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ABSTRACT

Weibull's statistical treatment is employed in studying the behavior:

~ of brittle solids under static multiaxial loading in the first'part of

the thesis. Later, the response of cracks to short duration tensile

loading is.examined, and a new theory is developed for predicting failure

in brittle solids due to uniaxial dynamic loading. | |
It is poiﬁted out that the Weibull multiaxial treatmenf of brittle

strength contains limitations which are not present in the more familiar

uniaxial formulation. Provided these limitations are satisfied, it is

possible to use tension or bending data to predict multiaxial behavior

when at least one principal stress is tensile. This is illustrated for

~ the Brazilian disk test (diametral compression of a disk). Predictions

based on bending tests agree well with observed strengthvvalues invdisk
tests on twﬁ.types of rocks.

‘The faiiure'meéhanism of brittle solids under very short duration
loading is basically different from that under static>10ading. Many
cracks have to be initiated and propagated at the game time so that they
can link upAand create a fracturé surface before the pulse'is over. A

simple, new theory is proposed which relates the strength of brittle
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solids to the duration of the applied loading. Results from the experi-

ments in which rocks are exposed to intense short duration electron beams

are predicted successfuliy using this theory.

e
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NOMENCLATURE

a | crack half length

a, | initial crack half length

b thickness of rectangular béams '

c crack speed

cy dilatational wave speed [(M—Z;ﬂ/p]l/2

CZ' shear wave sﬁeed [u/p]l/2

Y Rayleigh wave speed

D diameier of solid disks

d half mean path (see Sect. 3.4)
" E | Young's modulus '

F individual failure probability

G. cumulaiive distribution of failure

'g '~ probability density function; ratio of ¢ (c)/g (0)
g(0) © energy release rate at zero crack speed

g(c)  energy reléase rate at a crack speed of c

gC(O) '] critical energy release rate at zero crack speed
gc(c) . critical energy release rate at a crack speed of c
~h height of rectangular beams; depth of the #olume subject to

stréss'pulse

Ah depth of a singlevlayer (see Sect. 3.4)

KI‘ stress intensity factor

KIc critical stress intensity factor (= fra;tdre toughness)
KId stress intensity factor due to dynamic loading

2 number of layers in the volume subjected to stress pulse
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length of rectangular beams

- Weibull parameter

number of cracks; number of specimens
pressure

mean pressure

load |

Primary (dilatational) wave

radius of solid disks

cumuiétive distribution of survival
Secondary (shear) wave

tehperature

thickness of disks

displacement

- total volume of the specimen

half of the angle over which pressure is applied in solid disks;

- linear thermal coefficient of expansion

- gamma function

Lamé constant; wave length

Lamé constant; coefficient of friction .

Poisson's ratio

mass- density

principal stresses

scaling parameter in Weibull's theory; a stress level
zero strength (stress, below which no failure occurs)
normal stress

mean stress

>
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critical stress

dura;ion of the stress pulse; time to fracture



CHAPTER ONE: INTRODUCTION |

Britfle solids were the materials of antiqﬁity and indeed the very
survivalbof our prehistoric ancestors depended on their abiiity to shape
stones'inro tools and weapons. By contrast, in the paét century with the
deveiopment_of_steel, mechanical engineers have been concerned primarily
with design based on the properties of ductile metals. However, interest
in brittle solids has revived in recent years for'severél reasons. They
are the materials with the highest theoretical strength. While fhis
strength is not realized in bulk specimens because of inherent flaws, it
is approached in microscopic whiskers. The use of these materials in
composites is attracting considerable attention. Also, these solids which
we term brittle -oxides, carbides, nitrides, graphite - have the greatest
strength at‘élerated temperature. With the growing emphasis on fuel
economy , therevis a need to increase operating temperatures and extensive
research on Cerémic_gas turbdnes is under way. Certain brittle}solids |
are also of interest because of special properties such as transparency
.Qr corrosion resistance. The compressive strength:of_brittle solids is
much greater than their tensile strength. For this reason, design with
briftle solids such as concrete or masonry is usually aimed at keeping
thém in compression with generous safety factors being allowed.

- Another area which has led to great-interest in brittle solids_
is that of tunneling and excavation of rock.’ With the growing emphasis
on improving the environment by providing underground rapid transit
systems, underground power plants, etc., much attention has been given to

novel tunneling techniques. Unfortunately most drilling or tunneling
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techniques load the rock in compression rather.than exploiting the com-
paratively_lowitensile strength of this.type of material. |
Having -given these general reasons for an intereet in brittle solids,

we will now sumarize our present state of knowledge and point out the areas
which appear to need further study. By "brittle solids" we meaﬁ materials
-which‘show essentiaily no piatic deformation before failute in conven-
tionai strength tests. This means that these materials are extremely.
sensitive to small imperfections since lacal stresses cannot be relieved

by plastic flow} It is believed that this is the basic reason for the
discrepancy between the theoretical strength of about;E/lO (where E is
Young's modulus) and the usual strength of about E/1000 observed in'testing
bulk'specimens._ Unfortunately; the powerful analytical tools Qfllihear
elastic fraetﬁre mechanics which relate strength to fiaw size cannot, at
present, be applied to typicel brittle solids. Because the toughness
(strength in the presence of a flaw) of these materials is so low, the
‘cracksvresponéible for strength are extremely small and cannot be detected
non—destructiVely. In some materials such as rocks the inherent flaws

can probably be detected as grain boendary cracks. In other cases sﬁch es
glass, the inherent flaws have never been observed.directly to our
knowledge. Thus in most cases we can only infer that.a distribution of
inhereht'flaws is present in the material. This conclusion is supported
by the large vériability in strength of nominally identical specimens

as well as by the discrepancy between‘the theoretical and actual stfengths.
In addition, the'increase in average fracture stress which is observed |
when the specimen size is decreased is consistent with the decreased
probability of finding a large flaw in a smaller specimen; The preceding

comments relate to failure under tensile states of stress and static
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loading COnditions; Here thebflaws may be regardéd'as links in a chain
- with failure of the pért being governed by failure of the weakest link.
By contrasf in compressive loading and also, as wé will seé,'in very short
duration tensile loading, many flaws may have to ihitiate prior to final
fracture of the part. | N

| Fortunately, for static loading under tensilé'étates of stress, an
approach deveibped'by Weibull allows many useful predictions to be made.
Given the distfibution of strength from tests on‘a'number of specimens,
Wéibull's‘approach allows the effects of specimen size and stress diStri-
bution to be predictéd. For exémple, test results‘in bending can be used
to predict behavior in other situations such as thermal shock and for dif-
ferent sizes of specimens. Almost all of the attention given to Weibull's
formulation has been for uniaxial states of stress. Little has ‘been done
to study m@ltiaxial stress although Weibull in his original work suggested
an approach to this problem. For this reason the problem ofvpredicting'
strength undef'multiaxial loading will be Qxamined‘ih the first part of
the thesis. Some limitations of the Weibull approach will be pointed out.
It will be shown that if these are recognized, satisfactory predictions
'may be made for multiaxial behavior. Thisis illustrated by using bending
data to predict the fracture of a disk under line loading at opposite
ends of a diameter (the Brazilian disk test). Surprisingly, although
this is a very common test it has never beén subjected to a complete
analeis using the Weibull approach. ‘

As already mentioned, the compressive strength of a brittle solid

is much greatér than its tenSile.strength. Basically, this is because

many cracks must initiate before final failure occurs. Although of
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fundamentél.interest, we have'chosen not to study_éompresSive stfength

because it presents less of a problem in desigh'otvin optimizing tun-

neling operationsvthan the tensile strength; _' - S
Another problem in which many cracks may have fo initiate before

'finaliseparation occurs is that of very short duration tensile loading,v

In‘this case, the propagation rather than the initiation phéée_df ffac-

‘ture may.be:the dominant ohe. That is, a single crack can travelbonly a

limited distance in the time of loading and this may not be enough to

produce complete separation of the part. Present theories for this tYpe

of fracture are almost completely empirical and have been developed in

connection with spalling problems. Recently a novei.method of tumnelingv

“has been pfoposed by Avery et al. [1-1]. This utilizes short duration

bursts bf energetic electrons and subjects the rock to‘very short dura-

tion tensilé'pﬁlses. To understand the mechanism éfvremoval'in this

novel proceés:it is important to obtain a better understanding of tensile

failufe under very short duration loading. For this reason, in the second

part of‘this;thésis, a detailed study of this problem is undertaken. A

new theory for this type of fracture is developed which-is believed to

be mdre rational fhan existing theories and is in good agreement with

experimental results.
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CHAPTER TWO: MULTiAXiAL STATIC LOADING

2-1 Development of the~statistica1 theory of Weibull

| Based on the assumptions that brittle solids are homogeneous, isot-
.ropic,* and contain uniformly distributed randomly oriented flaws,
Weibull [2-1] formulated in 1939 his statistical treatment of failure iﬁ
‘brittle solids. Altheugh it is not based on a rigerous, analytic deriva-
tion, it shews great ingenuity and predicts the behavior of - at least
a group of - brittle solids remarkably well. |

It is necessary to review the Weibull treatment as applled to uni-

ax1a1 stress states in order to get a better understandlng of multlax1al
stress states. The theoretical basis of the theory is well developed by
Oh and Finnie [2-2] Observatlons show that brlttle solids can be approx-
iﬁated‘most effectively by the series model. It 15 assumed that there
is no interaction of flaws and failure occurs when the strength of the
worst fiaw.is'reached. (The chain is as strong as its weakeSt_link.) Only
tensile stress'is assumed to cause failure; any effect of compressive
stress is neglected. No detailed analysis is made as to the size, shape,
or number of the existing flaws.
| Con51der1ng a chain of ‘N ‘links in whlch the 1nd1v1dua1 failure
probab111t1es'atwa given stress g are FiGJ), the survival probability

S(©) for the whole chain is"

Z

56 = 1 [1- 50

1=

. : v o
Although some brittle solids are very heterogeneous on a microscale, they

can be approximated well on a macroscale as homogeneous and isotropic.



and

inS= I in (I-F) = -

R

N
- I F;
j=1 1

v if Fi is sufficiently small or if N is'sufficiently large. It is reason-
able to assume that Fi for each link is proportionai fo its volume and
some‘function of stress; Weibull chose, based on exiSting experimental
evidence, - |

F,(0) = (o/op)"av
which leads to the failure probability

. G=1-S=1- exp[—f _(o/co)de]:‘ o (2-1)

which tu:ns 6ut.to be a logical choice for repreéenting the fesults of
strength tests on brittle solids as lbng as the number of flaws.pfésent -
is 1érge. »0h and Finnie have shown that provided the individual probability
distfibution of cracks, F(q), behaves like o" as ¢ approaches zero from
abdve;“the diétfibution in strength of the specimens will always convergé
toward Eq.(2-1), independent of the form of F(d). '

To ensure that % has units of stress, it is'mpre convenient td
wriie Eq.(z-l) as .

