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CORRELATION MODEL OF TRANSPORT IN RANDOM FIELDS 

ABSTRACT 

Mark I. Shvidler 
Earth Sciences Division 

Lawrence Berkeley Laboratory 
University of California, Berkeley· 

This paper is an investigation of the correlation model for transport of non-reactive solutes in media with 
random porosity and permeability. The method of perturbation is used to obtain a second order approxi­
mate, non-local (integro-differential) equation for mean concentration. An approximate method of local­
ization and regularization is used to convert to with the same order of approximation differential equa­
tions of transport. Exact averaged equations for one-dimensional transport are examined, and the ques­
tion of the consistency and asymptotic behavior for approximate averaged equations is discussed. A de­
tailed investigation of transport in a stratified system has been carried out. The second moment of con­
centration is examined, the variance of the concentration is computed, and cross-correlation moments 
are obtained for random fields of porosity and velocity including solute concentration. 

INTRODUCTION 

The principal source of flow dispersion is the heterogeneity in liquid velocities, which is caused by , 
the irregular nature of the real geometry in porous· and fractured media. Theoretical models of 
dispersion have a distinct dependence on the scale of the heterogeneities in the flow field. On the 
pore scale, dispersion has been represented by phenomenological models. The first investigation 
in this area was by Scheidegger (1957) and further developments came from Nikolaevskiy (1959) 
and Saffman (1959). They used a random walk model for a particle and the mathematical meth­
ods of random process theory. However, the statistical theory of dispersion on the pore-scale is 
incomplete because the parameter functions for dispersion are difficult to determine from media 
properties. 

By contrast, the process of dispersion on the macroscale can be described using the theory of flow 
in random porous or fractured media. For this case, the theoretical equations of flow and transport 
in porous and fractured media can be used (Darcy's law, conservation of mass, conservation of 
energy, etc ... ). If the parameters of the heterogeneous media are assumed to be random fields, 
then flow and transport can be described statistically. This can be done in terms of the mean fields, 
correlations, and effective characteristics of the process on meso- and macro-scales. 

Different variations of this approach have been widely developed during the last several years, (for 
example Shvidler, 1963, 1964, 1985b; Matheron, 1967; Gelhar, 1987; Dagan, 1989; Sudicky and 
Huyakorn, 1991). Problems described by averaging lead to stochastic non-linear equations, that are 

• Formerly: All-Union Scientific-Research Oil and Gas Institute, Moscow, Russia. 
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independent of whether an Eulerian or Lagrangian method is used to analyze the random fields. 
Except for the case of an exact solution, a descriptive realization requires a linearization of the 
problem, and linearization is effective only if the problem has appropriately small parameters. 
Usually this involves such things as the coefficient of variation for the case of weak heterogeneity, 
the dimensionless scale of correlation for quickly oscillating fields, etc... In any case, independent 
of the method of analysis, an approximate description of the process can be obtained. 

The purpose of this paper is to present a correlation model of transport. This will be done by con­
sidering the first and second moments of the concentration field, as well as the cross-correlations 
between the porosity and velocity fields over the concentration field. In addition to finding the 
mean concentration, the correlation theory of transport provides a method of fmding the variance 
.of concentration and the cross correlations. 

AVERAGING THE EQUATION OF TRANSPORT 

Basic Equations 

For local concentrations of a nonreactive solute, the macroscopic concentration, c(x,t), satisfies the 
advection-dispersion equation 

m(xlc~~,t) + V [c(x,t)v(x,t) - d(x,t) V c(x,t)] = <p(x, t) (1) 

where m(x) is the porosity, v(x,t) is the flow velocity vector, and d(x,t) is the tensor of microdis­
persion. If m(x), v(x,t), and d(x,t) are considered preassigned random fields, then it is possible to 
search for a solution to (1) in infinite space assuming that a non-random initial concentration is 
known 

c(X,O) = f (x). (2) 

The method of operators (Shvidler, 1985b) can be used for transport of a nonreactive solute, and 
(1) can be written as 

Lc =<p (3) 

Suppose the inverse operator L -1 exists, such that 

(4) 
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where I is the identity operator. If (3) is multiplied by L-l, then 

(5) 

and after averaging (5), we have 

(c) = (L-I ) <I> (6) 

Multiplying (6) by an operator L* = (VI tl ,results in the equation for mean concentration 

L*(c) =.<1>. (7) 

Operator L * is usually called the effective operator. Substitution of (7) into (5) and (6) determines 
the fluctuations within the concentration field over the field of mean concentration 

(8) 

and 
LI = VI L* - I 

(9) 

Thus, to describe the effective operator L *, it is necessary to fmd the inverse operator L -1, the 
mean inverse operator (L -I), as well as the inverse operator (L -1)-1. If the mean field can be 
determined, then the field of fluctuations and its moments can be calculated. Of course, in the gen­
eral case it is unlikely that this be possible. Concrete results are ordinarily obtained using modifi­
cations to perturbation methods. Let us suppose that the operator L is in some sense near to an­
other non-random operator Lo, for which the operations of inversion, self multiplication, and other 
operations can be easily performed. Then the fields m, v, d, and c can be written in the form 

m = Il10 + em', 
v = W +ev', 
d=do + ed', 
c = u + EC', 

Il10 = (m) 
W=(v) 
do = (d) 
u = (c) , 

where E is a small positive parameter, and the operator can be written in the form 

