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. ABSTRACT 

Algorithmic considerations regarding the i;;'lplementation of various materials science applications of 
the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are 
presented. In particular, implementation of the Ising model with nearest, next nearest, and long range 
screened Coulomb interactions on the SIMD architecture MasPar MP-I (DEC mpp-12000) series of 
massively parallel computers is demonstrated. Methods of code development which optimize processor 
array use and minimize inter-processor communication are presented including lattice partiti<;>ning and 
the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic 
parallel approaches are utilized. Benchmarks in terms of Monte Carlo updates per second for the 
MasPar architecture are presented and compared to values reported in the literature from comparable 
studies on other architectures. 

INTRODUCTION 

Computational materials science, fast becoming a standard tool in materials research, is primarily limit­
ed in its ability to model systems of macroscopic size over realistic time scales by computer processing 
speed. While major advances have been made in processor speed with serial computers through design 
and miniaturization, further processor enhancement can achieve relatively minor gains before en­
countering the limits imposed by atomic scale and light-speed information transfer. Advances in paral­
lel architectures involving distributed computation over many processors operating in parallel offer a 
means to achieve many orders of magnitude increased processing power with existing computer tech­
nology. Of the types of parallel architectures available, Single Instruction Multiple Data. or "SIMD", 
architectures are particularly applicable to materials science simulations. Many materials science simu­
lation techniques operate on systems which involve multiple data points under the influence of a single 
global equation of state and, hence, are ideal candidates for data parallelism. 

MasPar ARCIllTECTURE OVERVIEW 

The work presented here was implemented on ~e MasPar I series (DEC mpp-l2000) massively paral­
lel SIMD architecture computer. On such architectures, a serial stream of program instructions is . 
broadc.ast to all parallel processing elements which execute the instructions synchronously. on local 
multiple data. The MasPar MP-1 series computers are scalable from one thousand to sixteen thousand 
processing elements. These processing elements are organized into.a two dimensional mesh with 
toroidal boundary conditions. Each processing element is directly connected to its four nearest and 
four next-nearest neighbors forming an "X" -network of directional synchronous inter-processor com­
munications with a bandwidth of 23,()()() MBytes per second. Longer range and arbitrary direction 
communications are implemented by means of a global router having a bandwidth of 1,300 MBytes 
per second. Parallel instructions. are broadcast by the Array Control Unit (ACU), which consists of a 
14 MIPS control processor, thirty-two 32-bit registers, and 1 MByte of RAM. Each processing ele­
ment consists of a 1.8 MIPS 4-bit control processor, forty 32-bit registers, and 64 KBytes of RAM. 
The complete MasPar system consists of the Data Parallel Unit (DPU), described above, and a DEC 
VAXstation 5200 running Ultrix 3.1 and DECwindows used as a "front end" interface: The codes 
presented were developed in MPL2, a massively parallel extension of the Kernighan and Ritchie C pro­
gramming language. Many of the standard UNIX programming functions have also been provided in 
parallel implementations. 
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MONTE CARLO SIMULATION IN MATERIALS SCIENCE 

The Monte Carlo simulation technique was first introduced by Metropolis et al. to study the equilibri­
um properties of model systems3

. However, this technique has since proven to be widely applicable to 
the study of both equilibrium and dynamic properties of many diverse materials systems. The classical 
Monte Carlo technique generates a sequence of microstates, [0], in an ergodic fashion such that ther­
modynamic averages over the "time" sequence of microstates tend asymptotically to the average over 
the true equilibrium ensemble as the sequence or "chain" length increases. Such a chain of microstates 
is generated in practice by considering candidate excitations of the system leading to a trial transition 
from some microstate nj to n j and accepting such microstate transitions with a probability 

• pen) 
IT(nj-+n j ) = D ~ (1) 

where D· is the degeneracy ratio of the microstates and P (nj ) is the canonical density function 

(2) 

Here, H (nj ) is the Hamiltonian for the system specifying the configurational energy, T is the absolute 
temperature, kB is the Boltzmann constant, and Z is the canonical partition function which, for a sys­
tem involving discrete states (e.g. a lattiCe based simulation), takes the form 

Z = L exp[-H(nj)/kBT]. 
[OJ 

(3) 

An equilibrium value of a thermodynamic quantity; !, is obtained by a weighted average over the .. 
time" sequence of microstates 

