
LBL-32539 
L- UC-335 

- Preprint 

ILfa1wrr®ll1l~(6 IEerrk®lley lLStfo)«DrrStt«DIrY 
UNIVERSITY OF CALIFORNIA 

Submitted to Journal of the ElectrochemiCalSociety 

-Current and Potential Distdbutions on".'aCylinder 
. Electrode 

A.J. Grabowski and J.- Newman 

June 1992 

-----~1 

--- I 
;:a 
[J] _ ; 

n '1'] . 
1-'- 0 [J] 
'1 0 ;:a 
o /'[I [J] 
c Ol :z: ,..... n 
1ll:Z:[J] 
eTO 
/'[IeTn 

o 
." 

ttl -< 

-,., 
rJ 

Prepared for the U.S. Department of Energy under Contract NumberDE-AC03-76SF00098 

,..... 
0.---

lQ 

tn 
S 

L' ...... 
tr 
'i 
III 
'i 
"< 

I • 

~ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not ncccssarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-32539 
UC-335 

Current and Potential Distributions on a Cylinder Electrode 

Anthony J. Grabowski and John Newman 

Materials Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

June 29, 1992 

This work was supported by the Assistant Secretary for Conservation and Renewable Energy. Office of 
Transportation Technologies. Electric and Hybrid Propulsion Division of the U.S. Department of Energy under 
Contract No. DE-AC03-76SFOO098. 



Current and Potential Distributions on a Cylinder Electrode 

Anthony 1. Grabowski and John Newman 

Materials Sciences Division, 
Lawrence Berkeley Laboratory, and 

Department of Chemical Engineering, 
University of California, Berkeley 

June 29, 1992 

Abstract 

Current and potential distributions, satisfying Laplace's equation and obtained by 

superposition of ring sources, are developed and discussed for a cylinder electrode 

embedded in an infinite insulating cylinder. For the primary distribution, the resistance 

and the coefficient describing how the current density goes to infinity at the edge of the 

electrode are presented as functions of the aspect ratio of the electrode~ For a unifonn 

current density on the electrode, the maximum potential variation on the electrode is 

presented as a function of the aspect ratio. For linear electrode kinetics, the condition for 

nearly unifonn electrode current density is quantified, and the ratio of edge to center 

current densities is developed for kinetic parameters which lead toward the primary 

distribution. Current and potential distributions on the electrode and the adjoining 

insulator are presented for these three cases, and some asymptotic fonnulas are developed 

for high and low aspect ratios. These results are of particular interest in applications of 

cathodic protection. 



Introduction 

This work presents numerical and limiting-case solutions for the current and 

potential distributions of a cylinder electrode governed by Laplace's equation. Figure 1 

illustrates the idealized electrochemical cell geometry and its geometric parameters: the 

working electrode of length 210 and radius '0 embedded in an infinite insulating cylinder, 

while the counterelectrode is placed at infinity. Various electrode boundary conditions are 

employed, yielding the primary current distribution, the potential distribution due to 

uniform current density on the working electrode, and the secondary current distribution 

with linear kinetics. 

Laplace's equation describes the potential variation in electrolytic solutions with 

negligible concentration gradients: 

V2<1> = O. 

Ohm's law gives the current density under these conditions: 

i = -K"V<I>. 

(1) 

(2) 

Equations 1 and 2 govern behavior in electrochemical systems with negligible mass

transfer resistance. In particular, they apply to the bulk solution for electrochemical. 

systems in which convection dominates mass transport and concentration gradients are 

confined to a thin boundary layer near the electrode surface. 

The primary current distribution is characterized by negligible electrode kinetic 

resistance, implying negligible surface overpotential. The potential V of the working 

electrode is the same as the potential <1>0 in the solution adjacent to the working electrode 

as measured by a reference electrode identical to the working electrode: 

<1>0 = V. (3). 

With no ohmic resistance in the electrode, V is a constant, and the distribution is 

characterized solely by geometric parameter ratios. 1 

The primary current distribution gives maximum nonuniformity of current density. 

