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Medical Imaging, beyond the presentation of X-ray images in photographic plates, has 
received an important boost in the last two decades with the development of new technologies 
and their application to medical diagnostics: X-ray Computer Assisted Tomography, 
Ultrasound Imaging, Positron Emission Tomography. Single Photon Emission Tomography 
and Magnetic Resonance Imaging, just to mention those modalities in wide spread use in the 
clinic. Research is continuing in both the instruments and in the algorithms used to extract 
useful information from them and new generations of "scanners" are coming to the market with 
regularity. The final objective of those instruments and algorithms is, in general, the 
presentation of an image to a physician which is useful in establishing a diagnostic. There is 
also a substantial amount of research on how best to present those images and on how to 
extract features from the images to assist the physician's task. Ultimately, one could conceive 
of an automated image scanning machine that only alerts a physician when some characteristics 
of the image indicate a certain possible abnormality. The latter is still a remote goal, but 
substantial inroads are being made into "segmenting" medical images into its component parts 
in a meaningful way. A current example would be the extraction of all the contours of a 
particular organ from a set of Magnetic Resonance Imaging (MRI) contiguous image "slices" 
and then presenting that organ as a separate entity in a three-dimensional visualization screen, 
which currently can be done more or less automatically at a number of medical institutions for 
specific situations. 

Segmentation is one of the areas of image analysis that requires some way of representing 
image features mathematically. Two more research areas which have a similar requirement are: 
Finding a specific feature or structure in an image by computer and the description of 
anatomical "prior" knowledge to aid in the reconstruction of tomographic data. So, the 
question is how does one represent image features mathematically? This article does not 
attempt to answer that question in a general way, but will focus, instead, on the use of a natural 
representation in terms of Visual Response Functions (VRFs), based on the pioneering work 
on multi-scale vision receptive fields of J.1. Koenderink, at the University of Utrecht With the 
exception of the work being carried out by S.M. Pizer, J.M. Coggins and associates at the 
University of North Carolina, Chapel Hill, we feel that the medical imaging engineering 
community-in the U.S. and abroad has not been sufficiently exposed to the use of 
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Koenderink's ideas on image analysis. This article is intended to begin providing a remedy for 
that and it describes work that some of us have published elsewhere, as well as new work that 
can be useful for the representation of "prior" information in image reconstruction. 

SCALE SPACE AND VISION RECEPTIVE FIELDS 

The concept of scale and the origin of the operators needed to represent images in a 
multi-scale environment have been described in substantial detail in [1,2] using concepts of 
differential geometry. The following is a practical summary of the ideas presented there. The 
concept of scale corresponds directly with the intuitive idea of the meaning of that word: Some 
things have a large scale, i.e., their structure is gross and their frequency spectrum contains 
mostly low frequencies. Other things have a small scale, i.e., their structure is fine ahd their 
frequency spectrum contains high frequencies. When observing an image, however, the 
smallest and largest scale are well defined and provide a frame of reference for the meaning of 
scale in that image: the smallest scale, the inner scale, has a lower bound determined by the 
size of the picture elements (grain size in a photographic rum, element size in a CCD detector, 
etc.). In the absence of degrading factors that can introduce correlation between elements, that 
lower bound becomes the inner scale. The largest scale, the outer scale, has an upper bound 
determined by the size of the image itself. In practice, that upper bound is usually the outer 
scale. The image can only contain features with scales between the inner and outer scales. 

An image can be observed at different scales: one can focus one's attention to some small 
details in a corner, for example, or look at the shape of the large objects that contain those 
details. We need an operator (or set of operators) that allow an observer (human or machine) to 
move in "scale space" and extract features that appear in the image at different scales. A scale 
parameter s is defined as a scalar quantity corresponding to the scale at which an image is 
being observed and scale space is defined as a family of images generated in a continuous 
manner from a given image L by means of convolution with a suitable spatial kernel [3,4,5,6] 
of size determined by the I-dimensional parameter s. 

