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A simple statistical-mechanical theory, known as the random-
phase approximation, is applied to study liquid-liquid phase
separations in solutions of globular proteins. Phase-separation
may be induced by addition of non-ionic polymer or/and ordinary
electrolytes. 1In this analysis, the osmotic-attraction mechanism
whereby the depletion of "golvent" particles between two proteins
causes an attractive force, is primarily responsible for phase-
separation. For one-component models of protein solutions, the
theory yields simple algebraic expressions for the equation of
state and for the chemical potential of the protein. This
analytical theory describes the observed solubility behavior of
proteins, including the effect of protein and polymer size,
protein charge and concentration, and concentration of simple

electrolytes.
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1. Introduction

Several experimental studies (Vrij, 1976: de Hek and Vvrij,
1981; Vincent et al., 1980; Sperry et al., 1981; Atha and Ingham,
1981; Haire et al., 1984; Forciniti et al., 1991) and several
theoretical studies (Asakura and Oosawa, 1954 and 1958; Vrij,
1976; Joanny et al. 1979; Middaugh et al., 1979; de Hek and Vrij,
1981; Gast et al., 1983; Mahadevan and Hall, 1990 and 1992;
Lekkerkerker, 1990) have described phase separation of colloids
and globular proteins by addition of a non-adsorbing polymer
(e.g. polyethylene glycol) to the aqueous solution; here non-
adsorbing means that there are no attractive forces between
polymer and protein. These studies are motivated by an
increasing demand for pure proteins in pharmaceutical and related
industries (Bjurstrom, 1985). In this context, chargefstabilized
colloids, having electrochemical properties similar to those of
aqueous globular proteins, play an important role. Interactions
in colloidal dispersion are less complex than those in protein
solutions; therefore, colloids may serve as model substances to
test theoretical predictions for aqueous solutions of globular
proteins. The one-component model applied in this work,
frequently used to describe interactions in colloidal dispersions
(Verwey and Overbeek, 1948; Asakura and Oosawa, 1958; Ottewill
and Richardson, 1982; Gast et al. 1983; Grimson, 1983; Vincent

and Hansen, 1984), may be useful for modeling agqueous solutions



of globular proteins (Mahadevan and Hall, 1990 and 1992; Vlachy

and Prausnitz, 1992).

In an aqueous polymer solution, experimental observations
indicate that the solubilities of proteins depend on their size:
larger proteins precipitate at lower concentration of
polyethylene glycol (PEG). Further, protein solubilities depend
on the size of the polymer; the solubility of proteins decreases
with rising molecular weight of PEG. The electrochemical
properties of the solution are also important: protein solubility
falls as solution pH approaches the protein's isoelectric point.
Protein solubility also falls with the solution's rising ionic

strength.

In their seminal work, Asakura and Oosawa (1954,1958) have
suggested that phase separation is caused by the depletion of
polymer particles in the region between two colloids. The
osmotic pressure exerted by the polymer molecules in the space
between two colloidal particles is smaller than its bulk value;j
the result is a net osmotic attraction between the colloidal
particles. This idea has been explored in several theoretical
papers (Vrij, 1976; de Hek and Vrij, 1981; Gast et al., 1983;
Mahadevan and Hall, 1990 and 1992; Lekkerkerker, 1990):
comparison with experimental data suggests that "osmotic"
attraction is indeed the primary mechanism for phase separation

in these systems.



Recent theoretical studies of polymer-induced phase
separations in agueous and nonagueous colloidal suspensions (Gast
et al., 1983), combine the osmotic attraction model and the
perturbation theory of Barker and Henderson (1967); The theory
predicts existence of a very dense (solid-like) flocculated
phase. However, some experimental data (de Hek and Vrij, 1981)
suggest liquid-liquid phase separation rather than flocculation.
Nevertheless, the perturbation theory correctly predicts general.

trends observed in experimental studies.