N'ear an electrode-insulator edge, the current density is zero at the edge for acute angles, a 

2 
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constant for right angles, and approaches infinity for obtuse angles. For the present case 

where the electrode is flush with the adjacent insulating surface, the primary current 

distribution near the edge is given by 

ill ~ Po l-fi as x ~ 0, (4) 

where ill is the current density at the electrode, x is the distance from the electrode

insulator edge, and Po is a function of the system geometry. 

The potential distribution due to a uniform'electrode current density, governed by 

the same geometric parameters as the primary current distribution, provides an estimate of 

the maximum possible potential variation on an electrode. These constant-current-density 

calculations are relevant to cathodic-protection technology, where oxygen mass transport 

may determine the distribution of demand of current, which is provided by sacrificial 

anodes to protect metal objects from corroding. In these systems, the largest potential 

difference on the protected metal object, 6<1>0' must be kept within a finite range to avoid 

both corrosion and hydrogen evolution. This restriction dictates the maximum size of an 

object which a counterelectrode can protect. 

The secondary current distribution, governed by Laplace's equation in solution and 

finite electrode kinetics, depends not only upon geometric parameter ratios but also upon 

the absolute size of the system. The Butler-Volmer equation is often used to describe finite 

_ electrode kinetics. In this case, the secondary current distribution depends upon three 

parameters in addition to the geometric parameters of the primary distribution.1 Due to the 

large number of parameters, this system is difficult to analyze. The linearized Butler

Volmer equation, valid for small surface overpotentials, simplifies the problem: 

ill = (aQ + ac ) ;~ (V - <1>0) as <1>0 ~ V. (5) 

In this equation io is the exchange current density, a
Q 

and ac are the apparent transfer 

coefficients, F is Faraday's constant, and R is the universal gas constant. This 

approximation introduces an additional polarization parameter, Jr , to the governing 

geometric parameter ratios: 
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'. 

(6) 

J
r 

represents the ratio of ohmic resistance to kinetic resistance and is the inverse of the 

Wagner number. As Jr approaches zero, kinetic resistance predominates, rendering the 

current distribution uniform on the electrode. Conversely, as J r approaches infinity, ohmic 

resistance predominates, and the current distribution approaches the primary current 

distribution. 

Most nontrivial, analytic solutions for the current distribution on finite cylindrical 

electrodes have been obtained for concentric electrodes with symmetric insulators at right 

angles to the axis of symmetry. Weisselberg2 obtained the primary current distribution 

analytically in this geometry for an inner electrode with finite ohmic resistance. Waber3 

followed with an analytic solution for the secondary current distribution with linearized 

kinetics. Finally, Alkire and VaIjian4 solved the problem numerically, with full Butler

Volmer kinetics, for a thin resistive-wire inner electrode. 

More closely related to the geometry under consideration, Strommen and Rodland5 

developed a finite-difference method for calculating potential distributions on underwater 

pipelines protected by exterior sacrificial anodes. 

Mathematical Method 

To develop an expression for the potential in the solution due to a prescribed current 

distribution on the electrode, we start with a differential ring located at r = ro and z = z'. 

The potential due to such a source is6 

G(R* Z) = 2K(m) 
, ~Z2+(R*+1)2' 

(9) 

where R* = r / ro, Z = (z - z') / ro, and 

m = 4rro 
(z - Z')2 + (r + ro)2 . 

(8) 

K(rn) is the complete elliptic integral of the first kind.? To this it is necessary to add8 a 

Fourier-transform function to ensure a zero normal component of the current density on- the 

surface of the insulating cylinder away from the ring source: 
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G*(R*,Z) = G+F, (13) 

where .. 
F(R*,Z) = f B(,)Ko(,R*)cos(,Z)d,. (14) 

o 

Here Ko is the modified Bessel function of the second kind of order O. The coefficient 

B(,) is obtained from the condition of zero normal derivative of G * at , ='0 and z:¢:. z'. 

Finally, one uses a superposition integral to represent the potential due to a distribution of 

ring sources along the electrode: 
1 10 

<1>("z) = - f G * (R*,Z)i" (z')dz'. 
me -10 

(17) 

The idea then is to adjust ill (z') so as to satisfy certain specific boundary conditions on the 

surface of the electrode. In particular, equation 3 applies for the primary current and 

potential distribution, equation 5 applies for the secondary distribution, and ill = ie' a 

constant, for the case of a uniform current density on the electrode. The other boundary 

conditions, at infinity where the potential approaches zero and on the insulating portion of 

the cylindrical surface, are automatically satisfied by equation 17, which also satisfies 

Laplace's equation 1 by the method of construction. 

