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Solid-polymer-electrolyte Fuel Cells 

by 

Thomas F. Fuller 

Abstract 

A general transport model for polymer electrolytes is presented. 

The model is based on concentrated solution theory and irreversible 

thermodynamics. The appropriate thermodynamic driving forces are 

developed. The transport properties are identified and sui table 

experiments devised. 

® 
The transport number of water in Nafion 117 membrane over a 

wide range of water contents is determined experimentally using a 

concentration cell. The transport number of water, the ratio tm/z , 
o 0 

is about 1. 4 for a membrane equilibrated with saturated water vapor 

at 25°C, decreases slowly as the membrane is dehydrated, and falls 

sharply toward zero as the concentration of water approaches zero. 

The relationship between the transference number, the transport 

number, and the electroosmotic drag coefficient is presented, and 

their relevance to water-management in solid-polymer-electrolyte fuel 

cells is discussed. Results are compared with other data available 

in the literature and with the theoretical maximum. 

A mathematical model of transport in a solid-polymer-electrolyte 

fuel cell is presented. A two-dimensional membrane-electrode assem-

bly, is considered. Water management, thermal management, and utili-

zation of fuel are examined in detail. The membrane separators of 



these fuel cells require sorbed water to maintain conductivity; 

therefore it is necessary to manage the water content in membranes to 

ensure efficient operation. Because the equilibrium sorption of 

water between the gas phase and the polymer-electrolyte depends 

strongly on temperature, water and thermal management are interre­

lated. The rate of heat removal is shown to be a critical parameter 

in the operation of these fuel cells. Current-voltage curves are 

presented for operation on air and reformed methanol. 

The equations for convective diffusion to a rotating disk are 

solved numerically for the case where a consolute point is found 

between the concentration in the bulk and that at the surface. A 

singular-perturbation expansion is presented for the condition where 

the bulk concentration is nearly equal to the consolute-point compo­

sition. Results are compared to Levich's solution for constant pro­

perties and with his analysis of an experimental system. 

.. 
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Chapter 1 

Introduction 

1.1 Conducting Polymers and Ionomeric Membranes 

In recent years there has been extensive development of elec-

tronic, ionic, and mixed conducting polymers [1], [2]. Conducting 

polymers are a part of several commercial processes, the electrochem-

ical production of chlorine for example. The first widely used per­

® 
fluorinated ionomeric product was Nafion , introduced in the sixties. 

Since then other ionically conducting polymers with good physical 

properties have become available, and many electrochemical systems 

have been based on them. Eisenberg and Yeager [3] review the tech-

nology of perfluorinated ionomeric polymers. Ionically conducting 

polymers have sparked interest for a wide range of applications: 

solid-state batteries [4], drug delivery systems, electrochemical 

reactors for separation processes, and electrochemical sensors [5], 

to name a few. One in particular, the solid-polymer-electrolyte fuel 

cell, has seen renewed interest of late [6]. 

Ionically conducting solids are employed in several fuel-cell 

systems, such as the solid-oxide fuel cell, and the solid-polymer-

electrolyte fuel cell. One early application of perfluorinated iono-

mer membranes was the fuel cell for the Gemini space program [7]. 

Current work is focused on the development of alternative power 

sources for vehicles [8] using reformed methanol or direct oxidation 

of methanol. Appleby and Foulkes [9] provide a comprehensive review 
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of the operation of a number of fuel-cell systems, including their 

applications and the status of their development programs. Solid-

polymer-electrolyte systems have the advantage of operating at low 

temperatures and being completely tolerant to carbon dioxide. Until 

recently the solid-polymer-electrolyte fuel cell required high plati­

num loadings because of the low temperature of operation. The cost 

of the catalyst was acceptable only for specialized applications, 

such as the space program. Successful operation of fuel cells with 

low platinum loadings [10] has increased interest in the commerciali­

zation of these fuel cells. 

1.2 Solid-polymer-electrolyte fuel cells 

Figure 1 shows a typical solid-polymer-electrolyte fuel cell 

consisting of a solid-polymer-electrolyte and two gas-diffusion elec-

trodes. These fuel cells are envisioned to run on hydrogen from 

reformed methanol and air, generating about one volt at open circuit. 

The overall reaction is 

H2 + ~ 02 ~ H
2

0 + heat + electrical work. 

The gas-diffusion electrodes are polymer-bonded porous-carbon struc­

tures with platinum catalyst on the carbon surface. More details of 

the operation of gas-diffusion electrodes and their application in 

membrane fuel cells can be found in [9], [11], [12]. A thin membrane 

and two gas-diffusion electrodes are pressed together above the glass 

transition temperature of the polymer to ensure good contact between 
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Figure 1. Solid-polymer-electrolyte fuel cell 
operating on hydrogen and oxygen. 
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the polymer, carbon, and platinum. One purpose of the solid polymer 

electrolyte is to keep the anode and cathode reactants apart. There 

still must be an ionic path with low electrical resistance between 

the two. 

The hydrogen and oxygen streams are heated and humidified before 

entering the membrane-electrode assembly. Hydrogen gas diffuses 

through the porous anode and reacts at the electrocatalyst in a 

three-phase region containing polymer electrolyte, gaseous reactants, 

and a carbon matrix which supports the platinum catalyst. Oxygen 

passes through the other gas-diffusion electrode to be reduced 

cathodically. At the cathode, the hydrogen ions from the electrolyte 

react with oxygen at the electrocatalyst sites to form water. 

® 
Nafion, a copolymer of tetrafluoroethylene and sulfonyl 

fluoride vinyl ether, has many ionizable groups. Reference [3] and 

Pineri and Eisenberg [13] provide detailed information on the struc­

® 
ture and properties of Nafion . The general structure is given in 

figure 2, where m is one and n varies from 5 to 11, depending on 

equivalent weight. The incorporation of ionic groups into the poly-

mer has a dramatic effect on its physicochemical properties. 

An important aspect of the perfluorinated ionomericmembranes is 

their ability to take up large amounts of water and other solvents. 

The increase in water content is accompanied by a reduction in ten-

sile strength and resistance to transport. The water content in the 

membrane can be as high as 22 water molecules per sulfonic acid 

group. The- first few water molecules are associated with high 
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Figure 2. Structure of Nafion. The hydrogen form is 
shown, n is about 1, and m varies from 5 to 11. 
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enthalpic changes and are tightly bound. Entropic changes allow more 

water to be absorbed, but cross linking of the polymer chains 

prevents total dissolution. Hydrogen ions are the charge carriers in 

the hydrated membrane and migrate across the membrane by passing from 

one sulfonic acid group to the next. The sulfonic acid groups are 

covalently bound to the polymer backbone and do not move. 

Perfluorinated ionomeric membranes are not homogeneous on a 

microscopic scale. There are amorphous, crystalline, and hydrophil­

lic regions. The most generally accepted microscopic model of per­

fluorosulfonated membranes is the cluster-network model of Gierke and 

Hsu [14]. They envision the solvent and fixed charge sites separat­

ing from the hydrophobic polymer chain. Roughly spherical cells are 

connected by thin channels. The charge repulsion in these channels 

prevents coions from passing through the membrane. As the membrane 

sorbs more water, the cells become larger, and the conductivity 

increases. 

Because perfluorinated ionomeric membranes require sorbed water 

to maintain sufficient electrical conductivity for practical use, it 

is vital to manage. the water content in the solid polymer electro-

lyte. Furthermore, since the equilibrium absorption of water from 

the gas phase into the electrolyte depends strongly on temperature, 

water management and thermal management are interrelated. Cell effi­

ciency depends on the transport properties of the membrane and may be 

the critical factor in load-leveling devices, where the kinetics of 

cell reactions are fast [1]. 
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From the inception of the solid-polymer-electrolyte fuel cell, 

water transport was recognized as a possible problem [15]. Water 

motion is caused by a gradient in its chemical potential and by the 

movement of hydrogen ions, which is proportional to the current. For 

each hydrogen ion that moves from the anode to the cathode, some have 

estimated that about three or four water molecules are carried along 

[16], [17]. 

High current densities can result in the transport of water away 

from the anode-membrane interface at a rate that is greater than the 

rate at which it can be restored by back diffusion, or transport from 

a humidified gas stream. Consequently, high current densities could 

cause dehydration at the anode-membrane interface. Local dehydration 

can lead to a degradation in cell performance or cell failure. 

The reduction in platinum loading achieved depends on the struc­

ture of the interfacial region. The fuel cell can be optimized by 

designing interfaces with the desired catalytic and mass-transport 

properties. For the reaction to proceed, four elements are required: 

hydrogen at the reaction site, a path for the removal of electrons, 

an ionic path, and a catalyst. Good contact is made by hot-pressing 

the membrane and gas-diffusion electrodes together above the glass 

transition temperature of the polymer. Still, the utilization of the 

platinum is low, and further improvements are desired. 

In a recent review [18], Srinivasan points to scale-up, start-up 

time, and peaking capabilities as the primary concerns for developing 

fuel cells for transportation applications. 
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1.3 Objectives and Approach 

Most studies of transport in perfluorinated ionomeric membranes 

have been associated with the chlor-alkali industry. The environment 

in the separator of a solid-polymer-electrolyte fuel cell differs 

markedly from that encountered in the chlor-alkali industry. There 

is no external electrolytic solution in contact with the separator of 

a solid-polymer-electrolyte fuel cell. Water content in the membrane 

is determined by the temperature, the partial steam pressure in the 

external gas streams at the electrodes, and the current density. 

Additionally, within the electrolyte of a solid-polymer-electrolyte 

fuel cell there are only three species present: the polymer with its 

covalently bound sulfonic acid groups, water, and hydrog~n ions. In 

contrast to other applications, there are no co-ions in the separator 

of a hydrogen/oxygen solid-polymer-electrolyte fuel cell. 

The distinction of solid-polymer-electrolyte fuel cells, in that 

they have no external electrolyte, becomes particularly important in 

modeling and in the development of experimental procedures to deter­

mine the transport properties. Water is required for the polymer to 

maintain conductivity, but is transported to and from the membrane in 

the gas phase. If the water vapor is saturated there may also be 

removal of liquid water. This further complicates the mathematical 

modeling. 

The long-term goals are to improve the specific power and the 

transient response of fuel cells. An essential component in the 

development of the solid-polymer-electrolyte fuel cell is to provide 
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a set of theoretical models. These models will be used to analyze 

experimental data and will improve the design of fuel-cell systems. 

The objectives here are to establish a general transport model for 

the conduction process in ionically conducting polymers and to apply 

this model to the solid-polymer-electrolyte fuel cell. 

The model presented is macroscopic, neglecting geometric 

details. The volume elements we average over are large compared to 

the microscopic structure. The membrane is treated as a homogeneous 

continuum. Nevertheless, the transport properties can be interpreted 

in terms of the microscopic structure and processes in the membrane. 

There are numerous membrane-transport models, which will be dis­

cussed further in chapter three on modeling. The key feature of the 

model is that it is based on concentrated solution theory. In the 

membrane of the solid-polymer-electrolyte fuel cell, as well as in 

many applications of ionically conducting polymers, the concentration 

of each of the species is of the order of one molar. Coupling 

between transport phenomena is common. The distinction between sol­

vent and solutes becomes less clear, and interactions among all of 

the species are important. 

The model should be described by parameters that can be obtained 

by unambiguous physical measurements. Together with the development 

of a theoretical model, experiments must be carried out to measure 

the transport properties of the polymer electrolyte. Because of the 

unique nature of the environment of the solid-polymer-electrolyte 

fuel cell, specific experiments are needed to mimic these conditions. 
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In particular, physical properties will vary with water content, and 

this dependence must be understood. 

It was recognized early on that phenomena in solid materials can 

be described in an analogous fashion to that which has been developed 

for liquid electrolytes [19]. The characterization of a wide variety 

of electrochemical systems with a small number of fundamental physi­

cal processes allows for the use of a general model for a variety of 

diverse systems. Conducting polymers and semiconductors can be 

described by the same models as those employed for aqueous solutions. 

This unified approach greatly simplifies the identification of impor­

tant parameters, verification of models, and analyses of experimental 

data. Although the mechanisms for conduction of current varies and 

the applications are diverse, transport phenomena can be described 

using the concepts of irreversible thermodynamics, which will provide 

a coherent and unified approach to the characterization of these 

polymers. 
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Chapter 2 

Theory of Transport in Polymer Electrolytes 

2.1 Introduction 

In concentrated solutions, such as some polymer electrolytes, 

the distinction between the solvent and solute is unclear. Further­

more, there can be significant interactions among all of the species 

in polymer electrolytes, whereas in dilute solutions, only interac­

tions between the minor species and the solvent are considered. Mass 

transfer in these polymeric systems cannot be adequately described by 

dilute solution theory. Newman [1] discusses further the limitations 

of dilute solution theory and the motivation for the use of concen­

trated solution theory. 

Modeling of transport in the solid-po1ymer-e1ectro1yte is bOased 

on the concepts of irreversible thermodynamics and concentrated solu-

tion theory. Irreversible thermodynamics deals with non-equilibrium 

processes. The objective is to relate the production of entropy to 

the physical phenomena occurring in the system [2]. Rather than the 

study of equilibrium states, we are concerned with stationary states, 

which correspond to minimum entropy production consistent with the 

boundary conditions imposed. Within the context of concentrated 

solution theory, the interactions between the species are accounted 

for in a straightforward manner. Coupling of transport phenomena, 

the e1ectroosmotic effect and streaming potential, for example, arise 

naturally. 
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The concentration scale used in later chapters is the mole frac-

tion. While this is familiar to chemists, it introduces the molecu-

lar weight of the membrane or polymer, which may be a capricious 

choice. This problem is discussed in more detail later in this 

chapter. In principle, any concentration scale could be used. The 

mole fraction scale is conceptually easy to use; in retrospect, how-

ever, it may not be the most appropriate one for some polymer sys-

tems. 

