J81J - M) 1/J(x), 

.c~(x) ~ (8IJCP(x)8IJcp(x) - m!cp2(x)) , 

.c~(x) - ~m~wlJ(x)wlJ(x) - ~FIJII(x)FIJII(X)' 

.c~(x) 
1 2 1 .... .... 

- 2meUIJ(x )UIJ(x) - -GIJII(x )GIJII(X) 4 . 

and the free contribution of the electromagnetic field 

.c~(x) = -~AIJII(x)AIJII(X)' 
where the field tensors are given in the usual way: 

FIJII(x) - 8IJwlI(x) - 8I1wlJ (x), 
AIJII(x) = 8IJAII (x) - 8I1AIJ(x), 

GIJII(X) = 8IJUII(x) - 8I1 ulJ(x). 

The interaction terms .cMN(X) are given by: 

.c£1N(x) - 9£1-$( x )cp( x )1/J( x), 

.cwN(x) - -9w-$( x hlJwlJ ( x )1/J( x), 
.ceN(x) - -ge-$( x hlJrulJ( x )1/J( x), 

.cAN(X) 
- 1 + 7"3 

- -e1/J(xhlJ 2 AIJ(x)1/J(x). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

.(2.6) 

(2.7) 
(2.8) 

(2.9) 

(2.10) 
(2.11) 
(2.12) 

(2.13) 

Nonlinear selfinteractions of the O'-meson are also taken into account [2]: 

(2.14) 

4 



.. 
With the assumption of spherical symmetry, charge conservation, a static 
approximation for the meson- and electromagnetic fields and replacing the 
meson- and electromagnetic field operators by their mean field values, a 
standard Legendre transformation yields: 

with 

H = J d3r {~(r) (-if· V + M*(r)) ~(r)+ 
v 

1(-+ )2 +2 \7cp(r) +U[cp(r)]-

1 [(... ) 2 2 2 ] -2 \7wo(r) + mwwo(r) - (2.15) 

1[(-+ )2 22 ] -2 \7Uoo(r) +m{)Uoo(r)-

1 (... )2 -2 \7 Ao(r) + 

+gwwo(r)~t(r)~(r) + g{)uoo(r)~t(r)T3~(r) + eAo(r)~t(r) 1 ~ T3~(r)} 

M*(r) 

U [cp(r)] 

(2.16) 

(2.17) 

In the following the indices of the w -, u - and electromagnetic field are 
dropped for simplicity. 

A Thomas-Fermi approximation means that the nucleon field operators 
in (2.15) are expanded locally into plane waves: 

A '" [ A (-+) Ok rAt (-+) Ok _] 'I/J(r) ex: L...i Ak,). U r, k, A e' ° + B k,). V r, k, A e-' or • 

k,). 
(2.18) 

Substitution of this field expansion into the Hamiltonian (2.15), use of or
thonormality relations and normal ordering of the creation- and destruction 
operators yield a diagonal mean-field Hamiltonian HMFT . 

To investigate a nuclear system at finite temperature, we calculate the 
grand potential n using the standard expressions from statistical mechanics: 

n = -~ In ZG; (2.19) 
{3 
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with the grand partition function 

and 

Za = Tre- t3 (h-l-'p Z-l-'nJV"), 

1 
f3 =

T 

(2.20) 

(2.21) 

(we use units with n = c = kB = 1). For iI we insert the mean-field Hamilto
nian, Z and N are the proton- and neutron number operators, respectively. 
We assume that there are no antinucleons in the nuclear system. In ad
dition it is well known from nuclear matter calculations [6-11] that in the 
temperature region under consideration (T < 20 MeV) nucleon-antinucleon 
pair production does not occur. Therefore we can neglect all antinucleon 
contributions. As usual, the nucleon-nucleon interaction is described as in 
the ground-state T=Oi i.e. no temperature dependence of the meson- and 
electromagnetic fields is included [10]. 

Using standard techniques [22] one gets: 

n (Il, V, Tj <p(r)j V<p(r)j w(r), Vw(r)j e(r)j Ve(r)j A(r)j VA(r)) = 

= f d3r{ ~ (V<p(r) r + U [<p(r)] -
v 

-~ ((vw(r))2 + m~w2(r)) _ 

-~ ( (Ve(r)) 2 + m~e2(r)) - (2.22) 

1 (.... )2 -2" V' A(r) -

-(3~,l dp p'ln (1 + l (P.-,/",+ MO' (, )-g.w(,)-,.,(, )-.A(,) )) _ 

-(3~,l dp p'ln (1 + l (P._'/,'+MO,(,)_g.W(,)+g.,(,»)) }. 