G=1- exP[', [(;’—0)“‘%]
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where VS is_a unit volume. Onbthe other hand, it is inconvenient to
carry along an extra quantity in the formulation. Therefore, in the rest
of the thesis "Wy will be omitfed with the understanding that dV is a
dimensionless quantity and stands for (dV/VO), where VO is taken as
1in° (Im). |

The integral in Eq.(2-1) is called '"risk of rupture'. It is to be
taken over the region where the acting stresses are tensile. Depending
on the nature of the flaws, it may be a volume, area, or line element.
The parameters m, 0y are assumed to be properties of the particular
material in question and are determined experimentally. |

It is more realistic to admit a third parameter, Oy which would

mark the stress below which no failure occurs. The three parameter form-

ulation as given by

G=1-exp (-B)
= - m '

B = J (o ou) /o0 av ~for o> 9,
=0 for g < 9,

'has to be employed if interest lies in very small probabilities. For mean

(or median) fracture stresses, however, the advantage of three parameter

is questionable, especially in the face of difficulties connected with

parameter estimation in multiaxial stress states.

| Following the assumption of tensile stress beihg the only cause
of failure, Weibull replaced "' of the one-dimensional stress state by
the normal stress acting on a crack, " cn", in multiaxial cases. He

then considered all possible orientations of cracks and summed up their
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contribution to the "risk of rupture". It is worth noting here that this

is not an averaging process but includes all disjoint events. Thus,

¢

G=1- exp [-B]
(2-2)
B=j_K[ o dA av .
v AUnit sphere
In princip31 stress space, as shown in Fig.2-1,
o, = cosz¢ (qlcoszw + azsinzw) + ossin2¢
(2-3)
T |
dA = Zﬁ—-cos¢ dy d¢

and the integration is carried out over the range of angles for which_on
is tensile. Thus, we are not able to treat stress states which induce
triaxial compression. Ih particular, where 0z = 0, the limits reduce to
-.n/Z <¢ s_ﬂ/Z and - Yg SV s_wo , Where
/2 1 if 0,20
wo- ’ 01>5 (2.4

{1 arc tan <‘—

if o, <0 .
2 2

= 0, and comparing with

Using Eqs.(Z-Z)vand (2-3), setting 9, = g5
Eq.(2-1), |
K=2 (2m+ 1)/0‘6‘. | | (2-5)
The difficulties involved in using three parémeter distribution can
‘be discussed now. One, which is common to both uniaxial and multiaxial

treatment, is that the uncertainty involved in fitting three parameters

to data is a great deal greater than when only two .parameters are involved.
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The oth»er.,diff»i‘culty with the three parameter distribution in the multi—.
axial cése 1s what Weibull called the "risk of rqpture", B in

Eq.(2-2), does not reduce to its value for the umiaxial case. Thus,

the paramefers deduced from uniaxial tests cannot vb_e applied to the multi-

axial case. We see this by writing

B = J:K J (gn - ou)m‘ dA}dV

v Aunit: sphere

B '= J{ K ”[cosz¢ ( coszw +0 sinzw) +0 sin2¢ -0 ]mcos¢> ‘d¢ dw}-dV
_ Y 9 2 3 u :
(2 ' : ,

Vv

This reduces for uniaxial stress states only to

B = I {_’E.;”[coszcb coszlp 00 ]m cos¢ d¢ dw}dV o (-2’-6)
‘ 4 1u ‘ _

Vo
which is not a function of (6; - ou)m,

‘Several attempts have been made to overcome this limitation of the

‘three parameter distribution for multiaxial stresses. They are discussed

in some detail in Section 2.3.

2.2 Limitations of the statistical theory of Weibull

For uniaxial stress states, the Weibull treatment has been applied
successfully to a wide variety of brittle solids [2-2 to 2-6]. The
multiaxial formulation, however, has seen relatively little application.

This may be due to the fact that the limitations of the theory are not
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yet fully'fé;ognized. Some of these limitations:afe'restricted to multi-
axial cases and lead to important éonsequences. An attempt is made here |
to list the limitations of the Weibull thédry. -

| i(i) A knowledge of the complete‘stress field is necessary; there
is a finite'prdbability of failure associated with each point'in the body
. where the normal stress is tensile. (It is generally much easier to de-
termine maximum stresses and their location, and this is sufficient for
bmost other failure theories.)

(ii) AThé Weibull formulation, as discussed here, makes no provisions
for anisotropic behavior. Although Weibull attacked this problem in his
second paperv [2-7], nhe could not estimate the pérameters_from experi-
mental data except through a complicated trial and érror procedure.

- (iv) A number of investigators have obtained biaxial data in both
the tension-tension and tension-compression regions. At first sight, the
results appear:contradictofy with some materials showing weakening in bi-
axial tensioh, relative to uniaxial tension, while other materials show
just the opposite effect. As a generalization, materialé which would be
expected to have shamp flaws (alumina [2-8], titania [2-9], silicon
carbide [2-10] , cast iron [2-11], and glass [2-12]), are in the former
cafegory. Materials which might be expected to have more nearly spherical
flaws (porous zirconia [2-13], hydrostone plaster [2—24]) show the latter
behavior. Thus, not surprisingly, the shape of the inherent flaw appears
to have a strong influence on the form of the fracture envelope for multi-
axial stress. The Weibull multiaxial formulationvconsiders only the

normal tensile stress on all planes at each point in a solid. Thus, it
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ﬁould be‘expected to apply primarily to cases in which the flaws aré
sharp, flat cracks. For such a»flaw, normal stresses in directions lying
in the plane of the crack do not contribute to the stress singularity.

By contrast, for more nearly spherical flaws, all normal stress com-
ponents affect the ﬁaximum local stress\at the surfaée of the flaw.

To extend,the.fbrmulation to elliptical cracks, we.can replace o,
in Eq;(Z-Z).by an equivalent stress Eh which iS»a'cqmbination of the
stresses aCting.normal to the crack plane (on) and parallel to it (o 4)
(Fig. 2-2). Here we assume that mode I fracture (bpening mode) exiégs
alone and fracture will start at the very tip of thé crack. Then, from
the Inglis; solution [2-15], shear stressbt has no effect on the tangential
stress at thé'tip, i’ and we can write

9, o -fo
- n

- where f is-a'factor reflecting the relative effects of o, and o 4 -at

. _ , n
the tip; it depends on the shape of the ellipse and varies from zero,

for a line crack, to approximately 1/3 for spherical voids with v = 0.3.
Using Euler's parametric specification of rotations around a point
[2-16], we can express the normal stresses in the principal stress space
as
- 2 . 2 2
on-(olcos y + g,sin P)cos ¢

- *2, *.2
o = ol(nl) oz(nz)

=

f, = (sinzw + sing Coszw)cosG + siny cosy(sing -1)sin®

n,= siny cosy(sing-1)coso +(coszw + s5ing sinzw)sine

NS B ]
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where ¢, ¢ are shown on Fig. 2-1 and © is the angle of the crack tip, as
measured frdm,a confenient datum line, in the planeIOf the crack. As ©

ié changed‘from —n/Z to w/2, all cfacks having the same normal (n) are

covered. Thus, for a uniform stress field

w/2  7w/2 00 m ' ' '
B =KV I ) J j [En(q) ,1!1,9)] %% Cosq)i‘z%dft )
-m/2 -1/2 -8, | |
where % is such that Gh > 0.

For purposes of illustration the above equation is evaluated for
Certéin specialxcases m=5, £f=0.01; 0.1; 0.3),'andbthe fracture en-
velope for‘the mean is plotted in Fig. 2-3. It is very clear that the
shape of the flaws is crucial for multiaxial cases whéreas it bractically
does not change results for uniaxial stress states. For an elliptical

flaw with semi-major to semi-minor axis ratio (b/a) approximately equal

fie.

to 4;5v(i.e f £ 0.1), the Weibull treatment introduces an error of 43%
for 02/01 = -9, 11% for 02/01 = - 2, but only 1%.for the uniaxial stress
stéte. Thus, although the Weibull treatment is applicable to all homo-
geneous, iéotropic brittle solids in uniaxial stresslstates, it can be
employed in multiaxial cases only for materials with Sharp cracks, i.e.,
where b/a > 50 approximately. -

(v) Weibull's analysis assumes in the very beginning that the
number of inherent flaws in the specimen is large. Hence, care has to

be taken to apply this statistical treatment to regions where flaw popu-

lation is expected to be high.
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2.3 Other formulations for brittle solids

Statistical extreme value theory predicts that there are only three
geheral types of asymptotic distributions for the smallest or largest
value in ah increasingly large sample. And only one of them is used gen-
erally in strength predictions since the other two of these three forms
correspond to cases where the range of the parent distribution has no
lower bound. But it has been pointed out by McClintock [2-17] that.the
distribution of strengths dées not necessarily tend to an asymptote as
the size of the sample is increased. In fact, he chose a more physical
model where the distribution of the crack lengths follows an extreme value
distribution, and he showed that the resulting distributions of strength
‘do not follow any of the three asymptotic distributions. Using a model
with uniform grain size and examining the probability of one or more grain
" boundary cracking, McClintock arrived at the same size distribution as
proposed by Fisher and Hollomon in 1946. The cumulative distribution of
.failurevfor iﬁdividual cracks then turned out to be K' exp(K"/oz) as
opposed to Weibull's choice of Ko™. McClintock's theory was proposed
recently and no comparison with experimental data is Yet available. Al-
'thpugh_it is based on reasonable physical grounds, it has not yet been
extended to treat multiaxial stress states. It is not at all clear how
such an extehsion could be carried out. |

Batdorf [2-18,19] attempted to formulate directly a multiaxial theory.
He assumed that the density of cracks having a critical stress less than

N .

oy Can be given as a polynomlal,jzlbj Oy similar to

Weibull and McClintock, he also looked at sharp cracks without specifying

or equal to o

their detailed shape or size and considered the normal stress on a crack
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as the only determining factor for fracture. The estimation of the co-
efficients in the density distribufion function proves to be straight-
forward f6r materia1s with surface flaws, but rathervdifficulf for materi-
als with volume flaws; a set of N linear simultaneoﬁs equations have to
be.solved_uSing N of the experimental data points ébtained from uniaxial
tests. Baééa on Oh's [2-20] data, Batdorf's prediétion for glass failure
is good only at very low probabilities (Fig. 2-4). Weibull's theory is
much easier to apply and predicts a better correlation at the meén or
median (Fig. 2-5). |

The diffiéulties involved in using three parameter Weibull distri-
bution were pointed out in Section 3.1 Dukes [2-21] used numerical

techniques to overcome these. He wrote Eq. (2-6) as

ket [ (g " s
JK, O g
B = J ’%Fl J [ [cosz¢coszw ——62-] .cos¢dwd¢ ‘dV
R EAE 1

and compared with the uniaxial formulation

. - g m
B = J Kclm [1~—Ji] av .