In concentrated solutions, Fick's law is replaced with the equa-

tion of multicomponent diffusion 

d. 
~ 

n c.c. 
1: K • • (v. - v.) == RT 1: -l:-l.D~ (v. - v.) , 

J 
..... ; ~J J ~ .. c .. J ~ 
r-... Jr"~ ~J 

where d
i 

is a general driving force for transport. 

(1) 

K.. is not 
~~ 

defined, and from Newton's third law or the Onsanger reciprocal rela-

tions 

2.2 Driving Forces 

K .. 
~J 

K ... 
J~ 

(2) 

Bennion [3] showed how to determine the appropriate driving 

forces for a membrane system. Although it may be difficult to 

characterize the state of a polymer system near its glass transition 

temperature, we consider the solid-polymer-electrolyte to be an elas-

tic solid and not a fluid. The polymer membrane is able to resist 

forces that tend to deform it. Bennion's approach is applied to the 
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solid-polymer-electrolyte system. 

The driving forces should be zero at equilibrium, and further-

more, the Gibbs-Duhem equation, 

S I c.Vp. - Vp - V VT , 
i ~ ~ 

(3) 

must be satisfied. Hirschfelder et aI. [4] and Bird et aI. [5] 

developed the following driving force, 

d. 
~ 

c.{VP' ~ ~ 

11. 11.} - ~ ~ + S.VT - --Vp - X. + --I X.c. 
~ p ~ p. JJ 

J 

(4) 

In principle we should expect coupling between all tensors of the 

same order. Thermal diffusion and the Soret effect, for example, are 

not considered. These effects are generally small, and furthermore 

we are considering an isothermal system. X. is an external or whole 
~ 

body force per mole, such as gravity. For our purposes electrostatic 

forces are included in the electrochemical potential of the species, 

p., and therefore do not appear as external forces in equation 4. 
~ 

One could consider a membrane with a pressure difference across 

it and steady, bulk flow of water through the membrane. Since the 

membrane is stationary, the net force on any volume element must be 

zero. There are no body forces acting on either the water or the 

hydrogen ions; therefore, at constant temperature, 

X 
m 

(5) 



and 

c X = Vp . 
mm 
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(6) 

In words, force from the presure gradient is transferred through the 

various frictional interactions to the membrane, which is supported 

by the electrodes of the fuel cell. This relationship is used in 

equation 4. The appropriate isothermal driving forces are: 

for hydrogen and water 

d. = c.Vp.., 
~ ~ ~ 

(7) 

and for the membrane 

d = c Vp. - Vp. 
m m m 

(8) 

For n species, n equations of the form of equation 1 may be 

written, but they are not all independent. From the Gibbs-Duhem 

relation, the sum on the left side of equation 1 is zero. The sum on 

right side is zero because of equation 2. Substitution of the driv-

ing forces into equation 1 yields the transport equations for the 

ionica11y conducting polymer of the hydrogen/oxygen fuel cell: 

and 

c Vp. 
+ + K (v -v ) + Km+(-v+), 0+ 0 + 

c Vp. = K (v -v ) + K (-v), 
o 0 +0 + 0 om 0 

(9) 

(10) 
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c V~ - VP = K (v) + K (v). 
m m +m + om 0 

(11) 

In the above equations we have used the membrane velocity, which is 

zero, for the reference velocity; The subscripts +,m, and 0 refer to 

hydrogen ions, membrane, and water respectively. 

An alternative approach has been presented by Paul [6] [7], who 

treats the membrane, solutes, and solvent as a homogeneous liquid. 

Paul then hypothesizes high surface tension which allows the liquid 

to resist deformation. This leaves one with the unsatisfactory con-

dition that for a supported membrane a whole body force must act on 

both the solute and solvent as well as the polymer. 

2.3 Transport Properties 

In general, for n species there are ~(n-l) independent trans-

port properties necessary to characterize the system. There are 

three species in the separator of a solid-polymer-electrolyte fuel 

cell, and therefore three independent transport properties are 

required. With the electrochemical potential as the driving force, 

equations 9 and 10 can be inverted to give 

and 

N 
o 

c v 
+ + 

2 -L C VIL - Lee VIL ++ + ~+ +0 + 0 ~o' 

c v = -L c c V~ - L c
2V o 0 0+ 0 + + 00 0 ~o 

The L .. ' s (=- L .. ) are related directly to the K . . : 
~ J~ - ~ 

(12) 

(13) 
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K 
L 

+0 
0+ K K + K K + K K 

+0 om +0 +m +m om 
(14) 

K +K 
L 

+0 +m 
00 K K + K K + K K 

+0 om +0 +m +m om 
(15) 

and 

K + K 

L++ 
+0 om 

K K + K K + K K 
+0 om +0 +m +m om 

(16) 

Conversely, the frictional coefficients can be expressed in terms of 

L, ,'s: 
~J 

and 

L+o 
K - ------~~---2-' 

+0 L L L 

K mo 

00 ++ +0 

L++ - L +0 

L L 
00 ++ 

L - L 

2 ' 
L 

+0 

K = __ ~o~o~ ___ +~o~~ 
2' +m L L 

00 ++ 
L 

+0 

If experiments can be devised, to measure 

(17) 

(18) 

(19) 

the L,,' s, 
~J 

then the 

mu1ticomponent diffusion coefficients can be estimated as functions 

of water content within the membrane, This concept is the same as 

the orthogonal experiments described by Bennion and Pintauro [8], 

[9] , 
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First, consider the case where V~ = O. The conductivity of the 
o 

membrane is measured by standard alternating-current techniques. 

From equation 12 and the definition of conductivity 

-L 
++ 

where the potential is defined by ~+ = F~. 

(20) 

Next consider that a small current is passed through the mem-

brane, but V~ is equal to zero. The flux of water through the mem­
o 

brane is measured. If e is the number of water molecules carried 

across the membrane with each hydrogen ion, then 

-L 
0+ 

-ICe 
2 

Fcc + 0 

(21) 

Finally consider a case where no current is passed, N+ = 0, but 

water flows because of a gradient in its chemical potentia1. The 

rate of diffusion is given by Fick's law 

J = -Q V~ . 
o 0 

(22) 

The flux of water is relative to the velocity of the membrane and can 

be related to a measurable diffusion coefficient (see appendix A). 

Equations 12 and 13 reduce to 

L 
00 

1 
2 

c 
o 

(23) 
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Thus, from three measurements the needed transport properties are 

determined. 

We can now write expressions for the flux of water and hydrogen 

ions in terms of measurable quantities. Equations 12 and 13 become 

(24) 

and 

(25) 

Or with the potential defined by F~ = ~+' 

(26) 

and 

(27) 

The above equations completely describe transport in the polymer. If 

we want to put them in the form of the Stefan-Maxwell equations, we 

must introduce a concentration scale. 

2.4 Concentration scale 

There is a variety of driving forces for diffusion, such as gra-

dients in mole fraction, mass fraction, concentration, and chemical 

potential. Some of these formulations depend on the molecular weight 
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of the polymer, which can be large compared to the molecular weight 

of other species and may be poorly defined. We wish to investigate 

the effect of the molecular weight on the different driving forces 

and the binary interaction coefficients, D ... 
~J 

The driving force derived earlier, c.V~., is per unit volume and 
~ ~ 

therefore independent of the molecular weight of the species. Simi-

1ar1y, the right side of equation 1 represents a frictional force per 

unit volume times the velocity of the species, and is also indepen-

dent of the molecular weight. Although it may not be obvious from 

the expressions for L .. ' s given in equations 20, 21, and 23, these 
~J 

too are independent of molecular weight. Nevertheless, we need the 

concentration to relate molar fluxes to their velocity. 

The binary interaction coefficients used in the Stefan-Maxwell 

formulation are related to the frictional coefficients by 

D .. 
~J 

RTc.c. 
~ 1 

cK .. 
~J 

(28) 

The D •• ' s , of course, depend on the choice of molecular weight. 
~J 

These binary interaction coefficients were defined in the hope that 

they would be more nearly constant with concentration. 

represents the collision frequency of molecules i and j. 

c.c. 
~ J 

Whereas 

this is reasonable for gases and dilute electrolytes, there does not 

appear to be a sound basis for this approach with polymer e1ectro-

1ytes, particularly when the molecular weight of the polymer may be 

ill-defined. 
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The above transport equations are phenomenological and could be 

used without the introduction of molecular weight. However, the mole 

fraction scale was used in much of the analysis. We now examine the 

implications of this driving force. Consider species A, a high-

molecular-weight species, and B, a small molecule. Let c
A 

be the 

concentration of species A when we regard the molecular weight to be 
, 

MA. If we regard the molecular weight to be MA , then the concentra-

tion of A is 

(29) 

, 
We know that the KAB is independent of molecular weight; therefore 

, , . (30) 

This may be rearranged to give 

(31) 

Thus, DAB approaches zero as MA --+ <Xl Although this formulation will 

work, it has this troubling consequence. In principle, the choice of 

molecular weight in these phenomenological equations is arbitrary. 

Although a different concentration scale (such as mass fraction) may 

be more appropriate, it is not investigated further here. 
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2.5 Bulk Hydrodynamic Flow 

As in the development of the driving forces, we consider bulk, 

steady hydrodynamic flow under a pressure gradient. The membrane is 

able to resist a pressure gradient, and stress builds up in the mem-

brane. From equations 9-11 with the current equal to zero, the velo-

city of water may be expressed as 

v 
o 

c VI-' m m ---
K 

mo 

Y..E... 
K 

mo 

-c VI-' o 0 

K +K 0+ om 
(32) 

If the gradient in chemical potential of water is due solely to a 

pressure gradient, from the thermodynamic relation 

equation 32 can be written as 

v 
o 

k 
Vp, 

I-' 

where k is the permeability and I-' the viscosity of water. 

(33) 

(34) 

There are two points to note. First, the multicomponent diffu-

sion equations account for hydrodynamic flow, and superposing addi-

tiona1 equations for the flow of water is incorrect. When using con-

centrated solution theory and these driving forces, additional equa-

tions to account for hydrodynamic flow are unnecessary; all the 

mutual interactions between species are included in equation 1. 

Second, equation 34 is similar to either flow through porous media or 
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Poiseui11e flow through a pore. 

2.6 Equilibrium with Water and Hysteresis 

The most important variable in determining the properties of the 

membrane is its equivalent weight. The amount of water absorbed will 

depend on the equivalent weight, the ion form, the fluid it is in 

contact with, and the pretreatment of the membrane. The equilibrium 

water content in a Nafion 117 membrane is shown in figure 1. The 

data are reproduced from Zawodzinski et al. [10]. The equilibrium 

curve does not show a plateau at high relative humidities as would be 

expected for a Langmuir isotherm, for example. 

A membrane that has received identical pretreatment can have a 

different water content when exposed to liquid water as opposed to 

saturated water vapor [11]. Although no careful study of this 

phenomenon has been attempted, clearly this is not expected from 

thermodynamics. This isotherm resembles equilibrium-moisture curves 

for some cloths, for example, silk [12]. We can consider that water 

in the membrane that exerts a vapor pressure less than that of pure 

liquid water is bound water. It will have a lower vapor pressure due 

to capillary forces, chemical forces such as hydration effects, and 

physical adsorption. The condition at which the membrane is in 

equilibrium with saturated air is the fiber-saturation point. Addi­

tional water in the membrane above the fiber-saturation point may be 

considered unbound water. 
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Figure 1. Absorption isotherm for Nafion 117 at 30°C. 
Measured by Zawodzinski et ale [10] . 
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Additionally, perf1uorinated ionomeric membranes show hys-

teresis. The amount of water sorbed by the membrane in contact with 

a fixed activity of water will depend on its pretreatment. For exam-

p1e, a membrane pretreated by boiling in water will retain more water 

than a membrane that is not pretreated. We should expect that the 

pretreatment will affect the transport properties as well. 

c 
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Chapter 3 

Modeling 

3.1 Introduction 

Solid-po1ymer-e1ectro1yte fuel cells are fabricated by hot­

pressing two gas-diffusion electrodes onto a thin polymer membrane 

above its glass transition temperature [1]. This is shown schemati-

cally in figure 1. Leddy and Vanderborgh [2] characterize the 

membrane-electrode interface and present a photomicrograph of the 

region. There are three phases present: a solid phase consisting of 

the porous graphite electrode and platinum catalyst, the solid­

polymer-electrolyte, and a gas phase. The solid polymer serves both 

as the separator and the electrolyte. Descriptions of gas-diffusion 

electrodes and models can be found in [3], [4], and [5]. 

We consider a membrane-electrode assembly of a fuel cell operat­

ing at steady state on air and reformed methanol. The fuel and air 

streams are heated and humidified prior to entering their respective 

channels where they are consumed in chemical reactions. Hydrogen gas 

diffuses through the porous electrode and reacts at the anode in a 

three-phase region containing polymer electrolyte, gaseous reactants, 

and carbon matrix including platinum catalyst, to form hydrogen ions. 

Oxygen passes through the gas-diffusion electrode to the cathodic 

reaction zone. At -the cathode, the hydrogen ions react wi th oxygen 

at e1ectrocatalyst sites to form water. 
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Recently, Kimble and White [6] presented a detailed model of an 

alkaline fuel cell; solid-polymer-electrolyte fuel-cell models have 

been developed by Bernardi and Verbrugge [7] [8] [9] and by Springer 

et al. [10] Our model contrasts with other models mainly by: 1) use 

of concentrated solution theory, 2) consideration of a two-

dimensional membrane-electrode assembly, and 3) accounting for ther-

mal effects. 

In the previous chapter we derived equations for transport in 

the solid polymer electrolyte. Even though we can consider the poly-

mer to be a binary electrolyte, the treatment that follows is gen-

eral, allowing for an arbitrary number of species, and homogeneous 

and heterogeneous chemical reactions. Similarly, in the gas phase, 

in the absence of chemical reactions, analytic solutions of the 

Stefan-Maxwell equations are possible for a three-component system 

wi th constant diffusion coefficients. Nevertheless, we elected to 

keep the analysis general. 