In the final step one applies the variational principle to (2.22) and obtains: 
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(~- m~) w(r) -

(~- m!) £J(r) 

~A(r) -

-gwPB(r), 

-guP3(r), 

-epp(r), 

1 

1 

x (1 + l ( ,;", +M" (,j+9.W('j-9,,(.)-." )) , 

ps(r) = psp(r) + PSn(r), 
PB(r) = pp(r) + Pn(r), 
P3(r) = pp(r) - Pn(r). 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31 ) 

(2.32) 

(2.33) 

Equations (2.23) to (2.33) constitute a highly nonlinear system for the nu
clear densities, meson- and electromagnetic fields in RTTFA, which has to be 
solved selfconsistently. Of course the field equations (2.23) to (2.26) are the 
ones of the ground state case, the ground state densities replaced by integrals 
over Fermi distribution functions in (2.27) to (2.30). Nevertheless we consid
ered it worthwhile to derive them again, starting with the Lagrangian (2.1) 
and therefore knowing at each step, what kind of approximation is made . 
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3 Thermostatic properties of hot nuclei 

3.1 Subtraction mechanism 

An isolated hot nucleus is a metastable system which tends to evaporate 
nucleons. To treat such a metastable nucleus within a static picture as an 
equilibrated hot nuclear system is reasonable only with a thermalization time 
smaller or at least comparable to any typical "decay" -time. In this case, the 
picture of a static nucleus embedded in its own evaporated nucleons may 
appear appropriate. In such an approach, the evaporated nucleons impose 
an artificial external pressure on the hot nucleus to compensate its tendency 
to decay. However, the remaining problem is how to isolate the properties 
of the hot nucleus from the contributions of the external nucleon vapor in a 
way that thermodynamical quantities, e.g. energy or entropy, do not depend 
on the size of the box in which the calculations are performed. 

In the framework of nonrelativistic thermal Hartree-Fock calculations 
Bonche et.al. [12, 13] presented a way to treat the vapor separation problem 
by defining extensive quantities characterizing the nucleus as differences of 
these quantities for the nucleus+vapor and the vapor solutions they found. 
The idea of the method we used is based on earlier works by Myers [23] and 
SuBmann [24] concerning the desription of the nuclear surface by moments. 
Within nonrelativistic Thomas-Fermi calculations it has already been ap
plied by Kupper [25]. 

Fig.1a) shows schematically a typical Thomas-Fermi density distribution 
at T>O. For radial distances larger than a certain radius R{3 the system 
consists merely of the homogenous vapor phase /3. We interpret the bulk 
region as a "liquid" phase a, which, for large enough nuclei, may also be 
homogenous for r :5 ROt. The densities of the two homogenous phases a and 
/3 are POt and P{3, respectively. To investigate the thermostatic properties of 
the finite system it is sufficient to look at the region ROt :5 r :5 R{3, since 
they are in principle known for the homogenous phases a (0 :5 r :5 ROt) and 
/3 (R{3 < r < 00) from nuclear matter calculations [6-11] (if there are no 
homogenous conditions in the bulk region of small nuclei, ROt = 0). In this 
region ROt < r < R{3 the transition between the "liquid" and the vapor phase 
takes place. 
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We start by defining a normalized density distribution 

f(r) := p(r) - pfJ 
POt - PfJ 

and the corresponding surface distribution function 

( )
._ df(r) 

9 r .- - dr . 

(3.1.1) 

(3.1.2) 

As pointed out in Refs. [23, 24] the properties of the nuclear surface can be 
described by moments of g(r). Defining the "mth original surface moment" 

00 

[rm] := J drrmg(r), (3.1.3) 
o 

the "equivalent sharp radius", for instance, is given by 

(3.1.4 ) 

Thus by construction Rs is the radius of a uniform sharp distribution having 
the same volume integral as f(r), i.e., 

(3.1.5) 

The functions f (r), g( r) and the corresponding Rs are displayed in Fig.1 b ). 
It turns out crucial that Rs is defined as an integral functional of the 

density distribution, not only containing "information" about one point of 
the continous p(r) (as, for instance, the common half-value radius R!). 

2 

Solving the RTTFA-equations (2.23) to (2.33) we used the "equivalent 
sharp radii" of the proton- and neutron density distributions to adjust the 
corresponding chemical potentials to the number of protons and neutrons, 
respecti vely: 

9 
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This corresponds to the picture of a system of two homogenous phases ct 

and f3 with all the nucleus particles contained in the "liquid" phase ct. It 
has to be stressed, that this physical picture is different from the one used in 
Refs. [12, 13, 15, 18]: our nucleus consists merely of the "liquid" phase inside 
the "equivalent sharp radii" embedded in its on vapor and with the phase 
transition taking place in the surface region. In contrast, Refs. [12, 13, 15, 18] 
are dealing with a nucleus consisting of both, a "liquid" and a vapor phase; 
i.e. a "liquid" nucleus put on a vapor layer. In such a picture, the phase 
transition takes place at any radial distance inside the nucleus when the 
vapor density is reached. In view of the motivating remarks at the beginning 
of this section, our approach seems more appropriate. 

