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ABSTRACT 

Weibull's statistical treatment is employed in studying the behavior 

of brittle solids tmder static multiaxial loading in the first part of 

the thesis. Later, the response of cracks~ to shor,t duration tensile 

loading is examined, and a new theory is developed for predicting failure 

in brittle solids due to tmiaxial dynamic loading. 

It is pointed out that the Weibull multiaxial treatment of brittle 
-

strength contains limitations which are not present in the more familiar 

uniaxial formulation. Provided these limitations are satisfied, it is 

possible to use tension or bending data to predict multiaxial behavior 

when at least one principal stress is tensile. This is illustrated for • 

the Brazilian disk test (diametral compression of a disk). Predictions 

based on bending tests agree well with observed strength values in disk 

tests on two types of rocks. 

The failure mechanism of brittle solids tmder very short duration 

loading is basically different from that tmder static loading. Many 

cracks have to be initiated and propagated at the same time so that they 

can link up and create a fracture surface before the pulse is over. A 

simple, new theory is proposed which relates the strength of brittle 
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solids to the duration of the applied loading. Results from the experi

ments in which rocks are exposed to intense short duration electron beams 

are predicted successfully using this theory. 

( 
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NGfENCIATIJRE 

crack half length 

initial crack half length 

thickness of rectangular beams 

crack speed 

dilatational wave speed 
. 1 

shear wave speed [ lJ. / P ] ~ 

Rayleigh wave speed 

diameter of solid disks 

!.: 
[ (A + ZlJ.) / p] :.I 

half mean path (see Sect. 3.4) 

Yotmg 's modulus 

individual failure probability 

cumulative distribution of failure 

probability density function; ratio of g (c)/g (0) 

energy release rate at zero crack speed 

energy release rate at a crack speed of c 

critical energy release rate at zero crack speed 

critical energy release rate at a crack speed of c 

height of rectangular beams; depth of the volume subject to 

stress pulse 

depth of a single layer (see Sect. 3.4) 

stress intensity factor 

critical stress intensity factor (= fracture toughness) 

stress intensity factor due to dynamic loading 

number of layers in the volume subjected to stress pulse 
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L length of rectangular beams 

m 

N 

P 

Weibul1 parameter 

number of cracks; number of specimens 

pressure 

Pm mean pressure 

P load 

P-wave Primary (dilatational) wave 

R radius of solid disks 

S cumulative distribution of survival 

S-wave Secondary (shear) wave 

T temperature 

t thickness of disks 

u displacement 

V total volume of the specimen 

~ half of the angle over which pressure is applied in solid disks; 

linear thermal coefficient of expansion 

r gamma fQ~ction 

A Lame constant; wave length 

~ Lame constant; coefficient of friction. 

v Poisson's ratio 

p mass density 

0"1'0'2,0"3 principal stresses 

0"0 scaling parameter in Weibu11's theory; a stress level 

o"u zero strength (stress, below which no failure occurs) 

O"n normal stress 

O"m mean stress 
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critical stress 

duration of the stress pulse; time to fracture 

.:: 
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CHAPTER ONE: INTRODUCTION 

Brittle solids were the materials of antiquity and indeed the very 

survival of our prehistoric ancestors depended on their ability to shape 

stones into tools and weapons. By contrast, in the past century with the 

development of steel, mechanical engineers have been concerned primarily 

with design based on the properties of ductile metals. However, interest 

in brittle solids has revived in recent years for several reasons. They 

are the materials with the highest theoretical strength. While this 

strength is not realized in bulk specimens because of inherent flaws, it 

is approached in microscopic whiskers. The use of these materials in 

composites is attracting considerable attention. Also, these solids which 

we term brittle-oxides, carbides, nitrides, graphite - have the greatest 

strength at elevated temperature. With the growing emphasis on fuel 

economy, there is a need to increase operating temperatures and extensive 

research on ceramic gas turbines is tmder way. Certain brittle solids 

are also of interest because of special properties such as transparency 

or corrosion resistance. The compres'sive strength of brittle solids is 

much greater than their tensile strength. For this reason, design with 

brittle solids such as concrete or masonry is usually aimed at keeping 

them in compression with generous safety factors being allowed. 

Another area which has led to great interest in brittle solids 

is that of ttmneling and excavation of rock. I With .the growing emphasis 

on improving the environment by providing tmdergrotmd rapid transit 

systems, tmdergrotmd power plants, etc., much attention has been given to 

novel ttmneling techniques. Unforttmately most drilling or tunneling 
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techniques load the rock in compression rather than exploiting the com

paratively low tensile strength of this type of material. 

Having given these general reasons for an interest in brittle solids, 

we will now summarize our present state of knowledge and point out the areas 

which appear to need further study. By ''brittle solids" we mean materials 

which show essentially no platic defonnation before failure in conven

tional strength tests. This means that these materials are extremely 

sensi ti ve to small imperfections since Local stresses cannot be relieved 

by plastic flow. It is believed that this is the basic reason for the 

discrepancy between the theoretical strength of about E/lD (where E is 

Yotmg's modulus) and the usual strength of about E/lDOD observed in testing 

bulk specimens. Unforttmately, the powerful analytical tools of linear 

elastic fracture mechanics which relate strength to flaw size cannot, at 

present, be applied to typical brittle solids. Because the toughness 

(strength in the presence of a flaw) of these materials is so low, the 

cracks responsible for strength are extremely small and cannot be detected 

non-destructively. In same materials such as rocks the inherent flaws 

can probably be detected as grain botmdary cracks. In other cases such as 

glass) the inherent flaws have never been observed directly to our 

knOWledge. Thus in most cases we can only infer that a distribution of 

inherent 'flaws is present in the material. This conclusion is supported 

by the large variability in strength of nominally identical specimens 

as well as by the discrepancy between the theoretical and actual strengths. 

In addition, the increase in average fracture stress which is observed 

when the specimen size is decreased is consistent with the decreased 

probabili ty of finding a large flaw in a smaller specimen. The preceding 

comments relate to failure tmder tensile states of stress and static 

• 

'. 
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loading conditions. Here the flaws may be regarded as links in a chain 

with failure of the part being governed by failure of the weakest link. 

By contrast in compressive loading and also, as we will see, in very short 

duration tensile loading, many flaws may have to initiate prior to final 

fracture of the part. 

Fortunately, for static loading under tensile states of stress, an 

approach developed by Weibu11 allows many useful predictions to be made. 

Given the distribution of strength from tests on a number of specimens, 

Weibull's approach allows the effects of specimen size and stress distri

bution to be predicted. For example, test results in bending can be used 

to predict behavior in other situations such as thermal shock and for dif

ferent sizes of specimens. Almost all of the attention given to Weibull's 

formulation has been for uniaxial states of stress. Little has been done 

to study multiaxial stress although Weibu11 in his original work suggested 

an approach to this problem. For this reason the problem of predicting 

strength under multiaxial loading will be examined in the first part of 

the thesis. Some limitations of the Weibull approach will be pointed out. 

It will be shown that if these are recognized, satisfactory predictions 

may be made for multiaxial behavior. This is illustrated by using bending 

data to predict the fracture of a disk under line loading at opposite 

ends of a diameter (the Brazilian disk test). Surprisingly, although 

this is a very cammon test it has never been subjected to a complete 

analysis using the Weibull approach. 

As already mentioned, the compressive strength of a brittle solid 

is much greater than its tensile strength. Basically, this is because 

many cracks must initiate before final failure occurs. Although of 
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fundamental interest, we have chosen not to study compressive strength 

because it presents less of a problem in design or in optimizing tun

neling operations than the tensile strength. 

Another problem in which many cracks may have to initiate before 

final separation occurs is that of very short duration tensile loading. 

In this case, the propagation rather than the initiation phase of frac

ture may be the dominant one. That is, a single crack can travel only a 

limited distance in the time of loading and this may not be enough to 

produce complete separation of the part. Present theories for this type 

of fracture are almost completely empirical and have been developed in 

connection with spalling problems. Recently a novel method of tunneling 

has been proposed by Avery et al. [1-1]. This utilizes short duration 

bursts of energetic electrons and subjects the rock to very short dura

tion tensile pulses. To understand the mechanism of removal in this 

novel process it is important to obtain a better understanding of tensile 

failure under very short duration loading. For this reason, in the second 

part of this thesis, a detailed study of this problem is undertaken. A 

new theory for this type of fracture is developed which is believed to 

be more rational than existing theories and is in good agreement with 

experimental results. 
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CHAP1'ER 1WO: MULTIAXIAL STATIC LOADING 

2-1 Development of the statistical theory of Weibu1l 

Based on the assumptions that brittle solids are homogeneous, isot

* ropic, and contain uniformly distributed randomly oriented flaws, 

Weibull [2-1] formulated in 1939 his statistical treatment of failure in 

bri ttle solids. Al though it is not based on a rigoroUs, analytic deri va

tion, it shows great ingenuity and predicts the behavior of - at least 
, 

a group of - brittle solids remarkably well. 

It is necessary to review the Weibull treatment as applied to illli

axial stress states in order to get a better illlderstanding of multi axial 

stress states. The theoretical basis of the theory is well developed by 

Oh and Finnie [2-2] . Observations show that brittle solids can be approx

imated most effectively by the series model. It is asslUlled that there 

is no interaction of flaws and failure occurs when the strength of the 

worst flaw is reached. (The chain is as strong as its weakest link.) Only 

tensile stress' is aS5lU1led to cause failure; any effect of compressive 

stress is neglected. No detailed analysis is made as to the size,shape, 

or mnnber of the exis ting flaw~ . 

Considering a chain of ,N links in which the individual failure 

probabilitiesata given stress a are F. (a), the'survival probability 
1 

Sea) for the, whole chain is 

Sea) = .~ [1- Fi (a)l 
1=1 ' 

* Al though some brittle solids are very heterogeneous on a microscale, they 

can be approximated well on a macroscale as homogeneous and isotropic. 
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N 
= - L 

i=l 
(F. + 

1 
... ) 

if F. is sufficiently small or if N is sufficiently large. It is reason-
1 

able to assune that F i for each link is proportional to its vohnne and 

sane ftmction of stress; Weibull chose, based on existing experimental 

evidence, 

which leads to the failure probability 

G = 1 - S = 1 - exp [-f (O/Oo)mdV] (2-1) 

which turns out to be a logical choice for representing the results of 

strength tests on brittle solids as long as the number of flaws present 

is large. Oh and Finnie have shown that provided the individual probability 

distribution of cracks, F(o) , behaves like am as a approaches zero from 

above, the distribution in strength of the specimens will always converge 

toward Eq.(2-l), independent of the form of F(o). 

To ensure that 0 0 has units of stress, it is more convenient to 

write Eq.(2-l) as 
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where V is a unit vohune. On the other hand, it is inconvenient to o 

carry along an extra quantity in the formulation. Therefore, in the rest 

of the thesis '''VO'' will be omitted with the understanding that dV is a 

dimensionless quantity and stands for (dV/VO) , where Vo is taken as 

1 in3 (1m3). 

The integral in Eq.(2-l) is called "risk of rupture". It is to be 

taken over the region where the acting stresses are tensile. Depending 

on the nature of the flaws, it may be a volume, area, or line element. 

The parameters m, 0'0 are assumed to be properties of the particular 

material in question and are determined experimentally. 

It is more realistic to admit a third parameter, a , which would 
u 

mark the stress below which no failure occurs. The three parameter form-

ulation as given by 

G = 1 - exp (-B) 

B = f (a - au)m/aO dV for a~a u 

= 0 for a < a u 

has to be employed if interest lies in very small probabilities. For mean 

(or median) fracture stresses, however, the advantage of three parameter 

is questionable, especially in the face of difficulties connected with 

parameter estimation in multiaxial stress states .. 