3.2 Gas Phase 

Transport in the gas phase is described by the Stefan-Maxwell 

equation. For m species, 

d. m x.J .-x.J. 
~ I ~ I I ~ 

(1) RT cD .. jFi ~J 

The molar flux is given by, 

J. c. (v. - v f) (2) 
~ ~ ~ re 
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One is free to choose the reference velocity. For the solid-

polymer-electrolyte fuel cell, the most convenient reference velocity 

is the velocity of the nondiffusing gases, carbon dioxide and nitro-

gen, which is zero. This choice is consistent with the reference 

velocity of the electrolyte; 

v = 
ref 

v 
mem 

= o. 

Assuming ideal-gas behavior, the Stefan-Maxwell equation becomes 

Vx. 
~ 

RI 

x.J .-x.J. 
~ 1 1 ~ 

D .. P 
~J 

(3) 

(4) 

For m species, there are only m-l independent equations of the 

form of equation (1). From the Gibbs-Duhem relationship, the sum of 

the left side of equation 1 is zero. The sum of the right side is 

zero because of the Onsager reciprocal relations. The relation among 

molar fluxes is 

(5) 

The m-l equations of the form of equation 4 and equation 5 can be 

written in matrix form 

b J (6) 

The matrix can be inverted to express J. in terms of the driving 
~ 

forces. A material balance on species i gives 



a(ec.) 
~ 

at -'iJ.J. + aj. + 
~ ~n 
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1 
L R. n 

i=l ~,IG 
(7) 

R. n is the homogeneous reaction rate of species i for the ith reac­
~,IG 

tion, and a is the specific interfacial area. The pore-wall flux 

density of species i, j. , is an average over the interfacial area 
~n 

between the gas phase, and the electrode and electrolyte phases. The 

relationship among mole fractions is 

m 

L 
i=l 

x. 
~ 

=1. (8) 

Thus, equations 4, 5, 7, and 8 describe transport in the gas phase. 

3.3 Electrolyte Phase 

The transport model is based on the theory developed in the pre-

vious chapter. For n species in the electrolyte, the mu1ticomponent 

diffusion equation is 

d. 
~ 

K . . (v .-v.). 
~J J ~ 

(9) 

Equation (9) can be written in terms of D .. , and then has a form 
~J 

similar to that of the Stefan-Maxwell equation 

The flux of species i is 

d. 
~ 

RT 

n c.c. 
L T(v,-v,), 

j;ol'i c ij ~ J 
(10) 
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J. = c. (v .-v f)' 
~ ~ ~ re 

(11) 

For the solid-polymer-electrolyte system, the reference velocity is 

chosen to be the membrane velocity. Equation 10 can be written in 

terms of molar fluxes; 

d. 
~ 

RI 

X.J.-X.J. 
~ 1 1 ~ 

cD .. 
(12) 

~J 

A material balance on species i is identical to equation 7. In the 

solid-polymer-electrolyte, there are no homogeneous chemical reac-

tions. However, the homogeneous reaction terms were included in the 

material balance to remain general. For example, in some polymer 

electrolytes ion pairing may be important [11]. 

The separator of a solid-polymer-electrolyte fuel cell contains 

three species: the membrane with the bound sulfonic acid groups, 

hydrogen ions, and water. 

lows (see chapter 2): 

for hydrogen and water 

and for the membrane 

The proper driving forces, d., are as fol­
~ 

d.=c.\lp.., 
~ ~ ~ 

(13) 

d = c \lp. - \lp. 
m m m 

(14) 

In the electrolyte, there is an additional dependent variable, 

~, the electric potential, which we must introduce as a driving force 
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for transport. Newman discusses the various potentials we could use 

[12]. We could, for example, define the potential in terms of a 

reference electrode or the "quasi-electrostatic potential" of Smyrl 

and Newman [ 13] . In the latter case the potential is defined in 

terms of the hydrogen ion, 

(15) 

The gradient of the electrochemical potential of each of the species 

is 

"iIJJ. = RT"iIln c. + Z .FVifl + RT"iI[ln f. - Z i In f ]. 
~ ~ ~ ~ z+ + 

(16) 

In the above equation, ~nly the activity of neutral species or neu-

tral combinations of ionic species is needed, and everything is 

® 
well-defined. For the Nafion membrane of the solid-polymer-

electrolyte fuel cell, there is only one compositional variable. 

Using the thermodynamic data of Zawodzinski et al. [14], for example, 

we could express the gradient in electrochemical potential of each 

species in terms of equation 16. 

In the modeling, for simplicity, the electrochemical potential 

of each species was taken to be 

"iIp. 
~ 

"iIX. 
z . FVib + RT--.!:. 
~ x. 

~ 

(17) 

Here the choice of molecular weight implicitly affects the assumption 
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for the activity coefficients. We took the molecular weight to be 

equal to the equivalent weight for the membrane. We also assumed the 

pressure to be a constant. 

The relationship among mole fractions is 

n 

I 
i=l 

x. 
~ 

The equation of electroneutrality is 

n 

I 
i=l 

z.x. 
~ ~ 

=1. 

o. 

(18) 

(19) 

Therefore, combining equations 12 with the appropriate driving 

forces, together with equations 7, 18, and 19, we have described 

transport in the electrolyte. 

3.4 Chemical Reactions 

For either anodic or cathodic processes within the fuel cell the 

following sequence is necessary: 1) mass transfer of gaseous reac-

tants to the interfacial region, 2) mass transfer from the gas pore 

to electrolyte, 3) absorption of the reactant into the electrolyte, 

4) mass transfer to catalytic site, 5) adsorption onto a catalyst 

site, and 6) electron-transfer reaction. 

We need to relate the transfer current of species through the 

interface between the gas and electrolyte phase. The rate of reac-

tion per unit volume is 



aj. 
~n 
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(20) 

where j. is the pore wall flux. Each reaction is written as an ele­
~n 

mentary reaction 

z. 
I s.M. ~ += ne-. 

~ ~ 
i 

(21) 

For electron transfer reactions, a Butler-Volmer rate expression is 

used; 

r 
a 
~ 
nF 

k ne sm exp[(I-@)nFV]_kne-Snexp(_@nFv) 
am R:r en R:r' 

(22) 

where the first product is over species with positive S., and the 
~ 

second over species with negative s .. V is the difference in poten­
~ 

tial between the metal and electrolyte, 

V - ~l - ~2· 

For the solid-polyrner-electrolyte fuel cell, we consider two 

electrochemical reactions and one evaporation reaction: 

(23) 

-- (24) 

and 
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(25) 

We assumed that the rate of reaction could be expressed in terms of 

the bulk concentration of each species in their respective phases, 

neglecting the details of steps 2 to 5 above. 

The oxidation of hydrogen, for example, is known to proceed by 

the Tafel-Volmer sequence [15], 

-+- 2MH 

MH ~ M + H+ + e-

with the Tafel (second) step rate limiting. We, however, have 

assumed that for the hydrogen reaction, we can write 

i 
2F 

3.5 Boundary Conditions 

(26) 

At the two ends of the fuel-cell assembly, y~O and y=L5, the 

mole fraction of the gaseous species are determined from a material 

balance on species i in the z direction of the gas channel (see the 

next section). At a phase boundary, the fluxes of the species that 

exist only within that phase are set to zero. At L4, for example, 

the fluxes of electrolyte species (water in the polymer, hydrogen 

ions, and membrane) are zero. Where there is a discontinuity in the 

porosity, the concentration and superficial -fluxes are continuous. 

Therefore, at L3, the fluxes of gas species are set to zero, and the 
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concentration and superficial fluxes of electrolyte species are 

matched. The potential of the anode is set to zero, and the poten-

tia1 of the cathode is specified and assumed constant, thereby set-

ting the cell potential V as a constant in z and time. 

3.6 Z-integration 

The problem is two-dimensional, but the large aspect ratio 

allows us to consider transport in the y direction only in the cell 

sandwich (see figure 1). Although this is not strictly correct, the 

expected improvements in results do not warrant the additional com-

p1exities of a two-dimensional model. We will solve the transport in 

the y direction at a given value of z and integrate down the 

membrane-electrode assembly in the z direction. The gas outside the 

gas-diffusion electrode is assumed to be of uniform composition in 

the y direction. For large Pec1et number, axial diffusion is 

neglected. A material balance on species i in the z direction gives 

F. 
~ 

F~ 
~ 

z 
J J. dz, o ~ 

(27) 

where F. is the molar flow rate of species i in the z direction and 
~ 

J. is the molar flux in the y direction. 
~ 

3.7 Energy Balance 

References [12] and [16] discuss general energy balances for 

electrochemical systems. The work done by the system is iV. The 
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rate of heat transfer to the system can be expressed by 

(28) 

Application of the first law of thermodynamics to the fuel cell gives 

-aH z z 
~ - I h(T-TA)dz + I Vidz, 

o 0 
(29) 

where b is the width of the membrane-electrode assembly. The 

enthalpy of the gas streams is 

m 
H - L F.B .. . ~ ~ 

~ 

(30) 

Assuming no enthalpy change upon mixing and neglecting the effects of 

pressure, the partial molar enthalpy for the gas streams can be 

expressed as 

-* -
H. - H. 
~ ~ 

The overall reaction is 

-* H. (T ) 
~ r 

T 
+ Ie dT. 

T P 
r 

(31) 

(32) 

The change in total molar flow rate of each species can then be 
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related to the electrical current, I, and stoichiometry. 

3.8 Numerical Approach 

The set of nonlinear, partial differential equations for the y 

direction in the gas and electrolyte phases, together with the 

appropriate boundary conditions, were solved numerically. We took an 

approach similar to that of Tribo11et and Newman [17] . 

Taking the divergence of equation 1 and substituting for V·J. 
~ 

from the material balance, equation (7), and 

J. 
~ 

n 1 d. 
\' - ~ 
L bik RTc 

k=2 

from the inversion of equation 6 gives 

k k 

d. x. I ar . .£ - x. I ar. n ~ ,£=1 J, J ,£=1 ~ .£ 
V·-~-

ax. ax. 
---1. ~ 

n xi at - x--
tat I I RTc cD .. + c 

cD .. 
j~i j~i ~J ~J 

n x. n 1 d. 
I V·---~- I b- ~ 

. . cD .. k--2 jk RTc 
J~~ ~J 

+ 
n x. n 1 d. 
Iv.----L Ib- -~ 
.. cD.. k 2 ik RTc 
J~~ ~J = 

o. 

(33) 

(34) 

The homogeneous reaction terms have been dropped from equation 34, 

but would be similar to the heterogeneous terms. 

For n species, there are n+1 dependent variables, n mole frac-

tions, and the potential. Combining the equations for the e1ectro-

1yte and the gas phase, we have n-2 equations of the form of equation-
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30. The three additional equations are the relationship among mole 

fractions in the gas and in the electrolyte, 

L x. -= 1, 
i-I ~ 

and the equation of electroneutrality for the polymer, 

n 
L z.x . .., O. 

i-I ~ ~ 

(35) 

(36) 

The coupling between phases occurs due to the chemical reaction 

terms. 

To ensure fast convergence, equation 30 must be linearized prior 

to casting in finite-difference form. In general, the mole fractions 

are not known. We must, for example, use a linearized form of equa­

tion 29. b~! is evaluated with the best available mole fractions and 

the flux is approximated with 

(37) 

Newman [12 ] gives more de tails of solving sys tems of differential 

equations. The subroutine BAND, a generalization of the Thomas 

method for the solution of tridiagonal matrices, was used to solve 

the equations simultaneously. 
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Because the dimensions of the adj oining regions may be vastly 

different, . one would like to vary the mesh spacing at phase boun-

daries. Equation 30 is not convenient because it does not allow the 

2 
mesh spacing to be varied and still be accurate to order h maintain-

ing a tridiagonal matrix. Fan and White [18] give a general a1go-

rithm to circumvent this problem. Our approach was to replace equa-

tion 30 with an integrated version of the material balance at the 

junction of two regions. This allows the mesh spacing to be set 

independently in each region. A material balance on species i gives 

h h' 
-2 I ar. n + --2 I ar. n' i ~,,(, i ~,,(, 

(38) 

where hand h' are the mesh spacings in the two adjacent regions. To 

evaluate the rate of reactions at j-h/4 and j+h'/4, the variables are 

averaged as 1/4(j -1) + 3/4(j). Again these equations were 1inear-

ized, cast into finite-difference form, and solved numerically. 

a 

A 

b 

b 

c 
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symbol for chemical formula of species i 

number of species in electrolyte phase 

number of electrons in electrochemical reaction 

number of moles of species i 

pressure, bar 

rate of heat transfer, W 

3 heterogeneous reaction rate, mol/m ·s 

universal gas constant, 8.3143 J/mol·K 

homogeneous rate of reaction, mOl/m3 .s 
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stoichiometric coefficient 

time, s 

temperature, K 

overpotential or cell potential, V 

velocity of species i, mls 

work done by fuel cell, Jls 

mole fraction of species i 

distance from the cathode, m 

distance from gas inlet, m 

charge number of species i 

symmetry factor 

porosity 

electrochemical potential of species i, Jlmol 

electrostatic potential, V 

Subscripts 

anodic 

ambient 

cathodic 

gas phase 

electrolyte phase 

membrane 

water 

reference state 

hydrogen ion 

metal 



2 

o 

* 

electrolyte 

Superscripts 

inlet condition or steady-state value 

partial molar quantity 

per mole 

low-pressure or ideal-gas limit 
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Chapter 4 

Experimental Determination of the Transport 

® 
Number of Water in Nafion 117 Membrane 

4.1 Introduction 
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A number of fuel-cell systems under development use perfluori-

nated ionomeric membranes for both the separator and the electrolyte. 