L=Lo + EL' , 

a a 
where Lo = mo -;- + WV + V(W - do V) and L' = m' - + v'v + V(v' - d'V). 

ot at 

If the non-random operator Lo has an inverse operator, then 

(10) 

(11) 
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and 

(13) 

If the first factor in (13) is written in the fonn of a geometric series, then after averaging 

-
{L-l} = [I + L (_1)k {( £Lol L' )k)] Li,l (14) 

k=1 

Inversion of (14) and conversion to a geometric series results in 

- 00 n 

L· = {L-Iyl =1..0 {I+ L, [L (_1)k+l {(eLo1L'l)] ) (15) 
n=1 k=l 

This results in a binary correlation approximation given by 

L· = 1..0 - £2{L' Lo1 L'}. (16) 

For fluctuations of concentration, the equation is 

~c = - eL' {c} (17) 

hence, 

(18) 

This method can be simplified, to a marked degree, if (1) is modified to account for the various 
transport mechanisms, such as microdispersion. From dimensional analysis and comparison of 
the micro and macro scales, the contribution of microdispersion to the process of macrodispersion 
is usually essentially negligible. Also, the effects of physical diffusion can usually be neglected 
when dealing with microdispersion. 

This formally determines that d ~ 0 in (1). If the fluid is assumed incompressible and the flow is 
steady with W = constant and IIlo = constant, then 

(19) 
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(20) 

where S [] is the dirac delta function. Substituting (20) into (18) and assuming that the mean con­
centration is differentiable, we solve for c' (x, t) to obtain 

c'(X, t) = - moIL [m'(z) au ~~ t) + v' (z) Vu (z, t))dt + 0(£) 

where z = x - W mol (t - 1:). 

The bracketed term in (21) can be rewritten 

[ ] = [m'(y) au (y,1:) + v' (y) Vu (y,1:)] 
a1: y=~ 

(21) 

(22) 

To compute the value of the integrand, consider 1: fixed and y to be independent variable. Then 
make the displacement transformation of y -7 Z and calculate the integral in (21). Equation (21) 
physically represents fluctuations in the field concentration at a time t and a point x. This fluctua­
tion is a result of integrating fluctuations in the field porosity and field velocity with weighting 
functions that depend on the trajectory at a time t and a point x of a fictitious particle X, whose ve­
locity is W I m. 

In obtaining the mean c~ncentration, u (x, t), in the correlation approximation, (16) can be used to 
determine the effective operator L * and (20) can be used to determine ~l. Then, from Shvidler 
(1976) we have 

au a au z 1: 1
1 

moat + W Vu = <p + mol [at 0 M (x,z) ~1:') d't 

+ ! L N (X,z) V z u(z, t) dt + L divx N (z,x)''Ju ~~,t) dt (23) 

1
1 - 11 a .. a2u Z1: + N (x,Z~a V xU (z,1:)d't + BI) (X,z) a ( , ) d't] + 0(£3) 

1: X·a7~ o 0 I -J 

where the correlation function M, correlation vector N, and correlation tenzor Bare 

M(x,z) = £2(m' (x) m' (z» 
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(24) 

If the fields m'(x) and v'(x) are statistically homogeneous and homogeneous-connected, then these 
correlations depend on the argument x - z = W mol (t - 't). 

Equation (23) for the mean concentration u(x, t) is non-local. The right-hand side of (23) summa­
rizes the derivatives of u(x, t) with the weighting functions M, N, and B for the fictitious particle X 
that migrate.s with velocity W/mo and arrives at point x at some time t Thus, (23) connects the 
derivatives of the average concentration u(x, t) that is defined along the particle path starting at 
point x - W mol t and moving to point x at time t. It is obvious that the non-local measure of the 
functional (23) is the "memory" of the correlation M, N, B. 

It should be noted that the method of analysis that reduces to (23) is discussed by Dagan and 
Neuman (1991). They have drawn their conclusions from the inconsistency and non-asymotic 
behavior of a common Eulerian approximation. In my opinion, the examples from their paper and 
their interpretation do not provide a sufficient basis for their general conclusion. I will consider 
this problem in detail and provide some comments below. Here, it should be noted that the 
Eulerian approximation of Dagan and Neuman (1991) as written in their final integra-differential 
equation (21) is not correct. The correct equation is equation (23) of this paper. 

Localization of Functional Equations of Transport 

Equation (23) is an approximate integro-differential equation and it is non-local. We can derive 
another fonn that is local and has the same order of approximation. 

If the first and second derivatives of mean concentration u(x, t) are integrable, we can represent· 
(23) by 

(25) 

Along characteristics of equation (25) when <p=O we can write * 

u(z, 't) = u(x, t) + 0(£2) (26) 

Therefore if third derivatives of u(x, t) are integrable, we have from (26) 

(27) 

6 
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(29) 

(30) 

*For the general case <p*O, a localized form can also be developed and will be presented in 
a separate paper. 