Following the assumption of tensile stress being the only cause 

of failure, Weibull replaced "a" of the one-dimensional stress state by 

the normal stress acting on a crack, " an", in multiaxial cases. He 

then considered all possible orientations of cracks and summed up their 
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contribution to the "risk of rupture". It is worth noting here that this 

is not an averaging process but includes all disjoint events. Thus, 

G = I - exp [-BJ 
(Z-Z) 

B= JIKJ ~dAl dV. 

V Aunit sphere 

In principal stress space, as shown in Fig.Z-I, 

(Z-3) 
. 1 

dA = 4TI cos~ d~ d~ 

and the integration is carried out over the range of angles for which an 

is tensile. Thus, we are not able to treat stress states which induce 

triaxial compression. In particular, where a3 :: 0, the limits reduce to 

- TI/2 ~.~ ~ TI/Z and - ~O 5. l/I 5. ~O ' where 

l/I = o tan 

if aZ L 0 

(Z .4) 
if aZ < 0 

Using Eqs.(Z-2) and (Z-3), setting aZ = a3 = 0, and comparing with 

Eq. (Z-1), 

K = Z (2m + 1)la~. (Z-5) 

The difficulties involved in using three parameter distribution can 

be discussed now ~ One, which is conmon to both uniaxial and mul tiaxial 

treatment, is that the uncertainty involved in fitting three parameters 

to data is a great deal greater than when only two.parameters are involved. 

• 
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The other difficulty with the three parameter distribution in the mu1ti-

axial case is what Weibull called the "risk of ntpture", B in 

Eq.(2-2), does not reduce to its value for the lmiaxia1 case. Thus, 

the parameters deduced from lmiaxia1 tests cannot be applied to the mu1ti

axial case. We see this by writing 

B = f {K f ("n - "u1m dA} dV 

V Aunit sphere 

This reduces for uniaxial stress states only to 

B = f {4~ fJ[cos2~ cos2
1j1 "f"uJm cos$ d$ d.p}dV (2-6) 

V 1/J<P 

which is not a function of (0'1 ~ 0u)m. 

Several attempts have been made to overcome this limitation of the 

three parameter distribution for mu1tiaxia1 stresses. They are discussed 

in some detail in Section 2.3. 

2.2 Limitations of the statistical theory of Weibu11 

For uniaxial stress states, the Weibu11 treatment has been applied 

successfully to a wide variety of brittle solids [2-2 to 2-6]. The 

mu1tiaxia1 formulation, however, has seen relatively little application. 

This may be due to the fact that the limitations of the theory are not 
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yet fully recognized. Some of these limitations are restricted to multi-

axial cases and lead to important consequences. An attempt is made here ,.. 

to list the liinitations of the Weibul1 theory. .• 

(i) A knowledge of the complete stress field is necessary; there 

is a finite probability of failure associated with each point in the body 

, where the normal stress is tensile. (It is generally much easier to de

termine maximum stresses and their location, and this is sufficient for 

most other failure theories.) 

(ii) The Weibull formulation, as discussed here, makes no provisions 

for anisotropic behavior. Although Weibull attacked this problem in his 

second paper [2-7], he could not estimate the parameters from experi

mental data except through a complicated trial and error procedure. 

(iv) A number of investigators have obtained biaxial data in both 

the tension-tension and tension-compression regions. At first sight, the 

results appear contradictory with some materials showing weakening in bi

axial t~nsion, relative to uniaxial tension, while other materials show 

just the opposite effect. As a generalization, materials which would be 

expected to have sharp flaws (alumina [2-8], titania [2-9], silicon 

carbide [2-10], cast iron [2-11], and glass [2-12]), are in the former 

category. Materials which might be expected to have more nearly spherical 

flaws (porous zirconia [2-13], hydrostone plaster [2-24]) show the latter 

behavior. Thus, not surprisingly, the shape of the inherent flaw appears 

to have a strong influence Qn the form of the fracture envelope for multi

axial stress. The Weibullmultiaxial formulation considers only the 

normal tensile stress on all planes at each point in a solid. Thus, it 
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would be -expected to apply primarily to cases in which the flaws are 

sharp, flat cracks. For such a flaw, normal stresses in directions lying 

in the plane of the crack do not contribute to the stress singularity. 

By contrast, for more nearly spherical flaws, all normal stress com

ponents affect the maximum local stress at the surface of the flaw. 

To extend the formulation to elliptical cracks, we can replace an 

in Eq.(2-2) by an equivalent stress an which isa combination of the 

stresses acting normal to the crack plane (an) and parallel to it (a *) 
,n 

(Fig. 2-2). Here we assume that mode I fracture (opening mode) exists 

alone and fracture will start at the very tip of the crack. Then, from 

the Inglis' solution [2-15), shear stress T has no effect on the tangential 

stress at the tip, a ,and we can write 
TlTl 

a = a-fa 
n n * - n 

where f is a factor reflecting the relative effects of an and an*·at 

the tip; it depends on the shape of the ellipse and varies from zero, 

for a line crack, to approximately 1/3 for spherical voids with v = 0.3. 

Using Euler's parametric specification of rotations around a point 

[2-16] , we can express the normal stresses in the principal stress space 

as 

n~ = (sin2l/J + sin</> cos2l/J)cosE> + sinl/J cOSl/J(sin</> -1)sinE> 

*. (. 1) (2 . . Z ) . e nZ = s1nl/J cosl/J s1n</>- cosE> + cos l/J + s1n</> S1n l/J SID-
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where W, ~ are shown on Fig. 2-1 and 8 is the angle of the crack tip, as 

measured from a convenient datlDll line, in the plane of the crack. As 8 

is changed from -~/2 to ~/2, all cracks having the same normal (n) are 

covered. Thus, for a uniform stress field 

~/2 

B = KV I coscpdt~<p 
-~/2 

where 80 is such that on > O. 

For purposes of illustration the above equation is evaluated for 

certain special cases (m = 5, f = 0.01; 0.1; 0.3), and the fracture en

velope for the mean is plotted in Fig. 2-3. It is very clear that the 

shape of the flaws is crucial for rnultiaxial cases whereas it practically 

does not change results for uniaxial stress states. For an elliptical 

flaw with semi-major to semi-minor axis ratio (b/a) approximately equal 

to 4.5 (i.e f= 0.1), the Weibull treatment introduces an error of 43% 

for cr2/cr1 = - 9, 11% for cr2/crl = - 2, but only 1% for the uniaxial stress 

state. Thus, although the Weibull treatment is applicable to all homo-

geneous, isotropic brittle solids in uniaxial stress states, it can be 

employed inmultiaxial cases only for materials with sharp cracks, i.e., 

where b/a > SO approximately. 

(v) Weibull's analysis asslDlles in the very beginning that the 

number of inherent flaws in the specimen is large. Hence, care has to 

be taken to apply this statistical treatment to regions where flaw popu

lation is expected to be high. 
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2.3 Other formulations for brittle solids 

Statistical extreme value theory predicts that there are only three 

general types of asymptotic distributions for the smallest or largest 

value in an increasingly large sample. And only one of them is used gen

erally in strength predictions since the other two of these three forms 

correspond to cases where the range of the parent distribution has no 

lower bound. But it has been pointed out by McClintock [2-17] . that the 

distribution of strengths does not necessarily tend to an asymptote as 

the size of the sample is increased. In fact, he chose a more physical 

model where the distribution of the crack lengths follows an extreme value 

distribution, and he showed that the resulting distributions of strength 

do not follow any of the three asymptotic distributions. Using a model 

with uniform grain size and examining the probability of one or more grain 

boundary cracking, McClintock arrived at the same size distribution as 

proposed by Fisher and Hollomon in 1946. The cumulative distribution of 

failure for individual cracks then turned out to be K' exp(K"/a2) as 

opposed to Weibull' s choice of Kam• McClintock's theory was proposed 

recently and no comparison with experimental data is yet available. AI-

. though it is based on reasonable physical grounds, it has not yet been 

extended to treat multiaxial stress states. It is not at all clear how 

such an extension could be carried out. 

Batdorf [2-18,19} attempted to formulate directly a multiaxial theory. 

He assumed that the density of cracks having a critical stress less than 
N . 

or equal to a can be given as a polynomial, l.: b. a J; similar to 
cr j=l J cr 

Weibull and McClintock, he also looked at sharp cracks without specifying 

their detailed shape or size and considered the normal stress on a crack 



:-14-

as the only detennining factor for fracture. The estimation of the co

efficients in the density distribution function proves to be straight

forward for materials with surface flaws, but rather difficult for materi-

als with volume flaws; a set of N linear simultaneous equations have to 

be solved using N of the experimental data points obtained from uniaxial 

tests. Based on Oh's [2-20] data, Batdorf's prediction for glass failure 

is good only at very low probabilities (Fig. 2-4). Weibull's theory is 

much easier to apply and predicts a better correlation at the mean or 

median (Fig. 2-5). 

The difficulties involved in using three parameter Weibull distri

bution were pointed out in Section 3.1 Dukes [2-21] used numerical 

techniques to overcome these. He wrote Eq. (2-6) as 

and camparedwith the uniaxial formulation 

Through numerical evaluation, he found out that the parameters in the 

multiaxial formulation (m
I
K1 ,ou) can be approximately detennined from 

the 'uniaxial parameters (m,K,ou) using the relations 

.. 



' .. 

-15-

m1 = m - 1 

K1 = 41TC11K/10 

n/2 n/2 m 

IO = J J [ COS 2$COs 21/J ] 1 cos$dl/Jd4> 

-n/2 -n/2 

as long as 2 < ml < 10 and 0 < 0u/01 < 0.8. He plotted the quantity 10 

as a function of m1 as a convenience to the designer. 

For cases where the stress field is uniform, the risk of rupture 

can be expressed, using the above relations, as 

He evaluated the term in brackets numerically and plotted it for various 

values of °2/°1, °3/°1 , 0u/01 and ~. 

Duke's efforts were mainly towards simplifying the use of the multi-

axial Weibull formulation; although he made no original contribution to 

the subject, his plots may prove very convenient in practical design 

procedures. 

Fairhurst, Hardy and Hudson [2-22,23,24] took a completely different 

approach. They assumed that brittle solids, mainly rocks, can be charac-

terized by an "effective crack length" and a ''work of fracture", and 

then they applied the linear elastic fracture mechanics approach. The 

method is based on calculating the change in compliance with crack length 

using finite element method for any given geometry. The energy release 
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(2-7) 

where Cis the compliance and B is the thickness of the specimen. Since 

the energy release rate g equals its critical value g c at fracture , the 

critical load in an experiment can be found from Eq. (2-7) when g c of 

that particular material is known. It is to be noted that since energy 

release rate g is a function of loads, geometry, and crack length, the 

critical crack length has to be known to evaluate dC/da. To estimate 

the material properties "a" and " gc"' they used diametral compression 

tests. From finite element calculations they determined that the failure 

load in a ring test is independent of the effective crack size, so that 

Eq. (2-7) could be used to get gc' To evaluate the crack size, the disk 

test proved handy since it is quite sensitive to a central crack. 

At this stage, it is hard to evaluate the assumption that material 

behavior can be fully described by an "effective crack length" and a 

''work of fracture". The experimental results of Hardy [2-23] are not 

conclusive either; -predictions based on other tests for the failure of 

beams in three point bending are in error by as much as 31%. 

2.4 Application of the statistical theory on disk tests 

In studying brittle solids such as ceramics and rocks, conventional 

tension tests present difficulty both in specimen preparation and in 

alignment during the test. As an alternative, bending tests are often 

made but in addition, a large number of less conventional specimens have 

been proposed for measurement of tensile strength [2-25]. One of the 

more interesting of these is the diametral compression of a solid disk, 
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shown in Fig. 2-6a, for the specimen is simple to prepare and to load. 