Once the densities and fields are determined selfconsistently, the thermo
dynamic quantities can be calculated in the usual manner. For the entropy 
one gets: 

s = _ani _ 
aT /.L,V 

(3.1.8) 

= - :, ! d"{~.l dpp'[J;(r,p) In !,(r,p) + (1- !,(r,p») In(l- !,(r,p») J}, 
with the Fermi distribution functions 

1 
Ji = 1 + e.B(~i-lli)' Z =p,n 

and the one particle energies of protons and neutrons, respectively: 

cp = Vp2 + M*2(r) + gww(r) + g(!{!(r) + eA(r), 

Cn = Vp2 + M*2(r) + gww(r) - g(!{!(r). 

The energy of the system is given by: 

E = n + JLpZ + JLnN + T S = 

J 3 {1 1 3 1 4 = v d r 2gQcp(r)ps(r) - '6 Mb (gqcp(r)) - 4c(gqcp(r)) + 

(3.1.9) 

(3.1.10) 

(3.1.11 ) 

+~(gww(r)pB(r) + gll{!(r)P3(r) + eA(r)pp(r)) + (3.1.12) 

1 00 } + 7r2! dpp2(VP2+M*2(r) (ip(p,r) + In(p,r))) . 
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However, expression (3.1.8) and (3.1.12) depend on the volume V of the box 
in which the calculations are performed. They are divergent with increas
ing V. To get convergent expressions we finally define, consistent with the 
definition of the "liquid" nucleus and first introduced by Kupper [25], the 
entropy and the energy of the isolated nucleus as: 

SA = J d3r(s(r) - s/3) + ~7r (R~ps/3p + ~nS/3n)' 
v 

EA = J d3r(e(r) - e/3) + ~7r (~pe/3p + ~ne/3n)' 
v 

(3.1.13) 

(3.1.14) 

S/3p and S/3n denote the proton- and neutron contributions to the entropy 
density of the vapor phase (3, respectively. Analogue notations hold for the 
uniform energy density of (3, e/3 = e/3p + e/3n' For notational convenience we 
drop in the following sections the index A in equations (3.1.13) and (3.1.14) 
and refer in all expressions to the convergent quantities describing the hot 
nucleus without vapor. 

3.2 Level density parameter 

The nuclear level density [26] is of basic interest for statistical analysis of 
nuclear reactions as well as for nuclear astrophysics (see, for instance, Refs. 
[27,28]). As it is well known, in an independent particle model and at "low" 
temperatures, the nuclear level density can be directly related to the level 
density parameter a by Bethe's formula [21]. In the same limit a can be 
expressed by the entropy or the single particle excitation energy: 

S = 2aT, Ejt = aT2. (3.2.1) 

We want to stress, that the single particle excitation energy is the natu
ral input of Bethe's formula. Suraud et.al. [14] have shown within non
relativistic selfconsistent Thomas-Fermi calculations, that the range of va
lidity of Bethe's formula and (3.2.1) can be extended with confidence up 
to T=4",6 MeV, depending on the size of the nucleus under consideration. 
These relations do not hold for higher temperatures where the Fermi energy 
has faded due to the statistical occupation of continuum states. However, 

11 



one may define "effective" level density parameters [29] 

(T) _ Ex(T) 
aE - T2 ' 

S(T) 
as(T) = 'iF' (3.2.2) 

which coincide in the limit T --+ 0 and Ex --+ Ej/,o. Ex is the total excitation 
energy of the whole nucleus 

Ex(T) = E(T) - E(O), (3.2.3) 

with the terms on the r.h.s. given by (3.1.12) for a given temperature and 
the total ground state energy, respectively. Thus the definition of Ex does 
not involve any density parameter by itself and contains, compared with the 
single particle excitation energy Ej/,o, which arises from phase space integrals 
over the one particle energies of equations (3.1.10) and (3.1.11) by an anal
ogous definition, the meson contributions (see (3.1.12)). The replacement of 
Ejt· by Ex is motivated by the assumption, that Ex is a reasonable estimate 
of an experimental excitation energy Expo. Hence, the mayor point of aE 

is the link it does establish between Ex and T in view of the experimental 
knowledge of these quantities. 

Because a is approximately proportional to the mass number A=N+Z, 
one often writes it in the form a = AI K and looks at the corresponding 
"effective" inverse level density parameters K i , i = E, S, SE. 

4 Results and discussion 

4.1 Nu~lear matter and the ground state of 208Pb 

For our calculations we have chosen a set of parameters from the literature 
[30], which fits accepted nuclear matter data. The coupling constants, masses 
and ground state nuclear matter properties are displayed in Table 1. The 
g-meson coupling constant has been used to fit the experimental binding 
energy of 208Pb within a Hartree calculation. 