The optimal linear kernel G(,f,s) for front-end vision blurring can be found by 
considering some fundamental requirements: . 

I - Linearity: allowing for superposition of input stimuli. 

2 - Spatial shift invariance: follows from the assumption that there should be no preferred 
location within the field of view. The operator that transform the image when we increase scale 
has to be a convolution with some suitable spatial kernel. 

3 - Isotropy: there should not be a preferred direction. 

4 - Scale invariance: There should be no preferred scale. 
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The above conditions lead necessarily to the Gaussian kernel 

(1) 

where D is the dimensionality of the image space. 

One very important characteristic of the Gaussian kernel ,is that it is the only kernel that 
leads to monotonic destruction of detail under repeated blurring. Gaussian blurring is a causal 
process, no spurious resolution is created, i.e., no new details will appear at a given scale s 
that did not exist at smaller scales. 

The Gaussian kernel (1) is the Green's function of the isotropic diffusion equation. In 
two dimensions that is 

J 

dL ;PL iPL 
-=--+-as a2x a2y (2) 

and the process of going up in scale space is easy to visualize if we consider L to be a heat 
distribution at time t = 0 in a metal plate, for example, and with the passage of time (analogous 
to increasing s) the heat distribution becomes more and more uniform until the temperature is 
constant everywhere in the plate. 

The above front-end vision formulation is very elegant but suffers from at least one 
drawback when compared to the way human vision appears to operate. When a human looks 
at a large scale object in an image, for example, the edges of that large object may appear 
perfectly sharp while the convolution of an image with a Gaussian kernel of large s will result 
in blurred edges .. In order to remedy this problem, work is being carried out in several research 
groups based on the concept of an anisotropic diffusion equation, fIrst described by Perona and 
Malik [7], to replace (2). 

The Gaussian kernel (1) is not the only solution to the diffusion equation (2). Partial 
derivatives\of (1) are also solutions and the methodology of image analysis in scale space has 
been extended to incl~de partial derivatives of (1) of different orders as useful kernels in image 
analysis. A scaled differential operator in two dimensions can be described as 

(3) 
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The effects of the Gaussian kernel (1) and the differential operators (3) operating on an image 
show a remarkable resemblance to the processing occurring in human vision in the connections 
between the retina and the fll'st layer of ganglion cells behind it. Receptive fields are circular 
areas of different sizes in the retina whose rods and cones are connected to a single ganglion 
cell. The latter responds to light intensity or to derivatives of light intensity up to perhaps 4th 
order at a scale corresponding to the circle size. Hubel [8] has written a highly recommended 
book on the subject. Regarding the operation of differentiation of an image by convolution 
with a differential kernel (3), it should be pointed out that the spatial integration effect of the 
convolution operation more than compensates for the noise increase inherent in the 
differentiation of noisy images, so that the outcome is well behaved even to high orders[9]. 
Because of the similarity of (1) and (3) to the functions governing front-end human vision, we 
shall call those kernels Visual Response Functions (VRF's). 

lNV ARIANT VISUAL RESPONSE FUNCTIONS 

In extracting information about a specific feature from an image, we do not want, in 
general, the results of the operation to depend on the orientation of the feature. We could say, 
for example, that the "edgeness" or "cornerness" of a specific element in an image should not 
change if the element is rotated. Bearing in mind that in image analysis we need to use a 
coordinate system, we will be interested in combinations of VRF's that are invariant under 
rotation in the chosen coordinates. An infinite number of invariant VRFs can be generated with 
the tools of tensor calculus and the derivation of a number of interesting VRFs up to third 
order is shown in detail in [1]. It is also shown in that publication that there are five irreducible 
invariants of second order from which all the other invariants of the same order can be formed. 
For the purposes of this paper, we shall examine several invariant VRF's (irreducible or not) 
whose application to image representation and analysis is evident. Before doing that, however, 
we have to establish a number of concepts which will become particularly clear when 
discussing the'specific examples. We will restrict the discussion to 2-dimensional images, 
although a generalization to three dimensions is straight forward. 