Important theoretical and experimental studies of protein
precipitation by nonionic polymer have been presented by Hall and
coworkers (Mahadevan and Hall, 1990 and 1992; Forciniti et al.,
1991). The effective protein-protein interaction due to the
presence of polymer is related to the osmotic-attraction model of
Asakura and Oosawa (1954,1958). Again, the perturbation theory
of Barker and Henderson (1967) is used to calculate the
solubility curves for varying protein-polymer diameter ratio.
Mahadevan and Hall (1990) have also been able to incorporate the
effect of parameters such as pH and ionic strength in the theory.
Recently the theory is extended to a mixture of two proteins in
aqueous solution (Mahadevan and Hall, 1992). The theoretical
predictions are in accord with experimental observétions. The
only disadvantage of the perturbation theory (Gast et al., 1983;

Mahadevan and Hall, 1990 and 1992) is that it requires



substantial numerical work, which makes an extension to the
multicomponent cases, e.g. study of protein fractionation, very
difficult. Equally (numerically) demanding seems to be an
extension of the model.to regard the polymer molecules as

separate species in the protein-polymer mixture.

In this paper we apply another statistical-mechanical
theory, the random-phase approximation (RPA) (Evans and Sluckin,
1981; Grimson, 1983; Victor and Hansen, 1984), to study protein
(or colloid) phase separation induced by addition of non-
adsorbing polymer or simple electrolyte. An important attractive
feature of RPA is its simplicity; the theory yields algebraic
expressions for the osmotic pressure and chemical potential of
the protein in the mixture. The study presented here is based on
a one-component model, where the major contributions to the
effective pair potential between two protein molecules are
osmotic attraction (Asakura and Oosawa, 1954), electrostatic
repulsion and dispersion interactions (Verwey and Overbeek,
1948). The theory predicts phase separation similar to vapor-
liquid transition in simple liquids. The concentrations of
protein in the coexistent dilute and dense phases have been
calculated to obtain the protein partition coefficient as a
function of protein size and concentration, pH of the solution

(net charge on the protein) and electrolyte concentration.



The paper is organized as follows. After this introduction
(Section 1), we discuss effective interactions in the one-
component model of the protein-polymer-electrolyte mixture
(Section 2). Sections 3 and 4 introduce the necessary
statistical-mechanical framework and the random-phase
approximation; the equations for the osmotic pressure and
chemical potential are also derived. Section 5 describes phase
separations in protein-polymer and protein-polymer-electrolyte
mixtures. Section 6 discusses the influence of the osmotic
attraction force on the phase separation in protein solutions
induced by addition of a simple electrolyte. Conclusions are

summarized in the final section.

2. Model interactions in protein solutions

Aqueous solutions of colloids or globular proteins are
multicomponent systems which are too complicated for a complete
description on the molecular level. However, many experimental
properties of colloidal dispersions and agqueous solutions of
globular proteins can be explained using a simple one-component
model wherein a pseudo-solvent (electrolyte, water and polymer)
modifies interactions between the protein molecules (Verwey and

Overbeek, 1948, Asakura and Oosawa, 1954; de Hek and Vrij, 1981;



Gast et al. 1983; Mahadevan and Hall, 1990 and 1992; Vlachy and

Prausnitz, 1992).

According to this model, the mixture is described as a fluid
of single-component macroparticles with diameter d, interacting
via the potential u(r) (Gast et al. 1983; Mahadevan and Hall,

1990 and 1992):
u(r)= ug(r) + u,(r) + un(r) , (1)

where uy(r) is the repulsive interaction, u,(r) is the
attractive (dispersion) potential and ug(r) is the potential due
to osmotic attraction derived by Asakura and Oosawa (1954,1958) .