%y
y ,

Through numerical evaluation, he found out that the parameters in the

multiaxial formulation (m1K1’Uu) can be approximately determined from

the 'uniaxial parameters On,K,ou) using the relations
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ml_= m-1
;Kl = 4ﬂolK/IO
/2 /2 | m
I0 = '[cosz¢coszw] cos¢dyde:
- -n/2 -n/2

as long as 2Z < m,< 10 and Ojicu/clf_ 0.8. He plotted the quantity I,
as a function of m as a convenience to the designer. |

For cases where the stress field is uniform, the risk of rupture
can be expressed, using the above relations, as | |

m, '

K, Vo o o o 31
B =_—lZ¥L—— [;osz¢(coszw + —Z-sinZW) + —é-sin2¢ -4 cos¢dyde
T oy 0y 9y _
v ¢ :
B = KVoT 1/10]._‘

He evaluated the term in brackets numerically and plotted it for various
values of 02/01, 03/01, ou/o1 and m . |

Duke's efforts were mainly towards simplifying the use of the multi-
axialvweibu11 formulation; although he made no original contribution to
the subject, his plots may prove very convenient in pfactical design
ptocedures. _

Fairhurst.vHaidy and Hudson [2-22,23,24] took a completely different
.approach They assumed that brittle solids, malnly rocks, can be charac-
terized by an "effectlve crack length'" and a 'work of fracture', and
then they applied the linear elastic fracture mechanics approach. The
.method is based on calculating the.change in compliance with crack length

using finite element method for any given geometry. The energy release
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rate. g canibebgiven as

9=—§§—§§. S (2-7)
‘where C is the compliance and B is the thickness of the specimen. Since
the energy release rate § equals its critical value 9. at fracture, the
critical load in an experiment can be found from Eq. (2-7) When 9. of
that particular material is known. It is to be noted that since energy
release rate ¢ is a function of loads, geometry, and crack length, the
critical crack length has to be known to evaluate dC/da. To estimate
the material properties '"a'" and " gc", they used diametral compression
tests. From finite element calculations they determined that the failure
load in a ring test is independent of the effective crack size, so that
Eq; (2-7) could be used to get ge- To evaluate the crack size, the disk
test proved handy since it is quite sensitive to a central crack.

At this stage, it is hard to evaluate the assumption that material
behavior can be fully described by an "effective crack length'" and a
"work of fracture". The experimental results of Hardy [2-23] are not
conclusive either; -predictions based on other testé’fdr the failure of

beams in three point bending are in error by as much as 31%.

2.4 Application of the statistical theory on disk tests

In stﬁdying brittle solids suchras ceramics and rocks, conventional
fension tests present difficulty both in specimen preparation and in
alignment during the test. As an alternative, bending tests are often
.made but in addition, a large number of less conventional specimens have
been proposed for measurement of tensile strength (2-25]1 . One of the

more interesting of these is the diametral compression of a solid disk,
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shown in Fig. 2-6a, fof the specimen is simple to prepare and to load.
In this specimen there is an extensive region along the axis of loading
where the stress transverse to thé loading axis is tensile and constant
with magnitude about one-third that of the compressive stress in the
loading direction. This test was first proposed, apparently, by Carniero
and Barcellos [2-26] and since then has often been referred to as the
Brazilian Disk test.
Despite the attention which the Brazilian disk test has received
[ 2-27 to 2-30] , it appears that no detailed analysis has been made to
compare its results with more conventional strength tests. Wé will show,
at 1¢ast for a certain class of brittlé solids, that behavior in this test
may be predicted from that in bending tests by using the Weibull multiaxial
treatment 6£ brittle strength.
| 'we consider disks which are thin enough relative to their diameter
to be treated as a case of generalized plane stresé. Thus, the stress
~ components to be considered are 0505 Tpg Rather than point lqading
as shown in Fig. 2-6a to avoid local crushing, it is preferable td\flatten
the disk slightly at the loading points and work with the shape shown in
Fig.:2-6b. An exact stress analysis for the configuration shown in
Fig. 2-6c has been given by Hondros [2-31]. When the angle 2a over which
- pressure 1is applied is small, we.would expect the stresses in cases (b)
and (c) to be essentially identical a short distance away from the loaded
surface. |
Most workers have considered only the stress state at the center
of the specimen or along the loaded diameter. However, depending on the

combination of stress and flaw location, fracture in this test may start
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away from the centerline. The attraction of the Weibull formulation is -
" that it takes care of this aspect by integrating a function of stress
over the entire stressed volume.

For the case shown in Fig. 2-6c, the cummulative distribution of

failure may be written as
G =1 - exp [-B()]

B(p) tl I‘K J[on(p)]“‘ dA ( dh

Adisk Aunit sphere

(2-8)

where p is the applied pressure and t the thickness of the disk.
~To evaluate B(p) I have taken the first twenty terms in the series
expansion given by Hondros [2-31]
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The quantities in these equations are defined in Fig. 2-6c.
The mean pressure at failure is given by '

Pp = r p-8(p)dp
0

where -g(p) 1is the probability density function. Noting that g(p) = %E)

and the cumulative distribution of survival S(p) = 1 - G(p)
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o

since S approaches zero more répidly than p does infinity. Using

Eq. (2-8) and Eq.(2-3),

Yo
_ rx rmy ™ 2, . 92 .2 ”m] g
Py oxp t,[4‘/1; I(m+1.5) 9, () (COS v H sin lb) dyda ) dp
0 Vhgiex Yo

where the limit of integration \PO is as given in Eq.(2-4), and T is the
~gamma function. As it is obvious frocm Eq.(2-9), the principal stresses

can be written

‘_’i =p - Hl(r/R,O,a)
G, =p ° Hz(r/R,O,a) .

Hence, the expression for mean pressure reduces to

p = | ep(p" dp = rsdet/m
0
‘where wO
H
_ kKt I'(m+l) m 2 2 . 2 .im
=~ T3] { [Hl(r/R,G,ot)] (cos P+ in sin q;) dlp}dA
Agisk Yo

and using Eq. (2-5)
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2 e Tl o o o)
0 0 ¥, |
with K' = 2(2m+1) T (me1)/n>’2

I' (m+1.5) and wo as given in Eq.(2-4). This
dimensionless'quantity is evaluated on a digital computer and is shown |
as a function of m for various a in Fig. 2-7. The corresponding mean

value for the tensile stress at the center of the specimen 1is
2p

—1t m 2 - . ‘ | -
o = —%—-(51n 20 -a). . (2-10)

Experimental Results: The parameters m and 0, are evaluated from three-

point bending tests to predict behavior in the Brazilian disk test. Al-
ternatively, the parameters could have been obtained from the disk test
and used to predict behavior in bending. In testing rectangular beams of
span L, height h and thickness b, using fixed supports, an elementary but
often neglected source of error is friction at the supports. It may be
shown that the maximum stress under load P is
_ 3_1_1(1 -i&),
f'th 3L

The friction coefficient p is measured and this correction is
made in determining parameters from bending test results. An additional
aspect, the "wedging stresses" [2-25] due to the localized load may be
shown to introduce an error of 0.3% at most and are neglected.

Extensive tests are carried out on granodiorite (a fine to medium

-grained igneous rock from the Sierra Nevada), and a smaller number of
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tests are made on a fine grained limestone, snow-white in color, on a
lightly anisotropic greenstone, and on a fine grained basalt.

Bending Tests on Granodiorite: Twelve separate sets of bending tests were

made involving a total of 281 specimens. The effects of specimen prep-'
aration, cross-sectional size and orientatioﬁ, friction at the supports
and moisture were studied and the results are summérized in Table 2-1.

All tests weré made using a carefully aligned fixture in an Instron
Universal Testing Machine at a cross-head speed of 0.02 incheé/min

(0.05 an/min) .

| The value of m for each set was obtained from the slope of a
graphical plot of log log (T%CJ Versus'iog o. Hére G is taken as the
mean rank j/(N+1) where j. is the number obtained when N specimens are
ranked from 1 fo N in order of increasing strength.

The first set of specimens prepared was No. 5. These specimens

had the smallest cross-sectional dimension of any tested and had a very
rough surface finish. Subsequent specimens were finished in as consistent
a manner as‘possible by grinding. For this reason, we ignore Set No. 5
in our subsequent discussion except as evidence that surface finish must
be’confrolled. For specimens which are carefully prepared, it is important
~ to determine whether the strength impairing flaws are distributed through-
out the volumé or are concéntrated on the surface, as in glass. It was
shown by Weil ‘and Daniel [2-32] that this can be determined if beams of
rectangular cross section are tested in two orientations as with Sets 1
and 2 or Sets 3 and 4. When the long dimension of the cross-section is
perpendicular to the neutral axis, the cummulative distribution of stress

at fracture should shift to higher stresses if surface flaws are involved.
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However, if only a volume distribution of flaws is involved, both orienta-
tions should lead to the same distribution. A comparison of Sets 1 and 2
in Fig. 2-8 provides a rather convincing justification of the assumption
that a volume distribution of fléws is involved. Sets 3 and 4, which
involve fewer and smaller specimens, show the rather puzzling result, in
Fig. 2-9, that orientatiqn of the long dimension perpendicular to the
neutral axis-lbwers the strength values. We can argue that since the
area at the outer fiber is the smallest for all of the rectangular cross-
section specimens tested, some effect due to flaws on the specimen edges
may be involfed.

To obtain an estimate of m from a large numbef of tests, we have
pooled all of the sets in which rectangular specimensvwere tested with
the long dimension of the cross-section along the neutral axis with the
exception of Set 5 (different surface finish) and Set 6 (done wet). Taking
the 161 specimens of Sets 1,3,7,8,9,10,11 and normalizing the strengths
in each set by their own mean, we obtain from Fig. 2-10 the estimate
m =712.0. It'is interesting to compare the distribution predicted by this
value of m with the data points on linear coordinates as shown in Fig. 2-11.
As expected, because of the assumption 0, = 0, the data points depart
from the predicted curve at the lower stresses.

The value of 0 cannot be obtained from su;h a pooled plot so Set 1,
which has the iargest number of specimens, was selected. From Fig.2-12
we obtain 0y = 1220 psi (8.41 MN/mz) before making the correction for
friction and oy = 1170 psi (8.07 MN/mZ) after making this correction

for the measured value p = 0.31. .
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Excluding Set 5, the m Vélues deduced from the other seté of
bending tests show the variability to be expected when estimates are made
from small samples (coefficient of variation = 0.097). To show that the
shape of.the cross-section haé no Significant effect on the m valﬁes,
Set 12 is included in the experiments (Fig. 2-13). Set 6 is tested
after soaking the specimens in water for five minutes. It indicatés that
moisture has little effect on the m value, although it does decieaSe the
mean strength, as shown on Fig. 2-14.