Thus, we obtain from (23) 

l' au a auxt IIlo - + w Vu = mol {- [ (,) M(x, z)d't] 
at at at 

o 

a auxt . l' l' + at [ Vu(x, t) 0 N(x, z)d't] + ~) 0 dIVxN(x, z)d't 

l' l' avu x t a2u x t .. + ( ,) N(x, z)d't + (,) BIJ(X, z)d't}+ 0(£3) 
at ax· ax· o 1 J 0 

and further, 

It divxN(z,x)d't = -It divzN(z,x)d't = 0 . 

o. 0 

Let us introduce the following variables for the time scale ofM, N, and B 

8M (I) = M:' J M(x, z)d~, 

8~(t) = N;; J N,(x, z)d~, 

8,j(l) = (B!r' J B'j(x,z)d~, 

Mo = M(x,x) 

(31) 

(32) 

(33) 



We can then introduce(32), and (33) into (31) to obtain 

m* (t) = mo _ M(t) 
mo 

W* (t) = W - mol N(t)] 

6111192 

(34) 

(35) 

(36) 

Thus, by a second order approximation, the non-local equation (23) is transformed into the local 
equation (34). All the coefficients of this equation are functions of time. Equation (34) is a second 
order derivative, but note that the stochastic equation (1) is a first order derivative. It is obvious, 
that at large times the coefficients of (34) in the limit are constant, but the equation is non-invariant 
to displacements on the time. The cause of this effect is that at (a) t=O, the concentration field is 
non-random, and ar(b) t >0, the field is random. 

If a non-random porosity is assumed by using Mo = 0 and No = 0 in (34), the result is 

au WV BijS () CJ2u 0" 3) mo ~ + U = 0 ij t ':l.. •. ':l.... + \E 
ot 0""10""J. 

(37) 

This equation is equivalent to the linearized dispersion equation obtained by Dagan (1982) in a 
Lagrangian framework, with the assumption that the velocity vex) is Gaussian. A similar equation 
of dispersion was obtained by Mendelson and Shvidler (1967), Shvidler (1985b), in a Lagrangian 
framework with the assumption that the random walk of the solute particle is some Markovian 
process. It is important to note that the hypothesis of a Gausgian velocity was not used in deriving 
(23) and the localized variants (34) and (37). It should also be noted that the assumption of a 
Gaussian velocity field gives rise to very long tail in the dispersion both in the forward and back­
ward directions of the mean flow. This is not consistent with real transport in porous media. The 
same effects are seen in (37), although it does not assume the field is Gaussian. This contradiction 
can be explained by the fact that (23) and (37) are, in general, approximations. 

Equation (37) was also obtained by Sposito and Barry (1987). In their approach they used an 
Eulerian framework, linearization, and the method of cumulant expansion. They did not assume a 
Gaussian flow velocity vex). 

If t is small, the function Sij - t. If t is large and the scale of the correlation velocity approaches 
the limit, then (37) is approximately a parabolic equation with constant coefficients (Mendelson 
and Shvidler 1967, Shvidler 1976, Dagan 1982, Gelhar and Axness 1983). 

8 



'. 

6/11/92 

The discriminant of the partial differential equation (34) with respect to the variables xi and t is 

(38) 

where 'Yi is the correlation coefficient of fields m and v~, and the parameter k[(t) is determined 

from 

One would expect ~i (t) ~ min (8M(t), 8n (t)}, and hence ~ ~ 1. Thus, the discriminant, di. is less 

than zero since Itil ~ 1. Equation (34) is elliptic in space (x, t) when Mo, Bg :¢: O. Cauchy's prob­

lem for (1) transforms to a Dirichlet problem for (34) with the condition on the hyperplane of t = 
O. This is a correct problem. If Mo = 0, (34) is parabolic, and a correct Cauchy problem is ob­
tained. If Bg = 0, but Mo:¢: 0, the problem of Cauchy is incorrect, since the hyperplane t =·0 is a 
characteristic of this equation. In this case the regularization procedure, discussed in detail below, 
may be used. 

Localization of Equation of Transport for Exponential Correlation Function 

Suppose that correlations M, 1'1, and B are dependent on (x - z), and they can be approximated by 

.... ('t- t) M=MoE, N=NoE, B'J =B~E, E=exp e:- ,80 = constant. (39) 

In this case (23) may be localized for any value of 80 (Shvidler, 1985a; 1985b). Differentiating of 
the integrals in (23) with respect to t, and applying the conditions 

aM_ M ----, 
at 80 

(40) 

eliminates all of the integrals in (23). This leads to the following second order differential equation 

(41) 

9 
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N 
where m* = IIlo + VI' and the mean vector velocity W is parallel to the Xl axis. The discriminant 
of (41) for variables Xl and t is 

(42) 

If 11 < 0, then d > 0 and hence (41) is hyperbolic. For 11 ~ 0, either of the conditions 
~m < 1 or ~v < 1 is sufficient for (41) to be hyperbolic. 

The correct representation of the Cauchy problem for the hyperbolic equation occurs when the ini­
tial concentration and the derivative over time are set on the hyperplane t = O. The initial value of 
the derivative can be determined from (23), and the resulting initial conditions are 

u(X,O) = f(x), au(x,O) = _ W (1 _ No ) (1 _ Mo)-l f'(x) 
at IDo moW ~ . 

(43) 

When the conditions of (43) are applied, (41) can be evaluated for any value of So. 