Symmetric nuclear matter calculations at finite temperatures have been 
performed by several authors (see, for instance, Refs. [6, 9]). At low tem
perature the theory possess a liquid-gas-phase transition. With a set of 
parameters reproducing ground state nuclear matter properties only slightly 
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different from the one we used, Jetter [6] found for normal nuclear matter 
density a critical temperature of Tc ~ 17.2 MeV. 

In Table 2 we compare our Thomas-Fermi calculations for 208Pb in its 
ground state with those of other authors and the corresponding Hartree re
sults [30]. Concerning the comparison with the experimental value of the 
binding energy, center-of-mass corrections are not included in the theoreti
cal calculations. The good agreement of the different Thomas-Fermi calcu
lations may be seen as a test of the reliability of our code. The TFA results 
for the charge radius rc are about 2% too large compared with the experi
ment. This is illustrated by Fig.2, where the corresponding charge density 
is compared with the experimental distribution represented by a so-called 
3-parameter Fermi fit [31]. The bulk value of the charge density is too small 
within the semiclassical model, which also, as expected, cannot reproduce 
the quantal tail correctly. 

The binding energy is overestimated by the TFA calculations while the 
Hartree approach yields an underbound nucleus. The relatively large dis
crepancy between Hartree- and TFA results is a consequence of the approx
imation made in the latter approach; i.e. the way the surface is described. 
Shell effects, which are of order 12 MeV for 208Pb, cannot explain alone this 
discrepancy. As shown in Ref. [30], the TFA results depend also strongly on 
the set of parameters. 

Refinements of the semiclassical description of ground-state nuclei by 
inclusion of quantum corrections are supposed to improve the results. Such 
investigations are performed at present by utilizing the extended relativistic 
Thomas-Fermi approximation at zero temperature (see Ref. [32]). However, 
at finite temperatures, as already mentioned in the introduction, the TFA 
approach becomes more and more reliable and should be sufficient for our 
present purposes. 

4.2 Hot 208Pb 

The results presented in this section were obtained by solving the system of 
equations (2.23) to (2.33) followed by the calculation of the thermodynamic 
quantities of the hot nucleus as described in section 3. Problems occur due 
to the presence of the long-range Coulomb force. In this case, the vapor 
phase f3 is polarized by the long-range Coulomb field of the hot nucleus and 
the idea of a nuclear matter like vapor phase for large radial distances does 
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not hold anymore (Bonche et.al. [12, 13] found a solution of this problem 
in the framework of a nonrelativistic thermal Hartree-Fock model). For this 
reason we switched off the electromagnetic interaction in our calculations and 
looked at uncharged nuclei, as it is also done in Refs. [18, 25]. 

First of all, we checked the independence of our results on the size of the 
box in which the calculations were performed. Table 3 displays the energy 
E, entropy S, chemical potential J-l and the "equivalent sharp radius" Rs of a 
hot uncharged isosymmetric nucleus with mass number A=160 for different 
radii R of the box at various temperatures (we will come back to such a 
system in the following section). S, J-l and Rs are practically constant for 
all R while the changes in the energy E are of the order 1-2 MeV. This 
has to be seen in connection with the relativistic saturation mechanism, in 
which the small nuclear binding energy arises from the cancellation between 
the large scalar attraction and vector repulsion (see Table 5), which makes 
E very sensitive in relation to the numerical accuracy. However, the above 
"fluctuations" correspond to a maximal relative error of 0.3% and thus the 
results provide sufficient reliability. 

In Table 4 we present our results for hot uncharged 208Pb. It was shown 
in the framework of nonrelativistic semiclassical calculations [15] that the 
temperature does not noticeably affect the macroscopic static properties of 
nuclei up to T,....,4 MeV. Indeed we found the same kind of behaviour in our 
relativistic model, even extended to higher temperatures since the Coulomb 
field is unrealistically switched off. The variations of the chemical poten
tials between T=O and T=5 MeV represent only about 10% of their varia
tions over the whole temperature range under consideration. Concerning the 
"equivalent sharp radii" of the proton- and neutron density distributions, 
the temperature dependence in the low temperature region is even weaker 
and 10% of the total variation are reached at about T=7.5 MeV. This be
haviour can also be seen in Fig.3 where we have plotted those quantities as a 
function of the temperature. Of course, the size of the system and hence the 
"equivalent sharp radii" increase with temperature while the decrease of the 
chemical potentials with increasing temperature can be understood in view 
of the standard Maxwell relations of the free energy [13]: 

(~; L.z.N = - (~;t.N' (~; L.z.N = - (!!LT.Z· (4.2.1) 

The results for the level density parameter -in its three different versions 
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of equation (3.2.2) as a function of temperature are similar to those found in 
Ref. [13] by nonrelativistic Hartree-Fock calculations. There are only small 
variations of a few percent with the temperature. While the ratios show a 
tendency to decrease with increasing temperature up to T",,12.5 MeV, an 
increasing behaviour can be observed for higher temperatures. As in Ref. 
[13], at any given temperature the three ratios are not equal, as would be 
expected from the relations (3.2.2). Though there are no significant devia
tions in the lower temperature region due to the lack of shell effects in our 
calculations, differences remain over the entire temperature range with the 
S2/4Ex ratio typically the largest and Ex /T2 the smallest among the three. 
As already pointed out in Ref. [13] these deviations from the simplest Fermi 
gas relations are not surprising and it should be stressed again, that for 
higher temperatures they are defined as "effective" level density parameters 
(see section 3.2). We will come back to the level density parameter and a 
comparison of our results with experimental data in the following section. 