In this specimen there is an extensive region along the axis of loading 

where the stress transverse to the loading axis is tensile and constant 

with magnitude about one-third that of the compressive stress in the 

loading direction. This test was first proposed, apparently,by Carniero 

and Barcellos [2-26 1 and since then has often been referred to as the 

Brazilian Disk test. 

Despite the attention which the Brazilian disk test has received 

[2-27 to 2-30] , it appears that no detailed analysis has been made to 

compare its results with more conventional strength tests. We will show, 

at least for a certain class of brittle solids, that behavior in this test 

may be predicted from that in bending tests by using the Weibul1 multiaxial 

treatment of brittle strength. 

We consider disks which are thin enough relative to their diameter 

to be treated as a case of generalized plane stress. Thus, the stress 

components to be considered are 0r,oe' Lre' Rather than point loading 

as shown in Fig. 2-6a to avoid local crushing, it is preferable to flatten 

the disk slightly at the loading points and work with the shape shown in 

Fig. 2-6b. An exact stress analysis for the configuration shown in 

Fig. 2-6c has been given by Hondros [2-31]. When the angle 2a over which 

pressure is applied is small, we would expect the stresses in cases (b) 

and (c) to be essentially identical a short distance away from the loaded 

surface. 

Most workers have considered only the stress state at the center 

of the specimen or along the loaded diameter. However, depending on the 

combination of stress and flaw location, fracture in this test may start 



-18-

away framthe centerline. .The attraction of the Weibull formulation is 

. that it takes care of this aspect by integrating a function of stress 

over the entire stressed vollDlle. 

For the case shown in Fig. 2-6c, the cummulative distribution of 

failure may be written as 

B(p) 

= 1 - exp [-B(p)] 1 
=t f {K f E' n( P )] m dA I dA 

(2-8) 
G(p) 

Adisk Aunit sphere 

where p is the applied pressure and t the thickness of the disk. 

To evaluate B(p) I have taken the first twenty terms in the series 

expansion given by Hondros [2-31] 

cr = r 
1 - (1 - -) 
n 

2] r 2n-2 t 
(R) (R) sin 2m cos2n0 f 

2 { co [ 1 r 2] cr = - ~ ex - \ 1 - (1 + -) (-) o 'IT n~1 n R 

2n-2 I 
(R) sin 2na cos2n6 f (2-9) 

T = ~J. f r1 - (r) 2] (!.) 2n-2 sin 2M sin 2110 I- . 
r0 'IT ~=1l R R ) 

The quantities in these equations are defin~d in Fig. 2-6c. 

The mean pressure at failure is given by 

Pm = [" p.g(p)dp 

o 

whereg(p) is the probability density function. Noting that g{p) = ~ 

and the cummu1ative distribution of survival S(p) =. 1 - G(p) 

• 
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Pm = J pdG = -J dS = J S dp 

since S approaches zero more rapidly than p does infinity. Using 

Eq.(2-S) and Eq.(2-3), 

r(m+l) 
r Cm+l. 5) 

where the limit of integration l/J 0 is as given in Eq. (2-4), and T is the 

.. ganuna function. As it is obvious frcm Eq. (2-9), the principal stresses 

can be written 

01 = P . Hl(r/R,e,a) 

02 = P . H2(r/R,e,a) 

Hence, the expression for mean pressure reduces to 

Pm = r exp(_pmq) dp = r (l"*)/ql/m 

o 
where 

r (m+l) J f [ ] m Jl/J(O Z HZ. 2)m I r(m+l.5) t HI (r/R,e,a) cos l/J + HI Sln l/J dl/J dA 

Adisk -l/JO 

and using Eq. (2-5) 
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V1/ m p . 
m = 

with K' = 2(2m+1) r(m+1)/7T3/ 2r (m+1.5) and l/IO as given in Eq.(2-4). This 

dimensionless quantity is evaluated on a digital computer and is shown 

as a function of m for various a in Fig. 2-7. The corresponding mean 

value for the tensile stress at the center of the specimen is 

2p 
m (. 2 ) o = - Sln a -a . m 1T 

(2-10) 

Experimental Results: The parameters m and 0
0 

are evaluated from three

point bending tests to predict behavior in the Brazilian disk test. Al

ternatively, the parameters could have been obtained from the disk test 

and used to predict behavior in bending. In testing rectangular beams of 

span L, height h and thickness b, using fixed supports, un elementary but 

often neglected source of error is friction at the supports. It may be 

shown that the maximum stress under load P is 

3 PL ( 
o = "2 bh2 1 

The friction coefficient 

.! ~h) 3 L • 

~ is measured and this correction is 

made in determining parameters from bending test results. An additional 

aspect, the ''wedging stresses" [2-25] due to the localized load may be 

shown to introduce an error of 0.3% at most and are neglected. 

Extensive tests are carried out on granodiorite (a fine to medium 

grained igneous rock from the Sierra Nevada), and a smaller number of 
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tests are made on a fine grained limestone, snow-white in color, on a 

lightly anisotropic greenstone, and on a fine grained basalt. 

Bending Tests on Granodiorite: Twelve separate sets of bending tests were 

made involving a total of 281 specimens. The effects of specimen prep

aration, cross-sectional size and orientation, friction at the supports 

and moisture were studied and the results are summarized in Table 2-1. 

All tests were made using a carefully aligned fixture in an Instron 

Universal Testing Machine at a cross-head speed of 0.02 inches/min 

(0.05 an/min). 

The value of m for each set was obtained from the slope of a 

graphical plot of log log (l~G) versus log cr. Here G is taken as the 

mean rank j/ (N+l) where j is the number obtained when N specimens are 

ranked from 1 to N in order of increasing strength. 

The first set of specimens prepared was No.5. These specimens 

had the smallest cross-sectional dimension of any tested and had a very 

rough surface finish. Subsequent specimens were finished in as consistent 

a manner as possible by grinding. For this reason, we ignore Set No. 5 

in our subsequent discussion except as evidence that surface finish must 

be controlled. For specimens which are carefully prepared, it is important 

to determine whether the strength impairing flaws are distributed through

out the volume or are concentrated on the surface, as in glass. It was 

shown by Weiland Daniel [2-32] that this can be determined if beams of 

rectangular cross section are tested in two orientations as with Sets 1 

and 2 or Sets 3 and 4. When the long dimension of the cross-section is 

perpendicular to the neutral ~~is, the cummu1ative distribution of stress 

at fracture should shift to higher stresses if surface flaws are involved. 
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However, if only a volume distribution of flaws is involved, both orienta-

tions should lead to the same distribution. A comparison of Sets 1 and 2 

in Fig. 2-8 provides a rather convincing justification of the assumption ~ 

that a volume distribution of flaws is involved. Sets 3 and 4, which 

involve fewer and smaller specimens, show the rather puzzling result, in 

Fig. 2-9, that orientation of the long dimension perpendicular to the 

neutral axis lowers the strength values. We can argue that since the 

area at the outer fiber is the smallest for all of the rectangular cross

section specimens tested, some effect due to flaws on the specimen edges 

may be involved. 

To obtain an estimate of m from a large number of tests, we have 

pooled all of the sets in which rectangular specimens were tested with 

the long dimension of the cross-section along the neutral axis with the 

exception of Set 5 (different surface finish) and Set 6 (done wet). Taking 

the 161 specimens of Sets 1,3,7,8,9,10,11 and normalizing the strengths 

in each set by their own mean, we obtain from Fig. 2-10 the estimate 

m = 12.0. It is interesting to compare the distribution predicted by this 

value of m with the data points on linear coordinates as shown in Fig. 2-11. 

As expected, because of the assumption au = 0, the data points depa:r:t 

from the predicted curve at the lower stresses. 

The value of 0 0 cannot be obtained from such a pooled plot so Set 1, 

which has the largest number of specimens, was selected. From Fig.2-l2 

we obtain 0 0 = 1220 psi (8.41 MN/m2) before making the correction for 

friction and 0 0 = 1170 psi (8.07 MN/m2) after making this correction 

for the measured value ~ = 0.31. 
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Excluding Set 5, the m values deduced from the other sets of 

bending tests show the variability to be expected when estimates are made 

from small samples (coefficient of variation = 0.097). To show that the 

shape of the cross-section has no significant effect on the m values, 

Set 12 is included in the experiments (Fig. 2-13). Set 6 is tested 

after soaking the specimens in water for five minutes~ It indicates that 

moisture has little effect on the m value, although it does decrease the 

mean strength, as shown on Fig. 2-14. 

Disk Tests on Granodiorite: The dimensions selected for the disks were 

D = 1.006 inches (2.56 em), t = 0.205 inches (0.52 em), and 2a = 18.50
. 

Sometimes padding material has to be used in the Brazilian disk test to 

avoid premature crushing under the loading points but this was not found 

to be necessary in the present tests. Two series of tests were made on 

disks and the results are summarized in Table 2-2. 

Forty specimens (Set 13) were prepared with a surface finish similar 

to the bending specimens while 38 specimens (Set 14) had a considerably 

smoother surface finish obtained by lapping. The predicted value for the 

mean tensile stress at the center of the disk from Eq. (2-10) and 

aO. = 1170 psi (8.07 MN/m2) , m = 12.0 is 1770 psi (12.20 MN/m2). This 

agrees well with the mean of the observed strength values for both sets 

of tests. A more critical test is to compare the distribution of failure 

stress or pressure predicted by the Weibull formulation with observed 

values. This is done in Figs. 2-15 and 2-16 for the two sets of tests. 

The agreement for the disks with surfaces similar to the bending specimens 

is very good. For the smoother disks, Set 14, the predicted distribution 

provides a somewhat less precise fit to the experimental distribution. 
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Tests on Limestone: A less extensive series of tests was made on a 

limestone to confirm that the preceding predictions for the Brazilian 

disk test could be repeated for another material. Since this material 

is very soft,it is not easy to prepare specimens of rectangular cross-

section as the edges tend to crumble. For this reason, Set 15 and Set 16 

(Table 2-3) are rejected. Bend tests were made on specimens of circular 

cross-section (Set 17, Table 2-3). The Weibu1l parameters deduced from 

this test, using Fig. 2-17, are m = 10.5 and aO = 420 psi (2.90 MN/m2). 

A set of 38 Brazilian disk tests were made using dimensions similar to 

those for granodiorite except for a decrease in thickness to 0.200 inches 

(0.508 em). From Fig. 2-18 the predicted probability distribution is 

seen to compare very well with experimental results. The mean value ob

served for the tensile stress at the center of the disk was 690 psi 

(4.76 MN/m2) with the predicted value being 668 psi (4.61 MN/m2). 

Tests on Greenstone: Greenstone (amphibolite) is a metamorphosized 

volcanic rock. It shows schistosity and is randomly intersected with 

veins of quartz. The bending test data, shown on Fig. 2-19, does not fit 

a Weibull distribution at all. As discussed by Weibull, the curve is con

cave upwards and indicates the anisotropy of the material. It is not 

possible to obtain unique m and aO values to use in the Brazilian disk 

analysis. Apart from difficulties in estimating the parameters, the disks 

in diametral compression did not fracture along the loaded diameter; due 

to insufficient stiffness of the testing machine, disks failed in an 

explosive manner, completely obscuring the mode of failure. For these 

reasons, attempts to predict the behavior in one of the tests from the 

other, using the procedures discussed, would be meaningless. 
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Tests on Basalt: Similar difficulties arose with basalt as with greenstone. 

The anisotropy is not strong but the bending test data shown on Fig. 2-20 

indicates that there is a high zero strength for basalt. The use of two 

parameter Weibull formulation can not be justified. 