Proton conductivity is strongly coupled to the hydration of the poly-

mer, and therefore it is vital to manage the water content in the 

separator of the solid-polymer-electrolyte fuel cell to maintain suf-

ficient electrical conductivity for practical use. Cell efficiency 

is related to the transport properties of the membrane and may be the 

critical factor in load-leveling devices, for example, if the kinet-

ics of the reactions are fast [1]. From the inception of solid 

polymer-electrolyte fuel cells, water-transport was recognized as a 

possible problem [2]. 

The motion of water is caused by a gradient in its chemical 

potential and by the movement of hydrogen ions, which is proportional 

to the current. The electroosmotic drag coefficient e, 

e = 
N 

o 
N ' 
+ 

(1) 

is defined here as the- number of water molecules moving with each 

hydrogen ion in the absence of concentration gradients. e can be 

related to the transference and transport numbers of water, as will 
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be shown later. Previous work shows that for each hydrogen ion that 

moves across a fully hydrated membrane about three water molecules 

are carried along [3] [4] [5]. 

Earlier methods to determine the electroosmotic drag coefficient 

measured the flux of water across the membrane at constant current. 

The membranes were always in direct contact with liquid water, and 

therefore, the water concentration in the membrane was fixed at A~22, 

where A is the number of water molecules per sulfonic acid group. 

Changes in the pretreatment of the membranes permit limited variation 

in the water content of the membranes that are equilibrated with 

liquid water. Springer et a1. [6] used this approach to measure e at 

A-II. The pretreatment, however, can affect the transport properties 

of the membrane as well. Furthermore, this method still does not 

allow examination of e at low water contents, which is critical to 

the modeling of fuel-cell operation. 

Water content in the membrane can be controlled over a wide com­

position range by equilibrating the membrane with a known partial 

pressure of water. Our attempts to measure the flux of water from 

the gas phase and to eliminate concentration gradients were difficult 

and proved unreliable. An alternative approach using the open-

circuit potentials of cells with transference was developed to meas­

ure the transport number of water in ionically conducting polymers 

over a large range of water contents. 
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4.2 Theory 

Transport properties can be obtained from electrochemical cells 

with a single electrolyte of varying concentration [7]. The cell 

potential depends not only on thermodynamics but also on the trans-

port properties of the system in the transition region. The trans-

port number of water in an ionically conducting polymer can be 

obtained by analyzing the concentration cell shown below. 

transition imembr:ne(17) 
region t 

Concentration cell 

The cell potential is 

C a a 
FU = F(~u - ~ ) = (p _ o 

p ). 
e e 

At the two electrodes, the electrochemical reaction 

is assumed to be in equilibrium, and therefore 

e 

The cell potential reduces to 

(2) 



FU = .1 KI' ln 
2 

y..., 

I 
Yf3 
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(3) 

To analyze the system further we must examine the transport 

processes in the junction region. A gradient in chemical potential 

of water exists in the transition region, and diffusion occurs. The 

multicomponent diffusion equation, 

describes transport in the membrane. 

(4) 

c.v~. is the driving force for 
~ ~ 

transport, v. is the velocity of species i relative to some arbitrary 
~ 

reference velocity, and K •. (= K •• from, -the Onsager reciprocal rela-
~J J~ 

tions) are the frictional coefficients. In general, for n species 

there are ~(n-l) independent transport properties necessary to 

characterize the system. The membrane is considered to be comprised 

of three components: water, hydrogen ions, and polymer, and therefore 

three independent transport properties are required. Because of the 

Gibbs -Duhem relationship and the fact that K .. =K .. , for n species 
~J J~ 

there are only n-l independent equations of the form of equation 4. 

The membrane velocity is set to zero, and all fluxes are referenced 

to it. These n-l equations, together with N = 0, can be written in 
m 

matrix form. With the electrochemical potential as the driving 

force, the multicomponent diffusion equations can be inverted to give 



and 

N 0 

The L . . 's (= L
ji

) are 
~J 

L 0+ 

L 
00 

and 

L++ 

c v 
+ + 

-L c2
VIL - Lee VIL +++'-+ +0+0'-0 

c v - -L c c VJ.l. L c
2V 

o 0 0+ 0 + + 00 0 J.l.o 

related directly to the K .. : 
~J 

K +0 
K K + K K + K K 

+0 om +0 +m +m om 

K +K +0 +m 
K K 

+0 om 
+ K K +0 +m 

+ K K 
+m om 

K + K +0 om 
K K + K K + K K 

+0 om +0 +m +m om 
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(5) 

(6) 

(7) 

(8) 

(9) 

See Newman [8] (p. 276) for further details. Consequently, if exper-

iments can be devised to measure the L .. , then the binary interaction 
~J 

coefficients can be estimated as a function of water content within 

the membrane. This concept is the same as the orthogonal experiments 

® 
described by Pintauro and Bennion [9]. For the Nafion membrane used 

in fuel-cell applications, the transport properties required are: the 

diffusion coefficient of water, the electrical conductivity, and the 

transport number of water. L++ is related to the electrical conduc-

tivity by 



L++ 
It 

2 2· 
F c+ 

From the definition of e, equations 5 and 6 give 

Lo+ 2 
Fcc + 0 
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(10) 

(11) 

For the concentration cell at open circuit depicted above, equa-

tion 5 can be written with the flux of hydrogen ions set to zero as 

(12) 

Thus, if n~ represents the last term in equation 3, then we can write 

Fn~ .. FU - t R:I' 1n 

a 
PH 

2 
o 

PH 
2 

Yf3 dp. 

f e d; dy. 
y-y 

(13) 

Everything in the integral is a function of water content, and there-

fore the equation can be integrated over the concentration. That is, 

the potential of the cell is independent of the shape of the concen-

tration profile. Equation 13 becomes 

and differentiation gives 

dp. 
o e d)" d).. (14) 
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(15) 

This means that we would hold the water activity constant on the 

right side of the cell (~) and vary the activity of water on the left 

side (f3). Equation 15 then gives the value of e at this water 

activity (f3). 

An equivalent analysis can be made in terms of transference 

numbers. See, for example, Newman [8] (p. 279) for further informa-

tion on the definitions and the details of this approach. The 

transference number is defined, in the absence of concentration gra-

dients, by 

m 
it. = Fz.c.(v. - v ) 

~ ~ ~ ~ m (16) 

and is clearly related to the L .. ' s or K .. ' s of the mu1ticomponent 
~J ~J 

diffusion equations. The current expressed in terms of transference 

numbers is 

F i = I (trr:/z.J VJ.I. •• 
~ i ~ ~ ~ 

(17) 

The ratio trr:/z., also called the transport number, is not necessarily 
~ ~ 

® 
zero for neutral species. For the Nafion system, all the current is 

carried by the protons, and consequently the transference number of 

the hydrogen ions is one. At open circuit, the current is zero, and 
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(18) 

e is defined in the absence of a gradient in the chemical potential 

of water and therefore is related to the transference number by 

(19) 

Equation 12 results from combining equations 18 and 19 and setting 

t
m 

= 1 Hereafter we shall use the ratio t
m 
/z and e interchange-+ . 0 0 

ably. 

4.3 Experimental 

® 
Figure 1 shows a schematic of the concentration cell. A Nafion 

117 (equivalent weight = 1100, thickness dry 7 mils = 0.0178 cm) mem-

brane was placed between the two chambers, suspended above solutions 

of lithium chloride of different compositions. At each end of the 

membrane there was a platinum electrode. The electrodes and the mem-

brane were in contact with hydrogen and water vapor at ambient pres-

sure. Sufficient length from the barrier between the two chambers 

and the electrodes ensured that the activity of water in the membrane 

at each electrode was uniform and in equilibrium with the solution 

below it. 

At equilibrium, the chemical potential of water is the same in 

the vapor phase and in the polymer electrolyte. Equation 15 becomes 



Pt electrode 

. ':>:::' ::." .... ::::: .. ::: 

Nafion bridge 

l1i Py 

Figure 1. Schematic of concentration cell. The 
partial pressure of water is controlled with a 
lithium chloride solution. The LiCI concentration 
in the righ~ side is maintained at m=O.l mol/kg. 
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d In pf3/p'Y 

o 0 
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(20) 

If the potential in the form Ft.iI>/RT is plotted against the logarithm 

of the activity of water, the slope of the line is equal to e. 

The partial pressure of water in each half of the cell was con-

trolled using a lithium chloride solution. Robinson and Stokes [10] 

and Gibbard and Scatchard [11] give the osmotic coefficient for a 

lithium chloride solution as a function of the concentration of the 

salt at various temperatures. The activity of water is calculated 

from 

In a = -vm M ~ . 
o 0 

(21) 

One side of the cell was filled with dilute lithium chloride solu-

tion, and the partial pressure of water remained constant for all 

experiments. A dilute solution was used in place of pure water to 

prevent the condensation of water on the membrane or on the sides of 

the cell. Lithium chloride solutions of various concentrations were 

put in the other side. To minimize evaporation from the cell, hydro-

gen gas passed through a gas-washing bottle filled with a solution of 

identical composition to that in the corresponding chamber before 

entering the cell. 

The membranes were pretreated with I M boiling sulfuric acid to 

convert to the hydrogen form, and thoroughly rinsed in deionized 

water. The electrodes were fabricated from platinum mesh that was 
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p1atinized with He11ige p1atinizing solution to ensure highly rever­

sible reactions. Nevertheless, experiments with nonp1atinized elec­

trodes gave identical results. The mesh was spot welded to platinum 

wire, which served as the electrical lead. The entire cell was 

placed in a water bath maintained at a constant temperature ±O.l°C. 

After the addition of a new solution of lithium chloride, the 

system was purged with nitrogen to remove oxygen from the cell, and 

then an equal flow of hydrogen was established to each side . The 

system was allowed to reach a quasi steady state; a slow relaxation 

of the cell occurs because of the gradient in chemical potential of 

water across the cell. Steady state was attained in a few hours; the 

transient was most likely associated with the space-time for the 

hydrogen gas. The cell potential was measured with a Hewlett Packard 

model 3456A digital voltmeter, with an input resistance of greater 

than 10 MO. This was checked against a Keithly electrometer model 

602 with an input impedance of greater than 14 MO with identical 

results. The potential was measured over a period of about two days, 

with sampling about every hour. 

~~ is calculated from equation 13. The potential due to differ­

ences in hydrogen pressure, which is important at higher temperatures 

(see equation 3), was calculated assuming a total pressure of 1. 01 

bar and subtracting the partial pressure of water. The errors 

because of slight differences in the total pressure in the two 

chambers was believed to be small, but was not measured. 
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4.4 Results and Discussion 

Figure 2 shows the measured potentials of the cell. Each line 

corresponds to a set of experiments with a different membrane at a 

given temperature. The error bars for run 4 represent the range of 

the measured potentials. The results are also summarized in table 1. 

Along with the mean value, we report the range of measured poten-

tia1s. 

Table 1. 

Run #1 25°C 

~ FU 
+ -

P-y RT 

1.000 -0.000 0.0 0.0 
0.967 -0.007 0.006 0.003 
0.873 -0.176 0.028 0.039 
0.681 -0.468 0.058 0.059 
0.413 -1. 038 0.064 0.104 
0.201 -1.816 0.015 0.219 

The relaxation of the cell is thought to cause the variations in 

potential. Since a concentration gradient exists, water is trans-

~ FU 
+ -

P-y RT 

1.000 -0.000 0.0 0.0 
0.967 -0.110 0.032 0.041 
0.814 -0.386 0.042 0.055 
0.681 -0.642 0.049 0.026 
0.413 -1.141 0.011 0.067 
0.201 -1. 874 0.024 0.043 
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0.4 

Pf3 
Py 
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Figure 2. Measured cell potential. Each line represents 
a set of data with a different membrane. Data points are 
averaged over two days, sampling about every hour. Error 
bars are included for run 4 and represent the range of­
measured potentials. 
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Run #3 37.5°C 

~ FU - + -
P..., RI 

0.999 -0.065 0.080 0.044 
0.963 -0.200 0.020 0.050 
0.863 -0.342 0.066 0.110 
0.809 -0.434 0.032 0.045 
0.684 -0.606 0.022 0.027 
0.553 -0.864 0.014 0.020 
0.423 -1.164 0.029 0.064 
0.221 -1. 878 0.027 0.067 

~ FU - + -
P-y RI 

1.000 -0.000 0.0 0.0 
0.967 -0.080 0.008 0.006 
0.873 -0.276 0.037 0.027 
0.681 -0.610 0.015 0.027 
0.413 -1.176 0.028 0.040 
0.201 -1. 920 0.027 0.028 

ported across the membrane. The variations are larger than predicted 

and suggest that a perfect seal was not obtained. Nevertheless, this 

resulted in only a slow reduction in the magnitude of the cell poten-

tial with time. 

The data were fitted with an analytic expression (as shown in 

figure 3), and that expression was differentiated rather than dif-

ferentiating the data directly. Many functional forms were tried to 

fit the data, using a least-squares routine to minimize the total 

error. In order not to prejudice the results, we only required that 

the potential approach a constant as the activity of water approaches 
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1.4 

1.2 

1.0 

0.8 

0.6 

1.0 

Figure 3. Experimental data for run 2, the fitted curves 
using equation 22 (solid line) and a second order 
polynomial (dashed line), and the transport number of water 
from equation 23. 
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zero. A three-parameter polynomial and an exponential function gave 

the best results. The computer program is listed in the appendix. 

The latter form used to interpret the data was 

Fl:l~ () RT = A + B exp -Cao . 

The transport number of water, therefore, is 

z 
o 

-BCao exp (-cao) . 