Disk Tests on Granodiorite: The dimensions selected for the disks were

D = 1.006 inches (2.56 am), t = 0.205 inches (0.52 cm), and 2a = 18.5°.
Sometimes padding material has to be used in the Brazilian disk test to
avoid premature crushing under the loading points but this was not found
to be necessary in the present tests. Two series of tests were made on
disks and thé results are summarized in Table 2-2{_'

Forty specimens (Set 13) were prepared with a surface finish similar
to the bending specimens while 38 specimens (Set 14) had a considerably
smoother surface finish obtained by lapping. The predicted value for the
mean tensile stress at the center of the disk from Eq. (2-10) and.
qo, = 1170 psi (8.07 MN/mZ), m=12.0 is 1770 psi (12.20 MN/mz). This
agrees well with the mean of the observed strength values for both-sets
of tests. A.more critical test is to compare the distribution of failure
stress or pressure predicted by the Weibull formulation with observed
values. This is done in Figs. 2-15 and 2-16 for the two sets of tests.
The agreement for the disks with surfaces similar to the bending specimens
is.very good. For the smoother disks, Set 14, the predicted distribution

provides a somewhat less precise fit to the experimental distribution.
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Tests on Limestone: A less extensive series of tests was made on a

limestone to confirm that‘the preceding predictions for the Brazilian
disk test could be repeated for another material. Since this material

is very soft;‘it is not easy to prepare specimens of rectangular cross-
section as the edges tend to crumble. For this reason, Set 15 and Set 16
(Table 2-3) éré rejected. Bend tests were made on specimens of circular
cross-section (Set 17, Table 2—3). The Weibull parémeters deduced from
this test, ﬁsihg Fig. 2-17, are m = 10.5 and gy = 420 psi (2.90 MN/mZ).
A set of 38 Brazilian disk tests were made using dimensions similar to
those for granodiorite except for a decrease in thickness to 0.200 inches
(0.508 cm). From Fig. 2-18 the predicted probability distribution is
seen to compare very well with experimental results. The mean value ob-
served for the tensile stress at the center of the disk was 690 psi.
(4.76 MN/mZ) witﬁ the predicted value being 668 psi (4.61 MN/mZ).

Tests on Greenstone: Greenstone (amphibolite) is a metamorphosized

~ volcanic rock. .It shows schistosity and is randomly intersected with
'veins of quartz. The bending test data, shown on Fig. 2-19, does not fit
a Weibull disﬁribution at all. As discussed by Weibu11, the curve is con-
cave upwards and indicates the anisotropy of the material. It is not
possible to obtain unique m and ‘00 values to use in the Brazilian disk
analysis. Apart from difficulties in estimating the parameters, the disks
in diametral compression did not fracture along the loaded diameter; due
to insufficient stiffness of the testing machine, aiéks failed in an
explosive manner, completely obscuring the mode of failure. For these
reasons, attempté to predict.the behavior in one of the tests from the

other, using the procedures discussed, would be meaningless.
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Tests on Basalt: Similar difficulties arose with basalt as with greenstone.

The anisotropY'is not strong but the bending test data shown on Fig. 2-20
indicates that there is a high zero strength for basalt. The use of two
parameter Weibull formulation can not be justified.

Discussion of. the Results: The results obtained here show that if similarly;

prepared specimens are compared, the Brazilian disk test may be compared
‘with bending results using Weibull's multiaxial formulation. The predic-
ions are considerably better fhan can be obtained with other procedures.
One approach suggested [2-27] is to compare volumes in which the tensile
stress is above 90% of the maximum value. This criterion would-predict a
mean fracture stress of 1630 psi (11.24 MN/mZ) which is 12% below the ex-
perimentally observed values. Another approach would be the maximum strain
criteria. But even lower values are predicted for the mean stress at
fraéturé if a maximum strain criterion of fracture is employed since it
predicts a feduction in strength in tension-compression quadrant. From
Table 2-1 it can be seen that the maximum tensile stress by itself is a

completely inadequate fracture criterion.
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CHAPTER THREE: UNIAXIAL DYNAMIC LOADING

3.1 Introduction:

Quasistatic ffacture and/or dynamic fracture are very often used to
denote both the motion of cracks and the type of loading. To avoid any
ambiguities the tefm dynamic loading is used here  for externalvloads that
give rise to transient propagating mechanical distﬁrbances (such as impact
loads, explosive charges, etc.). There is no need to label the propagation
phase. Onlyvrapid (or catastrophic) propagaticn of cracks will be dis-
cussed. -

The classic analytical problem of fracture mechanics involves com-
putation of the stress field at the crack tip. This computation has to
include the inertia effects for any kind of dynamic loading. ElaStodynamic
problems often lead to dynamic stresses which are higher than the stresses
computed from the corresponding problem of static equilibrium. Reflection .
of a plane‘wave from a rigidly-clamped boundary - giving rise to stresses
which are twice the original incoming wave magnitude - is a good example
of this éffect. A comparable effect occurs when a wave is diffracted by
a.craék. The Behavidr of the stress intensity factor under short dura-
tion pulses is studied in the first part of the chapter under the heading
of "crack initiation".

In most instances crack initiation is sufficient for complete failure
since the propagation speed of cracks is very high and they can com-
pletely traverse a part during conventional loading. Under short duration
pulses, however, initiation becomes only a necessary condition for com-
piete fracture, and the propagation phase may be the dominating factor

in brittle fracture. In considering the propagation of cracks due to
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dynamic loading, we have to admit that even the propagation due to
quasistatic 1oéding is not well understood yet. In the second part of thé
chapter, crack propagation is studied for the casé of quasistatic loading.

The last part of the chapter deals with a néw £heory for brittle
failure under dynamic loading. The theory is applied to a practical case -
spalling due to energetic electron bursts - in Chabter four.

vThe phenomena of fracture under short duratioh‘stress pulses has
drawn attention mainly in relation to back surface spallation of éfmouf
plates subject to impact. Recently, the search fdr efficient tunneling
methods in hard rock has required a better understanding of the spallation
process. Unlike metals, rocks behave essentially elastically up to the
fracture point and do not show strong rate dependence. The plastic flow
in metals that accompanies the compressive wave changes the internal struc-
“ture of the material so that the material which undergoes spallation is
_quite different from the initial material. Brittle solids being much
stronger in compression remain unéhanged by the iﬁitial compresSive wave.
This alone makes the brittle solids much easier to énalyze. Thevdifficulty
with brittle.solids, however, arises from strong nonhomogeneity; generally,
grain boundaries act as effeétive cracks and it is Qgry difficult to
identify these flaws. As will be discussed later, a knowledge of flaw
distribution is very important in predicting dynamic behavior.

3.2 Crack Initation:

We assume that initation of fracture occurs whén the stress in-
tensity factor reaches its critical value, called the fracture toughness.

The fracture toughness value is assumed to be independent of the loading
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rate, which is a vreasonable assumption for rocks. The effect of short
duration loading on the stress intensity factor is studied in the following
problem. |

A sharp through crack, of length 2a, is embeddéd in a homogeneous,
isotropic, linear elastic plate of infinite extent loaded by uniaxial
tension o. This geometry cérresponds to the simplest problem of quasi-
static 1oading where KI = o(ﬂ'a)%. A plane P-wave (tensile) propagates
towards the crack, the wavefront being parallél to the plane of the crack.

At time t < 0, the incident wave is of the form (Fig. 3-1)

G)E}i,) =9, H(t-y/cl)

where H(t) is the Heaviside functioﬁ. At t = 0, the plane wave strikes
the crack. Af:all subsequent times, there are a reflected plane wave and
two diffracted cylindrical waves emanating from each crack tip (Fig. 3-2).
" The stress field at the crack tip for this problem was obtained by
Thau and Lu [3-1] by considering two hypothetical pléné problems:

problem A - plane incident wave 053)? % H(t-y/éi) ih infinite domain

-problem B - the wave propagation problem defined by the boundary con-

ditions
oyy(x,O,t) = - 0y H(t) for 0<x<2a
,0,t) =0 for -w<x<w
oxy(x ) or X
uy(x,O,t) =0 : for x>2a, x< 0

ux=uy=ux=uy=0 for tiQ

satisfying the field equations of isothermal elasticity.

Super position of problems A and B is the problem of 'P-wave striking a
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crack'", Since the solution of A is trivial (uniform all over), the solu-
tion of the main problem reduces to solving problem B, as stated.
Introducing the Lamé potentials a(x,y,t) and B(x,y,t) such that

u=VvVa+VvV x g

~ ~ ~

the problem in two dimensions (plane strain, no body forces) reduces to
solving the following two wave equations subject to the conditionsvgiven.

in the statement of problem B.

2

2 1 3%

Vea = °9a

-clz at2
2

"B

2 = l 3 T = =
. v 63 _'Ci 2 Bl 82 0

| > et

where 4 an_d‘c2 are respectively, dilatational and shear wave speeds.
.Laplace transform over time and exponential Fourier transform with respect
to x-coordinate_are applied to the set of govefning equations. The re-
sulting equations are solved by the generalized Wiener-Hopf technique.
The analYtical solution for the stress intensity factor obtainéd

by Thau and Lu [3-1] is shown on Fig. 3-3. The ratio of thevstress in-
tensity factor under dynamic loading to the stress intensity factor under
static loading (KId/KI) increases as (time)% until the scattered S-wave
from opposite crack tip hits the tip in question (i.e. t S_Za/cz). The
rise is accelerated with the arrival of the S-wave, and the maximum occurs
right at the moment when the scattered Rayleigh wave reaches the tip. This
maximm is ébdut 30% higher than the corresponding static case.

The results are valid only for times t < 4a/c1. That is, denoting
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the tip in questlon by 1 and the other by 2, only Pl’sl’PZPl’stl’Szpl’
stl-waves are considered (No. P1P2P1,P1P251 etc.).  Hence it is not pos-
sible to claim that the peak values quoted are indeed the maximum ones
for all subsequent time. However, decaying responses with time are ex-

pected since scattered waves propagating outward to infinity continuously

remove energy from the vicinity of the obstacle.

Further study of dynamic loading: For a step pulse ¢ = GOH(t), each crack
will reach the same méximum ratio of KId/KI’ no matter whét thé size of
‘the crack is. The larger cracks will take longer‘time than the small ones
to reach that maximum. Since the static stress intensity factor, KI’ it-
self is proportional to a%, the maximum KId will increase as the crack
size_increases; The variation of K;, with time is shown on Fig. 3-4 for
various crack lengths. Thus, for small times K14 is independent of crack
size. All cracks, larger than some minimum value, will reach a particular
value of KId at the same time*; hence, all the "active cracks' (cracks
which will start propagating for the given streSS'pulse) will have the
same delay thné tg. Since the crack size is immaterial, we can replace
the crack of length 2a by a semi-infinite crack. The problem becomes
much easier without higher order diffractions at the second tip, and

Freund [3-2] obtained a closed form expression for delay time as

*Because of the peculiar cusp shape of the last pdrtion of dynamic stress
intensity factor curve (Fig. 3-4), a limited number of cracks will reach
the critical Value of the stress intensity factor KIC‘at slightly lower
times. These are the cracks with sizes very close to that of minimum

active crack.
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T (1-\))2 K%C
t0=

; © 2
2 (1-2v) 99 €

where KIC = fracture toughness and v = Poisson's ratio of the materiél.
It foilows»that there is always a finite time between the wave striking
the crack and the crack starting to propagate, no matter how large the
stress. Crack propagation at an instantaneous velocity, i.e. ty = 0,
occurs oniy’if the stress has a square-root singularity at the wavefront
of the incident wave; that is, if o(t)~ ’c—l/2 H(t) (Achenbach and
Nuismer [3-3]). | |

Intefaction of a finite pulse with a crack 6f length 2a is much
harder to analyze rigorously. Superimposing twou s;ep inputsv % H(t)
and =9, H(t-1) would yield the'behavior,of the finite pulse of duration
T, if it can be shown that the crack does not close under the loading
ad) H(t-1). Motivated by the fact that the crack is already open when
the compressive step funcfion is applied, the assumption.is made that
the crack opening will not increase for t >t and hence, KId will reach
its maximum value at t =t . Consequently, for a given pulse (o,T1),
‘cracks larger than Cp T (6g being the Rayleigh‘wave speed) will not
reach a 30% overshoot in KId over KI since the unloading pulse will be
due before the Rayleigh wave reaches the tip. The variation of maximum
stress intensity factor reached within (0,t) is as shown on Fig. 3-5.
Thus, the fracture criteria for cracks smaller than CR'r is just the
Griffith typg; there is only an additional factor of 1.3 to raise KI

due to dynamic effects. Larger cracks, however, are insensitive
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to crack size. This is a peculiar behavior associated with dynamic loading.
If no fracture occurs, increasing the pulse 1éngth A will‘iﬁcrease

the stress intensity factor reached by large cracks, thereby increasing

the probability of failure. Above a certain threshold A , however, all

pulses will have the same effect as far as initiation is concerned.
Generalizing Thau and Lu's work led to the conclﬁsion>that KId :

reaches the maximum value for crack lengths equal to‘CR 1. Hence, for

fracture

K K

Id 2

N Tep)s
e < = 1.3 o /ma <1.3 /mo o

2 2
o” A > CKp.

where C is a function of Poisson's ratio and is of the order one. This
is a necessary condition for fracture to initiate. In order to be also
sufficient; the material should contain at least one crack of length

C, T.