Discussion of the Results: The results obtained here show that if similarly; 

prepared specimens are compared, the Brazilian disk test may be compared 

with bending results using Weibull's multiaxial formulation.· The predic

tions are considerably better than can be obtained with other procedures. 

One approach suggested [2-27] is to compare volumes in which the tensile 

stress is above 90% of the maximum value. This criterion would predict a 

mean fracture stress of 1630 psi (11.24 MN/m2) which is 12% below the ex

perimentally observed values. Another approach would be the maximum strain 

criteria. But even lower values are predicted for the mean stress at 

fracture if a maximum strain criterion of fracture is employed since it 

predicts a reduction in strength in tension-compression quadrant. From 

Table 2-1 it can be seen that the maximum tensile stress by itself is a 

completely inadequate fracture criterion. 
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CHAPTER TIIREE: UNIAXIAL DYNAMIC LOADING 

3.1 Introduction: 

Quasistatic fracture and/or dynamic fracture are very often used to 

denote both the motion of cracks and the type of loading. To avoid any 

ambiguities the term dynamic loading is used here for external loads that 

give rise to transient propagating mechanical disturbances (such as impact 

loads, explosive charges, etc.). There is no need to label the propagation 

phase. Only rapid (or catastrophic) propagation of cracks will be dis

cussed. 

The classic analytical problem of fracture mechanics involves com

putation of the stress field at the crack tip. This computation has to 

include the inertia effects for any kind of dynamic loading. Elastodynamic 

problems often lead to dynamic stresses which are higher than the stresses 

computed from the corresponding problem of static equilibrium. Reflection 

of a plane wave fram a rigidly-clamped boundary - giving rise to stresses 

which are twice the original incoming wave magnitude - is a good example 

of this effect. A comparable effect occurs when a wave is diffracted by 

a crack. The behavior of the stress intensity factor under short dura

tion pulses is studied in the first part of the chapter under the heading 

of "crack initiation". 

In most instances crack initiation is sufficient for complete failure 

since the propagation speed of cracks is very high and they can com

pletely traverse a part during conventional loading. Under short duration 

pulses, however, initiation becomes only a necessary condition for com

plete fracture, and the propagation phase may be the dominating factor 

in brittle fracture. In considering the, propagation of cTacks due to 
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dynamic loading, we have to admit that even the propagation due to 

quasistatic loading is not well understood yet. In the second part of the 

chapter, crack propagation is studied for the case of quasistatic loading. 

The last part of the chapter deals with a new theory for brittle 

failure under dynamic loading. The theory is applied to a practical case -

spalling due to energetic electron bursts - in Chapter four. 

The phenomena of fracture under short duration stress pulses has 

drawn attention mainly in relation to back surface spallation of armour 

plates subject to impact. Recently, the search for efficient tunneling 

methods in hard rock has required a better understanding of the spallation 

process. Unlike metals, rocks behave essentially elastically up to the 

fracture point and do not show strong rate dependence~ The plastic flow 

in metals that accompanies the compressive wave changes the internal struc

ture of the material so that the material which undergoes spallation is 

quite different from the initial material. Brittle solids being much 

stronger in compression remain unchanged by the initial compressive wave. 

This alone makes the brittle solids much easier to analyze. The difficulty 

with brittle solids, however, arises from strong nonhomogeneity; generally, 

grain boundaries act as effective cracks and it is very difficult to 

identify these flaws. As will be discussed later, a knowledge of flaw 

distribution is very important in predicting dynamic behavior. 

3.2 Crack lnitation: 

We assume that initation of fracture occurs when the stress in

tensity factor reaches its critic~l value, called the fracture toughness. 

The fracture toughness value is assumed to be independent of the loading 
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rate, which is a reasonable assumption for rocks. The effect of short 

duration loading on the stress intensity factor is studied in the following 

problem. 

A sharp through crack, of length Za, is embedded in a homogeneous, 

isotropic, linear elastic plate of infinite extent loaded by uniaxial 

tension o. This geometry corresponds to the simplest problem of quasi-
1 

static loading where Kr = o(7Ta)~. A plane P-wave (tensile) propagates 

towards the crack, the wavefront being parallel to the plane of the crack. 

At time t < 0, the incident wave is of the form (Fig. 3-1) 

o(i)= a H(t-y/c) 
yy ° 1 

where H{T) is the Heaviside function. At t = 0, the plane wave strikes 

the crack. At all subsequent times, there are a reflected plane wave and 

two diffracted cylindrical waves emanating from each crack tip (Fig. 3-Z). 

The stress field at the crack tip for this problem was obtained by 

Thau and Lu [3-1] by considering two hypothetical plane problems: 

problem A - plane incident wave o~)~ 00 H(t-y/c1) in infinite domain 

-problem B - the wave propagation problem defined by the boundary con

ditions 

0yy(x, ° ,t) = - 00 H(t) for 0< x < 2a 

0xy(x,O,t) = ° for -00 < x < 00 

u (x,O,t) = ° for x> Za, x< ° y 
• • for t< ° u = u = u = u 

= ° x y x y 
satisfying the field equations of isothennal elasticity. 

Super position of problems A and B is the problem of liP-wave striking a 
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crack". Since the solution of A is trivial (unifonn all over), the solu-

tion of the main problem reduces to solving problem B, as stated. 

Introducing the Lame potentials a(x,y,t) and ~(x,y,t) such that 

u = Va + V x S 

the problem in two dimensions (plane strain, no body forces) reduces to 

solving the following two wave equations subject to the conditions given. 

in the statement of problem B. 

V2a 1 a2a 
= :r 

at2 C 1 

v2S 1 a2s 3 S = S = 0 =y 
at2 3 C2 

1 2 

where cl ~d c2 are respectively, dilatational and shear wave speeds. 

Laplace transfonn over time and exponential Fourier transfonn with respect 

to x-coordinate are applied to the set of governing equations. The re-

suIting equations are solved by the generalized Wiener-Hopf technique. 

The analytical solution for the stress intensity factor obtained 

by Thau and Lu [3-1] is shqwn on Fig. 3-3. The ratio of the stress in

tensity factor under dynamic loading to'the stress intensity factor under 
1 

static loading (KId/KI ) increases as (time)~ until the scattered S-wave 

from opposite crack tip hits the tip in question (i.e. t ~ 2a/c2). The 

rise is accelerated with the arrival of the S-wave, and the maximum occurs 

right at the moment when the scattered Rayleigh wave reaches the tip. This 

maximum is about 30% higher than the corresponding static case.-

The results are valid only for times t ~ 4a/c 1 . That is, denoting 
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the tip in question by 1 and the other by 2, only Pl'Sl,PZPl,PZSl,Sll' 

S2Sl-waves are considered (No. PlP2Pl,PlP2Sl etc.). Hence it is not pos

sible to claim that the peak values quoted are indeed the max~ ones 

for all subsequent time. However, decaying responses with time are ex

pected since scattered waves propagating outward to infinity continuously 

remove energy from the vicinity of the obstacle. 

Further study of dynamic loading: For a step pulse ° = 00H(t), each crack 

will reach the same maximum ratio of KIclKI' no matter what the size of 

the crack is. The larger cracks will take longer time than the small ones 

to reach that maxinnml. Since the static stress intensity factor, K1, i t-
1 

self is proportional to a~, the maxinnml KId will increase as the crack 

size increases. The variation of KId with time is shown on Fig. }-4 for 

various crack lengths. Thus, for small times KId is independent of crack 

size. All cracks, larger than some mininu..un value, will reach a particular 

* value of KId at the same time ; hence, all the "active cracks" (cracks 

which will start propagating for the given stress pulse) will have the 

same delay time to. Since the crack size is immaterial, we can replace 

the crack of length 2a by a semi-infinite crack. The problem becomes 

much easier without higher order diffractions at the second tip, and 

Freund (3-2) obtained a closed form expression for delay time as 

* Because of the peculiar cusp shape of the last portion of dynamic stress 

intensity factor curve (Fig. 3-4), a limited number of cracks will reach 

the critical value o~ the stress intensity factor K1c at slightly lower 

times. These are the cracks with sizes very close to that of minimum 

active crack. 
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(1-V)2 Kic 
to =------

. . 2 

7f 

2 (1-2v) aO c1 

where KIc = fracture toughness and v = Poisson's ratio of the material. 

It follows that there is always a finite time between the wave striking 

the crack and the crack starting to propagate, no matter how large the 

stress. Crack propagation at an instantaneous velocity, i. e. to = 0, 

occurs only if the stress has a square-root singularity at the wavefront 
_1 

of the incident wave; that is, if a (t) _ t '2 H(t) (Achenbach and 

Nuismer [3-3]). 

Interaction of a finite pulse with a crack of length 2a is much 

harder to analyze rigorously. Superimposing two step inputs a
O 

H(t) 

and -aO H(t-T) would yield the behavior.of the finite pulse of duration 

T, if it can be shown that the crack does not close under the loading 

-ao H(t-T). MOtivated by the fact that the crack'is already open when 

the compressive step function is applied, the assumption is made that 

the crack opening will not increase for t > T and hence, KId will reach 

its maximum value at t = T. Consequently, for a given pulse (a,T), 

cracks larger than cR T (CR being the Rayleigh wave speed) will not 

reach a 30% overshoot in KId over KI since the unloading pulse will be 

due before the Rayleigh wave reaches the tip. The variation of maximtnn 

stress intensity factor reached within (O,T) is as shown on Fig. 3-5. 

Thus, the fracture criteria for cracks smaller than cR T is just the 

Griffith type; there is only an additional factor of 1.3 to raise KI 

due to dynamic effects. Larger cracks, however, are insensi ti ve 
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to crack size. This is a peculiar behavior associated with dynamic loading. 

If no fracture occurs, increasing the pulse length A will increase 

the stress intensity factor reached by large cracks, thereby increasing 

the probability of failure. Above a certain threshold A , however, all 

pulses will have the same effect as far as initiation is concerned. 

Generalizing Thau and Lu's work led to the conclusion that KId 

reaches the maximum value £or crack lengths equal to cR T. Hence, for 

fracture 

where C is a function of Poisson's ratio and is of the order one. This 

is a necessary condition for fracture to initiate. In order to be also 

sufficient, the material should contain at least one crack of length 

The left hand side of the last equation is proportional to the 

energy ot the stress pulse. To crack a given material, either a long 

pulse with low stress profile or a short pulse with high stress profile 

can be used. Among pulses of the same energy content, the short ones 

will be more destructive than the long pulses, since the short pulses 

will have a greater range of cracks to affect, as shown on Fig. 3-6. 

It is more realistic to consider penny-shaped cracks rather than 

two-dimensional cracks. The diffraction problem of a step function in-

put has not been solved for penny-shaped crack geometry. But, harmonic 
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incident waves, diffracted at Griffith - as well as penny-shaped cracks 

are considered by Mal [3-4,3-5]. The maximum overshoot of dynamic 

stress intensity factor is 30% in the former, 45% in the latter case. 

This maximum occurs for incident waves where the wavelength is roughly 

4 to 6 times the crack length. This compares favorably with rectangular 

pulse solution, where maximum occurs at pulse lengths roughly 2 times the 

crack length (Table 3-1). By analogy, it is expected that KId - 1. 45 KI 

for a penny-shaped crack struck by a rectangular pulse. 

3.3 Crack Propagation 

In the propagation phase of cracks the main concern is how far cracks 

can travel before the pulse is over. Questions about the path of the cracks 

and instabilities such as forking will be avoided here. The assumption is 

made that all cracks will continue growing in their own plane,- on a 

straight line. 

Not much progress has been made on propagation theories in the last 

decade. Still, formulations based on static stress fields are used. 

Mott [3-6 J was the first to extend Griffith's energy balance to dynamic 

cases by including the kinetic energy term into the balance equation. 