Since we are most interested in conditions on the electrode surface, both to satisfy 

the boundary conditions and to understand the electrode processes, we focus on the value of 

G * and of F on the cylindrical surface at r = roo Mak8 carried out integrations to obtain 

first B(,) and then F(1,Z). An approximate expression of these results is 

F(1,Z) = -tr /2 . 
~Z2+1 

(18) 

More precise fitting functions can be found elsewhere.9 On the cylinder, G * (1'Z) behaves 

in three fairly distinct fashions depending on distance from the ring source. For small Z, 

m approaches one, and K approaches infinity logarithmically. In this region, the ring 

source appears as a line source embedded in an infinite insulating plane, and G* behaves 

accordingly: 
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1C 1 2 
G*(l,Z)~--+-ln(64/Z) as Z~O. 

2 2 
(15) 

For distances of 0('0)' the ring appears as a three-dimensional object and requires the full 

form of equation 13 to describe the potential variation. Finally, as Z approaches infinity, 

K(rn) approaches 1t/2, and the ring behaves as a point source. Equation 13 becomes: 

G * (1,Z) ~ 2~1 as IZI ~ 00. (16) 

For the primary and secondary current distributions, the electrode current density 

can be represented as a linear combination of functions I/z'): 

i,,(z') = "L-aJ/z'), 
j 

(24) 

where the a/ s are adjustable constants. The first function is chosen to approximate the 

expected current-distribution behavior. For example, for the primary current distribution, it 

would be chosen to go to infinity at the electrode edges like equation 4. The rest of the 

current functions were chosen to be the first 20 even Legendre polynomials: 
19 

i,,(Z') = a-t/-t (z')+ "LajP2/z' /10)· (28) 
j=O 

In general, the secondary-current fitting functions do not use a special first fitting 

function. However, for high polarization parameters, the work of Ni~ancio~lu and 

Newman 10 and Smyrl and Newmanll is used to develop a tailored first fitting function 

which approaches the actual secondary current distribution in the small electrode-edge 

region where kinetic limitations are important and the primary current distribution away 

from the edge region where kinetic limitations are negligible. 

To solve for the a/ s in equation 24, a collocation technique is employed. For n 

current functions, the boundary condition is evaluated at n points on the electrode, 

generating an n x n matrix. Using the zeros of the Legendre polynomials and the electrode 

edge as collocation points provided the best results. Integrations were carried out using 

Simpson's rule. 
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Results were considered accurate when the boundary conditions were satisfied to 

within 0.01% at each sampled electrode boundary point. In addition, primary current 

distributions, using different first functions valid for large and small 10 / ro respectively, 

were compared for 10/ ro=lO and 10/ ro=100. For both aspect ratios, the difference 

between the results for the two functions was within 0.1 %. Secondary-current-distribution 

results, also using different first functions valid for large and small 10/ ro, were compared 

for 10 / ro =1 and J,=1O. These results also differed by less than 0.1 %. 

Results and Discussion 

Both the primary current distribution and the potential distribution due to constant 

current density on the electrode were calculated for values of 10/ ro from 0 to 1000. 

Beyond this range, the method broke down because the Legendre-polynomial correction 

functions were unable to satisfy the boundary condition in the edge region of O(ro) where 

the distributions vary greatly as 10/ ro becomes large. 

The secondary current distribution could be calculated accurately for aspect ratios 

between zero and ten for the entire polarization-parameter range. Beyond 10/ ro=10, 

results could be obtained only for large and small Jr' 

Primary current distribution.--Ohmic resistance in solution determines the primary 

current distribution, which then becomes a unique function of cell geometry) In the 

present case, the only geometric parameter is the ratio 10/ ro . Figure 2 shows the primary 

current distribution. For all 10/ ro' the electrode current density approaches infinity 

inversely proportional to the square root of distance from the electrode-insulator edge, as 

described by equation 4. 