Consider two variations of a one-dimensional problem (Shvidler, 1985a; 1985b). In the first 
problem, the porosity is a non-random function and the velocity is a random function of time. In 
this case, the exponential form of the correlation B, in the moving coordinate system 
11 = X - Wrn;} t, results in the equation for u(T}, t) 

(44) 

This so called "telegraph" equation is hyperbolic. The parameter b is the mean square deviation of 
the velocity of a particle in the liquid. The fmite velocity of propagation and the perturbation rela­
tive to a moving coordinate system are both determined by b. The parameter X2 is a measure of 
dispersion. Thus (44) describes both the wave and dispersion mechanisms. 

Analysis of the solution to ( 44) with initial concentration f(x) = o(x) shows that the plume re­

mains with the spatial interval [( W - b)t, (W + b)t]. At the front and rear boundaries of the 
mo mo 

moving plume, there are spikes of very high concentration. The amount of solute in these spikes, 
however, is (1/2) exp(-t/2eo ), so that when t »eo , these portions of the total plume are very 
small. Between the fronts, the distribution of concentration is essentially Gaussian for large values 
of t/So. On the other hand, for small values of t/So, the portion of the plume in the spikes is 
dominant and the movement is approximately that of a wave mechanism. 

10 
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In the second version of the one-dimensional problem, the velocity is non-random and porosity is 
a random function of space (Shvidler, 1985a; 1985b). In this case the equation is also hyperbolic, 
but the behavior of the solution is different from the frrst problem. One difference is that the con­
centrations on the fronts are asymmetric. The leading front has a large decrease, with a smaller 
decrease in the other portion. The mean velocity for the velocity fronts is larger than the W/mo­
flow velocity. 

The same problem was studied by Indel'man (1986) using the Lagrangian approach. He obtained 
an exact solution for the case where m-1 has a 
'Y-distribution. At large times, the mean square of the shift of the particle grows linearly with time. 
but the third and higher odd moments are positive and increase with time. For a "Gaussian" par­
ticle. the third and higher odd moments are equal to zero. So that the hyperbolic loc.al (41) de­
scribes the asymmetry of the distribution. The approximate localization describes only the 
Gaussian symmetric distribution. 

Regularization of Local Equations 

We have derived the non-local equation (23) and the local equations (39) and (41). all of which are 
second order approximations from the method of perturbation. Now we shall derive yet another 
fonn to the same order. An equivalent representation of these equations is (25), when cp=O. If we 
differentiate the equation (25) with respect to Xi. the result is 

(45) 

Alternatively, if (25) is differentiated over t, we obtain 

(46) 

Computation of the right hand side of (35). using (45) and (46) to eliminate the time derivatives, 
results in 

(47) 

where 

11 
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Since the vector N is a cross-correlation of a vector and a scalar, the component Ni is proportional 
to Wi. The tensor Dij is symmetric, because the tensor BeB is symmetric by definition. For ex­
ample, if the first coordinate axis is parallel to vector W, then the system is defined for Bij = 0 
when i *" j. Thus, 

(48) 

If enl ~ min (eM, en), then Dll > 0 ,since 1N0l1 ~ IMoIlBo11 

Substituting (47) into (40) results in the parabolic equation of transport 

(49) 

For (49), the Cauchy problem with condition u (x, 0) = f (x) is correct. For small values of e, the 
hyperbolic equation (41) can be regularized to the parabolic equation (49), where 

(50) 

DISCUSSION 

As can be seen from the second order approximation in this method of perturbation, the equation 
for mean concentration is non-local. The right hand side of (23) depends on the correlation func­
tions of the porosity field, the correlation tensor of the velocity field, and the cross correlation for 
these two fields. The method that is proposed here of developing an approximate localization of 
the integro-differential equation (23) reduces, in the general case, to a differential equation of the 
elliptic type. 

When the correlation parameters can be represented using a special form of the exponential func­
tions, the proposed method of exact localization reduces (23) to the averaged equation (41) hyper­
bolic type. A method of regularizing this problem can produce a second approximation in the 
form of a parabolic equation for the mean concentration. Thus, the approximations for the trans­
port equation can be reduced to equivalent asymptotic equations of either a differential or an inte­
gro-differential type. These are typical results from the theory of asymptotic averaging and require 

12 
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careful analysis. For this, one needs exact results from the theory of averages and a precise 
numerical analysis. 

It should be noted that before the averaging process takes place, we have a hyperbolic equation of 
fIrst order with variables and random coeffIcients. However, the effect of the averaging process 
for different combinations of the random porosity and velocity fields is to produce an equation that 
has: (a) a quasi wave mechanism, and (b) a quasi diffusive mechanism. The forms of these two 
mechanisms may be non-classical. Therefore, it is hardly possible to expect any random field to 
generate a unique averaged equation that is not a differential equation of large order. 

It should be obvious that since the exact equation in the general case must contain complete infor­
mation on the random fIelds, an infinite number of parameters is required to satisfy all the mo­
ments of these fields. In the case of Gaussian fIelds, there is another problem. In describing this 
case, the first two moments are sufficient, but the negative values of flow velocity and porosity in a 
Gaussian model are physically incorrect. Thus, the existence of different approximations for these 
different correlation models is quite understandable. We shall examine some exact results of aver­
aging the one-dimensional equation of transport (Indelman and Shvidler, 1985). Consider the av­
eraged one-dimensional equation 

dC(X, t) + v dC(X, t) = 0 
dt dX 

(51) 

with the condition c(x, 0) = co(x). 