The screened Coulomb repulsion is given by

ug(r) = B'A/r exp(-xr), r>d,,

ug(r) = o, r<d,, (2)
A = z,°L, exp(kd;)/(1 + xd/2)”

Ly = Be’/(4mee,)

In Equation (2) r is the distance between macroion centers, z,e
is the charge on a polyion and ﬁ=(kgrfq, T is the absolute
temperature and k; is Boltzmann's constant; k' is the Debye
screening length (x?=8ﬂTmNAI; I=0.5(zfn;+zfn_) I is ionic strength

and N, is Avogadro's number) and ¢, is the relative permittivity



of the solution. All properties of water and electrolyte are

subsumed in k. An attractive van der Waals term, u,(r), is added

to account for short—range attraction.
u,(r) = H/36(dy/r)° (3)

Eqg. 3, where H is the Hamaker constant, is the simplified form of
the dispersion interaction potential (Grimson,1983), which is
only correct at large reduced distances r/d,. Because dispersion
interactions play a minor role in these phase separations, a
limiting form of u,(r) is chosen to keep the theory analytical.
The third term in Eq. 1, u,(r), represents the osmotic
attraction contribution to the total potential (Asakura and
Oosawa, 1954, Asakura and Oosawa, 1958). This term is essential
to describe phase transitions induced by a non-adsorbing polymer
(Vrij, 1976:; de Hek and Vrij, 1981; Gast et al., 1983; Mahadevan
and Hall, 1990 and 1992), but it may also be important at higher
concentrations of simple electrolytes (Vlachy and Prausnitz,
1992). For our approximate purposes (a more realistic polymer
model is used by Joanny et al., 1979), we use the potential

proposed by Asakura and Oosawa (1954,1958) .

Ugy (X)) = o, for r<d,,

!

Uga(X) = =47B 'dy;°p5/3[1-31/4dys+T"/16dy;°], for d,<r<2dy, (4)

W (r) = O, for r>2d,,.
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In Eq. 4, d; and p; are the diameter and the number concentration
of the particles (polYmer or electrolyte) exerting the osmotic
force and d,;=(d,+d;)/2. For separations r<d,+d;, polymer
molecules cannot penetrate into the region between two macroions
and the depletion of polymers in this region causes a net
attraction between the two macroions. The attraction potential
vanishes for r>d,+d;, when the concentration of polymer molecules
in the space between two proteins becomes equal to that in the
bulk. Egq. 4 is an approximation; more accurate calculations of
Henderson (1988) show that the osmotic interaction potential is
an oscillatory function of r, if the volume fraction of small
spheres (solvent species) is high. The recent article of Heno
and Regnault (1991) discusses this topic using integral-equation

theories.

3. Structure and stability of simple liquids

An important class of statistical-mechanical theories uses

the Ornstein-Zernike equation

h(r) = c(r) + p J c(r')h(jr-r'})dr’ (5)
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as a starting point to calculate thermodynanic properties for the
system of interest (Hansen and McDonald, 1986). Eg. 5 relates
the total correlation function h(r) to the direct correlation
function c(r). The correlation function h(r) is related to the
radial distribution function g(r)=h(r)+l. The Fourier transform

of h(r) is given by
h(kx)= [ dr c(r)explik.r], (6)

where k is the wave vector; h(k) can be determined by light-
scattering or neutron-scattering experiments. These scattering
data yield important information about the "structure", i.e.
correlations between the particles in charged colloidal
dispersions, micellar solutions and globular proteins'(Ottewill
an Richardson, 1982). An important quantity is the polyion-

polyion structure factor S(k)
s(k) = [ 1 - pc(k)] (7)

Upon applying the Ornstein-Zernike equation, S(k) can also be
expressed in terms of h(k). The connection between the
structural properties (i.e. correlation functions) and
thermodynamics comes in the limit as k-+0 (Hansen and McDonald,
1986). The k=0 limit is equivalent to integration over the

volume: C = 1lim ,., c(K) = 47 jc(r)rzdr. For the one-component
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system (and only in this case) C [and S(0)] are related to the

isothermal compressibility, xr (Hansen and McDonald, 1986).
(pxr) ™t = (@P/dp); = B [ 1 - pC ] (8)

For colloidal solutions, described by a one-component model
[McMillan-Mayer approximation (Hansen and McDonald, 1986)], Xr is
an "osmotic compressibility" which can be determined
experimentally (Ottewill and Richardson, 1982). Utilizing
angular light scattering (scattering angle 6 is proportional to
the wave vector k), it is possible to obtain the structure factor
S(k) (Ottewill and Richardson, 1982). By extrapolation of S(k)
to k~0 (6-0), it is then possible to determine gy and, if this
quantity is measured as a function of the colloid concentration,

also the osmotic pressure.