In the limit of small 10 / ro' the cylind:r loses its curvature, appearing as an infinite 

strip embedded in an infinite plane. The primary distribution for an infinite strip has been 

given by Wagner12 
ira _ 2/n 

iavg - ~1-(z/l0)2' 
(31) 
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lIn the opposite extreme, as 10/'0 becomes large, the electrode current density approaches 

infinity in an edge region which grows increasingly smaller when compared with 10 • Then 

the mid region carries all the current, and the singularity at the edge appears as a spike of 

current. The current distributions for finite 10/'0 fall between these two cases. 

To understand further the singular behavior in the edge region, one can examine the 

asymptotic coefficient of equation 4. Figure 3 shows Po / iavg{f; as a function of 10/'0' 

along with the thin-strip asymptote embodied in equation 31. The asymptotic behavior at 

large aspect ratios, where the electrode appears as a semi-infinite cylinder when viewed 

from one end, could not be determined. 

The primary resistance describes the relationship between the potential difference 

and total current in a cell limited by ohmic resistance. It is convenient to use two 

dimensionless resistances for the cylinder-electrode system, R K'ro and R 1(10 , related by 

10/'0. As 10/'0 approaches zero and the cylinder electrode shrinks to a differentially thin 

ring, RK'ro approaches infinity. At the other extreme, as 10/'0 approaches infinity and the 

cylinder shrinks to a differentially thin needle, R1(lo approaches infinity. Figure 4 is a 

graph of the dimensionless resistances as functions of 10 1 '0. 

Using asymptotic expressions for K(m). ill' and F(I,Z) valid for thin rings, one 

finds that RK'ro approaches infinity logarithmically as the aspect ratio shrinks according to 

the following expression: 
-1 In(16,o 110 ) • 

RK'ro -7 -+ 2 as 10/'0 -7 O. 
4n 2n 

(34) 

For asymptotically large 10 1 '0' figure 2 shows that the current density is essentially 

constant over the electrode except for a spike of current at the edges. Thus, for resistance 

calculations, it is reasonable to assume constant current density on the electrode. At a 

distance from the electrode much greater than 10, the electrode behaves as a point source. 

Setting the potential for a cylinder source and a point source equal at a distance of 0(10) 

results in the following approximate equation for R 1(/0: 

4rcR 1(10 ::= 1 + In(lo 1 '0) as 10 /.'0 -7 00. (35) 
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Here R 1(/0 approaches infinity logarithmically as /0/ ro becomes large. According to 

figure 4, this equation is evidently off by a small additive constant, but it gives the correct 

slope. A better fit is achieved if 1 on the right side of equation 35 is replaced by 0.5. 

Combination of Po and R allows one to relate the current-density behavior at the 

electrode edge to the cell potential V. Table 1 presents values for the edge coefficient po. 

the primary resistance R, and the maximum potential variation ~<l>o over the surface of an 

electrode of uniform current density (discussed in the next subsection). 

Table 1. Overall results for the primary and uniform current distributions. 

10/ ro R 1CJ'0 Po / i.vg{j; 1dl<l>0 /i)o 

0.001 
0.01 
0.1 
1 

10 
30 

100 
300 

1000 

0.411 
0.295 
0.181 
0.0809 
0.0220 
0.0102 
0.00403 
0.00164 
0.000589 

0.450 
0.449 
0.438 
0.383 
0.240 
0.173 
0.111 
0.0721 
0.0421 

0.441 
0.439 
0.419 
0.322 
0.118 

0.0237 

0.00353 

Potential distribution due to uniform electrode current density.--The potential 

distribution due to constant ill = it: gives an estimate of the maximum possible potential 

variation on an electrode. In the cylinder electrode system, La / ro alone governs this 

potential distribution. Figure 5 shows the potential distribution along the electrode and the 

insulator for small values of La / roo Note that the primary resistance provides an initial 

estimate of the potential in the neighborhood of the electrode. The potential is bowed 

upward on the electrode to counteract the tendency for a high current density near the 

electrode edge (as evidenced in the primary current distribution in figure 2). The maximum 

potential variation from one point to another in the solution adjacent to the electrode is 

displayed in figure 6. We next examine the behavior for small and large aspect ratios. 
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As 10/ ro approaches zero, one can imagine four regions in the solution in which the 

potential due to constant ill varies in distinctly different fashions. For distances of 0(10) 

from the electrode surface, the electrode appears to have no curvature and finite width. 