In the general case for the power moments functions, Uk(X, t) = (ck(x, t)},we have by V=const an 
equation 

(52) 

under the initial condition UK (x, 0) = ~(x), where Kn. are the cumulant values of the random 
velocity v. Thus, the averaged equation in the general case is fIrst order in time and infInite order 
in x, which means (52) is non-local. 

There are several cases where (52) has a simplifIed form as shown by the following examples: 

(1) Let velocity v = nvo, where Vo is a non-random. constant and n has a Poisson distribution with 
parameter "-0. In this case, the series (52) has an exact sum, and we can write a different non-local 
equation 

(53) 

13 
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(2) Let v be Gaussian with mean velocity V and variance B. In this case, we have the parabolic 
equation 

aUk (x, t) + ~Uk(X, t) = Bta2uk(x, t) 
at ax ax2 

(3) If velocity v > 0 and has a 'Y distribution given by 

",(v) = ~ v 1'1 exp( -A.v) 
r('Y) 

2 
where i = V = (v) and 'Y -1 = ~2 = ~;, we obtain from (55) the hyperbolic equation 

(54) 

(55) 

(56) 

The solution of (56) for mean concentration u = ul = (c) with the initial condition Co = ~(x) is 
u(x, t) = t-1 ",(xlt}. The solid lines in Figure 1 show that dependence of the function u(x, t)Vt on 
the parameter x/Vt for four different values of 'Y. It can be seen that there is considerable asymme­
try in the distribution of mean concentration. 

If the algorithm to regularize (56) is used, one can obtain (54), which for a Gaussian distribution of 
velocity v, is exact. The dashed lines on Figure 1 show the dependence of the function u(x, t)Vt , 
which is the solution to (54). It can be seen that when 'Y ~ 10, the functions u(x, t) and u(x, t) are 
essentially different. As the parameter 'Y becomes large, both solutions are similar to the Dirac 0 
function, but since the function u(x, t) is asymmetrical, the maximum value of u(x, t) for any 'Y is 
larger than the maximum value ofu(x, t). As 'Y ~ 00, the ratio ofumaxlUmax tends to 12. 

(4) Let the velocity v have a Cauchy distribution given by 

(57) 

In this case, all the moments and summations are infinite, and (52) can not be used. However, we 
can write the elliptic equation 

(58) 

and investigate the Dirichlet problem on the half plane t ~ o. 

14 
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If we now let v = v(t), we can write the exact non-local equation for the probability density func­
tion for concentration PC(x, t) = (8[c(x, t) -en 

(59) 

Here. Kn+l (t1• 't1 ••••• 'tn) are cumulants of the random function v( t) subject to the following: 

(1) If the velocity v(t) is Gaussian. we have Kl = (v(t» = V(t) and K2(t. 't) =B(t. 't). K3 = ... = 

O. In this case. we obtain the parabolic equation with variable coefficients. 

aJ?C(x. t) + V(t) aJ?C(x. t) = 1t B(t, 't) d't a
2

J?C(x. t) 
at ax 0 ax2 

(60) 

(2) If the random velocity v(t) is a delta-correlated process. Kn+l (tl' 't1 ••••• 'tn) = K:+l (t)8(t - 't1) 

8('t1 -'t2 ) ••• 8('tn_1 -'tn)' then. in the generalcase. we have the non-local equation 

(61) 

n 

(3) Now let us consider the Poisson process where v(t) = L, ~m(t - ti). Here ~i are the stochastic 
i=l 

independent random values with a probability density function <I>(~). The points ti are equally dis-
tributed over the interval (0. n. and the number n has a Poisson distribution with n* = 'UT. The 
step function g('t) = 1 if't > 0 and O. if't < O. If the process v(t) is delta-correlated. and <I>(~) is an 
exponential distribution with parameter A., we have the hyperbolic equation for PC(x. t) 

aJ?C(x. t) "aJ?C(x. t) 1 a2pc(x. t) - 0 _-:--''--'- + ...L + _ _ 
at A. ax A. at ax 

(62) 

And finally. consider the averaged stochastic equation with a dispersive term 

(63) 

15 



where lC is non-random. In this case, the equation for u = (c) is 

[ a a ( a) a2 

] ---In exp(-tv-) -lC- u(x,t)=O at dt dX dX2 

If v is Gaussian, we have 

dU dU d2
U 

-+ V-=(lC+Bt)-at dX ax2 

6/11/92 

(64) 

(65) 

When the velocity in the averaged equation has a "( distribution, one has a derivative of third order 

If 1C is random and proportional to v, i.e. lC = (3v, we have a non-local equation 

dU + i Kn+l (_tA)n Au = 0 
dt n=O nf 

(67) 

a d 
where A = (l~) dX' For a ,,(-distributed velocity, one has the averaged equation 

(66) 

(68) 

The examples presented here characterize the complications of the averaging problem and reveal 
the variety of equations involved. In those cases where the random fields depend on the space 
variables, the general situation is not simple because the problem has the additional complication of 
depending on the correlation scales for the random fields. However, it should be noted that, for 
large values of time, there is a weak dependence of the averaged equations on the detailed behavior 
of the random field distributions. In specific situations, the principal effects are those of the first 
moments of the random fields. 