Eq. 8 is important for assessing the stability of a one-
component system. The isothermal compressibility y;, reflecting
concentration fluctuations in a liquid, becomes infinite when the
system is approaching phase separation (Hansen and McDonald,

1986) .
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4. The random-phase approximation

We apply the random-phase approximation (Evans and Sluckin,
1981; Grimson, 1983; Victor and Hansen, 1984) to study phase
separation in a protein solution induced by addition of neutral
polymer and/or simple electrolyte. This approximation has been
used previously by Evans and Sluckin (1981) to study the liquid-
vapor transition in the Lennard-Jones fluid and by Grimson (1983)

for a system similar to ours.

RPA is a perturbation theory which approximates the direct

correlation function c(r) by
c(r) = co(r) - Bu(r), (9)

where c,(r) is the direct correlation function for the reference
system and u,(r) is the perturbation part of the total potential
u(r). By taking the Fourier transforms of both sides of Eq. 9 in

the k=0 limit, we obtain
C=¢C - By (10)

where C,=47 [c.(r)r’dr and U,=47 fu,(r)r’dr. From Egs. 8 and 10

we obtain the equation of state in the form
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BP/p = BP,/p + pRU/2, (11)

where P, is the contribution of the reference system to the total
pressure P and p is the number concentration of protein particles
in.a one-component system. Eg. 11 is a version of the Van der

Waals equation (Hansen and McDonald, 1986).

The Gibbs-Duhem equation relates the chemical potential of

the protein p to C through

p(du/dp)r = B [1 - pCl. (12)

Integration of Eq. 12 yields a simple expression for the chemical
potential of the protein in the random-phase approximation

(Grimson, 1983):

B(p = u') = 1n p + Bu, + AU, (13)

In Eq. 13 Bu'=ln(A3) and A’ = ﬁhf/Zwm, where h; is Planck's
constant and m the mass of the molecule. Further, Bu, is the
contribution of the reference system to the chemical potential of

the protein. The reference system is specified below.

Egs. 11 and 13 give the pressure and the chemical potential
of a one-component fluid. To implement these equations, it

remains to split the pair potential u(r) into the reference part
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u,(r) and perturbation part u,;(r). Following Grimson (1983), we

choose a hard-sphere reference system:

(e}

u,(r) , 4, (xr) U (Xpin) if r<r,,, and

u,(r) = 0, wu(r) = u(r) if r>roin, (14)
where r,, is the position of the first minimum in the potential.

To avoid complications in the perturbation theory due to the
"softening" of the hard-core when the screened-Coulomb potential
(Eq. 2) is included in calculation, we use the additional
approximation, r,,=d, where subscript 2 refer to the protein
(Grimson, 1983). As discussed by Victor and Hansen (1984), this
is a valid approximation when the concentration of simple

electrolyte is high (large «x).

Eg. 14 indicates that the reference system is a hard-sphere

fluid, where c,(r) in Eq. 8 is the direct correlation function
and P, and u, the pressure and chemical potential of the hard-
sphere fluid. P, is given by the Carnahan-Starling equation

(Carnahan and Starling, 1970)

BP./p = (1 + n + 0> = n’)/(1-n)°, (15)
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where volume fraction of protein is nEn¢=wpd;/6, and the hard-
sphere contribution to the chemical potential of protein pu, is

given by
Bu, = n(8 - on + 3n")/(1-m)° . (16)

Finally, to obtain the total pressure and chemical potential for
the system of interest here, Egs. 11 and 13, we need to evaluate

integral U;=4w jul(r)rﬂdr. From Equations (1-4) we obtain

p,BU, = 8nm, 2,’Ly/d, [1 + 3/(xdy) + 3/(xd;)21/ (1 + xdy/2)”

~ 4/9n, BH - nzn, [(dz/d;)° =3(dy/dy) + 2(d,/d23)°1, (17)
where nn=ﬂd”ﬁh/6.