R
The ieft hand side of the last equation is proportional to the
energy of the stress pulse. To crack a given material, either a long
pulse with low stress profile or a short pulse witﬁ high stress profile
can be used. Among pulses of the same energy content, the shortlones
will be more destructive than the long pulses, since the short pulses
will have a greater range of cracks to affect, as shown on Fig. 3-6.
It is more realistic to consider penny-shaped cracks rather than

two-dimensional cracks. The diffraction problem of a step function in-

put has not been solved for penny-shaped crack geometry. But, harmonic
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incident wavés, diffracted at Griffith - as well as penny-shaped cracks
are considered by Mal [3—4, 3-5] . The maximm 6vershoot of dynamic
stress intensity factor is 30% in tﬁe former, 45% in the latter case.
This maximm occurs for incident waves where the wavelength is roughly

4 to 6 times the crack length. This compares favorably with rectangﬁlér
- pulse solution, where maximum occurs at pulse lengths roughly 2 times the
crack length (Table 3-1). By analogy, if is expected that KId;‘ 1.45 KI
for a penny-shaped crack struck by a rectangular pulse.

3.3 Crack Propagation

In thé propagation phase of cracks the main concern is how far cracks
can travel before the pulse is over. Questions about fhe path of the cracks
and instabilities such as forking will be avoided here. The assuﬁption is
made that all cracks will continue growing in théir own plane, on a
straight line; |

Not much progress has been made on propagation theories in the last
decade. Still, formulations based on static stress fiélds are used.

Mott [3-6] was the first to extend Griffith's energy balance to dynamic
cases by inciuding the kinetic energy term into the balance equation.
Using the potential energy term as given by Griffith; deriving the kinetic
_energy term onrdhnensional grounds and making the simplifying assumption
dc/3a = 0 initially (where c = crack speed, a = crack half length), he |

came up with the expression:

[ [ES %)% -
c = -K—El‘-a— (3‘1)

where E is the Young's modulus, p is the density, a, is the initial

-
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crack half length and K' is the constant to be evaluated from the dis-
placement field of the problem. Roberts and Wells [Sfi]evaluated it in

1953 for Poisson's ratio 0.25 and obtained the expression

an \ %
c=038/% (1—a—°) - | (3-2)

Dulaney and Brace [3-8] recognized that for early peribds of propagation
the assumption,'ac/aa = 0 is not correct and solved the energy balance
equation of Mott by using the initial condition ¢ = 0 when a = 2y They

obtained the following expression

. |
c=o.38/§ (1—50-) - (3-3)

Berry [3-9] extended this last formulation by differentiating between the
applied stress o and the critical stress Oc and came up with

a.\ % a1k |
c=0.38/ % (1 - 739) [1 - (anfl) -5‘1] (3-4)

where n = dé/o < 1. In all these cases, the limiting crack speed is
predicted to be 0.38 V E/p or 0.6 c, for v = 0.25.

All of the foregoing formulations are known to be incomplete éince
‘they are based on static solutions of crack geometry! Tsai [3-10] re-
cently computed the stress distribution around the tip’of a running crack.
As shown on Fig. 3-7, the correction factor is appréciable at large speeds;
not only the magnitude but also the plane at which the maximum circum-
~ ferential stress acts is changing at crack speeds abeé 0.7 C,-

It has been shown first by Broberg [3—11] that the terminal crack

speed is the Rayleigh wave speed Cp» i.e. 0.92 <, for v = 0.25, rather
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than the prédicted value of 0.6 C,, where C, is the shéar wave speed.
Experimental results on steel, polymers and glass show, however, a closer
agreemeht with the value 0.6 C,- Only in limited cases, such as tungsfen
single crystalé, have high terminal velocities up to 0.82 <, been observed.
A possible explanation can be giveh by considering the behavior of the
stress intensity factor with increasing crack speeds. For semi-infinite
cracks, Freﬁnd.[S—lZ] foundvthat the stress intensity factor KI decreases
sharply at high ;rack-speeds and reaches zero at c = R- ‘This clearly
shows ‘that the Rayleigh speed is the absolute maximum for conventional
crack propagafion, which occurs through energy transfer from the sur-
rounding stress field to the tip. It also indicates thaf this speed can
be approached only asymptotically. - Since all engineering materials will
have a finite fracture toughness value, terminal velocities will be con-

* siderably lower than cy (Figs. 3-8).

There is no reaSon a prior to éssume the energy absorbtion behavior
constant at all crack velocities, as is done in the early propgation
theories. In fact, the contrary might be expected. At low crack velocities
and crack tip strain rates, yield sfrength increase may decrease the lo-
calized yield Zone, thereby decreasing the energy absorbed. At high
crack velbcities; the tendency to form small cracks in front of the crack
tip increases, thereby increasing the energy absorbed. Experiment on
plexiglas (Berngist [?-13] ) show that the sufface energy increases at
an increasing rate as crack velocity increases. Assuming that the critical
energy release rate g. can be determined experhmentally, the crack speed
can be calculated by using the available solutions for energy release

rate, as shown in the following.
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" The rigorous solution'for a finite crack extending at a nohuniform
~ ratevdne to Mpdé I loading has to include diffractions at each érack.fip
’and therefore is expected to be very complicated. "Sémiinfinite-crack
vextending‘af'a:nonuniform rate'" and ''finite craék_extending_at a uﬁiform '
raféﬁ are‘eaSier probléms although less deécripti&e of the physical situ-
ation. Freund [3-12] and Broberg [3-14] considered these two cases and
bbtainédzéolutidns:fOr the energy release rate g.  The solutions are
compiicéted; Howévef;:on examination it can be seen in both cases that
the‘ratio of the energy release rate at some veloéity C to that at
_ihitiatidn,‘i{é. at ¢ = 0, can be apptothated for equivalent crack
lengths by:vn | .
g =‘;§£El.; 1 - c/ey _ - B (3-5)
o © |

Tsailf3-15}'inVestigated the dynamic stress intensity factbr for a brittle
‘crack extending at a constant speed and at a constant acceleration. The
vresults‘for these two cases are.idenfiéal at c=0and c =cp and do

- not deviate from each othef more than 5% over the entire range of crack
speeds. (It is worth noting here, however, that the stress‘ihtensity |
factor and the energy release rate for a'propagating crack are no longer
related by KE(1-v9)/E = g but by KF(c) A(c) (1-vD)/E = 9(c), where |
'A(é) is abfunétion-of crack speed and elastic constants. When c is zero,
A=1; ahd wheh ¢ approaches the Rayleigh wave speed, A becomes unbounded
(Fremd  [5-12] ). | |

vAvcrack under time-independent loading starts to prOpagafe when
the energy releaSe.rate g réaches its criiical'value gé. The subse-

quent motion is such that g remains equal to 9. Hence, considering
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the simplest case, a crack of length 2a in an infinite plate subject to

- uniform traction ¢ at infinity, we have:

 rag?
initially: gC(O) = ¢g(0) = E
2
2 wa,o
later: : gc(c) = g(c):g—é%—%’
' - a, o
00
a 02 '
go(c) =g — —59.(0) -
% %

Using the approximate expression for g as given in Eq. (3-5), we can

rearrange the last equation,

) |
g ( o :
cscR(l-fQ () _0). (3-6)

This relationship of crack speed and crack size is similar to the
early formulations given in Eqs. (3-1) - (3-4). A comparison of Egs.(3-2),
(3-4) and (3-6) is made on Fig. 3-9. The two extreme cases,

gc(c)/ gc(Oj =1 andvgc(c)/gC(O) + ® , are shown by dashed lines; a
real solid is’expected to lie in between. Without an experimental
~ knowledge of gc(t)/gC(O) variation with crack speed, Berry's curve seems
to be the best available at this stage.

| Increasing the applied.stress over the critical stress does not
effect the terminal velocity, but decreases the period of acceleration.
The trend is similar in both Berry's analysis and the analysis based on
gc-variation wifh crack.tip speed. As shown on Fig. 3-9, among pulses
with the same energy content, i.e. ozr = constant, long pulse lengths

-will be more destructive than high stress amplitudes.
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3.4 A New Theory of Dynamic Fracture

A study of the last two sections leads to the conclusions that under.
impulsive loading cracks will be activated at streés 1e?els 30-45% lower
than quasi-static loading and that they will travel at velocities consider-
ably lower than the Rayleigh wave speed. It is also found experimentally
that the strength level of brittle solids increases sharply as the loading
time is decreased. Hence, fracture under short dﬁratibn pulses must be
governed by propagation of cracks as opposed to initiétion, which is the
governing factor in quasi-static loading. And this'is not surprising at
all. Due to the limited time available large cracks cannot propagate far
enough to meet the free surface or each other; many sﬁaller cracks have
to be initiated. Thus, much higher stresses are ne¢éssary for failure.
Clearly, a weakest link or series type anlysis (like that of Weibull's
treatment (Chapter II) where the structure as a whole is only as strong
as its weakest link) will not hold anymore; a model requiring the failure
of many elemenfs in parallel may be more apbropriaté. Not oﬁly the size.
but also the density of cracks will be vital.