(22) 

(23) 

The results are summarized in table 2. Leaks in the cell prevented '-

making measurements at higher temperatures, although the transport 

number of water is not expected to vary dramatically with small 

changes in temperature. The entire cell was immersed in a water 

bath; and at higher temperatures, water seeped into the cell. In the 

future, the cell should be placed in a convection oven, as is done in 

many fuel-cell experiments, to eliminate this problem. Runs 2 and 4 

gave the most reproducible results. Improvements in the experimental 

technique are believed to have caused the differences between these 

two and the first run. The fit of data from run 2 is shown in figure 

Table 2. 

run DC A B C 

1 25.0 0.6165 -3.4377 l. 717 
2 25.0 l. 3918 -3.9851 l.017 
3 37.5 0.6994 -3.5519 1.454 
4 25.0 l.1777 -3.9078 l.167 
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3 for both a polynomial and an exponential fit. Since this is a 

derivative method, the greatest error is expected at the ends. As 

the concentration of water tends to zero, the transport number must 

also approach zero, which implies that the potential must become con-

stant; but there is no similar asymptote as the membrane becomes 

fully hydrated. 

To relate the transport number of water to the concentration of 

water in the membrane, instead of the activity of water, an absorp-

tion isotherm is needed. This thermodynamic relationship was meas-

ured at 30 0 e by Zawodzinski et al.[6] [12]. In the absence of other 

data, this relationship was assumed to hold at other temperatures; 

that is, A at a =1 is independent of temperature. Figure 4 shows the 
o 

results at 25°e of the present analysis; the theoretical maximum 

value, which is discussed below, and other data available in the 

literature. 

At 25°e, the electroosmotic drag coefficient is about 1.4, 

decreases with lower water content at moderate hydration, and falls 

sharply as the membrane is fully dehydrated. The values are not in 

complete agreement with those measured at A=ll [6]. The differences 

in pretreatment could cause the discrepancy. At low water contents, 

the value of € begins to drop sharply in accordance with the theoret-

ical maximum. Physically we can picture that the first waters of 

hydration ar_e_ tightly bound,_ and therefore the transport number is 

close to one. Only when the membrane is dehydrated does the trans-

port number fall below one and approach zero. A membrane that has 
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Figure 4. Transport number of water as a function of the 
concentration of water at 25°C. Dashed line represents the 
results of the present work based on data for I between 14 
and 2. Triangles are values measured at Los Alamos 
National Laboratory [6], and the square is our unpublished 
result from the gas-phase flux measurements. 
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received identical pretreatment can have a different water content 

when exposed to liquid water as opposed to saturated water vapor 

[13]. Although not affecting our work, this anomaly is apparent when 

one compares our results to those measured in liquid water, as figure 

4 shows. 

The coupling between transport processes precludes one from 

obtaining any coefficient completely independently of the others. 

For an isothermal, isobaric system, with no chemical reactions, the 

equation of entropy production is given by 

1 L v. ·d., 
T i 1. 1. 

(24) 

which must be positive. Any experimental determination of the trans-

port properties should be consistent with the second law of thermo-

dynamics. Equation 4 is substituted into 24, and for our ternary 

system 

(K + K ) v
2 - 2 K v v + (K + K ) v 2 > 0 +0 + + 0+ +m + . om 0 0 0 (25) 

Therefore, to ensure positive production of entropy 

and 

K + K > 0, om 0+ 

Km+ + K > 0, 0+ 



K2 < (K + K ) (Km+ + K +). 
0+ om 0+ 0 

Finally we can conclude that 

and 

L++ > 0 

L > O. 
00 
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(26) 

(27) 

These last two equations are equivalent to the requirement of the 

second law of thermodynamics that the conductivity and diffusivity be 

positive quantities. 

The second law, however, makes no restriction on L , or on the 
0+ 

transport number of water. Although it is physically reasonable for 

the frictional coefficient to be positive, K .. may be less than zero 
~J 

without violating the second law of thermodynamics. Robinson and 

Stokes [10] for example, discuss cation transference numbers that are 

negative for zinc halide systems. In these systems, the zinc is 

believed to be complexed with the halides to form a negative ion, 

which results in a negative transference number for the zinc cation. 

Thus, we can still argue that if the speciation is done properly we 

will not obtain negative transport numbers. If the speciation is 

correct for our system and the frictional coefficients are positive, 

one can conclude from equations 7 to 11 that 

o < E < >.. (28) 



and 

D 
o 

dp. 
o 

de . 
o 
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(29) 

Equation 28 ensures that K is positive. A larger value of e would 
om 

indicate that the interactions between water and the membrane were 

negative. The same result may be obtained from simple physical argu-

ments. From the definition of e, 

e v 
o 0 

e v ' 
+ + 

(30) 

for a small current density passed through the membrane and a uniform 

chemical potential of water, equation 28 means that vo < v+. Viola-

tion of the inequality of equation 28 would imply that the membrane 

was accelerating the water rather than retarding it. The solid line 

in figure 4, e=A, is the maximum value from the inequality of equa-

tion 28. Analyzing equation 29 requires data for the conductivity 

and diffusion coefficient of water and is not discussed further here. 

The dependence of the transport number of water on concentration 

is needed in the modeling of fuel cells. Although in our experiments 

transport was perpendicular to the direction of current flow in a 

fuel cell, we believe the membrane is isotropic. This is supported 

by the recent work of Verbrugge and Hill [14]. Two assumptions that 

have been used are: the transport number is independent of composi-

tion [15] or e is proportional to A [6]. With these assumptions, we 
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can integrate equation 14 and compare the predicted potential of the 

cell to the experimental measurements, as figure 5 shows. The· 

assumption that the transport number is proportional to A predicts a 

much lower potential than was observed and is clearly not consistent 

wi th the experimental data at low water contents. Assuming the 

transport number of water is constant is also inconsistent with the 

data as well as the theoretical maximum derived earlier. The data 

show that e must increase with the concentration of water. The 

results of the present analysis combine the best features of the two 

assumptions given above. 

a 
o 

A 

B 

c. 
~ 

c 

d. 
~ 

D 
o 

F 

i 

K .• 
~J 

L .. 
~J 

m 

List of Symbols 

activity of water 

constant in equation 22 

constant in equation 22 

concentration of species i, mol/l 

constant in equation 22 

driving force for transport of species i, N/m3 

2 mutual diffusion coefficient of water, cm /s 

Faraday's constant, 96,487 C/eq 

current density, A/cm2 

frictional coefficient defined by equation (1), J.s/mS 

coefficient defined in equations (4 to 6), mS/J.s 

molality, mol/kg 
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Figure 5. Comparison of the measured potential of the cell 
with predictions from two assumptions for variation of the 
transport number with concentration, as well as the present 
analysis. 
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n 

N. 
~ 

R 

T 

v. 
~ 

x. 
~ 

y 

z. 
~ 

J,I 

g 

m 

o 

molar mass, kg/mol 

number of species 

molar flux of species 
2 

i, mol/cm ·s 

partial pressure or fugacity of species i, bar 

universal gas constant, 8.3143 J/mol·K 

transference number of species i 

transport number of species i 

temperature, K 

velocity of species i, cm/s 

mole fraction of species i 

distance along membrane, cm 

charge number of species i 
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number of moles of ions into which a mole of electrolyte 
dissociates 

electrical conductivity, S/cm 

electrochemical potential of species i, J/mol 

osmotic coefficient 

electrostatic potential, V 

electroosmotic coefficient 

Subscripts 

gas 

membrane 

water 
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solid 

hydrogen ion 
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Appendix A 

c program for fitting data of open-circuit vs aO. 
implicit rea1*8(a-h,o-z) 
dimension x(20),y(20),b(6,6),d(6,1) 
common b,d 
common Ifni aa 
read *, AA 
read *, ndata 
read *, (x(i),y(i),i=l,ndata) 
n=l 
do 1 l=l,n 
do 1 k=l,n 
b(k,l)=O.OdO 
do 1 i-1,ndata 

1 b(k,l)=b(k,l)+f(k,x(i»*f(l,x(i» 
print *, b(l,l) 
do 2 k-=l,n 
d(k,l)-O.OdO 
do 2 i=l,ndata 

2 d(k,l)=d(k,l)+f(k,x(i»*y(i) 
print *, d(l,l) 
call matinv(l,n,determ) 
print *, , determ', determ 
print *, (d(k,l),k=l,n) 

101 format (' de' ,i2,')= ' ,e15.5) 
eps~O.OdO 

do 4 i=l,ndata 
yc=O.O 
do 3 k=l,n 

3 yc=yc+d(k,l)*f(k,x(i» 
print 103, yc,y(i),x(i) 

103 format (3f12.5) 
4 eps=eps+(y(i)-yc)**2 

c print 102, aa, eps 
print *, aa, eps 

102 format (' aa- " f10.4, , eps=' ,f10.4) 
end 
function f(k,x) 
IMPLICIT REAL*8(A-H,0-Z) 
common Ifni aa 
f-=1.0-(1.0-dexp(-aa*x»/(1.0-dexp(-aa» 
return 
end 
SUBROUTINE MATINV (N,M,DETERM) 
IMPLICIT REAL*8(A-H,0-Z) 
COMMON B(6,6), D(6,1) 
DIMENSION ID(6) 
DETERM=1.0 
DO 1 I=l,N 
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1 ID(I)=O 
DO 18 NN=l,N 
BMAX=l.l 
DO 6 I=l,N 
IF(ID(I).NE.O) GO TO 6 
BNEXT=O.O 
BTRY=O.O 
DO 5 J-l,N 
IF(ID(J).NE.O) GO TO 5 
IF(ABS(B(I,J».LE.BNEXT) GO TO 5 
BNEXT=ABS(B(I,J» 
IF(BNEXT.LE.BTRY) GO TO 5 
BNEXT=BTRY 
BTRY=ABS (B(I ,J» 
JC=J 

5 CONTINUE 
·IF(BNEXT.GE.BMAX*BTRY) GO TO 6 
BMAX-BNEXT/BTRY 
IROW=I 
JCOL=JC 

6 CONTINUE 
IF(ID(JC).EQ.O) GO TO 8 
DETERM=O.O 
RETURN 

8 ID(JCOL)=l 
IF(JCOL.EQ.IROW) GO TO 12 
DO 10 J=l,N 
SAVE=B(IROW,J) 
B(IROW,J)-B(JCOL,J) 

10 B(JCOL,J)=SAVE 
DO 11 K=l,M 
SAVE=D(IROW,K) 
D(IROW,K)=D(JCOL,K) 

11 D(JCOL,K)=SAVE 
12 F=1.0/B(JCOL,JCOL) 

DO 13 J=l,N 
13 B(JCOL,J)=B(JCOL,J)*F 

DO 14 K=l,M 
14 D(JCOL,K)=D(JCOL,K)*F 

DO 18 I=l,N 
IF(I.EQ.JCOL) GO TO 18 
F=B(I,JCOL) 
DO 16 J=l,N 

16 B(I,J)=B(I,J)-F*B(JCOL,J) 
DO 17 K=l,M 

17 D(I,K)=D(I,K)-F*D(JCOL,K) 
18 CONTINUE 

RETURN 
END 
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Chapter 5 

Diffusion Coefficient of Water and 

Calculation of Binary-interaction Coefficients 

5.1 Introduction 

One of the three transport properties required to characterize 

transport in the membrane of a solid-po1ymer-e1ectro1yte fuel cell is 

the diffusion coefficient of water. We were concerned wi th two 

issues. First, the diffusion coefficient must be well-defined and 

suitable for our model. Second, to evaluate water management in the 

separator of the fuel cell, we need the diffusivity as a function of 

the level of hydration of the membrane. 

There have been many measurements of diffusion coefficients in 
® 

Nafion membrane reported in the literature [1] [2] [3] [4] [5] [6] 

[7] [8]. In the majority of experiments, however, only cation diffu-

sion coefficients are reported, or the membranes were in contact with 

a liquid electrolyte. Yeo and Eisenberg [9] used a transient tech-

nique and found the diffusion coefficient of water to vary with tem-

perature as 

-3 (-2436) Do = 6.0x10 exp ---T--- . 

The work of Zawodzinski et al. [10] was the most significant for 

the solid-po1ymer-e1ectro1yte fuel cell. They used pulsed field gra-

dient spin echo NMR measurements to determine the intra-diffusion 
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® 
coefficient of water in a Nafion membrane. They reported the dif-

-6 2 
fusivity of water at different levels of hydration, O.6xlO cm /s at 

-6 2 A=2 to 5.8xlO cm /s at A=14. 

Robinson and Stokes [11] and Crank [12] review the definitions 

and methods of measuring diffusion coefficients. Three standard 

steady-state techniques are the diaphragm cell, conductometric 

method, and optical methods. Measurements using the diaphragm cell, 

with water vapor on each side of the membrane, are impractical for 

the polymer electrolyte, because the amount of water contained in the 

membrane is large compared to the amount in the humidified gases. 

The conductometric method is discussed in a later section. Optical 

methods may be possible, but were not investigated here. 

An intra-diffusion coefficient can be measured, using radio-

tracer techniques or NMR, for example. It is difficult, nonetheless, 

to relate these directly to the binary- interaction parameters of 

interest. This will be discussed later in this chapter. 

For a binary system, one form of Fick's law is [13] 

n 
o 

-pD "Vw + pw v. 
000 

(1) 

Here, the membrane is stationary; therefore, the molar flux can be 

written as 

N 
o 

-a."Vj.L . 
o 

(2) 
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The coefficient a and D , the mutual diffusion coefficient, are 
o 

related by 

pD a __ __ --.:;0 __ 

(l-w )MW 
o 0 

dw 
o 

d . J1.0 

(3) 

The above equations provide a well-defined diffusion coefficient that 

is suitable for modeling. We did not find an experimental method of 

measuring the diffusion coefficient of water that satisfied our 

objectives. The only measurements of diffusion coefficients as a 

function of level of hydration were those in reference [11]. It is 

not clear how to relate these NMR results to the D of equation 1. 
o 

Consequently, we wanted to have an estimate of the diffusion coeffi-

cient, based on the well-defined equations given above, to compare 

with the intra-diffusion coefficients of [11]. 