The approximations of the RPA and its relation to other
perturbation theories have been analyzed by Victor and Hansen
(1984). They have shown that RPA, given by Eg. 9, can be

obtained from a more exact theory for c(r) (Eq. 18),
c(r) = co(r) - %Bu(r)d[n’ge(ring1/3n’, (18)
by making a mean-field approximation for the contribution of the

perturbation to the thermodynamic properties; i.e. by replacing

g, (r:n,) by 1 in Eq. 18. This approximation can easily be
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relaxed, giving a more accurate, but unfortunately, nonanalytical
theory (Victor and Hansen, 1984). Eq. 18 is first-order
thermodynamic perturbation theory which, in combination with Eq.
14, yields accurate results for thermodynamic properties of

simple liquids (Weeks et al., 1971; Hansen and McDonald, 1986).

5. Phase separations by non-adsorbent polymer

We first consider phase separation of colloidal particles
induced by polymer in a nonpolar solvent where electrostatic
effects are negligible. Phase separations in dispersions of
spherical, lyophilic, monodisperse silica particles and
polystyrene molecules in cyclohexane at theta temperatures were
studied experimentally and theoretically by de Hek and Vrij
(1981). They found that the concentration of polymer needed to
induce liquid-liquid separation decreases, i) with rising
molecular weight of polymer, ii) with rising diameter of
colloidal particles, ahd iii) with increasing concentration of
particles. We apply the random-phase approximation to the system

studied by de Hek and Vrij (1981).

Only osmotic attraction and hard-sphere interactions (Eq. 4)

are important in the non-aqueous systems studied by de Hek and
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Vrij (1981); accordingly, 2, and H in Eq. 17 can be set to zero.
Figure 1 presents the equation of state, i.e. P as a function of
the colloid volume fraction 7n,, at several volume fractions of
polyﬁer n,. At low values of 73, the osmotic pressure is a
single-valued increasing function of colloid n,. Above a
ncritical™ value of 7, the curves exhibit familiar van der Waals
loops;: in a well-defined region, which corresponds to unstable
states, P is a decreasing function of n, and the isothermal
compressibility of fluid is negative. The locus of points
connecting the maxima and minima is the spinodal curve which is
sometimes used as a criterion for the onset of phase separation

(de Hek and Vrij, 1981).

A one-component system is stable against spinodal
decomposition if the isothermal compressibility is a positive

quantity, i.e. if 1 - p,C > 0. The molar concentration of added
polymer n;, needed to destabilize the system (limiting
concentration), méy be calculated from the condition

x{l =1 - p,C = 0. This spinodal criterion has been used by de
Hek and Vrij (1981) to predict trends in phase separation in
mixtures of colloidal silica spheres and polystyrene molecules in
cyclohexane. For a polymer-induced phase séparation in a

colloid-electrolyte-polymer mixture, we obtain the analytical

expression:
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e = (6/mdgs'Na) ( B(3Po/3py)r = 4/9MBH + 81, 2,°1n/d;
[1 + 3/(kd;) + 3/(xd)?1/ (1 + xdp/2)%)/

(M [(dp/dy)° = 3(dy/dy) + 2(do/dn)’ ), (19)

where B(0P,/0pz)r = (1 + 4n, + 4nf - 4n;)/(1—ng“. Figures 2 and 3
show results for the limiting concentration of polymer needed for

o * *
onset of phase-separation n; (H and z, are zero) as a function of

*

polymer size d; and as a function of n,, respectively. n;
decreases upon raising the polymer diameter (molecular weight)
d,, or by increasing the colloid concentration n,. Eg. 19 also
predicts the decrease of the limiting polymer concentration upon
raising the size of the colloid. All these trends have been

observed in the measurements of de Hek and Vrij (1981).