Research in the area of short duration loading has consisted pri-
marily of experimental determination of conditions necessary to produce
spall. Analysi§ has been confined to empirical relationships. The spali

criterion proposed by Tuler and Butcher [3-16] for metals

T
{(o-cojkdt = K
0

has been applied most widely. (In this equation % corresponds to
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fracture stress at long times, A and K are constants.) It seems to fit
the experimental evidence well but lacks any theoretical basis. The con-
“stants A and K have to be determined from a series of spall experiments
which requifes sophisticated equipment and experimentation. Available
limited data show that A is around 2. If its value can be obtained more
precisely by theoretical analysis or extensive experimental work, the
usefulness_of'this criterion can be increased greatly.
Shockey et al. [3-17] attempt to determine the flaw distribution
in rocks by counting and measuring the flaw traces on a particular plane.
Cumulative distribution per unit volume is then obtained by means of a
statisticalbtransformation. Failure is assumed when cracked volume
reaches a‘certain percentage of total volume. The criterion is arbitrary
and the proCedure'of counting crack traces is less likely to be successful
in most rocks than in novaculite, the material they tested. o
| In the light of these developments, a new theory is proposed to
predict failure in brittle solids due to dynamic.loadingf Consider a
plane, rectangular stress wave of magnitude ¢ and duration T such as
one generated by impacting a thin propjectile plate against a stationary
target plate. It can cause failure only if (i) the energy delivered.to
the solid is large enough to initiate crack propagation, and
(1i) the duration of the stress is long enough for active cracks to
coalesce. Thus, the time to failure t can be written as the sumiof
initiation and propagation time
i p- |
From Freund's [3-2] solution for the delay time of a'semi-infinite



240~
crack, we know

i 5-7)

i 7
2 (1-2v) ¢° ¢

1
where  KIC is the fracture toughness, < is the dilatational wave speed
and v Poisson's ratio.

| A similér expressibn for'propagation time Té is much harder to
obtéin. A global'énergy balance including the kinetic energy term is not
useful since the fresh sufface area created is very hard to estimate. The

cunulative distribution of crack sizes is crucial at this point.

Distribution of flaws. We will assume that in a brittle solid the number

of flaws per volume having a strength equal or less than o is Poisson dis-
tribufed. In the face of a large number of similar phenomena obeying a Poisson
probabilify law_r such as the number of misprints per>page, spontaneous
decomposition of radioactive atomic nuclei, occurrence of breakdown or
accidents - fhe'assumpfibn is eXpected to be reasonably close tb reality.
Denoting the expected nﬁmber of cracks per ﬁolume having a strength

< o by n, we can write the probability of finding zero flaws in volume

V having a strength < o by

e WV @°
. . 0! )
Or, the probability of fihding,at least one flaw as

p=
1-p=1 - eV

From static tests we know the distribution of failure stresses'(i.e., the

probability of finding at least one flaw in volume V having a strength
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< o) obeys Weibull's distribution closely. Hence

m
(0—%7‘ ’
- V .
o
G=1-¢e 0 =1-eW
and »

o-o,\m _

nV = N(o) = 5 ) V. : (3-8)
0 . _ _

Staticftests give the distribution of the largest cracks since
brittle solids in such tests always fail due to the most severely loaded
flaw. Thus; the above expreésion is strictly valid only within the ex-
perimental range. It does not give information, e.g., about the number
of very small éracks since very large failure stresses can be obtained
only in very very small specimens which are neither suited for experi;
ments nor justified in terms of their modified microstructure. But, after
recognizing thié limitation, we assume that brittle strength will continue
to obey the Wéibull distribution beyond the range justified by experi-
ments and extrapolate Eq. (3-8) to vanishing crack lengths.

A simple criterion: All cracks are assumed to lie parallel to each other

and perpendicular to the applied loading. They are also assumed to pro-
pagate in their own plane in a straight line. (These simplifications are
discussed later in the chapter.) A mean path 2d is defined as the dis-
tance an average crack propagates before coalescing with another crack.

If all cracks éfe the same size and on the same level, d =% (.A/N’)l/2
where A is the are; subjected to tension and N is the number of cracks
that are active at or below a stress o . To assume fhat all cracks lie

on the same level is too much of a simplification. Instead, we can dassume

that they are distributed uniformly to £ different levels such that any
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two cracks in one layer have to merge if they grow long enough. Thus,
A o2

d=zmm=21 0
' (o-ou) '

since V = A-h' A-bh- %, where Ah is the thickness of a single layer

N

) | com/z 1 \%

“lo-0, )™ 2 (00 )™% \an

In the face of all the assumptions and approximations involv'edb,' it is not
justified to use a complicated propagation law such as mentioned in
Section 3.3. Neglecting both the initial crack size and the period of

acceleration, we can write

m/2 ‘
s d_ 1 % ( 1 )35
p ¢ Z2c [o—ou)m72 Ah

where c¢ 1is the crack velocity.

The mumber of layers £ in the direction of wave pi‘opagation
(z-axis) is ainbiguous; since the wave travels down all along the z-axis,
there is no immediate dimension corresponding to the depth of stressed
‘'volume. - The layer thickness Ah is sensitive to applied stress level
o; the stress field at the tip of a crack will reach farther forblalrger
o. The maximum opening Gmax of crack of length 2a subject to a stress
o at infinity may be shown to be Gmax = 4a G/E. This suggests an

approximate estimate of Ah as
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giving
) o m/2 5
E .
T ° *% (8a ) (3-9)

g-0.- ol

The crack size a is unknown in the above expression. Hence, we leave
it and the other constants as parameters to be determined from one dynamic

test and write Eq. (3-9) as

. ] |
T = T : : (3-10)
p o2 (o-ou)m/2

For most practical purposes, T << p and T .-'rp,

and
T 011 Qo—ou)m/z = K.

If o 1is applied for a time At less than T,

At o '(c-ou)m/z = (——A:EE) K .

Successive application of constant stress pulses of duration At each
gives
k L
. % o \m/2 _
Z Aty of (o7 0y) K

1=1

k
where ) At; = 7. In the limit,

i=1

T
| l 01/2 (o- ou)m/z dt = K. (3-11)

0
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This last equatiqn is very similar to the empiricél'relétionship proposed
by Tuler and Butcher, except that the material properties m and %
can be found by static pure bending tests; a single dynamic fracture test
is sufficient to determine the constant K. h |

Discussion: In developing a simple dynamic fracture model, we assumed

the cracks to lie parallel to each other and to propagate in their own
plane. These assumptions are motivated by following afguments. We khow
a crack oriented at some angle © to the applied tensile stress will ex-
tend in such a way as to maximize the stress intenSity factor at its tip;
i.e., 1t will turn perpeqdicular to the applied tensile stress. Besides
that, Freund [3-18] has shown recently that the delay time is a strong
function of the orientation and increases sharply for cracks which make
large angles with the plane perpendicular to the applied tensile stress.

Thus, it is reasonable to disregard such cracks and treat the rest as

being on planes perpendicular to tension.
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CHAPTER FOUR: ANALYSIS OF ELECTRON BEAM TESTS

4.1 Introduction

Several novel techniques have been introduced recently in the areas
of.tunneling and drilling. Use of intense submicrosecond electron bursts,
which will be studied here, hasbthe particular advantage of leading to. |
tensile loading of rocks and hence exploiting their relative weakness in
tension. A detailed picture of the investigation is preéented in [ﬁ- ]
and especially in [4-2].

~ Energetic electrons delivered from a pulsed electron accelerator
penetrate the fock to a finite depth and deposite most‘of their energy.
The heated region cannot expand freely due to the surrounding rock at
ambient température and large thermal stresses are created. The knowledge
of these thermal stresses is essential to any failure prediction. The
situation can be formulated as follows:

Given hcmpgeneous, isotropic, lihear-eiasticbhalf space, z > 0
(Fig. 4-1), find the strgss field oij(x,t) satisfying the equations of

isothermal e1asticity:

95,570 U |
= € . : € - ' : -
oij 2u :ij*-ksij Kk 3\ + 2u) o T 6ij (4-1)
1 : '
€5 = 7 (U, )
subject to boundary conditions
- 1 = 2—
0,, = 0,r 0 at z=0 for t=20
Oy S0y = 0 everywhere

and to initial conditions u.=u =u =u = 0
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where T =T (r,z,t) is the temperature rise, A and u the Lame constants,
and o the coefficient of linear thermal expansion. o

There are two distinct regions of interest depending on the applica-
tion of the heat source. If the electron depositibn is fast enough such
that there is practically no heat transfer to the surroundings and slow
enough not to'have any wave phenomena (i.e. subsecond duration pulses),
the mechanism is called ''thermal crater' fracture. If the electron de-
position is almést instantaneous (i.e. submicrosecond pulses), the fractufe.
is by "spalling' due to the tension wave.

4.2 Thermal Crater Analysis

The stress field for the 'thermal crater" problem can be solved,
at least in principle, using Eq. 4-1 after replacing the equations of .
mofion by the equations of equilibrium. Instead, évfinite element code
[4-3]'with quadrilateral elements is used. The input energy is converted
tovtemperaturé rises at nodal points, from which the strains and stresses
at those nodal points are calculated. The probable fracture paths are
shown on Fig. 4-2. The lines represent the planes on which maximhmvtensile
stresses act, and the symbols are proportional to the magnitude of the
stresses. Considering that brittié materials fail under tension, this is
expected.to be a close approximation of the actual éracking pattern.
These fracture paths do not intersect the free surface; hence, "thérmal
crater" mechanism is not expected to cause removal of material but only
damage and weakening of the rock.

vNot only the direction but also the magnitude of the maximum
principal stress is unfavorable for fracture. Since the depth vefsus dose

curve is truncated-bell shaped, the induced thermal gradient and tensile
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stresses are low. For the temberature rise profile shown on Fig. 4-2,
with a peak value of IOOOC, the maximum principal stress is approximately
4.83 MN/mZ. It is 1/2 to 1/3 of the static strength of granite. A short
duration pulse giving the same temperature rise creates a tensile stfess
wave of approximately 27.6 MN/m2 peak value. Althoﬁgh the strength of
recks under dynamic loading is much higher than‘their static strength,
"'spallation'" mechanism still appears to be much more promising than
""thermal crater' fracture.

4.3 Shock Spalling Analysis

When the temperature rise due to intense electron bursts is too short
for the stress wave to advance any appreciable distance, we can assume the
temperature change a step function in time. The experiments discussed
here have bombardment times of the order of 10'7 seconds. The stress
wave within this time cannot propagate more than 0.5 mm. Even for sets
#1 and #2 (Table 4-1), where the wavelengths are shortest, the error in
maximum tensile stress due to assﬁming instantaneous energy deposition
is less than 5% [4—4].

The fate of the initial compressive pulse can theoretically be de-
termined using Eq. 4-1 with the give; boundary and initial conditiens,
and taking T = T0 f(r,z) H(t) where H(t) is the Heaviside function. Since
we are mainly interested in an estimate of the dynamic strength, we will
approximate the conditions by one-dimensional plane wave propagating in
the half space z > 0, and avoid the complicated 3-dimensional problem of
elastodynamics. The electron beam diameter is large compared to the elec-:

tron penetration depth and the plahe wave approximation is expected to

give good results.
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Since thermal expansion causesvonly dilatation and no distortion,
the initiaily stressed region can Be thought to create two P-waves of
equal magnitude and of opposite directions. The P-wave travelling in the
-2 direction isbreflected from the free surface as a P-wave only since
the incidence angle is 960. The resulting P-wave is unchanged except
that the direction of propagation and amplitude are reversed. The rear
going tensile wave can now cause brittle failure if the magnitude is high
enough. The wave profile is non-uniform and the maximum tension builds -
up first at a depth of appfoximately 1/3 of the maximum penetration depth
(Fig. 4-3). .

There are five series of tests which lend themselves to dynamic
analysis. The data accompanying experiments earlier than these last five
series is not sufficient to determine the stress fields accurately enough
to use in the analysis. These five series of experiments are summarized
in Table 4-1 which is a modified version of Table III in Ref. [4-2].