5.2 Measurement of the Diffusion Coefficient 

A simple experiment was devised to determine the magnitude of 

the diffusion coefficient. In the diffusion cell shown in figure 1, 

one side of the membrane is equilibrated with liquid water. The con-

centration in the membrane at this interface is determined through an 

equilibrium relationship, A=18. On the other side of the cell, dry 

nitrogen impinges on the surface of the membrane. 

Figure 2 shows the experimental apparatus. Water that is trans-

ported through the membrane is measured by collecting in a desiccant 

tube containing calcium sulfate. One calculates the flux of water 
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from the weight of absorbed water. The flow rate of nitrogen was 

measured and used to determine the partial pressure of water in the 

bulk. The pressure was about 1 bar, and the temperature maintained 

close to 25°C. The membranes received the same pretreatment 

described in chapter 4. 

At steady state, the flux of water through the membrane is equal 

to the rate of mass-transfer into the gas phase. Whence, 

N 
o 

(4) 

where Pi is the partial pressure of water at the gas-membrane inter-

face. Furthermore, we assume that equilibrium exists at the inter-

face between the membrane and gas; 

* Kw • 
o 

Therefore, for a membrane of thickness ll' 

, 
(w Pb/K) 

N 
,0 

0 llMWo 1 --- + 
D kef 

(5) 

(6) 

where D is an average of pD /(l-w ) over the concentration range, and 
o 0 

w is the mass fraction of water in the membrane in equilibrium with o 

the liquid water. Experimental data are analyzed using 
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(7) 

Measurement of the flux of water at different values of ~1 will give 

a slope that is inversely proportional to the integral diffusion 

coefficient D. 

Experimental results for one to three membranes are shown in 

table 1; figure 3 shows the variable on the left side of equation 7 

plotted against the thickness of the membranes. The calculated 

values for D are given in table 2. 

Table 1. 

# of membranes I J oX10
7

mo1/cm
2

.s I 5 
Pbx10 bar 

Run #1 26.rC 

1 10.5 1107 
2 10.2 992 
3 9.17 887 

Run #2 21. 7°C 
1 9.04 1030 
2 8.32 946 
3 7.79 886 

Run #3 24.0°C 

1 10.9 1052 
2 9.42 912 
j 8.59 832 

Table 2. 

run # 
- -6 HW /DxlO cm's/mo1 

1 1. 25 
2 0.996 
3 1.46 
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Although crude, the experiments do give us an approximate value 

-5 2 
of the diffusion coefficient, D z 1.OxlO cm Is. It is clear from 

o 

figure 3 that most of the resistance is in the gas phase and not the 

membrane. Most of the errors associated with this method, however, 

would tend to lower the value of the measured diffusion coefficient. 

In the second approach, five membranes were placed in series in 

the cell. At steady state, the flux of water is measured as 

described above. The concentration profile is determined by 

disassembling the cell and separating the layers of membranes. Then, 

each membrane is weighed and its dry weight is subtracted. The dif-

fusion coefficient follows directly from equation 2. The water pro-

files for two experimental runs are shown in figure 4. The results 

for two different gas flow rates are shown in table 3. In both 

experiments the temperature was 27.0 D C. These experiments gave 

higher values, D z 3XlO-
5 

cm2/s, for the diffusion coefficient. 
o 

5.3 Conductometric method 

The conductometric method is is reviewed below. More details 

can be found in reference [11] and [14]. Because it is an elegant 

technique, we considered its application to the polymer-electrolyte. 

Table 3. 

7 2 - -6 
run # J xlO mol/cm . s MW /DxlO cm·s/mol 

1 8.00 2.61 
2 13.07 2.35 
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Figure 4. Water profile in diffusion cell. Temperature 
27°C. 
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Figure 5 shows a conductometric cell. A membrane was sandwiched 

between two plastic blocks. Electrodes were placed one sixth of the 

way from each end and are used to measure the conductivity across the 

membrane at these two locations. An arbitrary concentration profile 

is established within the membrane. At the start of the experiment 

both ends are sealed off. The differential equation, initial condi-

tions, and boundary conditions are given below: 

ae 
at 

2 
DV e, 

Ve = 0 at x=O and x=a , 

and e(x,O)=f(x). 

The Fourier series solution is 

2 2 Dn 11' t 

2 
a e(x,t) ~ e 

o + I 
n=l 

B 
n 

e {n1l'x} cos --;- . 

(8) 

(9) 

All of the coefficients for even values of n vanish because of the 

boundary conditions. The placement of the electrodes results in the 

third term in the series being zero. Since the series converges 

quickly, at long times 

(10) 



'. 
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Figure 5. Conductometric cell. Electrodes placed a/6 
from each end. 
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The diffusion coefficient is for the value of the final concentration 

c. Because of difficulties measuring the conductivity, this tech­
o 

nique did not prove to be successful. This will be discussed further 

in chapter 7. 

5.4 Mutual and Intra Diffusion Coefficients 

Keller et al. [15] experimentally examined the relation between 

mutual and tracer diffusivities in terms of dilute solution theory. 

The differences between the mutual and intra-diffusion coefficients 

can be seen most clearly within the framework of concentrated solu-

tion theory, which is based on the multicomponent diffusion equation, 

n 

c . V J.I.. -= l: K. . (v . -v . ) . 
~ ~ j~i ~J J ~ 

(11) 

In dilute solution theory, the only important interactions occur 

between solute and solvent. In contrast, the phenomenological equa-

tions of concentrated solution theory account for interactions among 

all the species through the frictional coefficients K ... 
~J 

The use of self-diffusion measurements for membranes and other 

applications of concentrated solution theory has been discussed by 

Newman [16] and Bennion [17]. The use of radioactively tagged 

species and Nuclear Magnetic Resonance techniques to measure self-

diffusion coefficients is common. Tyrrell and Harris [18] provide a 

theoretical discussion of both classical. methods and spin-echo tech-

niques for measuring diffusion coefficients using NMR. A description 
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of the diffusion processes and the relation between diffusion coeffi-

cients in terms of irreversible thermodynamics is given by de Groot 

and Mazur [19]. 

The "tagged" molecules in NMR or radiotracer experiments 

represent additional species which must be included in the multicom-

ponent diffusion equations. That is, the interactions between the 

tagged and untagged species can have significant effect on the diffu-

sion process. Unless this can be estimated or measured indepen-

dently, these interactions will complicate the determination of the 

transport properties. 

Even in "thought experiments," where the species truly are 

identical, one species moving to the right by thermal motion will see 

another molecule moving to the left. In dilute solution theory, the 

only interactions considered are between species i and the solvent, 

whereas in concentrated solution theory all interactions are impor-

tanto 

Consider diffusion of a tagged water molecule through the mem-

brane. From equation 11 we can write 

* * c VJ.' o 0 
* K (v 
00 0 

* * v ) + K (v 
o om m 

* * v ) + K (v 
o 0+ + 

* v ) 
o 

for the tagged species. Furthermore we will assume that, 

* D .. D . . , 
~J ~J 

by * and continuity N -N , and v v O. Equation 12 
0 0 m + 

(12) 

(13) 

can 'be 



written as, 

* N 
o 

* * c v 
o 0 

* * -c VI-' o 0 

c 
m 

+D 
om 

The flux of the tagged species can also be written as 

* N 
o 

* * -a VI-' • o 0 

Combining equation 14 and 15 yields 

* c 
a 

* 0 c + c c 
0 0 m 

+ + 
* D D om 
00 

In the case where there are no tagged 

c+ 
--
Do+ 

species, we 
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(14) 

(15) 

(16) 

can develop a 

similar relation. The multicomponent diffusion equation for water is 

(17) 

and therefore 

c 
a 

0 c c 
m + 

D + D 
om 0+ 

(18) 

Clearly, the tagged molecules add an additional species to the 

system. The flux of the tagged species will depend on another term 

reflecting the interactions between the tagged species and water. In 
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order to use the self-diffusivity, one would need to estimate D 00 

From equations 16 and 18, and further assuming that the concentration 

of tagged water is small, we can relate the two diffusion coeffi-

cients; 

c c c 
0 m + 

+ + --
* D D 

* 
D om 0+ 

00 (19) Q Q 
0 0 c c+ m 

D 
+ 

D 
0+ 

* From equation 19 one sees that Q 
o 

water goes to zero. 

om 

Q only when the concentration of 
o 

On a molecular level, the difference is interpreted as follows. 

We consider two species in the diffusion process, the membrane and 

water. The measurable diffusion event is the interchange of 

molecules of membrane and water. The only interactions are those 

between water and membrane. Thus, a single diffusion coefficient, 

the mutual-diffusion coefficient, is required. 

On the other hand, with NMR or radio - tracer techniques, the 

introduction of a labeled species creates a ternary system. Three 

diffusion coefficients are now required to describe transport 

processes. There will be interactions between the water and mem-

brane, between the labeled water and membrane, and between the 

labeled and unlabeled water. The intra-diffusion coefficient of 

water in the membrane given by NMR is a measure of the movement of 

"labeled" water in a homogeneous medium. The labeled water interacts 
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with both the membrane and other water molecules. At high water con-

centrations, the interactions between the two types of water are sig-

nificant. As the total concentration of water is reduced, the 

interactions between labeled water and unlabeled water become negli-

gible; and if isotope effects are small, the measured intra-diffusion 

coefficient will be equal to the mutual-diffusion coefficient. 

5.5 Calculation of Binary Diffusion Coefficients 

The binary interaction coefficients are related to the fric-

tional coefficients by 

K .. 
~J 

RIc.c. 
~ 1 

cD .. 
~J 

(20) 

We described how to relate the binary interaction coefficients and 

the frictional coefficients to measurable quantities in chapter 2. 

There are three transport properties required: the diffusion coeffi-

cient of water, the electrical conductivity, and the transport number 

of water. 

Springer et al. [20] measured the electrical conductivity of 

® 
Nafion 117 membrane at various temperatures and water contents. They 

gave the following fit of their data 

K = (0.005139>. - 0.00326) exp(1268b~3 - ¥)). (21) 
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From the experiments described in this chapter and the depen-

dence on level of hydration from [10], we estimate the mutual diffu-

sion coefficient of water as 

D 
o 

-2 [-2436) >. 2 3.5x10 exp -T- 14 cm /s. (22) 

The activation energy was taken from the experiments of Yeo and 

Eisenberg. [9] 

Analysis of the potentials of cells with transference, as 

described in chapter 4, gave an estimation of the transport number of 

water. Assuming that the transport number of water was independent 

of temperature, we developed the expression 

z 
o [ 

1 + 
(0.35>.)4 

(23) 

The density was estimated from information provided by the 

® 
manufacturer of Nafion membranes. The most important factor in 

determining the physical properties of the membrane is the equivalent 

weight (EW). The equivalent weight is defined as the weight of acid 

polymer that will neutralize one equivalent of base. This is related 

to the ion-exchange capacity (lEC) by, 

lEG = 1:0. (24) 

For the fuel-cell system, there are only three components. 

Assuming the electrolyte is electrically neutral and that we know the 
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properties of the dry membrane, i.e. density and (lEC) , we can obtain 

the concentration of each species from the density. The water con-

tent in the membrane will determine the concentrations of each 

species in the membrane, and this relationship will be used in the 

model. DuPont reports that the dry polymer has a density of 

3 
p = 1.98 g/cm , and that the volume increase for water absorption is 

about twice the weight increase. This leads to the following expres-

sion for the density: 

p = 
1. 98 + 0.0324>. 

1+0.0648>. 
(25) 

For this analysis, the molecular weight is taken to be identical to 

the equivalent weight. The concentration of water can be expressed 

as 

c 
o 

To ensure K is positive, 
+m 

D 
o 

1980>./EW 
1+0.0648>.· 

dJJ o 
dw . 

o 

(26) 

(27) 

Using the thermodynamic data of Zawodzinski et al. [10], we estimated 

the activity factor as 

dJJ o 
dw 

o 
(28) 
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From the data given above, the solid line in figure 6 shows the 

minimum value of the diffusion coefficient consistent with equation 

27. The diffusion coefficients from our analysis, equation 22, as 

well as those reported in references [10], are included in this fig-

ure. 

The frictional coefficients, K .• , at 80°C, are shown in figure 
~J . 

7. The binary-interaction coefficients, D .. , are shown in figures 8 
~J . 

and 9 for 80 and 25°C respectively. In general, as the membrane is 

hydrated, the diffusion coefficients increase, and the frictional 

coefficients decrease. The frictional coefficients and the binary-

interaction coefficients are strongly dependent on composition; and 

as we surmised in chapter 2, there is no clear advantage to using 

D . . 's 
~J 

c 

c. 
~ 

d. 
~ 

D 
0 

D .. 
~J 

F 

J. 
~ 

kG 

K 

List of Symbols 

total concentration, molll 

concentration of species i, molll 

driving force for transport of species i, N/m3 

2 mutual diffusion coefficient of water, cm Is 

2 binary-interaction coefficient of species i, cm Is 

Faraday's constant, 96,487 C/eq 

flux of species i, mOl/cm2 .s 
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Chapter 6 

Steady-state Results and Water Management 

6.1 Introduction 

Based on the model developed in chapter 3, we present a steady­

state analysis of transport in a solid-polyrner-electrolyte fuel cell. 

Nguyen et al. [1] raise heat-transfer design issues in po1yrner­

electrolyte fuel cells; but, by and large, the subject has not been 

treated in the literature. Nevertheless, as will be shown in this 

chapter, thermal effects must be considered in the analysis of water 

management. 

We consider a membrane-electrode assembly operating at steady 

state on air and reformed methanol. The fuel and air streams are 

heated and humidified prior to entering their respective channels 

where they are consumed in electrochemical reactions. Hydrogen gas 

diffuses through the porous electrode and reacts at the anode in a 

three-phase region containing polymer electrolyte, gaseous reactants, 

and carbon matrix including platinum catalyst. Oxygen passes through 

the gas-diffusion electrode to the cathode. At the cathode, the 

hydrogen ions react with oxygen at similar catalyst "sites to form 

water. Water also absorbs into or evaporates from the membrane 

depending on the partial pressure of water. 