PRELIMINARY CONCEPTS 

The image L: We will consider the image L as being given by a surface above the (x,y) 
plane whose height at each point corresponds to the intensity at that point. In this way, we can 
talk about mountains, valleys, etc. 

Isophotes: This are lines of equal intensity, corresponding to the familiar lines of equal 
elevation in topographical maps .. 

Summation convention: We use the Einstein convention, which implies summation over 

4 

• 



• 

Notation in Cartesian coordinates: Subscripts following L imply the operation of 
convolving the image L with the Gaussian derivative kernels of (3); in two dimensions, i and 

. a~ a~ 
j can each take the values x and y. For example, Lji = :i2 + :i2' 

. oX oy 

The (v, w) gauge coordinates: VRF's are local in nature, i.e., they gather information over 
(~ . an image region with size determined by the scale s. It is often convenient to use a coordinate 

frame (v, w) which is a rotated version of the (x,y) frame, with a rotation angle that depends 
on the image properties at the point P in whose neighbourhood we are interested. Particularly 
useful is the frame in which the w-axis is along the gradient of the image at point P, Le., along 
the direction of steepest ascent. Then, the v-axis is tangent to an isophote at point P. . 

Homogeneity of degree n: As 1l:sed in this work, the term indicates behaviour of an 
invariant VRF under multiplication of image values by a constant. For A = constant, we say 

that a VRF given by teL) is homogeneous of degree n in L if 

t(AL) = A. II t(L). (4) 

For example, if· L ~ AL, then LjLj ~ .1,2 LjLj. The invariant VRF LjLj is homogeneous 
of degree 2. Homogeneity describes how the result of applying a particular invariant VRF wil 
be affected by a uniform change in illumination, for example. 

General intensity transformations: Florack et aI, in [10], describe in detail the behaviour 
of a specific form of the five second order irreducible invariant VRF's that allows a clear 
visualization of what are the effects of operating on an image which suffers an intensity 
transformation of a more general nature than the simple multiplication by a constant described 
above. The particular transformations considered are: 

1) The intensities L are transformed into a new set 

L = 'teL) with ~ > O. (5) 

An example of this transformation would be when the illumination on an image is 
increased non-uniformly, with the new intensity at a point P depending only on the original 
image intensity at the same P. The condition on the derivative insures that the change in 

illumination is reversible, Le., going back from L to L is single valued. For this case, very 
interesting results are obtained for first and second order VRFs: 

(6) 

(7) 
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where the primes imply derivatives with respect to L. We will make use of those results 
below. 

2) The intensities L are transfonned into a new set 

L=a+bL, (8) 

Le., the original intensities are multiplied by a constant and a "pedestal" is added. We note 
that this case is included in case 1). As we shall see below, however, an image that undergoes 
the less gene(al transformation (8) can be analyzed by one additional VRF with characteristics 
that are easy to interpret 

Zero crossings: The zero crossings. of some VRF's playa significant role in image 
representation. We examine here what is the general effect of intensity transfonnations on the 
location of zero crossings of a VRF by looking at one example. Let's consider the Gaussian 

Laplacian operator Lii whose zero crossings are often used as an edge' finder (more on this 
below). We start with (7), 

L- L '+L2" ii = ii'r ;'r (9) 

and consider first the case in which the intensities are transfonned by (8). Then, replacing into 
(9) we get 

iii =bLii 

and the locus of points where Lii = 0 will also be the locus of points with iii = O. 

For the more general transformation (5) the result is 

f L2" 
£Jji = i'r 

(10) 

(11) 

. at the locus of Lii = O. Thus, the zero crossings of Lii may shift significantly under the more 
general intensity transfonnation, but the effect will depend on the characteristics of the image, 
the scale s and the form of the transfonnation. Since VRF's are local operators, the general 
transformation (5) can be approximated by a transfonnation of the type given by (8) in a region 
surrounding the point of interest at a desirable scale. so that the zero crossings of the Gaussian 
Laplacian are useful in defining some local features of an image. even if the illumination 
changes substantially. 