Each series inciudes 30-40 shots, half of which are.Calorhnetric readings;
Most of the remaining shots are made on wet rocks since wet rock closely
approximates conditions in a tunnel and shows much lower strength levels
under short duration pulses. The fracture mechanism involved in wet
rocks is, however, quite different than that of dry rocks. Water, and
rsubsequently steam, in the pores play an important role. Only fracture
in dry rocks is analyzed here.

Five different kinds of rock are used. Granodiorite, limestone
and greenstone are described in Chapter II. Besides these, basalt and
sandstone were tgsted. Basalt is very fine grained, gray-black in color

and is obtained from Napa, California. The sandstone, known as
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Lyons Sandstone, originates in Colorado. It is ferruginous sandsfone;
rust in color, with medium to fine grains. No attempt is made to analyze
‘tests on greenstone since it is extremely anisotropic and very few data
are available. Only the experimental results aré shown on Fig. 4-10 for
the sake of completeness. Density, coefficient of thermal expansion,
modulus of elasticity, and Poisson's ratio for these rocks are obtained
from Ref. [4—5].

The energy delivered per unit area is obtained from several calori-
- metric readings with identiqal conditions. The deposition of energy with
depth is not determined for each case separately,v Calorimetric short
#2386 and #2364 have been analyzed in detail; resulting depfh versus
* dose curves are very close to Spencer's predictions. All depth vs. dose
curves are then taken to‘be of the same shape as shdt #2386 (Fig; 4-4).

Combining depth versus dose and energy per unit area curves, the -
energy/volume variation with radius is determined for each shot used in
the analysié (Fig. 4-5). Specific heat for most rocks varies sharply
with témperature. Hence, the heat input per unit volume ‘is converted to
temperature'risé by using the heat contents of the minerals which make
up the rock; The data on heat content and heat capacity of various .
minerals is compiled by Kelly [4—6] and the procedure is described in
[4-7]. | |
| The threshold stresses are determined using temperature rise at
the rim of the spalled area. These threshold stresses - i.e., dynamic
strengths - are shown by vertical bars in Figs. 4-6 through 4-10 as a
~ function of the pulse dﬁration, together with predictions. The theo-

retical analysis is based on the model developed in Section 3.3. The
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stress pulse is idealized as uniformly distributed in depth and the
analysis is carried out using Eq. (3-10). Weibull parameters m, oO,Aou
for granodiorite and basalt are determined from pure bending tests directly.
For limestone and sandstone three-point bending results of Section 2.2 are
used in conjunction with Weibull's uniaxial theory to obtain m, % and
0, Limestone does not show a marked zero strength (Fig. 2-17 is close
to a straight 1ine); It is difficult to determine a unique 'du. Therefore,
two sets of properties are used in predictions. Frécture toughness values
are determined by three-point bend of notched specimens (50.81mn? 12.7 mm
X 6.4 mm) as specified in ASTM standards. Sharp cracks are introduced at
the tip of 0.5 mm wide notches using'ultrasonic cutting technique. Eight
tests are done bn basalt, 15 on granodiorite and four on limestone. The
results are summarized together with other material pfoperties on Table 4-2.
The parameter.K in Eq. (3-10) is evaluated for éach material using
the shot of longest duration. The predictions for dynamic strength with
changing pulse duration are shown for granodiorite on Fig. 4-6, for lime-
stone on Fig{ 4-7, for basalt on Fig. 4-8, for sandstone on Fig. 4-9. For
alllcases, exéepf sandstone, the initiation phase, as given by Eq. (3-7),
1s included in:the predictions; its effect is rather small. The experi-
mental data points for wet rock are also included for comparison purposes.
The static strength of brittle solids is a function of the volume; hence,
it is shown as a band rather than a line.
The predictions agree very well with the data points. It 1is sur-
prising that Such a «crude analysis can provide so close an estimate. The

data of Carison and Kerley [4-9] on shoal granite and Rinehart on
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granite [4—10] also coincide well with the predictions. Carlson and
Kerley found that for a pulse of 0.07 wusec duration dynamic strength is
224 MN/mZ. Rinehart's results are less clear; he shows a threshold stress
of 40 MN/m2 for a pulse roughly 2-3 usec long.

Discussion of the Results: The results of this chapter show clearly that

there is no unique dynamic strength of a material that we can tabulate.

It can be estimated if we know the duration of stress application and the
strength corresponding to some known pulse. Unfortunately, there are not
many ways to obtain that one strength value. Expériments are virtually
limited to flyer plate and electron deposition techniques. Hopkinson bar
type experiments require long wavelengths compared to bar diameter to avoid
higher modes which are dispersive. But using very slender bars made of .
rock is not reasonable since grain sizes are quite large. Besides, a

small cfoss section would not lend itself to a typical coalescence phe-
nomena.

The experimental scatter is quite large as_cah be seen by the length
of vertical bars in Figs. 4-6 to 4-10. The intrinsic variation of rock
strength is probably the most important factor. Static behavior from
this point of view is discussed in detail in Chapter II. Besides material
properties,'caiorimetric readings, delivered power, and location of thiesh—
old show qﬁite large variations.

The velocity of the‘spalled particles is given by u = 2 o/p_c1 for
a one dimensional plane wave. These theoretical predictions are compared
on Table 4-3 with observed values which are determined from high speed
movie frames. The values compare favorably for dry granite; wet granite

shows much higher spall velocities. The chunky spall debris of dry
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granite indi¢ates that there is appreciable amount of crack propagation
before spalling; wet granite debris, on the other hahd,-is in the form

of fine sand and indicates that there is hardly any craﬁk propagation
involved in the failure process. This agrees well with the féct that the
data points for wet rocks are clustered close to thé‘initiation curve
rather than the fracture curve.

Theoretically, volume removed by a plane wave by spalling Will_in-
crease as the length of the pulse iﬁcreases since the depth at which
‘tensile stress builds up shifts deeper. However, increasing the depth of
deposition ieads'to large deviations from a plane wave; energy will be
lost by outgoing waves in radial direction. Besides that, as the electron
deposition depth increases, the cracks may arrest before reaching the free
surface since they initiate at a plane too far from‘the free surface;
damage will be extensive,.but no spalling will occur. Prediction of the
optimum deposition depth seems to be a rather difficult job; the wave
prdpagation problem stated at the beginning of this chapter has to be solved
for deposition depths comparable to electron beam diameters.

The transVerse stresses due to the one-dimensional plane wave are
compressive but foughly of the same magnitude as the longitudinal tensile
stress. From the.study of brittle solids under multiaxial loading we know
that such a stress state will give very similar results to that of uniaxial
loading as far as initiation is concerned. Thus neglécting the trans-
verse stresses is justified. The effect of these transverse stresses on |
the propagation phase is unknown. It does not appear that they would alter
the stress field at the tip of a running crack to such an extent as to

change the general conclusions that have been reached.
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CHAPTER FIVE: CONCLUSIONS

It has been pointed out that the Weibull multiaxial treatment of
brittle strength is applicable only to materials with sharp cracks. The
Weibull treatment does not take into consideration the effect of the
stresses in the plane of the cracks, hence the analysis‘is not expected
to be valid for materials with spherical flaws. It is demonstrated,
however, that the theory is applicable even to porous materials if Qniaxial
stress states are considered.

.vWéibull's multiaxial formulation is applied in analyzing the re-
sults of diametral compression of solid disks. Based on the three-point
 bending tests done on rectangular and round beams, the behavior of disks
is predicted sﬁccessfully in terms of both the mean value of pressure at
fracture and the distribution of pressure at fracture for granodiorite
and limestone. Tests on greenstone and basalt showed that two parameter
multiaxial Weibull formulation is incapable of predicting the behavior of
matérials which are highly anisotropic and have large threshold stress
levels below which no failure occurs.

Brittle solids behave very differently under dynamic loading and
in static loading. Unstable crack growth does not lead to catastrophic
failure. Failure is due to coalescence of many small cracks. A simple
formulation is developed to predict this coalescenée process. The frac-
ture is assumed to be complete when a crack reaches the walls of its "cell",
where the size of the ''cell" is determined by the aﬁplied stress and the
crack population. The predictions of this new theory agree well with

‘rock shattering experiments using intense bursts of energetic electrons.
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It would be desirable to develop a dynamic fracture model which in-
cludes the arbitrary orientation of cracks and a more realistic propagation
law. Such a model gives the fraction of volume damaged as a function of
‘time, but is not self-sufficient since it is not clear what volume fraction
will lead to total fracture. A probabilistic study of the percentage of
cracked grains or grain boundaries required for total fracture has been
provided by Lindborg [5-1] . It was hoped to build upon his work. Un-
fortunately, on examination it is seen to have serious errors. A discussion
of the featufes fhat could be incorporated in é more complete model and

Lindborg's work is contained in the Appendix.
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on Granodiorite Beams. All Stress Values are Corrected for Friction.

No. of Mean
Set sp's Size Cross Parameters Stress
no. tested (in.) section m 9, [psi] [ps i] Comments
3! 35 1232 - m=12.4; 0(=1170 2150
identical
specimens
i .- 36 13x2x3 m=12.1; 0,=1140 2147
: _ 371616 D -5 %
3,568 . o=
#3 17 ]IXZ‘)_ZXIT) = m=12.7; 00—1230 _ 2290
identical
j specimens
: 3.55 ' IO
#4 16 13 % 3% 5 ._E]— m=12. ; 0,=1160 2164
#s 26 Bxgx3 = w8 oy 930 12000 very
rough
3.3.5 - .5 =
#6 26 3% 6% 16 - m=10.4; 0,=1015 2050 wet
.3.3.5% _ L ) rough
#7 26 lle_()xl—6 £3- m=10.5; 00—1100 2211 iugpg{ts
’ smooth
3.3.5 - . g.= S
#8 34 lle_ﬁxl_() "‘E“ m=10.9; 00-1130 2215 iugpggts
3. 5.5 _ _ Lo : rough surf.,
49 22 1Zx3—le_6 =3 m= 9..8, 00—1030 .2160 smooth sup.
3.3.5 " Lo . rough surf.,
#10 15 1Kx]—6x13 -»E}—~ m= 9.5; 00—1020 2151 rough sup.
3.3.5
#11 12 15 XX —E::]» m=11 ; ¢,=1125 2200 smooth surf.
4716716 0 smooth sup. ’
#12 16 L=2.5 D=.416 € - m=11.1; 0,=1230 2330

(1 in. = 2.540 am.