When one moves farther out into solution--to distances between 0(10) and OCro)--the 

electrode still appears to have no curvature, but now appears as a line source. Here, the 

potential varies logarithmically according to equation 15. When one moves still farther 

out, to distances of O(ro), the electrode appears as a ring source. Consequently, the full 

ring-source expression, equation 13, is needed to determine the potential distribution. 

Finally, for distances much greater than ro' the electrode appears as a point source, and 

equation 16 governs the potential distribution. Such regions also exist for the primary and 

secondary distributions for small 10 / ro; only the detailed distribution in the first region, of 

0(10)' is different 

With similiar approximations to those used in deriving equation 34, the potential 

variation on the electrode and insulator for distances of 0(10) and small 10 / r 0 can be 

expressed as 

~o -4trRlCro =!{2-2In2+(~-I)lnl~-I-(~+I)ln~+I}. (36) 
~1o n 10 ~ 10 10 

This result is pioned on figure 5 and nearly coincides with the curve for 10/ ro=O'Ol. The 

potential difference between the center and the edge of the electrode follows from equation 

36. The limit of (2/ n)ln2 is shown on figure 6. These thin-strip limits, including 

equation 36, also apply to a strip electrode embedded in an infinite plane. 

For large 10/ ro' there are six fairly distinct regions on the electrode cylinder and 

insulator where the potential varies in distinct fashions. From the middle of the cylinder to 

an edge distance much greater than ro' one expects the potential distribution to be fairly 

flat, like that due to an infinitely long cylinder electrode. For distances of OCro) from the 

edge, the electrode appears as a semi-infinite cylinder electrode. At edge distances much 

less than ro' the edge region appears as a large planar electrode adjacent to a large 
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insulating plane. On the insulator, for distances from the edge much greater than '0 but 

much less than 10 , the electrode appears as a semi-infinite line source. For distances from 

the edge of 0(10)' on the insulator, the electrode appears as a finite line source. Finally, at 

distances much greater than 10 , the cylinder behaves as a point source. Figure 7 shows the 

potential distribution on the electrode for large values of 10 / '0. Figure 8 covers the edge 

region, on both the electrode and the insulator. 

At large 10/ '0' the portion of the integrand where z - z'»'o provides the major 

contribution to the integral in equation 17. To obtain an estimate for the potential on the 

electrode surface and insulator, one can approximate this integral as: 
I((l> 1 10 dz' 

o - J --;======== 
ic'o - 2 -10 ~(z - Z,)2 + 4(/3'0)2· 

(39) 

Here the ring-like behavior for finite (z - z') /'0 is lumped into an adjustable constant {3. 

Evaluation of the above integral yields 

I((l>o I {1n[lo - z ~(10 - Z)2 1] I [10 + z 
ie,o = 2 2{3,o + 2{3,o + + n 2{3,o + (40) 

This equation, valid on both the electrode and the insulator, equals In(lo / {3,o) at the 

middle of the electrode and 0.Sln(210 / {3,o) at the electrode edge and approaches 10/ Z far 

from the electrode. Computer-generated results for potentials at the center of the electrode 

were used to fit a {3-value of 0.44. 

On the electrode away from the edge, equation 40 reduces to: 

~o -In(JL) = .!.In(l- z:). 
le'O {3,o 2 10 

(41) 

This limiting form is convenient to plot on figure 7, although it approaches minus infinity 

at the edge itself. [Since we treated the primary resistance R in the limit of large 10/'0 by 

reference to the case of a uniform current density, it is appropriate to note that the potential 

value at the middle of the electrode corresponds to 4nR I('lo=ln(lo / {3,o). However, 

integration of equation 41 to obtain an average value of the potential gives 4nR 1('10 ::-1 
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+In(210 / f3ro). This would pennit improved agreement for the asymptote for large 10/ ro in 

figure 4.] 