SOME INTERESTING VRF'S 

In order to study the behavior of VRF's when operating on an image. we have devised a 
very simple phantom. shown in Fig. 1. It consists of a series of rectangles and ellipses of 
different intensities placed in a background of 20% intensity. surrounded by an elliptical ring of 
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Reg. 10 

Reg. 1 Reg. 2 

Reg. 3 Reg. 4 

Reg. 5 Reg. 6 

Reg. 7 Reg. 8 

Reg. 9 

Relative intensities: 
Reg.1: 100% Reg.2 : 40% 
Reg. 3: 80% Reg.4: 60% 
Reg.5: 80% Reg. 6: 60% 
Reg. 7 : 100% Reg.8: 40% 
Reg. 9 : max 90% Reg. 10: max 45% 

Fig. 1 - Simple reference phantom to be used to demonstrate the effect of different Visual 
Response Functions. 
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100% intensity. Two Gaussian regions are also included. The relative intensities of the 
different elements are shown in the figure. The image contains Poisson noise corresponding to 
a total of 1()6 photons. 

The VRF's that we shall examine here are members of the second order irreducible 

invariants, in two different representations: in cartesian coordinates and in (v, w) gauge 
coordinates. A third representation in gauge coordinates which is most appropriate to study 
intensity transformations will also be considered. Each of these three representations is 
complete in the sense that any member of one representation can be generated in terms of the 
complete set of members of any of the other representations. In the listing of each of the 
representations, the invariants that we shall examine in this paper are in bold characters. 

1) In cartesian coordinates, J == {L,LjLj,LjLijLj,Lj/,LiiLji}' 

a) The image L: Observing the phantom of Fig. 1 at different scales corresponds to 
convolutions of the image with Gaussian kernels with different parameters s. The results are of 
a familiar nature but will be presented along with the description of other VRF's to help in 
understanding their effects. 

b) The Gaussian Laplacian Lii : The effect of this kernel is to extract a function that is 
closely related to edges. In particular, the zero crossings of this kernel have been used for edge 
detection [11]. We note, however, that transforming the operator to gauge coordinates gives an 
interesting insight on what the zero crossings actually yield. 

(12) 

The invariant - Lvv yields the isophote curvature, to be discussed further below. If we 
Lw 

/' 

define an edge as the locus of points of inflection defined by the vanishing of the second 

derivative of the image along its gradient direction, i.e., Lww= 0, than the zeros of Ljj will defme 
that edge approximately only if the isophote curvature is very small at the point of interest. For 

that reason, the Lii edge finding filter often fails as an edge finder at small indentations[I] . 

Figure 2 shows the image L, Lii and the zero crossings of Lii superimposed on L at two 
different scales, s = 1.65 pixels (left column) and s = 4.48 pixels (right column), representing a 
small scale and a medium scale for the elements of the phantom. 

A number of observations can be made from Fig. 2. First, we see that the zero crossings 

of Lj; behave quite well as edge finders in spite of the sharp edges of the rectangular sections 
and that the shape of the edges found is basically independent of the intensity of the elements, 
to the extent that the element intensity is not affected by statistical noise. In fact, the intensity 
transformation in going from Region 1 to 2, for example (labels on Fig. 1), is of the type 
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Fig. 2 - Top: the image L seen at two different scales, 0'=1.65 and 4.48 pixels. Middle: The 
Laplacian operator applied to the reference phantom, at the same two scales. The zero level for 
these two images is the background grey. Bottom: The zero crossings of the Laplacian operator 
superimposed on the the top images. 
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described by (8) and we have already seen that, in that case, zero crossings are independent of 

intensity. We also note that, at small scales, the zero crossings of Lii may bring out features 
due exclusively to noise and that edges in cases of elements that do not have abrupt bounds 
(like the Gaussian elements in Fig. 1) may be strongly distorted in the presence of noise. At 
higher scales, though, the effects of noise become less obtrusive. 