;1000 psi = 6.895 MN/mZ).
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Table 2-2 Disk Tests on Granodiorite

Co ) Observed
Predicted Mean
Mean Stress psi . Stress at
Set  Number of v Surface Eq.(2-10) 0,=1170 psi Fracture
no. Specimens Condition m=12. . psi % Error
#13 g0 Similar to 1770 psi 1850 psi 4.3
Bending Specimens - I
| Smoother than . ‘ .. .
#14 38 Bending Specimens 1770 psi o 1856 psi 4.6
Table 2-3 Bending Tests on Limestone Beams
Set  Number of . Parameters
no. Specimens Size (in.) . Cross .. '
Tested section m 9 (psi)
#15 - 49 1.75%0.188x (.313 == 9.6 _ 270
#16 22 2.5 x0.3 x0.4 -1 10.6 260
#17 30 1=2.5 D=0.413 - " 10.5 - 420

(1 in.= 2.540 cm. ;1000 psi = 6.895 MV/m%)
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i

Table 3-1 Increase in dynamic stress intensity factor for different input pulses

. Griffith Penny-shaped
crack crack

- 2 | ~45%

- 30% overshoot
Rectangular overshoot by

Pulse ‘ (analytic soln.) analogy

1)

Incident Wave

30% 45%
Harmonic overshoot overshoot
(analytic soln.) (analytic soln.)
a - crack half‘length (KId'KI) |
% - overshoot is given as X % 100

I
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“Table 4-1 ‘lypical parameters of electron accelerators used

(from Ref, 4-2)

: Beam Voltage Approximate Approx.penetration Approx.pulse
Set Accelerator [Mv] " beam diameter  depth for granite length tor pranite
no. used mean - max. [cm]) ' [em] [hised |
1 Pulserad 422 :

Run I 1.0 1.3 4.8 - 3.1 0.18 0.38
"2 Pulserad 422 ' O
Run 11 1.1 1.4 6.3 - 3.8 . 0.20 0.42
3 Pulserad 422 : g -
Ram 111 2:0 3.1 3.6 0.37 0.78
4 . PI 1140 4.0 5.0 3.5 ©0.87 s
5 Hermes 11 9 12.5 9.0 S 1.82 3.8

*
fable 4-2 The data from 3 point bending tests is converted to simple tension data using Weibull's

2 parameter formulation which in turn is plotted to get m,0,50-

Rock type m . 00 ‘Uu . KIc
— v’ esi)  Mvm (psi)  mvmY? (1v/in.¥?) Source
‘Granodiorite 4.4  1.93 (280)  7.60 (1100)  0.87 (780) Pankow [1- ]
Basalt 2.9 1.1z (175)  19.50 (2800)  1.38 (1240) Exper iments
- : ) . . *

limestone 3 » 0.69 (100) 2.07  (300) 0.26 (235) ©m,0,,0, using Weibull

: 4 0.83 -(120) 1.79  (200) Kl¢ by experiments
Sandstone 2 0.48  (70) T 1.72 (250) — = Moo, Using Weibuil”
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Table 4-3 Observed § predicted spall velocities for granite

Shot ' Target Observed max. Predicted max.
no. spall velocity spall velc.
- [m/sec) . [m/sec)
2065 Dry block A ' 35 50
2381 Dry slab of 1 am F: 150 90
. B: 55
3641 Dry sltab of 1.lam F: 60 R 45
B: 13
2064 - Wet block 100 ’ 50
2071 Wet slab of 1 cm F: > 80 100
. : B: 22
2072 ' Wet slab of 0.5am F: > 150 100
B: 22
2377 Wet slab of 1.lam F: 550 90
B: 80
2382 Wet slab of 1.7cm F: > 150 ) 90
B: 40
3633 Wet slab of lcm F: 245 ] 45
B: .
3635 . Wet slab of 0.9am F: 68 25
: B: —

F: Front face, B: Back face
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XBL751-2105

- Fig. 2-1. Geometric variables used to describe. location on a unit
sphere.
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Fig. 2-2. Reducing the stresses acting on a crack to an equivalent

stress.
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Fig. 2-4. Predictions of Batdorf (fitted to 1:1 data) compared with
' experlmental data from Ref. [2-20] (1 ksi = 1000 p51
= 6.895 MN/m ).
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Fig. 2-5. Predictions of the 2 parameter Weibull theory (fitted to
1:0 data) .compared with experimental data from Ref. [2-20]
(1 ksi = 1000 psi = 6.895 MN/m%) .
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Idealized diametral compression test under point
loads. -

Specimen with small fiats used for'tests,
Geometry for which an analytical solution is
available ([2-31],
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Fig. 2-7. Mean value of pressure at fracture for given values of

v, oM and .
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0.4 | | ‘ —

STRESS, KSI
XBL751-2107
Fig. 2-8. A comparison of bending specimens with different orienta-

tions of the cross-section, (set 1 A, set 20)
(1 ksi = 1000 psi = 6.895 MN/m?).
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Fig. 2-9. A comparison of bending specimehs with different orienta-
tations of the cross-section, (éet 34, set 40)
(1 ksi = 1000 psi = 6.895 MN/m%). |



LOG LOG (N+I/N-1-7)

-75-

0.4} | | -

o0

|
o
N
I
%O
|

1
o
(o)

!
5N

.| | | 1
-0l - -0.05 0.01 . 1 0.07
LOG (O'/O'mean)

XBL751~2109

Fig. 2-10. Plot of pooled bending strength values normalized by
_mcan'For cach set to obtain an estimate of m. Ordinate is
log log (T%TJ where G = j/(N+1). Some of the 161 data points

coincide and these values are not shown.
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Fig. 2-11. Replot of Fig. 2-10 on linear coordinates.
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Fig. 2-12. ‘Strength values from set 1 plotted to estimate the

parameter o (1000 psi = 6.895 MN/mz),

0
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Fig. 2-13. Strength values from set 12 plotted to estimate the

parameters o, and m (1000 psi = 6.895'MN/m2),

0
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Figf_2*14. Effect of water on strength, A set 6 (wet),
Oset 7 (dry) (1000 psi.= 6.895 MN/mZ),
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Fig. 2-15. A cbmparison of Brazilian disk tests on granodiorite,
set 13, with predictions based on bending data
(1 ksi = 1000 psi = 6.895 MN/m2),



CUMULATIVE DISTRIBUTION

-81-

0 ' 2 L 1
12 15 18 21 24
PRESSURE, KSI

XBLTS5I-2117

Fig..2-16. A comparison of Brazilian disk tests on granodiorite,
set 14, with predictions based on bending data
(1 ksi = 1000 psi = 6.895 M/m°).
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Fig. 2-17. Strength values from set 17 plotted to estimate the

and w (1000 psi = 6.895 MN/m’),
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Fig. 2-18. A comparison of Brazilian disk tests on 1iﬁlestone with
predictions based on bending data
. 7
(1 ksi = 1000 psi = 6.895 MN/m").
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Fig. 2-19. .Strength values from three point bending of greenstone
beams (1000 psi = 6.895 MN/m"™).
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Fig. 3.1. Crack geometry.
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Fig. 3-2. 'The pattern of wavefronts for t larger than zero.
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" Fig. 3-8. Variation of K, with crack tip speed.
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Fig. 3-9. Comparison of propagation theories (crack size vs. time).
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APPENDIX

An Extension of the Dynamic Model of Section 3.4
Consider a material with the crack distribution (i.e. tﬁéwhumber

of cracks pef volume having a strength less than or equal to S)

m

(S - o,
,N(S)w=w ——86—_—)

subject to a stress pulse of magnitude o and duration t . The smallest

crack which can be initiated by this pulse is roughly

2 2
%min ~ Kp/mo”.

A crack of length a(zfémin) will start propagating if a (the angle that
the crack normal makes with the applied stress) satisfies the condition
a < cos'1 [(amin/a)l/4J . Hence, assuming a uniform distribufion of crack
orientation, the number of cracks per volume thaf willAbe activated can

be given as

c m u

N(o) Zcos™h [ (§)’]L cs-ov -l gs
o) 1o

g
u

Assume that the volume is diVided into cells each of which contains
one active crack. The cell fails when the crack in that cell .reaches the
sidefwalls’of the cell. vHavingrthe total number of active cracks N(o),

the cell size may.be.found_as in Section 3.4 .
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__»d=% [M/N(o)]l/f' - o | _ | 5

Thg‘number de;ells_that have failed (Nféiled) isfgiven'by_;_ -

.Nﬁﬁmz[M@‘NQQ]fi*[mmifmﬁﬂfz;ﬁﬁﬁ?Ndﬁ]44+”..ﬁf

T

_,==2- N(id) -where rd yis.the.largestjpoSsiblé crack size. ‘To-

finva(id)‘at‘time t,'the propagation law may be assumed as

= cos o Jaz + éztz;' lea&ing to ;

-a = 0" e
]
. a/ I
L ' - - K m
NGy =2 L € .o ¢ da
o U
whef¢' “
_ | 1 ' |
. . B .
‘[izdz/cosza -_cth]‘ if x> K%é/noz costa
u= i . . o _ i .
b2 2 4 R V2 2 4
o KIC/ﬂq cos H | if x< KIC/nc cos ‘o
and . N
A
- [ X
a = .Cos 1, -id/ Ig "
. o

u | e R X
‘The ffaction of cells that have failed-tan3hdw5be found from_the
total number 6f"ce115 and the numbér_of cells that have failed at time t.
- But without a knoWledge of the damage required for'éomplete faiiure, this

model can not be useful.



o

-107-

Lindborgfhas developed a model which relates tﬁe fraction of cracked
grains to the_Size of thé largest crack and predicts_the damage required
at compléte’failufe. ,Ihitialiy it was thought thét his wbrk'could be used
with the preceding analysis. Unfortunétély:upon éxamiﬁation it was found
to contain serious errors which will now be discussed.

A Discussion of Lindborg's Paper [5-1]

Lindborg used a.simple model of crack'coalescence‘which.gives the
probability of having n-cells cracked - the neighbors being uncracked -
as _ . _ v
“j» q(h)‘= A(n) pn‘Polynomial.of"(l-p) ) Eqi(4)ﬁin [541].
where p is the probability of having a cracked cell, and indicated that

this polynomial P(1-p) can be expressed as .

2n+2 K
X 3k(1‘P) .
k=4v/n : '

P (1-p) =

The argumenf following Eq. (5) in [5—1] may be correct as far as p is .

concerned, but does not justify writing Eq. (4) in [5-1] as
q(m) = 0.5 (5p)° Eq. (8) in [5-1].

since‘(l—p)k.is,not close to unity at all. Hence the correct form reads 

. v o
a@) ¥ 0.5 (5p)" P(1-p) -

It is nét clear how t6 proceed using this correct form of Eq.(8) in [5—1]

since the coefficiénts ak in the polynomial P(1-p) are not'known;v A

possible way is to approximate the polynomial by a single term (l—p)m.v'.
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Using tﬁe coefficients fbfvthé first six cases (i.e. fof n = 1 through
n = 6) we:cahvget m=1.1+ 4.1, |

.Unfortuﬁately the straightforward result obtained By Lihdborg that
failure occufs when p = O;ZO_iS nof correct. Aside from the’eirof in |
Eq.(8) in 5-1 , Lindborg made.use_of the following series expansion

going from Eq.(11) to Eq.(12) in 5-1
1+ 5p+ (5p)%+ --r = (1-5p) 7"

which is true only for 5p < 1. Thus, he automatically set the limit for
p as 0.20. A quick glénce at the Fig. 4 in [5-1] proves also that

Lindborg's results cannot be correct; for the total number of grains

N = 100 and for the fraction of cracked grains p = 0.19; for éXample, it

is impossible to have a crack which 1s 25 grains long.

It ié the author's belief that Lindborg's analysis can be extended
»Correctiy uSing the discussed approximation for P(1-p) and numerical
procedure in the later steps. However, it is important to realize that
: thé‘model is valid only for small values of p sinéé it assumes p to be

constant at all stages of grain cracking.
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