The potential difference between the center and the edge of the electrode also 

follows from equation 40: 

(48) 

Figure 6 shows this asymptote along with numerically generated potential differences. The 

value of f3 =0.44 works well here also. 

For distances from the edge of O(ro), equation 40 reduces to 

~o _!In( 21
0 )=!In[1.=..:.+ (/0 _Z)2 +l} 

icro 2 f3ro 2 2f3ro 2f3ro 
(43) 

This limiting form is convenient to plot on figure 8, showing the edge region. Although 

equation 43 reproduces the potential at the edge very well, it fails to show that the potential 

profile actually has an infinite slope at this point. This discrepancy occurs because the 

integrand in equation 39 poorly approximates the variation in the ring source G· (I,Z) for 

Z close to zero. This is not a problem away from the edge, on either the electrode or the 

insulator, or at the edge itself because f3 can compensate for the contribution of the small-

Z region. 

Correction for the approximation of the integrand for edge distances much less than 

ro, i.e., where the electrode-insulator region appears planar, shows that the potential on the 

surface takes the form 

~ 0 _! In( 2/0 ) + 10 - z + 10 - Z In 10 - z = 0.4802 10 - z . 
icro 2 f3ro 4/0 1rro ro ro 

(45) 

This equation is in good agreement with the numerical results for large 10/ ro in the edge 

region and reproduces the infinite slope at the edge, but those results suggest that the 

coefficient on the right might be 0.5 or 0.52 instead of 0.4802. 

Secondary current distribution.--The secondary current distribution takes into 

account finite electrode kinetics and ohmic resistance in solution. Thus, in addition to 

21 



geometric parameters which govern the primary distribution on an electrode, additional 

kinetic parameters determine the secondary current distribution. For small surface 

overpotentials, the linear-kinetics approximation can be invoked, introducing the 

polarization parameter J r as a governing parameter. 

The secondary current distribution on the cylinder electrode for linear kinetics is 

dictated by the geometric ratio 10 /'0 and either Jr or J" where J, is a polarization 

parameter formed as in equation 6 but with '0 replaced by 10 • Figure 11 illustrates the 

parameter space; large Jr is toward the right, large J, is toward the top, and large 10/'0 is 

toward the upper left. This diagram can help us visualize where certain asymptotic results 

apply. 

Figure 12 portrays the results for the secondary current distribution for 10/'0=1. 

Since Jr represents the ratio of ohmic resistance to kinetic resistance, the current 

distribution approaches the primary distribution as Jr approaches infinity and ohmic 

resistance predominates. Conversely, the current density becomes uniform over the entire 

electrode as Jr approaches zero and electrode kinetic resistance predominates. Current 

distributions for finite Jr fall between these two extremes. 

Ni~ancioglu and Newman10 and Smyrl and Newman11 examined how the 

secondary current distribution approaches the primary distribution for large polarization 

parameters (the upper right in figure 11). They showed that when ohmic effects dominate, 

the current distribution deviates from the primary current distribution only in a small edge 

region of order (J', where (J = RT1( / (a
tJ 
+ aJFio' In this edge region, the current 

distribution is relatively independent of the details of the cell's geometry. Away from this 

edge region, toward the center of the electrode, the current distribution approaches the 

primary distribution. In the cylinder-electrode problem, there are two important geometric 

distances. The current distribution will be relatively independent of cell geometry in the 

edge region only if (J is small compared to both '0 and 10 , so that the edge region is 
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approximately planar and constitutes only a small part of the electrode. Thus, both lr and 

I, must be large. 

Ni~ancioglu and Newman lO solved the edge-region problem for an electrode

insulator intersection angle of 180 degrees. In terms of the cylinder-electrode problem, the 

current distribution takes the form 11 

(49) 

in the edge region, where ¢ is a universal function of the stretched edge variable x / (J. At 

the electrode edge, ¢ equals 1.75; as the stretched variable x / (J approaches infinity, ¢ 

approaches the edge-region primary distribution given in equation 4. Figure 13 shows the 

secondary current distribution for 10 / ro=1 plotted as suggested by equation 49 and 

approaching a universal function for large l r • 

Since ¢ equals 1.75 at the electrode edge, the ratio of the edge current to the 

average current can be written as 

iedge -----'0. 1. 75Po fJ I d ~ Voir as ,---+ 00 an l r ---+ oo, 
i.vg i.vg Fo r 

and one can apply the results from figure 3. For example, for vanishing 10/ ro' 

iedge 1. 75.../2 'T I d 10 0 -.----+ V'" as ,---+00 an ----+. 
~ n ~ 

(51) 