Using the potential energy term as given by Griffith, deriving the kinetic 

energy term on dimensional grounds and making the simplifying assumption 

ac/aa = 0 initially (where c = crack speed, a = crack half length), he 

came up with the expression: 

c = (3-1) 

where E is the Young's modulus, p is the density, aO is the initial 
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crack half length and K' is the constant to be evaluated from the dis

placement field of the problem. Roberts and Wells [3-7] evaluated it in 

1953 for Poisson's ratio 0.25 and obtained the expression 

E aO ~ 

( )

1 

c = 0.38~ 1 - -at . (3-2) 

Dulaney and Brace [3-8] recognized that for early periods of propagation 

the assumption ac/aa = 0 is not correct and solved the energy balance 

equation ofMott by using the initial condition c = 0 when a = aO' They 

obtained the following expression 

c = o. 3S/f (1 - ~) (3-3) 

Berry [3-9J extended this last fomulation by differentiating between the 

applied stress (J and the critical stress (J. and came up with c 

c = 0.38~ o 2 2 0 2 
a 

) 
k[ a J!.: (1 -Bl· 1 - (2n -1) at (3-4) 

where n = (Jc/(J < 1. In all these cases, the limiting crack speed is 

predicted to be 0.38;-E7P or 0.6 c2 for v = 0.25. 

All of the foregoing fomulations are known to be incomplete since 

they are based on static solutions of crack geometry. Tsai [3-10] re

cently computed the stress distribution around the tip of a running crack. 

As shown on Fig. 3-7, the correction factor is appreciable at large speeds; 

not only the magnitude but also the plane at which the maximum circum

ferential stress acts is changing at crack speeds above 0.7 c2. 

It has been shown first by Broberg [3-11] that the teminal crack 

speed is the Rayleigh wave speed cR' i.e. 0.92 c2 for v = 0.25, rather 
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than the predicted value of 0.6 c2' where c2 is the shear wave ~peed. 

Experimental results on steel, polymers and glass show, however, a closer 

agreement with the value 0.6 c2. Only in limited cases, such as tungsten 

single crystals, have high terminal velocities up to 0.82 c2 been observed. 

A possible explanation can be given by considering the behavior of the 

stress intensity factor with increasing crack speedS. For semi-infinite 

cracks, Freund [ 3-12] found that the stress intensity factor KI decreases 

sharply at high ~rack'speeds and reaches zero at c = CR. This clearly 

shows that the Rayleigh speed is the absolute maximum for conventional 

crack propagation, which occurs through energy transfer from the sur

rounding stress field to the tip. it also indicates that this speed can 

be approached only asymptotically. Since all engineering materials will 

have a finite fracture toughness value, terminal velocities will be con-

siderab1y lower than ~ (Figs. 3-8). 

There is no reason a prior to assume the energy absorbtion behavior 

constant at all crack velocities, as is done in the early propgation 

theories. In fact, the contrary might be expected. At low crack velocities 

and crack tip strain rates, yield strength increase may decrease the 10-

calized yield zone, thereby decreasing the energy absorbed. At high 

crack velocities, the tendency to form small cracks in front of the crack 

tip increases, thereby increasing the energy absorbed. Experiment on 

plexiglas (Bergkvist [3-13] ) show that the surface energy increases at 

an increasing rate as crack velocity increases. Assuming that the critical 

energy release rate g can be determined experimentally, the crack speed c 

can be calculated by using the available solutions for energy release 

rate, as shown in the following. 
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The rigorous solution for a finite crack extending at a nonuniform 

rate due to Mode I loading has to include diffractions at each crack tip 

and therefore is expected to be very complicated. '·'Semiinfinite crack 

extending at a nonuniform rate" and "finite crack extending at a uniform 

rate" are easier problems although less descriptive of the physical situ

ation. Freund ·/3-12] and Broberg 13-14} considered these two cases and 

obtaine4 solutions for the energy release rate ~ The solutions are 

complicated. However, on examination it can be seen in both cases that 

the ratio of the 'energy release rate at same velocity c to that at 
, 

initiation, i.e. at c = 0; can be approximated for equivalent crack 

lengths by: 

g 
g = . (c);; 1 - c/c 

g (0) R 
(3-5) 

Tsai [3-15J investigated the dynamic stress intens'ity factor for a brittle 

crack extending at a constant speed and at a constant acceleration. The 

results for these two cases are identical at c = 0 and c = c R arid do 

not deviate from each other more than 5% over the entire range of crack 

speeds. (It is worth noting here, however, that the stress intensity 

factor and the energy release rate for a propagating crack are no longer 

related by Ki(l- })/E = g but by Ki(C) ACc) (1-V 2)/E = g Cc), where 

A(c) is a function of crack speed and elastic constants. When c is zero, 

A = 1; and when c approaches the Rayleigh wave speed, A becomes unbotmded 

(Freund [3-12]). 

A crack under time independent loading starts to propagate when 

the energy release rate g reaches its critical value gc. The subse

quent motion is such that g remains equal to g c. Hence, considering 
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the simplest case, a crack of length 2a in an infinite plate subject to 

unifonn traction cr at infinity, we have: 

initially: 

later: g (c) c 

a 0
2 

= g - -- g (0) 
a 0 2 c o 0 

Using the approximate expression for g as given in Eq. (3-5), we can 

rearrange the last equation, 

2 
_ ( aO g c (c) 0 0 ) 

c = cR 1- TgcCO) 0 2 • (3-6) 

This relationship of crack speed and crack size is similar to the 

early formulations given in Eqs. (3-1) - (3-4). A comparison of Eqs.(3-2), 

(3-4) and (3-6) is made on Fig. 3-9. The two extreme cases, 

gc' (c)/ gc(O) = 1 andg (c)/g (0) -+ CI) , are shown by dashed lines; ,c c ' a 

real solid is expected to lie in between. Wi thout an experimental 

knowledge of g (c)/g (0) variation with crack speed, Berry's curve seems 
·c c 

to be the best available at this stage. 

Increasing the applied stress over the critical stress does not 

effect the tenninal velocity, but decreases the period of acceleration. 

The trend is similar in both Berry's analysis and the analysis based on 

gc-variation with crack tip speed. As shown on Fig. 3-9, among pulses 

with the same energy content, i.e. 02T = constant, long pulse lengths 

will be more destructive than high stress amplitudes. 
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3.4 A New Theory of Dynamic Fracture 

A study of the last two sections leads to the conclusions that under 

impulsive loading cracks will be activated at stress levels 30-45% lower 

than quasi-static loading and that they will travel at velocities consider

ably lower than the Rayleigh wave speed. It is also fOlmd experimentally 

that the strength level of brittle solids increases sharply as the loading 

time is decreased. Hence, fracture under short duration pulses must be 

governed by propagation.of cracks as opposed to initiation, which is the 

governing factor in quasi-static loading. And this is not surprising at 

all. Due to the limited time available large cracks cannot propagate far 

enough to meet the free surface or each other; many smaller cracks have 

to be initiated. Thus, much higher stresses are necessary for failure. 

Clearly, a weakest link or series type anlysis (like that of Weibull's 

treatment (Chapter II) where the structure as a whole is only as strong 

as its weakest link) will not hold anymore; a model requiring the failure 

of many elements in parallel may be more appropriate. Not only the size 

but also the density of cracks will be vital. 

Research in the area of short duration loading has consisted pri

marily of experimental determination of conditions necessary to produce 

spall. Analysis has been confined to empirical relationships. The spall 

criterion proposed by Tuler and Butcher f3-161 for metals 

T 

fla-aoJAdt = K 
-0 

has been applied most widely. (In this equation 00 corresponds to 
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fracture stress at long times, A and K are constants.) It seems to fit 

the experimental evidence well but lacks any theoretical basis. The con

. stants A and K have to be detennined from a series of spall experiments 

which requires sophisticated equipment and experimentation. Available 

limited data show that A is around 2. If its value can be obtained more 

precisely by theoretical analysis or extensive experimental work, the 

usefulness of this criterion can be increased greatly. 

Shockey et al. [3-17] attempt to detennine the flaw distribution 

in rocks by counting and measuring the flaw traces on a particular plane. 

Cumulative distribution per unit volume is then obtained by means of a 

statistical transfonnation. Failure is assumed when cracked volume 

reaches a certain percentage of total volume. The criterion is arbitrary 

and the procedure of counting crack traces is less likely to be successful 

in most rocks than in novaculite, the material they tested. 

In the light of these developments, a new theory is proposed to 

predict failure in brittle solids due to dynamic loading: Consider a 

plane, rectangular stress wave of magnitude cr and duration T such as 

one generated by impacting a thin propject~le plate against a stationary 

target plate. It can cause failure only if (i) the energy delivered to 

the solid is large enough to initiate crack propagation, and 

(ii) the duration of the stress is long enough for active.cracks to 

coalesce. Thus, the time to failure T can be written as the sum of 

initiation and propagation time 

T = T. + T 
1 P 

From Freund's [3-2] solution for the delay time of a semi-infinite 
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crack, we know 

2 2 = n(l-v) K1c 
T. 2 

1 2 (l-2v) cr cl 

(3-7) 

where KIc is the fracture toughness, cl is the dilatational wave speed 

and v Poisson I s ratio. 

A similar expression for propagation time Tp is much harder to 

obtain. A global energy balance including the kinetic energy term is not 

useful since the fresh surface area created is very hard to estimate. The 

cumulative distribution of crack sizes is crucial at this point. 

Distribution of flaws. We will assume that in a brittle solid the m.unber 

of flaws per volume having a strength equal or less than (J is Poisson dis

tributed. In the face of a large mnnber of similar phenomena obeying a Poisson 

" probabili ty law - such as the nUmber of misprints per page, spontaneous 

decomposition of radioactive atomic nuclei, occurrence of breakdown or 

accidents - the assumption is expected to be reasonably close to reality. 

Denoting the expected number of cracks per volume having a strength 

< (J by n, we can write the probability of finding zero flaws in volume 

V having a strength ~ (J by 

p = e-nV (nV)o 
O! 

Or, the probability of finding at least one flaw as 

l-p = 1 -nV - e . 

From static tests we know the distribution of failure stresses (i.e., the 

probability of finding at least one flaw in volume V having a strength 



< 0) obeys Weibull's 

G = 

and 
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distribution closely. 

( a a- au)m V ' 

l-e 0 =1 

Hence 

-nV e 

nV = N(al = C ;0 au fv . (3-8) 

Static tests give the distribution of the largest cracks since 

brittle solids in such tests always fail due to the most severely loaded 

flaw. Thus, the above expression is strictly valid only within the ex

perimental range. It does not give information, e.g., about the number 

of very small cracks since very large failure stresses can be obtained 

only in very very small specimens which are neither suited for experi

ments nor justified in terms of their modified microstructure. But, after 

recognizing this limitation, we assume that brittle strength will continue 

to obey the Weibull distribution beyond the range justified by experi

ments and extrapolate Eq. (3-8) to vanishing crack lengths. 

A simple criterion: All cracks are assumed to lie parallel to each other 

and perpendicular to the applied loading. They are also assumed to pro

pagate in their own plane in a straight line. (These simplifications are 

discussed later in the chapter.) A mean path 2d is defined as the dis-

tance an average crack propagates before coalescing with another c~ack. 

If all cracks are the same size and on the same level, 
• 

k 
d = !z (AlN) 2 

where A is the area subjected to tension and N is the number of cracks 

that are active at or below a stress o. To assume that all cracks lie 

on the same level is too much of a simplification. Instead, we can assume 

that they are distributed uniformly to ~ different levels such that any 
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two cracks in one layer have to merge if they grow long enough. Thus, 

since V = A·h= A·~h·~, where ~h is the thickness of a single layer 

(a~ r· 
In the face of all the assumptions and approximations involved, it is not 

justified to use a complicated propagation law such as mentioned in 

Section 3.3. Neglecting both the initial crack size and the period of 

acceleration, we can write 

d _ I 
Tp - C - 2c 

where c is the crack velocity. 