At large scales, the L and Ljj operators yield results that appear to be too removed from 
the original image to be of much use. However, Pizer [12] is working on a description of 

shape based on medial axes, obtained from the loci of maxima of Lii as a function of s which 
makes use of all scales. Research on segmentation of medical images is now underway [13] 
that can be based on following the maxima of L down scale space, for example, starting from 
an adequately large scale. 

The complete range of scales is also being considered as a way to represent prior 
information in the iterative reconstruction of tomographic images. In the case when only the 
geometrical properties (but not the intensities inside specific features) of the "prior" image are 

to be represented, the zero crossings of Ljj (among other VRF's) can be used to convey feature 

shape information [14]. Figure 3 shows a cut through scale space of the zero crossings of Lii 

for the phantom of Fig. 1. As s increases, the closed loci of Lii = 0 at fixed s become closed 
surfaces in the 3-D scale space. An iterative Bayesian reconstruction of noisy tomographic 
data using relative noise-free prior information given in the form of Fig. 3, for example, can 

proceed by penalizing a reconstruction whose Lii = 0 loci in some range of scales are 
sufficiently different from the prior values. At the early iteration steps, when the image 
estimates do not have much detail, the range of interest may be from large values of s to some 
intermediate values. As the iterative process continues, the penalizing can be extended or 
shifted to lower values of s . 

c) The deviation from flatness LjjLjj : This invariant yields an image whose brightness 
is proportional to the deviation from flatness in the original image. It is interesting to remark 
that a flat plane that is inclined with respect to the vertical is found to be flat by this VRF. In 

practice, it may be more useful to consider the form ~ LjjLjj , which is homogeneous of order 

1/2, making it less sensitive to illumination than in the original form. Figure 4 shows the 
(square root of) deviation from flatness of the image L at scales s = 1.65 pixels (left) and 4.48 
pixels (right). The tops of the features are indicated as being flat at the smaller scale, but not so 
at 4.48 pixels, as expected. The inclined planes at the edges of the features are found to be 
reasonably flat in both cases, more so in the smaller scale. 
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Fig. 3 - Behavior of the zero crossings of the Laplacian operator as the scale parameter s 
increases. 
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2. Representation in gauge coordinates, appropriate for the investigation of behavior 

under intensity transfonnations: H = {L'L"" Lvv , Lv", ,L",,,,}. 
L", L", L", 

a) The edgeness or gradient magnitude Lw =.[iJ,; = ~ LjLj . This is equivalent to the 
Canny edge detector for steep edges [15, 16]. It yields the magnitude of the slope of the 
tangent plane at a point P. It is homogeneous of degree 1, i.e., the edgeness of a feature will be 
proportional to the local intensity and, in that respect, it behaves quite differently from the zero 

crossings of Ljj • Figure 5 shows the edgeness of the phantom of Fig. 1 at the same two scales 
indicated for Fig. 2. 

b) The isophore curvature - Lvv . This invariant yields the curvature of isophote lines 
Lw 

(lines of equal intensity) at all points in the image. This VRF is independent of transfonnations 
of the general type given by (5). Under those changes of illumination, the shapes of the 
isophote lines will not change, although the absolute intensity represented by a particular line 
will change. Figure 6 (left) shows the image L at a scale s = 3.49 pixels on which isophote 
lines corresponding to increments in brightness of 10% of maximum have been superimposed. 