In FigA we present the proton- and neutron density distributions of un
charged 208Pb at various temperatures. With increasing temperature the 
nucleus becomes less and less dense and the surface becomes more and more 
diffuse. At a temperature T",,13.25 MeV we get a positive total energy (see 
Table 4). Within nuclear matter calculations this limiting temperature Tlim 
corresponds to the highest value of T for which the pressure can be negative 
as a function of the density; i.e for T < Tlim self-cohesive nuclear systems 
may occur and so 1iim can be regarded as the maximum temperature for 
which the nucleus can exist. Our result for 1iim is in reasonable agreement 
with Ref. [33], where nuclear matter calculations were performed using an 
interaction which reproduces nuclear matter ground state properties only 
slightly different from the values we obtained (see Table 1) and a limiting 
temperature 1iim=13.009 MeV was found. Of course, our uncharged system 
is unrealistic and inclusion of the Coulomb repulsion will reduce T1im sig
nificantly. It should also be mentioned, that 1iim depends strongly on the 
nuclear matter ground state incompressibility [13], which is determined by 
the chosen interaction. A lower value for K softens the equation of state 
which results for a given temperature T < 1iim in a smoother dependence of 
the free energy on the density, which gives a less negative pressure. Thus a 
smaller incompressibility K yields a lower 1iim. Using a softer equation of 
state a limiting temperature of T1im ~ 12.5 MeV was found in Ref. [13] for 
hot uncharged 208Pb. 
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Further increase in temperature leads to systems with increasing positive 
total energy but which still show a surface. In the nuclear matter picture 
already mentioned above this corresponds to systems, where the pressure 
still has a maximum and minimum as a function of the density but cannot 
become negative anymore. The highest temperature at which we found such a 
solution is T=16.2 MeV. Above this value, we could find only solutions with 
uniform density distributions; the surface has completely disappeared, the 
maximum and minimum in the nuclear matter pressure curve coalesce into a 
point of inflexion. Indeed this behaviour is in reasonable agreement with the 
critical tempemture Tc ~ 17.2 MeV found in the nuclear matter calculations 
of Ref. [6] within an only slightly different model. In the nonrelativistic case 
Tc=16.66 MeV was found [33]. 

Thus at temperatures in the range Tlim ~ T ~ Tc we are confronted with 
the following situation: the artificial external pressure, which is imposed on 
the hot nucleus by its own evaporated nucleons is still large enough to create a 
surface though the total energy of the hot nucleus turned positive. Of course, 
such metastable states are not realistic in view of heavy ion collisions, where 
the whole picture of an external vapor pressure seems questionable, but they 
might be of interest for astrophysical applications. Looking at FigA one tends 
to assume, that the creation of surfaces at llim < T ~ Tc is a consequence 
of the finite size of the box; i.e. the homogenous vapor phase is not as well 
defined as it is at lower temperatures. Thus we performed calculations in 
that temperature range again, but in a significant larger box. The results 
confirmed our previous calculations: in the larger box the homogenous vapor 
phase is well defined and its pressure still creates surfaces. 

In Table 5 we listed the kinetic energy and the partial contributions to 
the binding energy from the various mesons at different temperatures. As 
it is well known, there is a remarkably balanced cancellation between the 
contributions of the (7- and w-meson (Eu and E w , respectively). The term 
arising from the nonlinear (7-selfinteraction is important (EUNL ) and even 
the e-meson contribution (Ee) is not negligible for the heavy nucleus un
der consideration. The absolute values of all the meson contributions are 
decreasing with increasing temperature while the role of the kinetic energy 
becomes more and more important. At the limiting temperature T = Tlim 
the kinetic energy exactly cancels the contributions provided by the mesons 
and at T > Tlim the kinetic energy dominates. This behaviour can be further 
illustrated with Fig.5, where we have plotted the proton- (lower curves) and 
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neutron (upper curves) kinetic energy densities at the temperatures we also 
considered in Table 5. On the one hand the kinetic energy densities behave 
similar to the corresponding density distributions of Fig.4; i.e. their bulk 
values decrease and they are smoothing out with increasing temperature. 
On the other hand there is the temperature dependence of the "equivalent 
sharp radii" (see Fig.3), which are also indicated in Fig.5; i.e. the higher 
the temperature, the faster the "equivalent sharp radii" are growing with the 
temperature. Finally the latter effect becomes more and more important, 
the volume integrals over the distributions of Fig.5 grow faster and faster 
with increasing temperature and the system gets a positive total energy. 