</>= L!(nj ) exp[-H(nj)/kBT]. (4) 
[OJ 

Monte Carlo simulations of different systems are distinguished by the selection of two factors: (1) 
Hamilitonian, and (2) static lattice structure and boundary conditions.. The Hamiltonian specifies the 
energy of the system as a function of all the degrees of freedom of the· system and quantifies the range 
and nature of the interactions. The lattice symmetry and boundary conditions determine the possible 
structural transformations by group-subgroup relationships and the nature and existence of free surfaces 
and interfaces. Perhaps one of the most widely used system models is the spin-V2 Ising model. It has 
been applied to a broad variety of problems including tumor growth4

, galaxy formationS, binary al­
loys6, and catalysis7

• The most basic form of the Ising model exhibiting phase transitions is the two­
dimensional nearest-neighbor square lattice model. . The Hamilitonian for this system is given by 

H =~~Vu·u· L. I J 
<.ij> 

(5) 

where V is the pair interaction energy and· U = ±1 represents a two-state site occupation. The Ising 
model can be extended to handle more complicated systems by including longer range interactions. 
One examl'le of this is the nearest and anisotropic next-nearest neighbor Ising model proposed by 
Wille et al.8 to model oxygen ordering in the basal plane of YBa2CU307-6 

H = 1-h L VtUjUj + ~ L· V2UjUj + 1..1 L V3UjUj (6) 
<NN> <NNNt> <NNN> 

where the t is taken over next-nearest neighbors separated by a copper cation. Even further range in­
teractions can be considered as in the case of the screened Coulomb potential used to explain observed 
oxygen superstructures in this system9

; important to the understanding of detailed dependence of criti­
cal temperature on basal plane oxygen content. While the underlying model and lattice can remain the 
same, the choice of Hamilitonian dictates the approach in developing the most efficient parallel algo­
rithm. In what follows, general methods of developing parallel algorithms are applied to the Monte 
Carlo simulation of the Ising model for each of the above three cases. 

PARALLEL MONTE CARLO - FUNDAMENTAL CONSIDERATIONS 

The central issue in constructing a correct parallel Monte Carlo algorithm is to distribute the calcula­
tion in the most efficient way amongst the processors without violating the detailed balance criterion 
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P(Q; )n(Q;~Qj) = P(Qj)n(Qj~Q;). (7) 

which ensures that simulation time averages will converge to ensemble averages in the limit of long 
times. In a serial algorithm, this is achieved in a straightforward way by accepting each trial update 
with the appropriate probability, typically, as outlined by Metropolis3

, et al. 

(8) 

where AEij is the difference in configurational energy between the two microstates, j and j. However, 
for parallel Monte Carlo algorithms, an additional constraint must be satisfied, namely, that all parallel 
updates are spatially independent. A set of spatially independent sites is defined as a set of sites which 
do not interact with each other through the action of the system Hamiltonian. For example, in the two 
dimensional nearest neighbor Ising model, each site interacts with its four nearest neighbors. Updating 
nearest neighbors in parallel leads to the creation of.:1 chain with non-ergodic sequences in violation of 
the detailed balance condition. This can be understood qualitatively by considering a one dimensional 
chain of nearest neighbor interacting Ising spins whose ground state is ferromagnetically aligned. Dur­
ing an update, a site will tend to adopt the alignment of its neighbors. At some finite temperature, ad­
jacent sites which are anti-ferromagnetically ordered will be created. If updates are executed in parallel 
on all sites, sites in anti-ferromagnetic sequences will oscillate between spin-up and spin-down states 
and never achieve an aligned ground state. This "blinking-state" or "parallel-resonance" condition has 
the effect of confining the system to an artificial and limited region of phase space and may lead to in-

alid 
.. 10 

v statIsttcs. 