We now turn to phase separation in water where electrostatic
effects and dispersion forces cannot be neglected. Protein phase
separations may be induced by addition of a non-adsorbent polymer
to aqueous protein solutions containing ordinary electrolyte. If
the molar concentration (n) of low-molecular electrolyte is not
high (n < 0.8 M), we can use Eqg. 19 to predict the limiting
polymer concentration as a function of electrolyte concentration
(or ionic strength I) and pH (2z;). For high electrolyte
concentrations, Egq. 19 in ité present form is not applicable,
because the osmotic attractive force due to the presence of

electrolyte may become important (Vlachy and Prausnitz, 1992), in
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addition to the polymer contribution. The case of high salt

concentration (no polymer present) is discussed in Section 6.

Figure 4 presents n; as a function of the electrolyte
concentration in the range 0.05M < n < 0.6M, at two values of d;.
The limiting polymer concentration is a decreasing function of n.
Eg. 19 predicts an increase of n; with increasing charge on the
protein z,. These results reflect the functional form of the
potential, Egs. 1-4; by decreasing the electrostatic repulsion
between the charged particles, osmotic attraction increases
producing a decrease of solubility. In agreement with
experimental data, proteins exhibit minimum solubility at the
isoelectric point. The influence of the dispersion interactions
can also be found from Eq. 19; as expected, a higher value of the
Hamaker constant yields a lower value of the limiting polymer

concentration.

Eq. 19, based on the condition 1 - p,C = 0, can only be used
to predict general trends with respect to the parameters of the
model. We expect phase separation to occur for the values of 7,
between the spinodal and binodal (coexistent) curve; the binodal
curve connects the points in both phases having equal P,T and K,.
To locate the coexistence points, we need to calculate the

chemical potential of protein pu, given by Eqg. 13.
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Using Egs. 11, 13 and 15-17, we can calculate the volume
fractions of the protein in the dilute 7,(v) and in the dense
phase n,(l); the two phases have equal chemical potential u,,
pressure and temperature. We are particularly interested in the
partition coefficient K, here defined as K=n,(1)/n,(v). We want
to determine how K variesAas a function of protein and polymer

size (d, and d;), electrolyte concentration n and other

parameters of the model.

Figure 5 shows results for the partition coefficient K as a
function of the size of the protein. Other parameters are: z,=5,
electrolyte concentration n=0.6M, d;=1.5 nm and BH=5. 1In accord
with Eg. 19, K increases upon raising d, while other parameters
are kept constant. Although not shown here (cf. Figure 2),
partition coefficient K decreases upon raising d;, the size of
polymer. The results obtained by the random-phase approximation
are consistent with those from other theoretical (Mahadevan and

Hall, 1990) and experimental studies (Atha and Ingham, 1981).
6. Phase separation induced by electrolyte: Influence of
the osmotic attraction

We now consider phase separation caused by addition of

electrolyte (no polymer present). Liquid-liquid transitions in



21
colloidal syétems have been observed experimentally by Cowel and
Vvincent (1982). The experimental work has been followed by
theoretical studies of Grimson (1983), Victor and Hansen (1984),
and Kova&i& and Vlachy (1991). The observed "liquid-vapor" type
of phase separation is believed to be a result of the sensitive
balance between attractive van der Waals forces (Eq. 3) and
repulsive electrostatic interactions (Egs. 2) (Grimson, 1983;
Victor and Hansen, 1984). The concentration of simple
electrolyte plays here a role similar to that of temperature in

the liquid-vapor transition of simple liquids.

Previous studies (Grimson, 1983; Victor and Hansen, 1984;
Kova&i& and Vlachy, 1991) are based on the one-component model
which does not take into account the effect of the finite size of
ions. In our recent study (Vlachy and Prausnitz, 1992) we have
demonstrafed that, for high electrolyte concentrations (n > 1 M),
the osmotic attraction term given by Eq. 4 must be included in
Eq. 1 to reproduce correctly the results of the more realistic
multicomponent model. Our present study indicates that the
osmotic-attraction term may provide an important driving force
for the phase separation induced by the addition of low-molecular

electrolyte.