A conclusion arising from this section is the fact, that the properties of hot 
208Pb described within our relativistic model are very similar to the results 
obtained by various nonrelativistic approaches. 

4.3 Temperature dependence of the level density pa
rameter 

During the last years strong attention has been devoted to the measurement 
of the level density parameter a for A~160 systems at excitation energies 
of 100 to 400 MeV [34-36]. It was found that a decreases from A/8 at 
low temperatures to A/13 at T~5 MeV. Stimulated by this observation a 
significant amount of theoretical work was done by several authors. It turned 
out, that the strong decrease of the level density cannot be explained with 
a pure mean field theory but by inclusion of correlations (collectivity). Such 
collective modes provide a significant contribution to the level density at low 
excitation energies, but largely disappear as the temperature is raised (see, 
for instance, Refs. [29,37] and references therein). Though it is obvious that 
our relativistic mean field model is not able to reproduce this large decrease 
of a at temperatures T$4",,5 MeV, we considered it worthwhile to compare 
our results with those recently published by de Lima Medeiros and Randrup 
[18], who used a nonrelativistic modified Seyler-Blanchard interaction which 
reproduces almost the same nuclear matter ground state properties as our 
model (see Table 1). 

We performed calculations for an uncharged isosymmetric hot nucleus 
with mass number A=160. For determining the level density parameter 
aE(T) of equation (3.2.2) we used the excitation energy of the whole nucleus 
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Ex(T). However, in view of the single particle excitation energy as the "nat
ural" input of (3.2.2) (see section 3.2) we also calculated E;t"(T) and found 
that the deviations from Ex(T) are less than 6% over the whole range of tem
perature under consideration. Thus, from this point of view, the error made 
by the Fermi gas like definition in (3.2.2) is not large. The results for the 
inverse "effective" level density parameter KE are shown in Fig.6 along with 
the values of Ref. [18] and experimental data. Before interpreting those re
sults some remarks are necessary: for calculating the properties of hot nuclei 
in general and the temperature dependence of the level density parameter in 
particular, it is extremely important to treat the continuum states correctly. 
As a consequence, comparisons of models using different approaches to take 
the continuum states into account have to be done carefully. On the other 
hand, in the low temperature region such a special treatment or "subtrac
tion procedure" is not "mandatory". This assumption was confirmed by the 
good agreement between nonrelativistic Hartree-Fock calculations with [12] 
and without [38] subtracting the continuum contributions for temperatures 
T<4,,-,5 MeV. Within the corresponding semiclassical model the same trend 
was found [15]. Intuitively this can be illustrated by the density distributions 
for 208Pb in Fig.4: looking at the proton (lower:) curves, the uniform vapor 
density at large radial distances cannot be seen up to T=5 Me V within the 
resolution of our plots; the statistical occupation of states above the Fermi 
surface has been started but the excitation energy is small, so there is al
most no vapor phase necessary to impose an artifical external pressure (see 
section 4.2). Thus the way, how this vapor phase is treated does not affect 
the results in the low temperature region significantly and we can compare 
our results with those of Ref. [18], in which the continuum contributions 
are treated in a different way. At temperatures up to T::::::6 MeV ourresults 
for KE are roughly 7 to 12% smaller than those of Ref. [18]. This effect 
may be arises from .the following: because of the leptodermous character of 
nuclei, 1/ K can be expressed as a series in powers of A-t as it is done in 
Ref. [18] at zero temperature. In such an expansion, the term associated 
with the nuclear surface creates a quadratic dependence of the level density 
on the size of the system. As mentioned in section 4.1, the nuclear size of 
208Pb in its ground state is too large within our model, which could explain 
our smaller values for KE compared to Ref. [18]. Another reason may be 
the spin-orbit interaction, which is included automatically in our relativistic 
model, but more quantitative investigations in this direction are necessary. 
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As mentioned above, both mean field models are not able to describe the 
high level density at T<4.5 MeV, but in the region 4.5 MeV$T$6 MeV 
our results are in good agreement with the available data. Inclusion of the 
Coulomb force will further decrease KE and hence improve the agreement 
with the experiment, because the Coulomb contribution to the total energy 
decreases more slowly with increasing temperature than the other meson 
contributions which leads to higher excitation energies and a lower limiting 
temperature (see, for example, the results for charged and uncharged 208Pb 
in Ref. [13]). 