The ntunber of layers R, in the direction of wave propagation 

(z-axis) is ambiguous; since the wave travels down all along the z-axis, 

there is no immediate dimension corresponding to the depth of stressed 

volume. The layer thickness ~h is sensitive to applied stress level 

a; the stress field at the tip of a crack will reach farther for larger 

a. The maximum opening 0max of crack of length 2a subject to a stress 

a at infinity may be shown to be 0max = 4a a/E. This suggests an 

approximate estimate of ~h as 

20 = 8 a~ max E 



giving 

-43-

o m/2 
1 0 

Tp = 2c (0_0)iri!2 
u 

(3-9) 

The crack size a is unknown in the above expression. Hence, we leave 

it and the other constants as parameters to be determined from one dynamic 

test and write Eq. (3-9) as 

(3-10) 

For most practical purposes, Ti« Tp and T .. orp ' 

and 

T o~ '0-Ou)m/2 = K. 

If 0 is applied for a'time ~t less than T, 

Successive application of constant stress pulses of duration ~ti each 

gives 

k 
L ~t. o~· (0.-0 )m/2 = K 

1 1 1 U 
i=1 

k 
where ~ ~t. = T. In the limit, l., 1 

i=1 

't 

I 0" (0 - 0u)m/
2 

dt = K. 

o 

(3-11) 
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This last equation is very similar to the empirical relationship proposed 

by Tuler and Butcher, except that the material properties m and a 
u 

can be found by static pure bending tests; a single dynamic fracture test 

is sufficient to determine the constant K. 

Discussion: In developing a simple dynamic fracture model, we assumed 

the cracks to lie parallel to each other and to propagate in their own 

plane. These assumptions are motivated by following arguments. We know 

a crack oriented at some angle e to the applied tensile stress will ex-

tend in such a way as to maximize the stress intensity factor at its tip; 

i.e., it will turn perpendicular to the applied tensile stress. Besides 

that, Freund [3-18] has shown recently that the delay time is a strong 

function of the orientation and increases sharply for cracks which make 

large angles with the plane perpendicular to the applied tensile stress. 

Thus, it is reasonable to disregard such cracks and treat the rest as 

being on planes perpendicular to tension. 
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rnAPTER FOUR: ANALYSIS OF ELECI'RON BEAM TESTS 

4.1 Introduction 

Several novel techniques have been introduced recently in the areas 

of tunneling and drilling. Use of intense submicrosecond electron bursts, 

which will be studied here, has the particular advantage of leading to 

tensile loading of rocks and hence exploiting their relative weakness in 

tension. A detailed picture of the investigation is pre~ented in [4-1] 

and especially in [4-2]. 

Energetic electrons delivered from a pulsed electron accelerator 

penetrate the rock to a finite depth and deposite most of their energy. 

The heated region cannot expand freely due to the surrounding rock at 

ambient temperature and large thennal stresses are created. The knowledge 

of these thennal stresses is essential to any failure prediction. The 

situation can be formulated as follows: 

Given homogeneous, isotropic, linear-elastic half space, Z > 0 

(Fig. 4-1), find the stress field 0 .. (x,t) satisfying the equations 6f 
1J 

isothennal elasticity: 

0· .. =pU. 
1J ,J 1 

0ij = 2~ Eij + AOi{kk - (3). + 2~) (l T 0ij 
1 c·· -2 (u .. + u .. ) 

1) = 1,) ),1 

subject to boundary conditions 

Ozz = 0 = 0 at z = 0 for t ~ 0 zr 

°e = °e - 0 everywhere 

and to initial conditions • • 0 ur = u = u = u = 
Z r Z 

(4-1) 
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where T = T (r ,z, t) is the temperature rise, A and ~ the Lame constants, 

and a the coefficient of linear thennal expansion. 

There are two distinct regions of interest depending on the applica

tion of the heat source. If the electron deposition is fast enough such 

that there is practically no heat transfer to the surroundings and slow 

enough not to have any wave phenomena (i.e. subsecond duration pulses), 

the mechanism is called "thennal crater" fracture. If the electron de-

position is almost instantaneous (i.e. submicrosecond pulses), the fracture 

is by "spalling" due to the tension wave. 

4.2 Thennal Crater Analysis 

The stress field for the "thennal crater" problem can be solved; 

at least in principle, using Eq. 4-1 after replacing the equations of 

motion by the equations of equilibritml. Instead, a finite element code 

[4-3 ] with quadrilateral elements is used. The input energy is converted 

to temperature rises at nodal points, from which the strains and stresses 

at those nodal points are calculated. The probable fracture paths are 

shown on Fig. 4-2. The lines represent the planes on which maximtml tensile 

stresses act, and the symbols are proportional to the magnitude of the 

stresses. Considering that brittle materials fail under tension, this is 

expected to be a close approximation of the actual cracking pattern. 

These fracture paths do not intersect the free surface; hence, "thennal 

crater" mechanism is not expected to cause removal of material but only 

damage and weakening of the rock. 

Not only the direction but also the magnitude of the maximum 

principal stress is unfavorable for fracture. Since the depth versus dose 

curve is truncated-bell shaped, the induced thennal gradient and tensile 
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stresses are low. For the temperature rise profile shown on Fig. 4-2, 

with a peak value of 100oe, the maximum principal stress is approximately 

4.83 MN/m2. It is 1/2 to 1/3 of the static strength of granite. A short 

duration pulse giving the same te~erature rise creates a tensile stress 

wave of approximately 27.6 MN/m2 peak value. Altho~gh the strength of 

rocks under dynamic loading is much higher than their static strength, 

"spallation" mechanism still appears to be much more promising than 

"thennal crater" fracture. 

4.3 Shock Spalling Analysis 

When the temperature rise due to intense electron bursts is too short 

for the stress wave to advance any appreciable distance, we can assume the 

temperature change a step function in time. The experiments discussed 

here have bombardment times of the order of 10-7 seconds. The stress 

wave within this time cannot propagate more than 0.5 IIDll. Even for sets 

#1 and #2 (Table 4-1), where the wavelengths are shortest, the error in 

maximum tensile stress due to assuming instantaneous energy deposition 

is less than 5% [4-4J. 

The fate of the initial compressive pulse can theoretically be de-
~ , 

termined using Eq. 4-1 with the given boundary and initial conditions, 

and taking T = TO f(r,z) H(t) where H(t) is the Heaviside function. Since 

we are mainly interested in an estimate of the dynamic strength, we will 

approximate the conditions by one-dimensional plane wave propagating in 

the half space z ~ 0, and avoid the complicated 3-dimensional problem of 

elastodynamics. The electron beam diameter is large compared to the elec

tron penetration depth and the plane wave approximation is expected to 

give good results. 
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Since thermal expansion causes only dilatation and no distortion, 

the initially stressed region can be thought to create two P-waves of 

equal magnitude and of opposite directions. The P-wave travelling in the 

-2 direction is reflected from the free surface as a P-wave only since 

the incidence angle is 900
• The resulting P-wave is unchanged except 

that the direction of propagation and amplitude are reversed. The rear 

going tensile wave can now cause brittle failure if the magnitude is high 

enough. The wave profile is non-uniform and the maximum tension builds 

up first at a d~pth of approximately 1/3 of the maximum penetration depth 

(Fig. 4-3). 

There are five series of tests which lend themselves to dynamic 

analysis. The data accompanying experiments earlier than these last five 

series is not sufficient to determine the stress fields accurately enough 

to use in the analysis. These five series of experiments are stmllIlarized 

in Table 4-1 which is a modified version of Table III in Ref. [4-2J. 
Each series includes 30-40 shots, half of which are calorimetric readings. 

Most of the remaining shots are made on wet rocks since wet rock closely 

approximates conditions in a tunnel and shows nruch lower strength levels 

under short duration pulses. The fracture mechanism involved in wet 

rocks is, however, quite different than that of dry rocks . Water, and 

subsequently steam, in the pores play an important role. Only fracture 

in dry rocks is analyzed here. 

Five different kinds of rock are used. Granodiorite, limestone 

and greenstone are described in Chapter II. Besides these, basalt and 

sandstone were tested. Basalt is very fine grained, gray-black in color 

and is obtained from Napa, California. The sandstone, known as 
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Lyons Sandstone, originates in Colorado. It is ferruginous sandstone, 

rust in color, with meditml to fine grains. No attempt is made to analyze 

tests on greenstone since it is extremely anisotropic and very few data 

are available. Only the experimental results are shown on Fig. 4-10 for 

the sake of completeness. Density, coefficient of thermal expansion, 

modulus of elasticity, and Poisson's ratio for these rocks are obtained 

from Ref. [4-5]. 

The energy delivered per tmit area is obtained from several calori-

metric readings with identical conditions. The deposition of energy with , 

depth is not determined for, each case separately. Calorimetric short 

#2386 and #2364 have been analyzed in detail; resulting depth versus 

dose curves are very close to Spencer's predictions. All depth vs. dose 

curves are then taken to be of the ,same shape as shot #2386 (Fig. 4-4). 

Combining depth versus dose and energy per unit area curves, the 

energy/voltmle variation with radius is determined for each shot used in 

the analysis (Fig. 4-5). Specific heat for most rocks varies sharply 

with temperature. Hence, the heat input per tmit voltmle is converted to 

temperature rise by using the heat contents of the minerals which make 

up the rock. The data on heat content and heat capacity of various 

minerals is compiled by Kelly [4-6] and the procedure is described in 

[4-7 J. 
The threshold stresses are determined using temperature rise at 

the rim of the spa1led area. These threshold stresses - i.e., dynamic 

strengths - are shown by vertical bars in Figs. 4-6 through 4-10 as a 

function of the pulse duration, together with predictions. The theo

retical analysis is based on the model developed in Section 3.3. The 
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stress pulse is idealized as uniformly distributed in depth and the 

analysis is carried out using Eq. (3-10). Weibull parameters m, GO' Gu 

for granodiorite and basalt are determined from pure bending tests directly. 

For limestone and sandstone three-point bending results of Section 2.2 are 

used in conjunction with Weibull' s uniaxial theory to obtain m, GO and 

G. Limestone does not show a marked zero strength (Fig. 2-17 is close 
u 

to a straight line). It is difficult to determine a unique Gu ' Therefore, 

two sets of properties are used in predictions. Fracture toughness values 

are determined by three-point bend of notched specimens (50.8 rnrn x 12.7 rnrn 

x 6.4 rnrn) as specified in ASTM standards. Sharp cracks are introduced at 

the tip of 0.5 rnrn wide notches using ultrasonic cutting technique. Eight 

tests are done on basalt, 15 on granodiorite and four on limestone. The 

results are summarized together with other material properties on Table 4-2. 

The parameter K in Eq. (3-10) is evaluated for each material using 

the shot of longest duration. The predictions for dynamic strength with 

changing pulse duration are shown for granodiorite on Fig. 4-6, for lime

stone on Fig. 4-7, for basalt on Fig. 4-8, for sandstone on Fig. 4-9. For 

all cases, except sandstone, the initiation phase, as given by Eq. (3-7), 

is included in the predictions; its effect is rather small. The experi-

mental data points for wet rock are also included for comparison purposes., 

The static strength of brittle solids is a function of the volume; hence, 

it is shown as a band rather than a line. 

The predictions agree very well with the data pOints. It is sur-

prising that such a ,crude analysis can provide so close an estimate. The 

data of Carlson and Kerley [4-9] on shoal granite and Rinehart on 
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granite [4-l0J also coincide well with the predictions. Carlson and 

Kerley found that for a pulse of 0.07 ~sec duration dynamic strength 1S 

224 MN/m2. Rinehart's results are less clear; he shows a threshold stress 

of 40 MN/m2 for a pulse roughly 2-3 ~sec long. 