Also shown (right) is an image of - Lv. with the same lines superimposed. It is evident that 
Lw 

the isophote curvature image is bright at the points of high isophote curvature, independent of 
whether a particular feature is at full intensity or not. It must be pointed out that this invariant 

has to be used with some care: The denominator Lw is the magnitude of the gradient along the 
direction of maximum ascent, which goes to zero at local maxima or minima of the image. The 

numerator Lvvshould also go to zero at those same points, with a result that is indeterminate. In 
practice, in the presence of noise, large positive and negative values appear in the results of the 
convolution at those points, visible in Fig. 6 as spots of maximum brightness and darkness. In 
using this invariant, it may be necessary to establish a "degree of confidence" factor in the 

determination of isophote curvature, based on the value of Lw ' 

c) The flow line curvature - Lvw This VRF generates an image whose brightness 
Lw 

coresponds to the curvature of the flow lines generated by the image gradient vector field. 
Those flow lines are perpendicular to the isophotes being crossed. The results for the image L 
at s = 3.49 are shown in Fig. 7 (left) . This VRF is also invariant with respect to 
transfonnations defined by (5), so that the left and right sides of Fig. 7 (left) are symmetric, 

except for noise effects. The somewhat unstable behavior at points Lw = 0 is also evident in 
this VRF. Also in Fig. 7 (right) is the image L with the zero loci of flow line curvature 
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Fig. 4 - The deviation from flatness operator applied to the reference image at two scales, cr=1.65 
and 4.48 pixels. Flat regions appear close to the zero background level. 

Fig. 5 - The edgeness operator at cr=1.65 and 4.48 pixels. 
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Fig. 6 - The isophote curvature operator at a scale of 0'=3.49 pixels. The left image shows 
isophote (isointensity) lines superimposed on the reference phantom L at that scale. The right 
image shows the isophote lines superimposed on the results of applying the isophote curvature 
operator in the reference phantom. The image is brighter at places where the isophote lines are 
most curved. Middle grey is zero curvature. 

Fig. 7 - The flow line curvature operator at a scale 0'=3.49 pixels. The left image is the result of 
applying the operator to the reference phantom at that scale. Zero flow line curvature is middle 
grey. The right image shows the zeros of the flow line curvature superimposed on the image L at 
that same scale. 
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superimposed. Those loci correspond to points in which the flow lines are straight. This is 
most evident in the centers of the various elliptical or rectangular features, except when 
disturbed by noise. Above and below, and to the right and left of the those centers, the flow 
line curvature alternates sign as the flow lines bend outwards from the center of the features. 

d) The relative variation of isophote density along a flow line Lww . If we follow a 
~ 

flowline in the ascending direction towards the center of one of the smoothed elliptical features 
of L, for example, the density of isophotes will start growing as we approach an edge, will 
reach a maximum at the edge and decrease again as we approach the top. The change in that 

isophote density is described by Lww , with the particularity that the results are relative to the 
Lw 

intensity of the feature and insensitive to pedestals, i.e., Lww is invariant to transformations in 
Lw 

the intensity scale of the more restricted type described by (8). This VRF also is sensitive to 
points in which the denominator approaches zero, as was the case in the two previous VRF's. 

It is interesting to note that the loci of Lww = 0, or what would be the same Lww= 0, are another 
Lw 

type of edge finder which may have advantages over Lji, since it is not sensitive to the 

curvature of the isophotes. Figure 8 shows Lww (left) and L (right) at s = 3.49, with the loci 
Lw 

of Lww = ° superimposed. 
Lw 

3. The set of 5 irreducible invariant VRF's of second order can also be represented as 

1== {L, L!,L •• L!"LvwL!,LwwL!}. and we shall describe one of them here. 

a) The cornerness LwL!: This VRF is the product of isophote curvature and the third 
power of the gradient strength in gauge coordinates. One can expect that both components are 

important in corners and, therefore, L •• L! acts as a corner detector. This invariant is 
homogeneous of degree 3, Le., it is quite sensitive to illumination. Fig. 9 shows the results of 

applying -L •• L! to the image L at a scale s= 1.5 pixels. It appears that corners are best 
detected at relatively small scales. 
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Fig. 8 - The relative variation ofisophote density along a flow line operator at 0'=3.49 pixels. The 
left image is the result of applying that operator to the reference phantom. Zero variation is middle 
grey, which has been made prominent by a black line overlay. Right image, the same overlay place 
on the image L at the same scale. 