Compound nuclei at temperatures higher than T",5.5 MeV have not been 
detected. However, it is interesting to have a brief look at this temperature 
region which is unrealistic in relation to static models. When temperature 
increases the influence of the continuum states grows. The degeneracy of the 
Fermi gas is removed and the relation between Ex and T should shift from 
Ex ex: T2 to its classical limit Ex ex: Tj i.e the assumption of the Fermi gas 
expression of an infinite number of equidistant levels does not hold anymorej 
there is only a limited number of bound states available. Therefore there 
should be a decrease of the level density at higher temperatures relative 
to the values expected for a Fermi gas. This is the temperature region in 
which the subtraction procedure of the continuum contributions becomes 
more and more important because it is this subtraction which should "cancel" 
the Fermi gas like behaviour. Fig.6 shows, that our subtraction procedure 
cannot fulfil this demandj the relation Ex ex: T2 remains "valid" over the 
whole temperature range. This is in agreement with the results of Ref. [13] 
(see Table 8 of that paper), where a similar subtraction mechanism has been 
used. On the other hand Fig.6 indicates, that the approach used by de Lima 
Medeiros and Randrup [18] is able to deliver a decreasing level density with 
increasing temperature. A similar behaviour was found by Dean and Mosel 
[39] who used again a different way to treat the continuum contributions. But 
we want to stress again, that in this high temperature region the physical 
picture of a hot static equilibrated nucleus becomes in general more and more 
unrealistic . 
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5 Concluding remarks 

In the present work we have derived relativistic thermal Thomas-Fermi equa
tions on the basis of a quantum hadrodynamical Lagrangian. Beside the cou
pling of (j-, w- and !,-mesons to the nucleon field, nonlinear (j-selfinteractions 
and the electromagnetic field were taken into account. To treat the contin
uum contributions correctly, we presented a subtraction mechanism based on 
the "equivalent sharp radii" of the density distributions [23, 24]. 

For our calculations we have chosen a set of parameters from the liter
ature [30] which fits accepted nuclear matter ground state data. We per
formed calculations for the ground state of 208Pb and compared the results 
with Thomas-Fermi calculations of other authors, Hartree calculations and 
experimental data. The expected agreement between the different approxi
mations and the experiment was recovered. 

We then turned to the description of hot uncharged 208Pb. First, we 
checked the independence of our results on the size of the box in which the 
calculations were performed and found them sufficiently reliable. By study
ing various thermostatic properties of the system we saw them not notice
ably affected by the temperature up to T=5-7.5 MeV. At around T~13.25 
MeV there exists a limiting temperature beyond which the total energy of 
the nucleus becomes positive. Further increase in temperature leads to sys
tems which still possess a surface until the temperature reaches roughly the 
value of Tc from nuclear matter calculations. We investigated the various 
contributions to the binding energy, recovered the cancellation of the terms 
arising from the exchange of (j- and w-mesons at different temperatures and 
found the expected growing importance of the kinetic energy with increas
ing temperature. In general our results are very similar to those of various 
nonrelativistic approaches. 

Special attention was devoted to the level density parameter a. There
fore we performed calculations for a hot uncharged isosymmetric system 
with mass number A=160. Due to the lack of correlation effects our pure 
mean field model implies significantly smaller level densities than the ex
perimentally extracted values at temperatures T<4.5 MeV. In the region 
4.5 MeV<T<6 MeV our results are in good agreement with the available 
data and further improvement can be expected from the inclusion of the 
Coulomb field. For the high temperature region T>6 MeV we discussed the 
impact of the subtraction mechanism on the calculation of the level density 
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and compared the results of our model with different approaches by other au
thors. It turned out, that the subtraction procedure we used cannot provide 
an expected decrease of the level density at high temperatures, at which, on 
the other hand, the physical picture behind our model becomes in general 
more and more unrealistic. 

Although many refinements could be included, especially the considera
tion of the Coulomb field for hot nuclei and of correlation effects, which are 
necessary to describe the level density at low temperatures, our approach 
constitutes a relatively simple quantum hadrodynamical frame, in which the 
behaviour of hot nuclei can be studied in a systematic way along with a 
tractable numerical effort. 
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Table_ captions 

table 1: Parameters and nuclear matter ground state properties (energy 
per particle E I A, particle density po, incompressibility K and effec
tive mass M* 1M at saturation) of the set SRK3M7 [30]. 
C; = g; (Mlmi)2 ,i = U,w, {! 

table 2: Comparison of our TFA-results (TFAa) for the binding energy E 
and the charge radius Tc of 208Pb in its ground state with those of 
other authors [30] (TFAb, Hartreej we used Tc = JT~ + 0.82 fm) and 
experimental data [31]. 

table 3: Check of the independence of the subtracted quantities on the size 
R of the box for an uncharged isosymmetric nucleus with mass number 
A=160. J.l and E are the chemical potential and the energy in MeV, 
respectively. Rs is the "equivalent sharp radius" in fm and S is the 
entropy. 

table 4: Properties of hot uncharged 208Pb. 

table 5: Kinetic and potential energies coming from the exchange of U-, 

w- and g-mesons and the nonlinear u-meson selfinteraction (EUNL ) 

at different temperatures for uncharged 208Pb. E is the total binding 
energy and E I A is the binding energy per particle. All quantities in 
MeV. 
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Table 1 