Based on this analysis of the different aspects of the problem of averaging, it should be noted that 
the procedure used by Dagan and Neuman (1991) in comparing approximate solutions is not fully 
convincing. They used an approach involving Gaussian velocities, where the Lagrangian approach 
and the parabolic equation are exact for all times. In this case, the three first central spatial mo­
ments are identical using either approach,. and.differences. only appear ·in the fourth moment. 
However, it is obvious that computation of the fourth moment (which is proportional to ( 4) with 

16 
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the help of an approximate equation of second order (where the error is proportional to £3) is not 
correct 

FLOW AND TRANSPORT IN STRATIFIED FORMATIONS 

As an example of the process under consideration, we shall examine the relatively simple case of 
flow and transport in a stratified formation. Let the random fields for porosity, m, and permeabil­
ity. k. depend on one variable X2 

In the stratified formation, we have 

v = kh, h = - VP 
W = (v) = k.Lh.L + kuhn 

ha = (hi), h.L = (h2), kll = leo = (k). k.L = (k-l rl 

hi = hu, h2 = k.Lh.Jk 

(69) 

(70) 

The values of V2 and hi are non-random. while VI and h2 are random. Therefore, the fluctuations 
in velocity are 

VI = khll - kohll = khll,k = k - ko 

v2 = kh2 - kJ.hJ. = 0 

and since z = x - Wrn;} (t - 't), we have the correlation function of the velocity 

11 (- -) 2 B (x,z) = k(x)hllk(z)hll = K(x.z)hu 

K(x.z) = (k(x)k(z») 

B22 (x, z) = 0, Bl2 (x. z) = 0 

For the cross-correlation functions of porosity and velocity. we can write 

NI (x,z) = (m(x)k(z»)hll = KI (x,z)h ll 

N:i(x,z) = 0 

K1(x,z) = (m(x)V1 (z)) 

(71) 

(72) 

(73) 

17 
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If both porosity and penneability are statistical homogeneous functions of X2, then we have: 

K(x, z) = Kofk (W2~ 1:»), M(x, z) = Mofm (W2~ 1:») 

N(x, z) = NofN(W2~ 1:») 

(74) 

from which 

(75) 

Thus the time 8 is a function of the transverse velocity W2. Since f(O) = 1, by W2 = 0 for all 8(t) 
=t. 

Let us consider this stratified system as a binary system with layers whose parameters are kh ml 
and k2, m2. The randomly distributed layers occupy portions al and a2 in the space a. We shall 
define the random indicator function 

Zi(X) = ' ~~ i = 1, 2 {
Ix E f"\. } 

0, X E alai (76) 

Then, (Zi (x» = Pi is the probability that point x falls within the subspace ~ and PI +P2 = 1. For 
the random function k(x), we have 

k(x) = klZl + k2Z2 

k(x) = kl (Zl - P1)+ k2(Z2 - P2) 
(77) 

K(x', £)=Kow{x', £)=Kow(lx' -x"l) 

Ko = crR = PI P2(kl - k2)2, w(x' , x") = Pil pi(Zl (X')Zl (x") - PI) 
(78) 

Similarly, 

(79) 

18 
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l
w ,/ .... m 2 

9(t) = _0 'V(x)dx 
Wz 0 

(81) 

and from (34), we can write the equation for mean concentration as 

(82) 

If the porosity is non-random, Mo = 0, No = 0, m* = Illo, W* = W, equation (82) results in . 

au 11 cPu 
Illo- + WVu = 1TG19(t)B -at 0 axl (83) 

Since B~l = CfRh~ and WI = kalla, then B~l = CfRkitwI and we can write 

(84) 

The expression for dispersion from (84) is equivalent to equation (7) in the article by Salandin et. 
al. (1991), and if 9(t) has a limit as t ~ 00, one has the coefficient of dispersion as obtained by 
Matheron and de Marsily (1980). If W2 ~ 0, we have 9(t) ~ t, and the equation for dispersion is 

(85) 

In regularizing (82), we need to eliminate the derivative with respect to time from the right hand 
side. Substituting (45) and (46) into (82) and neglecting the· small values of fourth order, we ob­
tain 
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which can be written in the following fonn 

m*~ + WVu = ~l 8(t) 

[Wr(~m - ~k)2 ~~ + 2WIW2 ~m(~m - ~k) a a~u + W~~~ :2~] 
aXI Xl X2 aX2 

(87) 

Here, 

~~ = O"fu = (ml - Ill2)2 P1P2, ~~ = ~ = (kl - k2)2 PIP2 
m5 (miPI + Ill2P2)2 ~ (kIPl + k2P2)2 

(88) 

The discriminant on the right hand side of (87) is zero, and it is convenient to transfonn the coor­
dinate system using 

YI = X2 - WI (~m - ~k) Xl 
W2 ~m 

(89) 
_ W2 ~m 

Y2 -X2 +WI (~ -~u) X2 

The equation of transport then has the fonn 

m* au (y, t) + vtVu (y, t) = moI8(t)Jl a
2
u (y, t) 

at ayf (90) 

Jl = Wf [Wr(~m - ~k)2 + W~~~ 2 

Thus by the interaction of two random fields (porosity and penneability), the dispersion is one­
dimensional along the axis Yl while advection is along vector W*. In the general case, these two 
directions are not the same. 