For systems which involve relatively short-range interaction, as in (5) and (6), the most effective 
method of parallel implementation which avoids the parallel-resonance condition is geometric 
decompositionll-13

• In this scheme, the system is divided into maximal sets of spatially independent 
sites which are updated in parallel. In the case of the nearest neighbor Ising model, this amounts to a " 
checkerboard" decomposition where every other site in each lattice direction is updated simultaneously. 
Geometric decomposition has the advantage of involving a nearly direct mapping of the algorithm to 
the parallel array and is thus simple to implement. In the limit where system interactions extend to the 
size of the system, each site interacts with all others and a geometric decomposition would degrade to 
a serial algorithm. In such cases, an aigoritiunic decomposition scheme is employed 12,13. In this ap­
proach, the parallel aspects of the algorithm are distributed to all the processors. For instance, in the 
calculation of a Coulomb interaction, each site in the parallel array determines its contribution to the 
energy of interaction with a given site simultaneously. In this fashion, a calculation involving O(N2) 
steps is reduced to one involving 0 (log:P') steps. . 

PARALLEL MONTE CARLO - BASIC ALGORITHMS 

A first-approach implementation of the nearest neighbor Ising model is .straightforward on the MP-l ar­
chitecture. As the processor array is organized as a two dimensional mesh, a direct mapping of system 
sites to processors is made. For a 16k processor machine, this gives rise to a system of 128 by 128 
sites. The periodic boundary conditions are built into the hardware. Each site is given a "parity" to 
correspond to the checkerboard decomposition. At each cycle, all sites of the same parity are updated 
in parallel. This is accomplished by use of a plural if-then test. At anyone time, the MasPar main­
tains a current" active set" of processors which receive and execute plural instructions. The action of 
a plural if-then test is to set all processors whose local data evaluate the plural test to TRUE to active 
status and all others to inactive status for the instructions contained in the range of the logical test. 
Plural while, do, and, for loops are implemented in an analogous fashion. Once one set of equal parity 
sites have completed their update, the sites of opposite parity are updated. The acceptance of site up­
dates with probabilities consistent with (8) is facilitated in the MasPar environment by the availability 
of parallel implementations of standard UNIX library functions including, in this case, a routine which" 
returns separate streams of random deviates on all active processors. A test series of simulations for 
the parallel algorithm was performed with the nearest-neighbor zero field Ising model for which exact 
analytical results are available. For a system size of 128 by 64 sites, a temperature versus specific heat 
plot [Figure 1] indicates that the critical temperature occurs at 2.28 k8 T IV for V = 1.0, consistent in 
both value and form with the exact solution by Onsager14. 
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Figure 1: Specific heat versus temperature plot produced with the parallel nearest neighbor Ising model Monte 
Carlo simulation. Each vertical line represents the value obtained from one simulation run over 10,000 Monte 
Carlo steps per site after equilibrium had been obtained as determined by course grain energy averages. The 
critical point for this system size is at 2.28 k8 T IV . 

In a standard Monte Carlo study, the system size is typically varied to elucidate the effect on the criti­
cal values. Simulating system sizes smaller than the processor array is accomplished by running on a 
subset of the available processors. Simulating system sizes larger than the available processors is ac­
complished by partitioning the larger lattice onto the smaller processor array. Partitioning is also use­
ful in increasing the efficiency of the overall algorithm. In the checkerboard decomposition, at least 
half of the processors are idle at any given time. While this could constitute an acceptable use of the 
processor array, the number of idle processors increases rapidly with the extent of inter-site interactions 
such that a simulation using (6) with nearest and next nearest neighbor interactions would leave one 
fourth of the processors idle. In addition, it is generally true that inter-processor communications' are 
much slower than intra-processor memory accesses. For instance, on the MasPar MP-l an inter­
processor or "xnet[1]" read expends 80DPU clock ticks while an intra-processor or register read ex­
pends only 14 clock ticks. Thus, the more communications necessary to calculate interactions that are 
managed within a processor, the more efficient the overall algorithm. Partitioning is accomplished by 
declaring sub-arrays of sites on each proces~or. During each step, every processor updates the 
equivalent site in its local partition' in parallel. If the size of the partition is such that it contains the 
range of interactions for one sIte, then all processors can operate in each cycle. The increase in perfor­
mance obtained by partitioning is illustrated in Figure 2. Beyond partitions of 16 sites, the algorithm 
performance approaches intrinsic processor element speed. In a recent report of a worldline quantum 
Monte Carlo implementation on the Connection Machine15