Since the mechanism of phase separation induced by addition
of electrolyte is not known, we compare the results for two

suggested models. The first one is that of Grimson (1983); we
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call it the "dispersion-interaction" model, which models the
interactions in the colloidal dispersions as a sum of the
screened Coulomb potential (Eq. 2) and the attractive van der
Waals (Eq. 3) potential. When this model is used with the
random-phase approximation, it yields the following results
(Grimson, 1983): i) the magnitude of 2z, has little effect on the
shape of the coexistence curves, ii) the value of the Hamaker

constant—is—crucial in determining the phase diagram, iii) the

size of the interacting species has marginal (colloid, 4&;) or no
(ion, d;) effect on the shape of the coexistence curve and

therefore on the partition coefficient K.

The second model is essentially the same as that described
in Section 5. The interaction potential between the two colloid
particles in the colloid-electrolyte mixture is given by Eq. 1.
The contribution of dispersion interactions (Eg. 3) is assumed to
be less important here; the primary driving force for phase
transition is osmotic attraction (Asakura and Oosawa, 1954).
Concentration p, in Eg. 4 is now the number concentration of
simple ions in the solution. Calculated partition coefficients K
are therefore similar to those obtained in Section 5. 1In
contrast to the first, "dispersion interaction" model, we found
that the shape of the coexistence curves (and partition
coefficient K) strongly depends on the sizes of interacting
species. To illustrate, Figure 6 shows K plotted as a function

of d,. Figure 6 shows that the partition coefficient K increases
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strongly with rising size of the protein; larger particles
separate more efficiently. Figure 7 presents the partition
coefficient K as a function of electrolyte concentration n (ionic

diameter is d,=0.4 nm), showing the strong effect of electrolyte

concentration on phase separation. Also, in accord with the
results of the previous section, larger ions yield better
separation. These calculations indicate that the two suggested
models for phase separation yield qualitatively different

behavior with respect to some of the pertinent parameters.

7. Conclusions

The statistical-mechanical random-phase approximation has
been applied to simple models for phase separation caused by
addition of non-adsorbing polymer to solutions of globular
proteins. The effective protein-protein interaction due to the
presence of the polymer is related to the osmotic-attraction
potential of Asakura and Oosawa (1954, 1958). The virtue of the
random-phase approximation is its simplicity. The theory yields
analytical equations for the pressure and chemical potential;
therefore, the partitioning of the colloid (protein) between the
two coexisting phases can be easily studied for a variety of

experimental conditions. Although the theory is simple, it
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reproduces all the experimentally observed dependencies with
respect to protein size, polymer size, protein concentration,

polymer concentration, electrolyte concentration and charge on

the precipitating particles.

We show that, under certain conditions, the osmotic-
attraction mechanism plays a significant role in electrolyte-

induced separation. The two different mechanisms, one based on

dispersion interactions (Grimson, 1983) and the other on osmotic
attraction (Asakura and Oosawa, 1958), yield qualitatively
different results with respect to the parameters of the model
including protein and electrolyte size. The relevance of this or
other models (Taratutta et al, 1990) of phase separation for
protein solutions can be assessed by comparison with experiment.
Comparison with some experimental data taken in this laboratory
(Shih et al., 1992), indicates that the simple theory suggested
here is in essential agreement with protein-precipitation
experimental results. However, other experimental results
(Arakawa et al., 1990) indicate that the solubility of protein in
aqueous electrolyte solution, governed by the interactions
between solvent components and proteins, may not obey simple
electrostatic theory. The effects of electrolyte on the
stability of protein are not always entirely electrostatic in
nature; little dependence on protein charge has been found in

some cases (Arakawa et al., 1990). The model, given by Egs. 2
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and 3, is not able to describe effects due to restructuring of

solvent around charged groups on the protein.