We examined three issues with respect to water management: 1) 

net transport of water, which must be supplied or recycled thereby 

reducing the overall efficiency of the cell, from the anode -to" the 
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cathode, 2) dehydration of the anode leading to high ohmic losses 

because the conductivity of the polymer electrolyte is a strong func­

tion of the degree of hydration, and 3) flooding of the cathode. 

It is common practice to supersaturate the inlet gases with 

water prior to entering the fuel cell. Since water is produced at 

the cathode, it is not obvious that additional water need be supplied 

to the fuel cell. We hope to elucidate when and why additional water 

might be needed to enhance the performance. 

In addition, the utilization of hydrogen is an important factor 

in the optimization of these fuel cells. One could circumvent water 

and thermal management problems by increasing the flow rates of the 

gas streams. This will, however, affect the utilization of fuel, net 

transport of water across the cell, and the overall efficiency of the 

fuel cell. 

Because the effect of changes in individual properties (conduc­

tivity for example) seems evident, we do not attempt to make a 

parametric study. Instead, using the best available data, we examine 

the complex relationship between operating conditions and transport 

processes in the fuel cell. Where possible, the parameters were 

obtained from our experimental measurements or from data available in 

the literature. The thermodynamic and kinetic data and the transport 

properties used in the simulation are summarized in appendix B; the 

computer program is listed in appendix C. 

The analysis is divided into three areas: 1) constant-

temperature study of a unit cross section of the fuel cell, 2) water 
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management in a membrane-electrode assembly at constant temperature 

with cocurrent flow of air and fuel, and 3) combined material and 

energy balance for the membrane-electrode assembly. 

6.2 Unit cross section 

First, we consider a unit cross section of the fuel cell. The 

temperature is fixed, and we specify the mole fractions of the gase-

ous species at the ends of the two gas -diffusion electrodes. The 

current-voltage curve for the conditions of table 1 is shown in fig-

ure 1. For all of the simulations the width of the gas diffusion 

electrodes was 360 ~m, and the width of the reaction zone was 10 ~m. 

The open-circuit potential is determined from equation B-12. At low 

current density, ohmic losses are small, and polarization at the 

cathode controls the cell potential. As the current density 

increases, ohmic losses grow, and the curve becomes roughly linear; 

Table 1. 
Gas composition at the boundaries. 

cathode-gas anode-gas 

xH 0 0.40 xH 0 0.40 
2 0.48 2 0.15 x N xeo 
2 0.12 2 0.45 Xo - xH 2 2 

parameter value 

T 353.0 K 
L 0.0175 cm 
p 1. 0 bar 

f 0.20 
m 0.40 f 
g 
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in this region the slope is inversely proportional to the electrical 

conductivity. Because the overall water content, which determines 

the conductivity of the membrane, increases with current density, the 

curve is slightly concave upward (the water profiles in figure 2 will 

clarify this effect). 

Ticianelli et aI. [2] present experimentally measured curves. 

They observed what appear to be mass-transfer limitations in experi-

mental cells, a sharp drop in current density at low cell potentials. 

The model does not predict mass-transfer limitations in the gas-

2 
diffusion electrodes until current densities of about 5 A/cm. The 

model, however, does not include adsorption and mass transfer of 

hydrogen or oxygen in the water or polymer film, which could limit 

the current density. The mass-transfer limitations may also be the 

result of flooding. As the pores fill up with water, the volume 

fraction of the gas.decreases, and access to the catalyst may be res-

tricted. 

Figure 2 presents profiles of water content in the membrane at 

different current densities. A is the ratio of moles of water per 

sulfonic acid group. At the cathode, water is produced in 

stoichiometric proportion to the current; and with increasing 

current, more water is dragged from the anode. A concentration gra-

dient builds up to counteract the electroosmotic drag. 

As the current density grows, one observes an increase in the 

water content at the cathode and slight' dehydration at the anode. 

Although the flux of water across the membrane is constant, because 
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sulfonic acid group. 
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of the variable physical properties, the water profiles are not 

straight. . There is little resistance to mass transfer in the gas 

phase or in the membrane; and consequently, even at high current den-

sities, dehydration of the anode is not significant. 

6.3 Isothermal case 

Next, we consider a two-dimensional membrane-electrode assembly 

(shown in chapter 3), with cocurrent flow of air and fuel streams. 

The temperature is constant, but as the gas streams flow down the 

channels, fuel and oxygen are consumed, and water is produced at the 

cathode. Therefore, with the electrode potential fixed, the local 

current density and flux of water change. Here we account for these 

variations in the z direction. 

Table 2. 
Inlet gas composition. 

cathode-gas anode-gas 

xH 0 0.36 xH 0 0.36 
2 

0.512 
2 

0.16 x
N xeo 

2 
0.128 

2 
0.48 Xo x

H 2 2 

parameter value 

T 353.0 K 
L 0.0175 cm 
p 1. 0 bar 

€ 0.20 
m 

0.40 € 
g 

FO -2 
a 1.OxlO mol/m·s 
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For the conditions given in table 2, figure 3 shows a two-

dimensional water map in the membrane. y is the dimension across the 

separator, and z is along the length of the assembly. With increas-

ing z, the partial pressure of water increases in the channel because 

of the overall chemical reaction and because the only means of water 

removal is in the gas streams. Consequently, the level of hydration 

in the membrane increases with larger z. As before, there is a con-

centration gradient established that counteracts the electroosmotic 

drag of water and reduces the net transport of water across the cell. 

The mole fractions of hydrogen, oxygen, and water as a function 

of axial position are shown in figure 4. The local current density 

is also depicted by the solid line in figure 4. At small z there is 

a large net flux of water from the anode to the cathode gas stream. 

Consequently, the mole fraction of hydrogen is nearly constant for 

the first couple of centimeters. Initially the current density 

decreases; but as the membrane becomes more hydrated, the conduc-

tivity increases substantially and the local current density rises. 

Figure 5 shows the composition of water in the two gas streams. 

We have introduced the variables 

x. 
~ 

F. 
~ 

F. 
~nert 

x. 
~ 

x. ' 
~nert 

(1) 

where inert refers to the nonreacting gas in each stream: nitrogen 

for the cathode and carbon dioxide for the anode; and f is the molar 

flow rate of the cathode gas stream divided by the stoichiometric 
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Figure 3. Concentration profiles of water across 
membrane. A is the number of water molecules per 
sulfonic acid group. V=O.72 volts, and z, the 
distance from the top of the channel, is a parameter. 

116 



0.5 

0.4 

.r; 0.3 
:><: 

0.2 

0.1 

117 

415 

- 410 
------ - - - _ _ hydrogen -.. -... .... - -- --- ... ~:: 

water - --.".. -

o 

-------

--- ---

1 2 3 

-
cathode ---
anode 

---

4 5 6 

-
.... 

... -- ... 

oxygen --- --- ---

.... 
............ ~. 

---

""'...... 405 ..... .... 

-----

$ 
............ 
o 

400 Sr-.J 

395 

7 8 9 10 11 12 

z, distance from entrance (cm) 

Figure 4. Mole fraction of hydrogen, oxygen, and 
water in the gas channels. Local current density is 
shown by the solid line. V=O.72 volts, and f=1.0. 



2.2 

2.0 

1.8 

1.6 

~o 
1.4 

1.2 

1.0 

0.8 

, , , 
~ 
~~ 

"'" ... ... ... ... .... ... ..... ... ... ... 
, -----------­... ........ 

-... -...-
f=1.0 _ ...... ...... ...... 

118 

........ 
-------____ f=l.S ---------------

anode 
cathode 

f=1.0 

f=l.S 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

z, distance from entrance (cm) 

Figure 5. Composition of water in gas channels. f is the 
-air-to-fuel ratio. Simulation is stopped at the value of z 
where the cathode gas stream reaches saturation with respect 
to water. Utilization of hydrogen is then 0.52 and 0.67 for 
f = 1 and 1.5, respectively. 
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flow rate for a specified anode gas flow rate. The mole ratio of 

water in the cathode stream increases; and for f=1.5, the mole ratio 

in the anode stream decreases. For f=l, the composition of water in 

the anode stream goes through a minimum; at which point water is 

being removed from both sides of the assembly. Figure 7 makes this 

clearer. 

As the flow rate of air is increased, one observes that: 1) the 

cell is able to operate longer before the cathode stream becomes 

saturated, and 2) more water is removed in cathode gas stream, and 

the anode is further dehydrated. Thus, increasing air flow doesn't 

impact negatively on hydrogen utilization. The simulation was 

stopped when the cathode stream became saturated with respect to 

water. For f=l and f=1.5, this point corresponds to hydrogen utili-

zation of 0.52 and 0.67, respectively. 

In figure 6, the local superficial current density is plotted 

against local hydrogen utilization, with the cell potential as a 

parameter. The fractional utilization of hydrogen, 

U = (2) 

is an important parameter in the optimization of a fuel cell [3]. 

With the potential of the two electrodes constant, one expects the 

current density to decrease as the reactants are consumed. In this 

case, however, the conductivity increased dramatically with hydration 
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of the membrane, and we observe an improvement in performance. At 

higher current densities, ohmic losses are more important, and conse­

quently the improvement in performance is more dramatic. Because our 

model does not consider the condensation of water, we stop the simu­

lation when the partial pressure of water equals the vapor pressure 

of the liquid, and we don't observe the utilization going to unity. 

The net transport of water across the separator is shown in fig-

ure 7. At the top of the channel (z=O), the partial pressure of 

water is identical in the two gas channels, and consequently there is 

a large flux from the anode to the cathode due to the e1ectroosmotic 

drag of water. Farther down the channel, the partial pressure of 

water in the cathode stream becomes greater than that of the anode, 

and the current density diminishes, thus lessening the net flux of 

water. With a large enough difference in partial pressure of water 

across the membrane, the flow of water can be reversed. This is seen 

in figure 7 at zz6 cmfor £=1. Here water is being removed from both 

sides. 

Finally, we examine the heat transfer required to maintain con-

stant temperature. There are significant losses and generation of 

heat. From the first law of thermodynamics, 

Iili = Q - W. (3) 

The work is given by 
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Figure 7. Net flux of water across membrane. A value of 
the flux less than zero indicates transport from the anode 
to the cathode. f is the air-to-fuel ratio. Simulation is 
stopped at the value of z where the cathode gas stream 
reaches saturation with respect to water. 
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w ~ v fi(z) dz. (4) 

With f=l, V=o. 72 V, and for the conditions of table 2 after 10 cm, 

the following is calculated: 

parameter value 

IlH -0.5147 kW/m 
W 0.3208 
Q -0.1939 

From the heat transfer required we can estimate the necessary heat 

transfer coefficient, h. 

(5) 

Substitution of the values in the table above with ambient tempera-

ture of 298 K (~T=55 K) gives a heat-transfer coefficient of 

2 
h=35.3 W/m ·K. This is a typical value for forced convection of 

gases [4]. 

From this analysis we are able to draw some conclusions. First, 

substantial heat removal is required to maintain the system at con-

stant temperature. The temperature difference we used is relatively 

large, and it seems· impractical to increase this substantially. Thus 

at higher current densities, larger heat transfer coefficients are 

needed. Second, there is significant transport of water from the 

anode to the cathode. Although our model is not able to simulate 

countercurrent flow of fuel and air streams, our results indicate 

that this· could be- he-1pful. 
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6.4 Nonisothermal Case 

Temperature has a profound effect on the equilibrium and kinetic 

properties. In this last section, we assume that there are no tem-

perature variations across the assembly (the y direction) and that 

there is no transfer of heat in the z direction. The temperature of 

the gases at the inlet is specified, and we calculate the temperature 

in the z direction based on an overall energy balance. Heat is car-

ried out by both an increase in temperature of the flowing gases and 

by heat transfer to some other medium at a temperature of 298 K . 

. Figure 8 shows water profiles across the membrane with z as a 

parameter. The operating conditions are shown in table 3 and include 

a heat-transfer coefficient of 30 W/m
2

.K. The current density as a 

function of local utilization of hydrogen is shown in figure 9; the 

corresponding temperature profiles are depicted in figure 10. 

Table 3. 
Inlet gas compositions. 

cathode-gas anode-gas 

xH 0 0.40 xH 0 0.40 
2 0.48 2 

0.15 x
N xeo 

2 0.12 2 0.45 Xo xH 2 2 

parameter value 

T 353.0 K 
L 0.0175 cm 
p l. 0 bar 

f 0.20 
m \ 

0.40 f 
g 

F
O -2 
'" 

l.OxlO n ol/m·s 



9 

8 

7 ... 

c< 

6 

5 

0.1 cm 

... ... ... ... 
... 

5.0 

v = 0.72 V 

',.... 10.0 ... ... ... ... ... ... ... ... .. .. 

o 20 40 60 80 100 120 140 160 

y, distance from cathode (~m) 

125 

Figure 7. Concentration profiles of water across 
the membrane. A is the number of water molecules per 
sulfonic acid group. V=0.72 volts, and z, the 
distance from the top of the channel, is a parameter. 
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The hydration of the membrane is sensitive to the rate of heat 

removal. Because of the low thermal capacity of the gas streams, the 

steady-state temperature will rise quickly without adequate removal 

of heat. At even moderated current densities, the cell would dehy-

drate, and the performance would be poor. 

In contrast to the isothermal water profiles of figure 3, for 

h=30 W/m2 .K, initially the temperature rises sharply with increasing 

axial distance, and the membrane becomes dehydrated (see figure 8). 

At constant cell potential, the loss of water from the membrane (and 

hence lower conductivity) results in lower current densities and the 

temperature levels off. Farther down the channel, the temperature 

decreases slowly, and the water content in the membrane increases 

(see the dashed line in figure 8). 