, Somsky and Gubematis report a similar in­
crease in algorithm performance with "Virtual Processor Ratio" (VPR), a·function on theCM-2 which 
allows one processor to simulate the function of many. They found an optimal increase in speed using 
a VPR of 16, analogous to the value found' here, illustrating the general nature of partition optimiza­
tion. While partition optimization leads to a more efficient use of the machine, it is worth noting that 
while an individual simulation step will take less time, this is accomplished with a concurrent increase 
in the number of sites resulting in longer overall run times. Thus partitioning results in a real-time 
savings only when there is' a need to simulate system sizes larger that the physical processor array. 
The nearest and anisotropic next nearest neighbor Ising model (6) was implemented using a partition­
ing scheme. Example results from the parallel algorithm correctly identify the transitions from the' 
Orthorhombic to cell-doubled Orthorhombic to Tetragonal oxygen ordered structures associated with 
the loss of superconductivity in the high-Tc YBa2Cu307~ [Figure 3]. 
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Figure 2: lllustration of partition optimization. Monte Carlo updates per second versus sites per processor for 
8,192 processors. Perfonnance increases dramatically at first and then asymptotically approaches the intrinsic 
processing element speed. . 

The ultimate bottleneck in any Monte Carlo simulation arises from the need to extract thermodynamic 
information from the whole processor array at each lattice update to allow the calculation of thermo­
dynamic averages. Extracting information on a site by site basis would involve 0 (N) steps for each 
lattice update. However, a general method for data reduction over parallel processors utilizes a binary 
tree reduction method which spans· the processor array involving 0 (logpr) steps to extract information. 
This optimization leads to a critical increase in speed for normal Monte Carlo system sizes, for exam­
ple; an increase of over 600 times is obtained over the discrete sum for 8,192 sites. A binary tree ap­
proach can be used to efficiently implement any general operation over the whole array and is thus 
useful for lattice spanning operations. The binary tree reduction method is also useful in algorithm 
decomposition parallel implementations needed when the extent of site interactions make it inefficient 
to use geometric decomposition methods, as is the case with a screened Coulomb Hamilitonian. 

As Monte Carlo simulations are in general concerned with the calculation of critical points, the 
phenomenon of critical slowing down is of pivotal importance. Recently, Swendsen and Wang pro­
posed a physical cluster update algorithm which dramatically reduces the effect of critical slowing 
down16 and thus allows a faster determination of critical points. The central feature of this algorithm 
is the determination of physical clusters which are then updated in parallel in a way which produces an 
ergodic sequence that is consistent with the Metropolis algorithm thus leading to valid Monte Carlo 
statistics. The process of cluster identification typically involves O(N) steps in a serial algorithm. 
Again, the time this process takes can be reduced in a parallel algorithm to O(log-lV) steps. While 
many parallel algorithms for cluster identification have been developedll

,l2,17-19, one of the most gen­
eral if not completely optimal methods is that of "label-diffusion". In this method, all sites are initially 
given a unique label; in the case of the MasPar, the unique processor number. At each cycle,sites 
determine in parallel whether they belong to the same cluster as their neighbors. If so, the lowest label 
of the neighbor pair "diffuses" and supersedes "the· higher label. This processes continues until no 
further label diffusions occur. At this point, all sites belonging to the same cluster are labeled in an 
identical fashion and can be updated in parallel. 

BENCHMARKS 

Timing of the parallel implementation of the nearest neighbor Ising code was performed using a 
geometric decomposition scheme, a partition size of 4 sites per processor, and a system lattice of 256 
by 256 sites. On the MP-1216 with 16K processors, this algorithm achieved 15.5 Million Monte Carlo 
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Figure 3: Plot of specific heat and basal plane oxygen concentration versus oxygen partial pressure in the 
YBa2CU307-f> system at a constant temperature of approximately 540K obtained with a geometric partitioned 
parallel decomposition algorithm. Peaks in the specific heat reveal the location of transitions from the single 
cell to cell-doubled orthorhombic phases and the cell-doubled to tetragonal phases consistent with experimental 
and earlier serial Monte Carlo results. 

Updates per Second (MMUPS). This value compares well with performance reported 15 for simple 
nearest neighbor Monte Carlo algorithms on other parallel architectures with the same simulation lattice 
size and, if applicable, same partition size: Connection Machine CM-2 (64K processors, VPR = 4), 
17.1 MMUPS; Cray Y-MP,·6.3 MMUPS; Cray X-MP, 4.6 MMUPS. 
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