The random-phase approximation used in this paper may not be
as accurate as the perturbation theory of Barker and Henderson
(1967) used by Gast et al. (1983) and Mahadevan and Hall
(1990,1992). However, the random-phase approximation also has
some advantages versus numerically much moré demanding
perturbation theory: i) it_can be easily generalized to a
multicomponent case to treat a mixture of proteins, ii) the
polymer can actually be included as a separate species into the
model, and iii) the protein-association, known to be an important
feature of many proteins, can be incorporated into the RPA
theory. All these refinements require little additional
numerical work. However, an obvious first step in improving the
theory would be to replace the mean-field approximation in Eq..18
(g, (rin,)=1] with a more realistic approximation. Victor and
Hansen (1984) have discussed the approximations in the random-
phase theory and suggested a more accurate approach which,
unfortunately, is not analytical. Evans and Sluckin (1981) found
that RPA gives a reasonable estimate of the critical point for
Lennard-Jones fluid; it is somewhat less accurate than the
Percus-Yevick approximation. The accuracies of different
statistical-mechanical approximations can be evaluated by

comparison with computer simulation data but these are not now

available.
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on the other hand, it may not be worthwhile now to use a
more demanding statistical-mechanical theory until the pertinent
forces responsible for protein-protein and protein—idn
interactions are better identified. In their present form even
the more advanced perturbation theories neglect specific salt
effects and protein-protein association leading to semi-stable
dimers and higher aggregates; these forces are known to be
important for at least some protein solutions. An increase in
mathematical sophistication is not helpful unless that increase
corresponds to a comparable improvement in our quantitative

understanding of intermolecular forces.
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Notation

c(r) = direct correlation function

d

diameter of a molecule, m

e = elementary charge, C

g(r) = radial distribution function
H = Hamaker's constant, J

h(r) = total correlation function
h, = Planck's constant

I = ionic strength of solution, mol/dm3

K = partition coefficient

k = wave vector, m '
k; = Boltzmann's constant, J/K
Ly = Bjerum's length, m

N, = Avogadro's number of molecules, mol™

m = mass of the molecule

. 3
n = molar concentration, mol/dm
P = osmotic pressure, Pa

r = intermolecular distance, m

S(k) = structure factor

T = absolute temperature, K

u(r) = intermolecular pair potential, J

z = valence of ion

27



Greek Letters

B = (kD)

€, = relative permittivity

€, = permittivity in vacuum, C/Vm

n = volume fraction

0 = scattering angle

x = inverse Debye length, m

gt = chemical potential, J/mol

p = number concentration, m>

¥ = isothermal compressibility, pa’’
Subscripts

o0 = reference system

1 = perturbation
2 = protein
3 = polymer

28
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Figure captions

Figure 1. Osmotic pressure in colloid-polymer mixtures (Pascal
units) as a function of the volume fraction of colloid n,; 2,=0,

"H=0, d,=9.0 nm and d;=1.5 nm. The volume fractions of polymer 1,

are 0.20 (o), 0.225 (a4) and 0.25 (4 .

Figure 2. Molar concentration of polymer n; needed for onset of

phase-separation, calculated using Eq. 19, as a function of the

polymer diameter d; at n,=0.1. In this calculation z,=0, H=0 and

d,=9.0 nm.

Figure 3. Molar concentration of polymer n; needed for onset of
phase-separation, calculated using Eq. 19, as a function of the

volume fraction of colleid n,. Here 2z,=0 and H=0; d,=8.0 nm and

d;=1.2 nm.

Figuré 4. Molar concentration of polymer n; needed for onset of

phase-separation, calculated using Eq. 19, as a function of
electrolyte concentration n/M (M in mole/dm3) for d;=1.2 nm (open

squares) and d;=1.5 nm (filled squares). In this calculation

z,=5, BH=5, d,=8.0 nm and n,=0.1.
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Figure 5. Phase separation induced by addition of neutral

polymer: partition coefficient K as a function of d,. Other

parameters are: z,=5, PH=5, d,=1.5 nm and n=0.6 M.

Figure 6. Phase separation induced by addition of electrolyte:

partition coefficient K as a function of d,. Other parameters

are: z,=5, BH=5, n=3.0 M and ionic size d;=0.4 nm.

Figure 7. Phase separation induced by addition of electrolyte:
partition coefficient K as a function of electrolyte molar

concentration n/M. Other parameters are: 2z;=5, BH=5, d,=5.0 nm

and ionic size d;=0.4 nm.
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