Discussion of the Results: The results of this chapter show clearly that 

there is no unique dynamic strength of a·material that we can tabulate. 

It can be estimated if we know the duration of stress application and the 
\ 

strength corresponding to some known pulse. Unfortunately, there are not 

many ways to obtain that one strength value. Experiments are virtually 

limited to flyer plate and electron deposition techniques. Hopkinson bar 

type experiments require long wavelengths compared to bar diameter to avoid 

higher modes which are dispersive. But using very slender bars made of, 

rock is not reasonable since grain sizes are quite large. Besides, a 

small cross section would not lend itself to a typical coalescence phe-

nomena. 

The experimental scatter is quite large as can be seen by the length 

of vertical bars in Figs. 4-6 to 4-10. The intrinsic variation of rock 

strength is probably the most important factor. Static behavior from 

this point of view is discussed in detail in Chapter II. Besides material 

• properties, calorimetric readings, delivered power, and location of thresh-

old show quite large variations. 
• The velocity of the spalled particles is given by u = 2 a/pcl for 

a one dimensional plane wave. These theoretical predictions are compared 

on Table 4-3 with observed values which are determined from high speed 

movie frames. The values compare favorably for dry granite; wet granite 

shows much higher spall velocities. The chunky spall debris of dry 
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granite indicates that there is appreciable amount of crack propagation 

before spalling; wet granite debris, on the other hand, is in the form 

of fine sand and indicates that there is hardly any crack propagation 

involved in the failure process. This agrees well with the fact that the 

data points for wet rocks are clustered close to the initiation curve 

rather than the fracture curve. 

Theoretically, volume removed by a plane wave by spalling will in

crease as the length of the pulse increases since the depth at which 

tensile stress builds up shifts deeper. However, increasing the depth of 

deposition leads to large deviations from a plane wave; energy will be 

lost by outgoing waves in radial direction. Besides that, as the electron 

deposition depth increases, the cracks may arrest before reaching the free 

surface since they initiate at a plane too far from the free surface; 

damage will be extensive, but no spalling will occur. Prediction of the 

optimum deposition depth seems to be a rather difficult job; the wave 

propagation problem stated at the beginning of this chapter has to be solved 

for deposition depths comparable to electron beam diameters. 

The transverse stresses due to the one-dimensional plane wave are 

compressive but roughly of the same magnitude as the longitudinal tensile 

stress. From the study of brittle solids under multiaxial loading we know 

that such a stress state will give very similar results to that of uniaxial 

loading as far as initiation is concerned. Thus neglecting the trans

verse stresses is justified. The effect of these transverse stresses on 

the propagation phase is unknown. It does not appear that they would alter 

the stress field at the tip of a running crack to such an extent as to 

change the general conclusions that have been reached. 
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CHAPTER FIVE: CONCLUSIONS 

It has been pointed out that the Weibull multiaxial treatment of 

brittle strength is applicable only to materials with sharp cracks. The 

Weibull treatment does not take into consideration the effect of the 

stresses in the plane of the cracks, hence the analysis is not expected 

to be valid for materials with spherical flaws. It is demonstrated, 

however, that the theory is applicable even to porous materials if uniaxial 

stress states are considered. 

Weibull's multiaxial formulation is applied in analyzing the re

sults of diametral compression of solid disks. Based on the three-point 

bending tests done on rectangular and round beams, the behavior of disks 

is predicted successfully in terms of both the mean value of pressure at 

fracture and the distribution of pressure at fracture for granodiorite 

and limestone. Tests on greenstone and basalt showed that two parameter 

multiaxial Weibull formulation is incapable of predicting the behavior of 

materials which are highly anisotropic and have large threshold stress 

levels below which no failure occurs. 

Brittle solids behave very differently under dynamic loading and 

in static loading. Unstable crack growth does not lead to catastrophic 

failure. Failure is due to coalescence of many small cracks. A simple 

formulation is developed to predict this coalescence process. The frac

ture is assumed to be complete when a crack reaches the walls of its "cell", 

where the size of the "cell" is determined by the applied stress and the 

crack population. The predictions of this new theory agree well with 

rock shattering experiments using intense bursts of energetic electrons. 
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It would be desirable to develop a dynamic fracture model which in-

cludes the arbitrary orientation of cracks and a more realistic propagation 

law. Such a model gives the fraction of volume damaged as a function of 

time, but is not self-sufficient. since it is not clear what volume fraction 

will lead to total fracture. A probabilistic study of the percentage of 

cracked grains or grain boundaries required for total fracture has been 

provided by Lindborg [5-1]. It was hoped to build upon his work. Un

fortunately, on examination it is seen to have serious errors. A discussion 

of the features that could be incorporated in a more complete model and 

Lindborg's work is contained in the Appendix. 
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Table 2.1. RemU ng Tests on Granodiori te Beams. All Stress Values are Corrected for Friction. 

No. of Mean 
Set sp's Size Cross Parameters Stress 
no. tested (in. ) section m GO [psi] [psi] Conunents 

#l 35 3 3 5 ---El-- m;12.4; G O;1l70 2150 l 
.. 14 xf6x f6 

identical 

j specimens 

#2 36 3 5 3 -0-- m;12.1; G O=1140 2147 14Xf6x16 

#3 17 3 5 5 m=12.7; GO=IZ30 2290 

l 14x32x16 -E:]--

identical 

J 
specimens 

#4 16 3 5 5 --0- m=12. GO=1160 2164 14x16x32 

#5 26 3 1 3 
--E:}- m=8 GO= 930 2000 14 x SX S very 

rough 

#6 26 3 3 5 
14x16xf6 -EJ-- m=10.4; GO=1015 2050 wet 

3 3 5 rough 
#7 26 14x16xf6 -0- m=10.5; 00=1100 2211 supports 

)J =.31 

3 3 5 smooth 
#8 34 14 X f6x 16 --0- m=10.9; 00=1130 2215 supports 

)J =.20 

#9 22 3 5 5 -£3- m= 9.8; GO=1030 2160 rough surf., 
14x32x16 smooth sup. 

#\0 IS 3 3 5 --0- m= 9.5; GO=1020 2151 rough surf. , 
14 X 16xf6 rough sup. 

#11 12 335 ---D m=l1 GO=1125 2200 smooth surf., 14xf6x16 
smooth sup. 

_J 

#12 16 L=2.5 IF.416 -G- m=11.1; GO=1230 2330 

(1 in. 2.540 em. 1000 psi 6.895 MN/m2) 



Set Number of 
no. Specimens 

#13 40 

#14 38 

Set Number of 
no. Specimens 

Tested 

#15 49 

#16 22 

#17 30 
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Table 2-2 Disk Tests on Granodiorite 

Surface 
Condition 

Similar to 
Bending Specimens 

Smoother than 
Bending Specimens 

Predicted 
Mean Stress psi 

Eq. (2-10) 08=1170 psi 
m=12. 

1770 psi 

1770 psi 

Observed 
Mean 

Stress at 
Fracture 
psi % Error 

1850 psi 4.3 

1856 psi 4.6 

Table 2-3 Bending Tests on Limestone Beams 

Par~uneters 

Size (in.) Cross 
section m °0 (psi) 

1.75x 0.188x 0.313 -1--+ 9.6 270 

2.5 x 0.3 x 0.4 E]- 10.6 260 

L=2.5 D=0.413 -0- 10.5 420 

(1 in.::: 2.540 em. 1000 psi . / 2 6.895 MN m ) 
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Table 3-1 Increase in dynamic stress intensity factor for different input pulses 

Rectangular 
Pulse 

Harmonic 

Incident Wave 

~(4-6)a 

a - crack half length 

% - overshoot' is given as 

Griffith 
crack 

30~ 
overshoot 

(analytic soln.) 

Penny-shaped 
crack 

-45% 
overshoot 

by 
analogy 

1\'-

30% 45% 
overshoot overshoot 

(analytic soln.) (analytic soln.) 



Set 
no. 
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Tanle 4-1 'lypical parameters of eit'ct ron accell'rators used 

(fran Ref. 4-2 

An:elerator 
used 

Ream Vol tage 
[MV] 

mean max. 

Approximate 
beam diameter 

[an) 

Approx.penetration 
depth for 9,' ran i tl' 

IL11l1 

'\PllI:o.\ .pl II S,l' 

l<>ngth for granite 
".sec I 

---~---,.--------------------'----'- - _ .. _-- ------.--------

1 Pulserad 422 1.0 1.3 4.8 - 3.1 O.IS 0.3S 
Run I 

2 Pulserad 422 1.1 1.4 0.3 - 3.8 0.20 0 . .t2 
Run II 

3 Pulserad 422 2.0 3.1 3.0 0.37 0.7S 
Run III 

4 PI 1140 4.0 5.0 3.5 0.87 I.S 

5 Hennes I I 9 12.5 9.0 1. 82 3.H 

---------_.-.. ----------- --

.. 
Table 4-2 The data from 3 point bending tests is converted to simple tension data using Wl'ibul1's 

Rock type 

Granodiorite 

Hasalt 

l.imestone 

Sandstone 

2 parameter formulation which in turn is plotted to get m,ou,aO' 

m 

4.4 

2.9 

3 

4 

2 

1. 93 (280) 

1.12 (175) 

0.09 (100) 

0.83 (120) 

0.48 PO) 

7.00 (1100) 

19.50 (2800) 

2.07 (300) 

1.79 (200) 

1.72 U50) 

KIc 

MN/m3/2 (lb/in.3/2) 

0.87 (lSl)) 

1.38 ( 1240) 

0.26 ( 235) 

l"mko\oi [.t-s] 

Experimcnts 

* m,oo ,ou liS ing 11'1' ihltll 

Klc hy l'Xpl'riml'llt:; 

* JlI,Oo'('u lIsillg \\'eihllii 



-65-

Table 4-3 Observed & predicted spall velocities for granite 

Shot Target Observed max. Predicted max. 
no. spall velocity spall velc. 

[ m/sec] em/sec] 

2065 Dry block 35 50 

2381 Dry slab of Ion F: 150 90 
B: 55 

3641 Dry slab of 1.lon F: 60 45 
B: 13 

20b4 Wet block IOO 50 

Z071 Wet slab of lon F: > 80 10O 
Ii: 22 

2072 Wet slab of 0.5on F: > 150 JOO 
B: 22 

2377 Wet slab of J.lon F: 550 90 
B: 80 

2382 Wet slab of J.7on F: > 150 90 
B: 40 

3633 Wet slab of Jon F: 245 45 
B: 

3635 Wet slab of 0.9on F: 68 25 
B: 

F: Front face, B: Back face 
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Fig. 2-1. Geometric variables used to describe location on a W1it 

sphere. 
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Fig. 2-3. Fracture envelope for 01 (VK)l/m / r(l+!), mean m 
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Fig. 2-4. Predictions of Batdorf (fitted to 1:1 data) compared with 

experimental data from Ref. [2-20] (1 ksi = 1000 psi 

= 6.895 MN/m2). 



-70-

I: 1/2 
1.0 I: 0 

0.8 

0.6 

0.4 

0.2 

--- Experiment 
We i bu II 

-",'" 

/ 
/ 

/ 
/ 

" 

I 
I 

I 
I 

P-4.36 
I 
I 
I 
I 
I 
I 

I 
I 

I 

..,..---
OL-~~ __ ~-______ L-__ ~ __ ~ ____ __ 

I 3 5 7 
o-x , k 5 i 

XBl751-2139 

Fig. 2-5. Predictions of the 2 parameter Weibulltheory (fitted to 

1:0 data) compared with experimental data from Ref. [2-20] 

( 1 ksi = 1000 psi = 6.895 MN/m2). 
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XBL751-2120 

Fig. 2-6. (a) Idealized diametral compression test Wlder point 
loads. 