For large times, w* ~ W, and we can detennine the angle <p between vector W and Yl, the axis of 
dispersion from 
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Here, <Po is the angle between vector W and the Xl axis which is the grincipal direction along the 
layers. The variation of <P with <Po for different values of parameter A. is shown for two different 
cases on Figure 2. The fIrst case is shown in Figure 2A and 2B where the coeffIcient of correla­
tion between porosity and penneability is posi!!.ve, i.e., f = 1.0. The second case is shown in 
Figure 2C where the correlation is negative and 'Y = -1.0. 

It can be seen on Figure 2 that when W is parallel (<Po = 00) or perpendicular (<Po = 900) to the lay­
ers, the direction of dispersion and advection are identical (<p = 00) independent of the values for A. 
and 'Y. If;m -70, then A. -7 00 and <p = <Po i.e. the axis of dispersion is the same as Xh the longi­
tudinal axis of the layered system. This case was studied by Matheron and de Marsily(1980) and 
Salandin et al. (1991). 

For the particular case where CPo ~ 45°, Figure 2A shows that the axis of dispersion and vector of - - -~. 

advection are orthogonal (<p = 900) for any A. < 1 and'Y = 1. On Figure 2B where 'Y = -1, the same 

orthogonal condition holds, but now at 45° ~ cP ~ 90°. The function CPo = CPo (r) is plotted in 
Figure 3. 

CORRELATION FUNCTIONS FOR RANDOM FIELDS 

To obtain a complete description within the framework of correlation theory for the equations of 
mean concentration, it is necessary to develop expressions for the cross-correlation random con­
centration fIeld c(x, t) with random fIelds for porosity m(x) and velocity v(x). It is also necessary 
to fmd the auto-correlation function of the concentration field, in particular the variance of the con­
centration. (This problem has been discussed by Shvidler, 1990.) So, we must compute the func­
tions 

Kl(X, t, y) = £2(m'(y) c' (x, t» 

K2(X, t, y) = £2(v'{y) c' (x, t» 

(92) 

(93) 

(94) 

To compute the Ki in the correlation approximation, we use the explicit expression (21) for c' (x, 
t). After multiplying (92), (93), (94) by this expression and averaging, we have 

K, (x, t, y) = -m:' f [M(z, y) dU~~ t) + N (z, y) 'lu(z, t)]dt+ O(e') (95) 
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(96) 

(97) 

, (98) 

It must be understood that (95), (96), and (97) are, like (21), expressions for c' (x, t). 

Using equations (17) or (19) we can find equations for the moments Ki. Mter multiplying and 
averaging, the expression for the functions corresponding to (92), (93), and (94) are 

mo aK1(~; t, y) + WVxK1(x, t, y) = -M(x, y) au~~, t) N(x, y)Vu(x, t)+0(£3) 

x;.!:y 

mo aK2(;; t, y) + WVxK2(x, t, y)=-N(x, y) au~~, t) B(x, y)Vu(x, t)+0(£3) 

x¢.y 

aK3(x, tl' y, t2) WV K ( ) mo ~ + x 3 x, t1, y, t2 
ut1 

=-K1(x, t1 , y)au~; t1) K2(x, tl' y)Vu(x, t1)+0(£3) 

x¢. y t1 ¢. t2 

(99) 

(100) 

(101) 

The equations for moments Ki are similar to those for the transport equation. The right hand side 
of (99) and (100) are dependent on the mean concentration u(x, t) and the correlation fields m(x) 
and v(x). The right hand side of (101) is depends on mean concentration and the functions Kl and 
K2. 

22 
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The initial conditions for Ki are a consequence of the condition c' (x, 0) = 0, and 

Kl (x, 0, y) = 0, 
(102) 

Equations (99) and (100) can be used only when x:¢: y. and (101) can be used only when x * y 
and tl * t2. When x = y. we have other equations 

For the i th component vector K2(X. t. x). we have 

dK2i (X, t, x) W"K.( )=-N.( )dU(X, t) Bij( )dU(Z,t) mo ':l + V 21 x, t, x 1 x, X ':l x, X ':l 
ot ot oX j 

-m:lW. f [dNi(X,Z) dU(X,'C) + dBil(z,x) dU(Z,'!:)]cn + 0(£3) 
J Jo dXj d't dX j dX} 

(104) 

The equation for K3(X, t) differs from equation (101) in that there is a factor of 2 on the right hand 
side 

CJK (x t) [dU(X t) ] . 3 mo 3
dt

' + W"VK3 (x, t) = -2 Kl (x. t) dt' + K2(x, t) "Vu(x, t) + 0(£ ) (lOS) 

Thus, in addition to the explicit expressions in (95), (96), and (97), we can compute the moments 
Ki from (99), (100), and (101) or from (103), (104), and (lOS) with initial conditions given in 
equation (102). 

In order to compute the mean concentration, u(x, t), one can use finite differences and a step by 
step procedure to compute Ki • from which the mean concentration and mean square deviation of 
concentration can be obtained. 