M - 939 MeV 

rnO' - 500 MeV C2 
0' - 233.239 

IIlw - 783 MeV C2 - 132.497 w 

rno - 763 MeV C2 - 21.411 
0 

b X 103 - 3.292 

ex 103 - 3.987 

EjA - -16.0 MeV 

Po - 0.15 frn-3 

K - 300 MeV 

M*jM - 0.75 
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Table 2 

E [MeV] Tc [fm] 

TFAa -1698.8 5.53 
TFAb -1697.3 5.53 

Hartree -1620.1 5.50 
Exp. -1637.0 5.42 
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Table 3 

T [MeV] R = 12.21 fm 13.57 fm 14.92 fm 

2 E -2017.192 -2017.157 -2015.646 
S 45.522 45.522 45.522 
p, -14.229 -14.229 -14.229 

Rs 6.235 6.235 6.235 

6 E -1647.697 -1648.184 -1648.192 
S 137.972 137.973 137.973 
p, -16.311 -16.311 -16.311 

Rs 6.338 6.338 6.338 

10 E -930.624 -928.357 -928.965 
S 228.226 228.283 228.299 
p, -20.284 -20.283 -20.283 

Rs 6.574 6.574 6.574 
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Table 4 

T j.lp j.ln Rsp RSn 

[Me V] [Me V] [MeV] [fm] [fm] 

0.00 -24.03 -5.97 6.69 6.96 
2.50 -24.27 -6.50 6.70 6.99 
5.00 -25.25 -7.87 6.77 7.06 
7.50 -26.99 -9.96 6.90 7.17 

10.00 -29.38 -12.77 7.09 7.36 
12.50 -32.29 -16.30 7.40 7.65 
13.25 -33.25 -17.50 7.53 7.77 
15.00 -35.63 -20.53 7.98 8.18 
16.00 -37.09 -22.42 8.54 8.67 
16.20 -37.40 -22.82 8.77 8.87 
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E 
[MeV] 

-2536.75 
-2441.93 
-2166.70 
-1710.13 
-1080.85 

-271.12 
8.68 

727.68 
1194.22 
1313.86 

S Ex/T2 S/2T S2/4Ex 
[MeV-I] . [MeV-I] [MeV-I] 

0.00 
74.90 15.17 14.98 14.79 

148.54 14.80 14.85 14.91' 
221.62 14.70 14.77 14.85 
294.37 14.56 14.72 14.88 
368.05 14.50 14.72 14.95 
390.71 14.50 14.74 14.99 
445.70 14.51 14.86 15.21 
482.47 14.57 15.08 15.60 
493.24 14.67 15.22 15.80 



Table 5 

T=O.O 5.0 10.0 15.0 

Tkin 3657.25 3816.81 4339.08 5216.24 
Eu -20272.57 -19281.31 -16695.26 -12830.25 
EUNL -1335.75 -1218.91 -907.72 -479.27 
E", 15326.25 14433.78 12105.39 8756.25 
E{} 88.12 82.53 77.51 64.18 

E -2536.70 -2167.10 -1081.00 727.15 

E/A -12.20 -10.42 -5.20 3.50 

• 
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Figure captions 

figure 1: Schematic representation of the homogenous "liquid" (0 ~ r < 
ROt) and vapor (R{3 < r < 00) phase (Fig.la), the normalized density 
distribution f(r), the corresponding surface distribution function g(r) 
and the "equivalent sharp radius" Rs (Fig.l b). 

figure 2: Charge density of 208Pb at T=O in TFA (dashed line) in compar
ison with a 3-parameter Fermi fit (solid line) to the experiment [31]. 

figure 3: "Equivalent sharp radii" of proton- (solid line) and neutron 
(dashed line) density distributions (Fig.3a) and chemical potentials of 
protons (solid line) and neutrons ( dashed line) (Fig.3b) for uncharged 
208Pb as a function of temperature. 

figure 4: Proton- (lower curves) and neutron (upper curves) density distri
butions for uncharged 208Pb at various temperatures. 

figure 5: Proton- (lower curves) and neutron (upper curves) kinetic energy 
densities in MeV·fm-3 as a function of the radial distance for uncharged 
208Pb at various temperatures. The "equivalent sharp radii" of the 
proton- and neutron density distributions are indicated. 

figure 6: Inverse of the effective level density parameter KE = AlaE in MeV 
as a function of the temperature for an uncharged isosymmetric nucleus 
with mass number A=160. The diamonds represent our calculated 
results, while the triangles are the results obtained in Ref. [18] by using 
a nonrelativistic modified Seyler-Blanchard interaction (the triangles 
are taken from Fig.3 of that paper). The solid curve is a fit to those 
results. The data points are taken from Fig.2 of Ref. [29]. 
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Fig.4 
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