(b) Specimen with small flats used for tests. 

(c) Geometry for which an analytical solution is 

available [2-311. 
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Fig. 2-8. A comparison of bending specimens with different orienta
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(1 ksi = 1000 psi = 6.895 MN/m2). 
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Fig. 2-9. A comparison of bending specimens with different orienta
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(1 ksi = 1000 psi = 6.895 MN/m2). 
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log log lrr.) where G = j/(N+l). Some or the ]61 data points 

coincide and these values are not shown. 
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Fig. 2-12. Strength values from set 1 plotted to estimate the 

parameter 00 (1000 psi = 6.895 MN/m2). 



'"'" -, 
I -+ 

z 
'" -+ 
z 
\oJ 

C) 

0 
....J 

C) 

0 
....J 

0 .. 2 

-0.3 

-0.8 

-1.3 

-1.8 
3.2" 3.30 

. -78-

3.36 

LOG STRESS,PSI 

XBL751-2112 

Fig. 2-13. Strength values from set·12 plotted to estimate the 

parameters 00 and m (1000 psi = 6.895 MN/m2). 



-79-

1 • 0 
J 

A 
AD 

A 0 

z 0,0.8 - A 0 

A D 
-

-.-
::> 
CD -ex .-
(/) -C 

LLJ 

> -t-
< 
-I 
::> 
1: 
::> 
u 

0.6 

o .• 

O. 2 

I--

I--

-
A 

A D 
o 
1500 

A 
A 

A 
D 

A 
A 
A 

A 
A 

A 
A D 

A D 

A D 

D 

D 

D 

I 

A 
A 
A 

0 

0 

D 

A 0 

A 
A 

D 

D 

D 

D 

D 

D 

D 

o 

2000 

I 
2500 

STRESS, PSI 

-

-

-

3000 

X B L 7 51 - 21 II 

Fig. 2~14. Effect of water on strength, 6 set 6 (wet), 

o set 7 (dry) (1000 psi. = 6.895 MN/m2). 



z 
0 -I-
::> 
al -ex 
I-
en -Cl 

L&J 

> -I-
< 
....J 
::> 
1: 
::> 
u 

-80-

1 • 0 
A 
A 

A 
A 

A 
A 

A 
O. 8 A 

A 
A 
A 
A 

A 
A 

A 
O. 6 A 

A 
A 

A 
A 

A 
A 
A 

O. i .A 
A 
A 
A 

A 
A 

A 
A 

O. 2 A 
A 

o 
1 1 1 4 1 7 20 23 

PRESSURE, KSI 

XBL751-2110 

Fig. 2-15. A comparison of Brazilian disk tests on granodiorite, 

set 13, with predictions based on bending data 

(1 ksi = 1000 psi = 6.895 MN/rn2) , 
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Fig .. 2-16. A comparison of Brazilian disk tests on granodiorite, 

set 14, with predictions b3sed on bending data 

(1 ksi = 1000 psi = 6.895 MN/m
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Fig. 3-2. The pattern of wavefronts for t larger than zero. 
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Fig. 3-6. Comparison of pulses with equal energy content.· 
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Fig. 3-8. Variation of Kr with crack tip speed. 
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Fig. 4-5. Energy/volume variation with radius. 
1) pu1serad 422 Run I using 2076; 2) pu1serad 422 Run II 
Using 2364, 2372, 2386; 3) pu1serad-422Run I using 2058; 
4) PI 1140 using 18094, 96, 99; 5) pulserad 422 Run r using 
2060; 6) pu1serad 422 RWl III usIng 3630, 3643; 7) pu1serad. 

- 422 Run-r using 2075; 8) Hermes II using 9150, 57: 61; 
9} PI 1140 using 18072,-73, 77; 10) pu1serad 422 Run III 
Using 3638. -



-N 

E 
" z 
~ -
en 
en 
Q) 
L.. 

-t--J 
CJ) 

105-i----------~~--------~~------~~--~------~---

GRANODIORITE 
I 

90 '1- -r Dry Wet . 
. ~ .. • S palled & Spalled 

I 

60~~ '" 0 I , , 
, A ~ , J I 
\ ~ . 0 

45l-.\ 1I ? 

\~, .~ 
301- \"" J -, 
151- """--_____ r'nitiation curve . t 

(j2'i = 266 (MN/mj~2-;;~~----
O~, ______________ ~ ________________ ~ ______________ ~ ______________ ~ __ ~ 

o 1 2 3-

T (,usee) 

Fig. 4-6. Predicted failure curve and the experimental data for 

granodiorite. 

,-
• 

4 

XBL 752-4673 

.\ 

'" 



.. . , 
,~ • 

105 i. , 

90 

- 75 
N 

E 
......... 
Z 60 
~ -
(/) 
(/) 

'Q) 
~ 

~ 

en 

45 

30 

15 

I , , , -, , 
\ 
\ 
\ 

! 

m 

i 

3 

+ + 

LIMESTONE 
eDry 
• Wet 

----.-::=====---t--
i 

\, r Initiation curve 
,II 2 2 2 

' ...... ____ (j Lj = 28 (MNlm ) fJ,sec 
-----------------~---

Static 

o~, ____________ ~ __________ ~ ____________ ~ ____________ ~ __ 
o 1 2 3 

T (J.LSec) 

Fig. 4-7. Predicted failure curve and the experimental data for 

'1 imes tone. 

4 

XBL 752-4671 

I 
I--" 
o 
I--" 

I 

~ 



210rl-ri----~----~--------------r-------------~--~--------~~~ 

180 1 BASALT 
oOry' 

_ 150 • Wet (Spalled) 
'~ Wet (No spall) N 

E , 
z 
~ -
en 
en 
Q) 
'
+-' 
c.J) 

I 

1201;- t 
~ , , 

90n 
\ 
\ 
\ 
\ 
\ 

601--\ 
\ , ~ .~ 2-

30 

, ,. 
'~, + ' ' , 

'~ . ' , ~-- i I" . -- ...... --____ r nltlat/on curve, ' , 
2 '------------, ' , - 600 (MNI 2) 2 -------'-----a-rj - , m j.Lsec, ' " 

01' I I I 
o 1 2 3 . 

T (J.Lsec) ~ 

Fig. 4-8. Predicted curve and the experimental data for basalt . 

. ) 

Static 
strength 

4 

XBL752-4672 

~ ~ 

I 
I-' 
o 
N 

I 

<~ 



, -103-

.' 
~ 105 

.-
90 

SANDSTONE 
o Dry-
.. Wet -- 75 _N 

E 
......... .,. 

Z 60 
~ -
en 

45 en 
(]) 
'-
+-' 
CJ) 

30 

15 

o~~ ____ ~ __ ~~~~~ ______ ~ ________ ~ ______ ~ 
o 2 4 - 6 8 10 

T (,usee) 
XBL 752-4675 

Fig: 4-9. Predicted curve and .the experimental data for sandstone. 



600 

525 

450 _ . 

. N 

E 
........... 375 
Z 
~ ........ 300 
(J) 
(J) 
Q) 

225 '"-...., 
CJ) 

150 

·75 

0 
0 

6 

2 

~ 

1 
f 

1 

-104-

2 

GREENSTONE 

o Dry 
• Wet (Spalled) 
6 Wet (No spall) 

3 4 

T (p.sec) 
XBL 752 -4674 

Fig. 4-10. Experimental data for gree~stone. 

• 

., 

\.J 



-105-

APPENDIX 

An Extension of the Dynamic MOdel of Section 3.4 

Consider a material with the crack distribution (i.e. the'number 

of cracks per volume having a strength less than or equal to S) 

.(S o-oou )m N(S). = 

subject to a stress pulse 9f magnitude cr and duration T 

crack which can be initiated by this pulse is roughly 

2 2 a. ~ KIc/1Tcr • mln 

The smallest 

A crack of length a(2. ~min) will start propagating if a (the angle that 

the crack normal makes with the applied stress) satisfies the condition 

a 2. cos-1 [(amin/a)1/4J. Hence, assuming a uniform distribution of crack 

orientation, the number of cracks. per volume that will be activated can 

be given as 

. N(o) = J I cos -1 [(~)~]~ (S-o )m-l dS 
1T 0 mu 

0 0 

Assume that the volume is divided into cells each of which contains 

one active crack. The cell fails when the. crack in that cell reaches the 

side walls of the cell. Having the total number of active cracks N(o) , 

the cell size may be ·found as in Section 3.4 
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d = i [MIN(O')] ~ 

The number of cells that have failed (Nfailed) is given by 

Nfailed = [N(d) - N(2d)] . 1 + {N(2d) - N(3d)]. 2 + [N(3d) - N(4d)] . 4 + ••• 

r 
= L NCid) where rd is the largest possible crack size. To 
i=l 

find N(id) at time t, the propagation law may be asstuned as 

a = cos (l Ia~ + c2t 2, leading to 

* 

N(id) 2 1 H~c ~m 
- - - 0u ~ do 7T m 

0'0 
o . 

where 

u = 

and 

The fraction of cells that have failed can now be found from the 
, 

total ntunber of cells and the number of cells that have failed at time t . 

. But without a knowledge of the damage required for complete failure, this 

model can not be useful. 

-, 
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Lindborghas developed a model which relates the fraction of cracked 

grains to the size of the largest crack and predicts the damage required 

at complete failure. Initially it was thought that his work could be used 

with ti1e preceding analysis. Unfortunately upon examination it was found 

to contain serious errors which will now be discussed. 

A Discussion of Lindborg's Paper (5-:1] 

Lindborg used a simple model of crack coalescence which gives the 

probability of having n-cells cracked - the neighbors being uncracked -

as 
n . 

q(n) = A(n) p Polynomial of (l-p) Eq. (4) in [5-1] 
where. p is the probability of having a cracked cell, and indicated that 

this polynomial P(l-p) can be expressed as 

2n+2 k 
P (l-p) = L ~(l-p) . 

k=4iI1 

The argument following Eq. (5) in [5-1J may be correct as far as p 

concerned, but does not justify writing Eq. (4) in [S-l] as 

n q(n) = 0.5 (Sp) Eq. (8) in [S-l]' 

1S 

since (l_p)k is not close to unity at all. Hence the correct form reads 

as 

q(n) ~ 0.5 (Sp)n P(l~p) . 

It is not clear how to proceed using this correct form of Eq.(8) in [5-1] 
since the coefficients ak in the polynomial P(l~p) are not known. A 

possible way is to approximate the polynomial by a single term (l_p)m. 

" 
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Using the coefficients fbr the first six cases (i.e. for n = 1 through 

n = 6) we can get m = 1.1 + 4.1. '-; 

Unfortunately the straightforward result obtained by Lindborg that ') 

failure occurs when p = 0.20 is not correct. Aside 'from the error in 

Eq. (8) in 5-1 ,Lindborg made use of the following series expansion 

going from Eq.(ll) to Eq.(12) in 5-1 

1 + 5p + (5p)2 + ••• -1 = (1-5p) 

which is true only for 5p < 1. Thus, he automatically set the limit for 

p as 0.20. A quick glance at the Fig. 4 in [5-1] proves also that 

l,indborg I S results cannot be correct;. for the total mnnber of grains 

N = 100 and for the fraction of cracked grains p = 0.19; for example, it 

is impossible to have a crack which is 25 grains long. 

It is the author's belief that Lindborg's analysis can be extended 

correctly using the discussed approximation for P(l-p) and numerical 

procedure in the later steps. However, it is important to realize that 

the model is valid only for small values of p since it assumes p to be 

constant at all stages of grain cracking. 

\.1 
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United States Government. Neither the United States nor the United 
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