23 
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Cross-Correlation Function Kl(X, t, y) 

Let us consider in more detail the moment K 1 (x, t, y) 

If the expressions in (30) are used, we have from (95) 

-l[ - au(x, t) - ] 3 Kl (x, t, y) = -mo MoeM(x - y, t) ax + NoeN(x - y, t) Vu(x, t) + 0(£ ), (106) 

where 9M (x - y, t) = -M;' J.' M(z. y)dt, 9N (x - y, t)= N;;' J. N, (z, y)dt (107) 

When x = y, e = e and 

(l08) 

If the derivative with respect to time is eliminated in (108), we have another approximation 

(109) 

Cross-Correlation Function K2(X, t, y) 

, Using (30) and following the same procedure for K2 from (96), we have 

If the time derivative in (110) is eliminated, when x = y we have 

(112) 
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Auto-Correlation Function K3(X, t., y, t2) 

If we introduce a new variable scale 

(113) 

where 

we can write the moment K3 from (97) as 

(114) 

If x = y = x and tl = t2 = t, the variance of concentration at point x at time t is obtained from (114) 
as 

(115) 

(116) 
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-
nij(t) = Mo9M(t)WiWj _ 2Noi~i(t) + B~9ij(t) 

m~ IDa 

OM(t) = 2 f 9( ~)d~. t% (t) = 2 f t% (~)d~. 9'j (t) = 2 f 9,;{ ~)d~ 
(117) 

./ 

In an analysis of the behavior of the functions 9ij for a series of correlation functions of perme---
ability, Dagan (1989) showed that:(a) the longitudinal component of tensor 9 ij at large time is pro-
portional to time 1, and (b) the transverse components have a finite limit in 3D space and are pro­
portional to In t in 2D space. The unlimited growth of longitudinal and transverse CD = 2) compo-

nents of tensor 9ij does not contradict the concept of a limited (finite) variation for concentration 
because the decrease in Vu(x, t) at large time is more rapid. 

Let us return to (103) and (104) and write them in local form. After introducing (105) for K3 and 
(49) for u(x, t), we have a full correlation description for the process of dispersion given by 

m*~~ + WVu = ~l div DVu 

m* = mo - M(t)mol, W* = W - moIN(t) 

rjj = Mo W~Wj 9M(t) _ 2 N~ Wj 9Ni(t) + B~9ij(t) 
mo 0 

u(x, 0) = f(x) 

mo OKI~:' t) + WVK1 (x, t) = - [M(t) ou~: t) + N(t)Vu(x, t) 1 
K1(x, 0) = 0 

. oK2j (x, t) + WVK . ( t) = _ [N. (t) iJu(x, t) + Bnj (t) au (x, t) J 
mo ot 2J x, J at Ox

n 

K2j(X, 0) = 0 

aK3 (x, t) [OU(X, t) 1 mo ot + WVK3 (x, t) = - 2 Kl (x, t) ot + K2 (x, t) Vu(x, t) 

K3(X,0) = 0 

If we use KI and K2 from (109) and (110), respectively, then (121) becomes 

oK3 (x t) 
mo ot' + WVK3(x, t) = 2Vu(x, t)D(t)Vu(x, t) 

(118) 

(119) 

(120) 

(121) . 

(122) 
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For example, we shall consider the problem of transport in a ID field with random porosity. If B 
= 0 and N = 0 are inserted in (49), we have 

If we assume that 

M(x, z) = ~ exp ('t eot) 

then 

If t» So, then from (125) and (126), we have 

Il10 au + w au = Mow2so a
2
u 

at ax ~ ax2 

])(t) = 2~ w2Sot 
~ 

For example, if we assume an initial concentration given by 

1 x ~o 
u(x, 0) = f(x) = 0: x > 0 

(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 
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Then the solution to (128) and (129) can be rewritten as 

u(x. t) = i (1 - erf z). erf z = it L' ,,-l'dt, 

V = W a2 = Mo YZ90 

mo ' 2 mo 

z'= x -Vt 
2aYt 

.6/11/92 

(130) 

It must be kept in mind that the solution given in (130) is valid when t» 90 • Using (130) we can 
write the variance of concentration as 

(131) 

Since the initial concentration has two values as shown in (129) and the mean concntration u(x, t) 

is the probability that local concentration is· 1, we can write an exact expression for K3 = u (I - u ). 

Figure 5 shows the solution for u(x, t) given by (130). The solid line for ()c is the mean square 
deviation from the exact solution and the dashed line shows the approximate solution for ()c from 
(130). We see that the latter solution is a reasonable approximation. 

SUMMARY 

A full description of flow dispersion in a correlation approximation of second order perturbation 
theory is given. In the field with time and space depended source and random poro~ity and flow 
velocity the functional equations for average concentration are suggested. The approximate non­
local integral-differential equation for mean concentration is asymptotical equivalent another equa­
tions the same order approximation, but differential and local. Correct problems for hyperbolic, el­
liptic and parabolic transpOrt differential equations are set 

Autocorrelation and cross-correlation moments of concentration, in particular the variency of con­
centration, porosity and flow velocity fields are presented. 
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Fig. 3. Dependence of ~o = ~o(x.) for the special condition where the direction of 
advection vector W is orthogonal to the Yl-axis of dispersion. 
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Fig. 4. Distribution of mean concentration u(z) (solid line), The dotted line shows act 
the mean square deviation of concentration as computed from u(z)t and the 
dashed line O'Ct is an approximation computed from (1;'1). 
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