Fig. 9 - The comerness operator at 0'=1.5 pixels. Comers are clearly indicated by this operator. It 
is very sensitive to the intensity of the object. 

16 

r 



The last VRF that we will describe here is not one of the irreducible forms and it acts as 

a patch classifier: the umbilicity U = L~ -1. In order to describe this VRF, we start by 
L;JLJ; 

discussing the concept of curvature at a point P in the surface of an image, which can be . 
defined as the reciprocal of the radius of a circle that fits in the neighborhood of the point 
considered. The directions of maximum and minimum curvature (the principal curvatures) at a 
point are always at right angles with respect to each other. If both curvatures are positive, we 
have a "mountain", if both are negative, we have a "hole". If the principal curvatures are of 
opposite sign, we have a saddle point. Then, Gaussian curvature is the product of the two 
principal curvatures, so that regions with positive Gaussian curvature are "mountains" or 
"holes" (elliptical areas), and regions with negative Gaussian curvature are saddle points 
(hyperbolic areas). Umbilicity, then, gives the product of the Gaussian curvatures. The loci of 
U = 0 separate the elliptical from the hyperbolic areas. Mountains or holes are separated from 
saddle point areas by parabolic lines. In some simple cases, the parabolic lines can act as edge 
finders, but it is best to consider those lines as separating patches of different geometric nature. 

The (-1) in the definition of U is not relevant to the nature of the VRF. This invariant is 
homogeneous of order 0, i.e., it is not sensitive to uniform changes in illumination. Fig. 10 
(left) shows the umbilicity of L at a scale s= 2.72 pixels and the image L (right) at the same 
scale with the U = 0 loci superimposed. 

DISCUSSION AND CONCLUSION 

The above is a short introduction to the representation of images by Visual Response 
Functions. The aim has been to show how some specific characteristics or features of an image 
can be found by a "machine observer". Edges, flat regions, regions with saddle points, comers, 
etc. can be found by appropriate convolution of the image with the VRFs at a scale such that 
noise effects are minimized and/or the desired features are emphasized, followed by a selection 
operation, usually non-linear, like a thresholding. In the particular case of medical images, the 
zero crossings of the Gaussian Laplacian and of the Umbilicity operators are being investigated 
as descriptors of prior information for the following specific case: In dynamic studies of the 
metabolic evolution of specific pharmaceuticals labelled with radioisotopes by Positron 
Emission Tomography of human organs , data are obtained from a patient over a number of 
consecutive time periods. The reconstruction of the data set obtained by adding all the time 
periods is often used by the physician for the purpose of defining one or more Regions-of­
Interest (ROI's). Then, the individual data at different time periods are reconstructed and 
examined successively in order to obtain the time dependence of the uptake or clearance of the 
radiopharmaceutical in the ROI's. Invariably, the reconstruction of the individual time periods is 
very noisy, since it contains relatively few photon detection events, resulting in distortion of 
organ features and high variability in the data. Could the geometrical knowledge obtained 
from the reconstruction of the sum data help in the reconstructions of the individual time 

17 



Fig. 10 - The umbilicity operator at a=2.72 pixels. Left image is the result of applying the 
operator to the reference phantom. The right image shows the zero crossings of the umbilicity 
superimposed on the reference phantom L at that same scale. 

18 



period data? In that particular case, the kind of geometrical knowledge carried by the zero 
crossings of those two invariants, for example, can be used as prior information in a Bayesian 
algorithm for the reconstruction. The fact that those VRF's are homogeneous of zero order is 
of primary importance, because we want the radioactivity measured in a ROI in the individual 
time period images to be depending only on the corresponding individual tomographic data, 
although we want the shape information from the sum image to be carried through. First results 
of this approach have been described in a preliminary paper[14]. We expect the usefulness of 
the VRF formulation for the segmentation of medical images and for detection of specific 
shapes to become evident in the future. 
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