(53) 

As 10/ ro nears zero (the lower right in figure 11), the secondary current distribution 

approaches the thin-strip limit, leaving I, as the only governing parameter. The thin-strip 

limit has been treated by Wagner12 and by Parrish and Newman.13 Figure 14 illustrates 

how the current distribution becomes a function of I, alone in the limit of small 10 / roo 

Finally, we can define the demarcation, sketched on figure 11, separating the region 

of uniform current distribution from the rest of the parameter space. With a nearly uniform 

current distribution, the potential difference between the solution adjacent to the center and 

the edge of the electrode is given by .1<1>0' plotted in figure 6. The linearized Butler-

Volmer equation 5 then yields the ratio of current densities at the edge and center of the 

electrode: 
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(54) 

The low-aspect-ratio limit on figure 6 gives 1 +(2In2)JI / n for the right side of this 

equation. For the current density to vary by less than one percent from the minimum at the 

center of the electrode to the maximum at the edge, we should require JI to be less than 

roughly 0.02, and this is plotted on figure 11. The high-aspect-ratio limit on figure 6 gives 

1 +O.5Jr In(/o /2{3ro) for the right side of equation 54. Thus this equation, together with its 

asymptotic forms, gives the boundary between uniform and nonuniform current 

distributions on figure 11. 

As 10/ ro approaches infinity (the upper left in figure 11), one might suspect that 

only Jr governs the secondary current distribution in the electrode edge region. However, 

numerical results show that 10/ ro also influences the current distribution, and indeed such 

large-aspect-ratio electrcxies have both curvature and length. Equation 51 illustrates this 

point, for large Jr. Figure 3 shows Po / i.vg..[r; increasing as 10/ ro approaches infinity. 

Thus, for large Jr , iedgc / iavg increases as 10/ ro approaches infinity. The line of 

demarcation in this region of figure 11 also shows a dependence on 10 / roo 
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Nomenclature 

aj current-function coefficient 

B(,) ring-source correction coefficient 

Ij current function 

F dimensionless ring-source correction function 

F Faraday's constant, 96,487 C/equiv 

G dimensionless ring-source potential 
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G * dimensionless ring-source potential, including F 

i current density, Ncm2 

ic constant current density on the electrode surface, Ncm2 

icenler current density at the electrode center, Ncm2 

ill current density on the electrode surface, Ncm2 

i.vg average current density on the electrode surface, Ncm2 

iedgc current density at the electrode edge, Ncm2 

io exchange current density, Ncm2 

I, polarization parameter containing 10 

Ir polarization parameter containing r 0 

K(m) complete elliptic integral of the second kind 

Ko modified Bessel function of the second kind of order 0 

10 electrode center-to-edge distance, em 

m dimensionless elliptic integral variable 

P2j even Legendre Polynomial of order 2j 

Po primary-distribution asymptotic edge-region coefficient, Ncm 1.5 

r radial distance coordinate, cm 

TO cylinder radius, cm 

R primary resistance, n 
R universal gas constant, 8.3143 Ilmol-K 

R * dimensionless radial distance coordinate 

T absolute temperature, K 

V electrode potential, V 

x distance from the electrode edge, cm 

z axial distance coordinate, cm 

z' axial location of ring source, cm 

Z dimensionless axial distance from ring source 
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aa,ac kinetic transfer coefficients for the anodic and cathodic reactions 

f3 dimensionless parameter characterizing ring-source behavior near the ring 

, separation-of-variables constant 

1C conductivity, S·cm-1 

(J edge region where finite electrode kinetics limit the electrode current density for 

high polarization parameters, em 

dimensionless function for secondary current distribution in the edge region for 

high polarization parameters 

<1> electric potential. V 

<1>0 electric potential on the electrode or insulator, V 
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