The effect of the heat transfer coefficient on overall perfor-

mance is seen in figure 9. 2 
For h=36 W/m ·K, the cell temperature 

rises slowly, and the performance is good. With a slightly lower 

value of the heat transfer coefficient (h=30 W/m2 .K), the temperature 

increases more sharply, the membrane dehydrates, and the performance 

decreases substantially. With little or no removal of heat 

2 
(h=lO W/m . K), the temperature rises more than lOoe in 1 cm, and 

there is a dramatic drop in the local current density. 

From this we conclude that thermal considerations must be 

included in an analysis of water management. Thus, thermal control 

is critical to the performance of the solid-polymer-electrolyte fuel 

cell. Furthermore, the heat-transfer requirements will change 
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markedly with current density, thus making temperature control more 

difficult. 

It has been observed that the performance of these cells 

improves when supersaturated gas streams are used. This may be not 

so much because of the additional water supplied to the anode, but 

rather, because of improved heat transfer (dehydration of the mem-

brane was not seen in the isothermal case). The evaporation of 

liquid water would result in a high heat-transfer coefficient, pro-

viding good temperature stability. 
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Appendix B 

Physicochemical properties 

Transport properties 

The transport properties of the polymer electrolyte were dis-

cussed in chapter 5. The diffusion coefficients in the gas phase 

were estimated from kinetic theory. Assuming the ideal-gas law 

holds, Bird et al. [1] gave the approximate formula 

(B-1) 

where 0AB is a tabulated function of temperature for a Lennard-Jones 

gas. The parameters of the equation B-1 were taken from Reid et al. 

[2] and are shown in table B-1. We assumed 

(B-2) 

and 

Table B-l. 

species M., glmo1 
~ 

Elk, K G, nm 

~o 18.02 809.1 0.2641 
28.01 71.4 0.3798 

02 
32.00 106.7 0.3467 

cct
2 

44.01 195.2 0.3941 
H') 2.016 59.7 0.2827 
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(B-3) 

We used Nuefe1d's [3] relation to estimate 0AB: 

(B-4) 

where T * = kT / E AB' The parameters for equation B-4 are listed in 

table B-2. 

The effective diffusion coefficient depends on the porosity of 

the material. However, experimental results are usually necessary to 

quantify this relationship. Meredith and Tobias [4], for example, 

studied the conductivity of porous media in detail. Because the 

porosity of the fuel-cell assembly is not well characterized, the 

relationship is somewhat arbitrary, and for convenience we chose· 

ED • • , 
~J 

(B-5) 

This E, the porosity of the medium, is different from that in equa-

tion B-4 and table B-1. 

Table B-2 

A=1.06036 D=O.47635 G=1.76474 
B=O.15610 E=l. 03587 H=3.89411 
C=0.19300 F=l. 52996 
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Thermodynamics 

Zawodzinski et al. [5] measured the absorption isotherm of 

® 
Nafion 117 membrane at 30 De. 

A=O.043 + l7.8la 
o 

2 3 
39.85a + 36.0a . 

o 0 

a 
o 

== -0.0505 + O.1853A - O.Ol049A2 + 1.7l2xlO-
4

A
3

. 

(B-6) 

(B-7) 

* The activity of water is given by P Ip. The vapor pressure of water 
o 

is calculated from the Antoine's correlation 

* In p 
B 

= A-­
T+C' 

(B-8) 

The constants are from [2]: A = 11.6832, B - 3816.44, C = -46.13. * p 

is the vapor pressure in bar. 

The enthalpy of a gaseous species is 

- -* H. co H. 
~ ~ 

H. (T ) + 
~ 0 

and its heat capacity is 

= a + bT + 

T 
J C dT, 
T P 

o 

c 
2' 

T 

(B-9) 

(B-lO) 

The values of the constants for our fuel-cell system are taken from 

[6] and given in table B-3. 
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Table B-3. 

-* kJ 103b 2 -5 J·K/mol species Hi' - a, J/mol·K J/mol·K 10 c, 
mol 

, 

~o -241. 82 30.54 10.29 0.0 
0.0 28.58 3.77 -0.50 

02 0.0 29.96 4.184 -1. 67 
cct2 -393.51 44.22 8.79 -8.62 
H? 0.0 27.28 3.26 0.50 

The hydrogen-oxygen fuel cell can be represented as 

Q f3 t t f3' Q 

graphite Pt(S),H2(g)telectr01Ytetpt(S),02(g) graphite 

The potential of this cell is 

For the two half-cell reactions 

and 

the cell potential is 

Q 

- J.I. 
e e 

, , 
FU = FU

8 +~lnpH +-:-41RTlnpo -YzRTlnaf3 +(J.l.f3 -J.l.
f3 

). 
2 2 0 + + 

(B-ll) 

(B-12) 

The transport number of water is given in chapters 4 and 5; this is 

used to calculate the last term on the right side of equation B-12. 



At open circuit, 

, 
~~ ) = -J (tmjz ) RTd(lna ). + 000 

From the thermodynamic relation 

d(llGjRT) 
dT 

/)J{ 

2' RT 
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we can calculate the temperature dependence of the standard cell 

potential. 

Kinetics 

Ticianelli et a1. [7] and Uribe et a1. [8] have studied the 

kinetics of oxygen reduction in solid-polymer-electrolyte fuel cells. 

--+ 
+--

The reaction is first order in oxygen concentration and the cathodic 

transfer coefficient is one. The exchange current density reported 

by Ticianelli is based on the superficial area of the electrodes. 

There is no clear way to differentiate between the kinetic rate con-

stants and the specific interfacial area. Therefore, we required 

that the open-circuit potentiaI be consistent with our calculation 
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above, and we adjusted a and k to approximate Ticianelli's current-

voltage curve. 

Recently, Parthasarathy et a1. [9] investigated the temperature 

dependence of the electrode kinetics of oxygen reduction. 

i = i (T ) exp [b.E[..l. - 1J]. o 0 r R T T 
r 

(13) 

We used the activation energy they reported (b.E - 73.2 kJ/mol) and 

variations in UfJ with temperature to account for the change in 

kinetic rate constants with temperature. 

We assumed that the oxidation of hydrogen was fast and did not 

represent significant overpotential for the fuel cell. The absorp-

tion of water was also assumed to be fast. 

The equilibrium constant for this reaction is calculated from the 

thermodynamic data presented above. 

a 
o 

A 

K 
eq 
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~ 

c 
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H 
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o 

K 

M. 
~ 

p 

R 

s 

T 

u 
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equilibrium constant 

molar mass, g/mol 
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entropy, J/K 

temperature, K 

open-circuit cell potential, V 

porosity 

electrochemical potential of species i, J/mol 

characteristic length, nm 

electrostatic potential, V 

diffusion collision integral 
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Appendix C 

c***************************************************************** 
c 
c FUEL CELL fuel.for(3/26/92) 
c 
c***************************************************************** 

implicit real*8(a-h,o-z) 

c 

common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phil,phi2 
common/calc/ h,hl(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
common/rxnl/ nr,gnu(12,S) ,rate(S,32l) ,equil(S,32l),gne(S) 
common/var/ cc(32l),xx(13,32l),xi(13,2),flux(12,32l),t 
common/res/ xo(13,10,321) 

c numbers of species and equations 
c 

c 

data nl/3/,ng/3/,nr/2/ 
nm=nl+ng 
n=nm+l 

c mesh size and number of iterations 
c 

c 

c 

data lim/29/,ni(1)/40/ni(2)/40/,ni(3)/60/,ni(4)/40/, 
lni(S)/40/ 
data hl(1)/3.60d-04/,hl(2)/1.Od-OS/,hl(3)/1.7Sd-04/ 

1,hl(4)/1.Od-OS/hl(S)/3.60d-04/hl(6)/1.Od-03/ 

do 10 i=2,S 
hl(i)=hl(i)/(ni(i)-l) 

10 ni(i)=ni(i-l)+ni(i)-l 
njj=ni(S) 
hl(l)=hl(l)/(ni(l)-l) 

c *********************************************************** 
c read entrance conditions and kinetic parameters 
c thermodynamic properties and molecular weight 
c 

c 

read *, to,p,(xi(i,1),xi(i,2),i=1,nl), 
1(xi(i,1),xi(i,2),i=nl+l,nm),xi(n,1),xi(n,2), 
1«gnu(i,j),i=1,nm),j=1,nr+2),(gne(i),i=1,nr+2), 
1(rate(j,1),j=1,nr+2),phil,phi2 
read *,fb,fa,zn 
read * (ee(i,l),ae(i,l),be(i,l),ce(i,l),i=l,nm-til) 
read * (ee(i,2),ae(i,2),be(i,2),ce(i,2),i=1,nm-nl) 
read *, (ww(i,l),sd(i,l),ed(i,l),i=l,nm-nl) 
read * (ww(i,2),sd(i,2),ed(i,2),i=1,nm-nl) 



c *********************************************************** 
c physical constants 
c 

data fc/96487.0dO/, r/8.3l4dO/ 
data (z(i),i=1,3)/0.OdO,-7.0d-02,1.OdO/ 

c 
c set flux of membrane and carbon dioxide/nitrogen to zero 
c 

do 2 i=l,nm 
if (i.eq.2 .or. i.eq.5 ) then 

wt(i)=1. OdO 
else 

wt(i)=O.OdO 
end if 

2 continue 
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c 
c***************************************************************** 
c z - integration 
c 

c 

c 

t=tO 
tl-tO 
call guess(n) 

109 format (f5.2,', ' ,£6.4,', ' ,£6.4,', '£6.4,', '£6.4,', ' 
lf6 . 1, " " f7 . 5 , " " f6 . 2) 

do 22 k~l,zn 
zt=(k-0.5dO)*hl(6)*1.Od02 
do 103 jk=1,8 
frt=fc/(r*t) 
call compos(n,lim,fa,fb,k) 
call heat(tl,t2,fa,fb) 

103 t=(tl+t2)/2.0dO 
tl=t2 

c material balance on gas streams 
c 

c 

c 

f1=O.OdO 
f2=0.OdO 

do 5 i~nl+l,nm 
fl=f1+f1ux(i,l) 

5 f2=f2+flux(i,njj) 

do 7 i=nl+l,nm 
xi(i,1)=(fb*xi(i,1)-flux(i,1)*hl(6»/(fb-fl*hl(6» 

7 xi(i,2)=(fa*xi(i,2)+flux(i,njj)*hl(6»/(fa+f2*hl(6» 
fa=fa+f2*hl(6) 
fb=fb- f1*hl (6) 
print 109,zt,xi(6,1)/xi(5,1),xi(6,2)/xi(5,2),xi(4,1)/xi(S,1) 

1,xi(4,2)/xi(S,2),flux(3,117)*9648.7,flux(1,117),t 



c 

c 

22 continue 

call nucamb(n) 

stop 
end 

c*************************************************************** 
subroutine compos(n,lim,fa,fb,li) 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phil,phi2 
common/calc/ h,hl(6) 
common/pdata/ z(l2),wt(l2),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,321) 
common/ssblock/ xpO(13),xxO(13,321) 
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common/var/ cc(321),xx(13,321),xi(13,2),flux(12,321),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/mati b,d 

c 
99 

c 

20 
c 

c 

4 
c 

common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 
dimension xp(26) 

format (lh , / /5x, , this run did not converge'//) 
nx=n 
nj=njj 

do 20 j=l,nj 
do 20 i-l,n 

_ c(i,j)=xx(i,j) 

jcount=O 
call prop(n,jcount,li) 

do 4 i=l,n 
xp(i)=O.OdO 

c initialize variables to begin each iteration 
c (jcount is iteration #) 

c 

8 j=O 
jcount=jcount+l 
do 9 i=l,n 
do 9 k=l,n 

x(i,k)=O.OdO 
9 y(i,k)=O.OdO 

c store previous iteration of (xp in xpO) & (xx in xxO) 
do 6 i=l,n 

xpO(i)=xp(i) 



6 xxO(i,ni(2»=xx(i,ni(2» 
c 
c update physical properties 
c if(jcount.gt.3) call prop(n,jcount,li) 

if(jcount.gt.4 .and. li .eq. 1) call prop(n,jcount,li) 
c 
c start at the cathode and move across cell to the anode 

c 

c 

c 

10 j=j+1 

do 11 i=l,n 
g(i)=O.OdO 
xx ( i , j ) -c ( i , j ) 

do 11 k=l,n 
a(i,k)=O.OdO 
b(i,k)-O.OdO 
s3(i,k)=0.OdO 

11 d(i,k)-O.OdO 

if(j.ne.1) go to 500 

cspecify boundary conditions at x=O (j=l) 
c 

c 

c 

c 

nk=O 
phi=phil 
hd=hl(l) 
h==hl(l) 
q1=1.0dO 
fd==fb 

call zba1(j,1,q1,fd,hd,1) 
call rearr(ni(1),ni(2)+1,n1+1,nm) 
go to 10 

500 if (j .ge. ni(l) ) go to 502 

c governing equations nj 1 < j < nj 2 
c 

c 

c 

call ginv(j,1,q1) 
call re1(j ,1,1) 
call gas(j) 
call band(j) 
go to 10 

502 if (j .ne. ni(l) ) go to 504 

c governing equations at x=L1 (j=ni(l» 
c 

call finv(j-1,1,n) 
call rearr(ni(1),ni(1)+1,nl+1,nm) 
h=h1(2) 
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c 

c 

c 

call finv(j, 2, n) 

ha=hl(2) 
hb=hl(l) 
ql=l. OdO 
call inter(j,ha,hb,l,ql) 
call rearr(ni(1)-2,ni(2),1,nl) 
call rearr(ni(2),ni(1)-1,1,nl) 
go to 10 

504 if (j .ge. ni(2» go to 506 

c governing equations [ ni(l) < j < ni(2)-1 ] 
c 

c 

c 

call rzone (j ,n) 
go to 10 

506 if (j .ne. ni(2» go to 508 

c specify boundary conditions at L2 (j=ni(2» 
c 

c 

c 

c 

call finv(j-l,l,n) 
call rearr(ni(2),ni(1)-2,1,nl) 
h=hl(3) 
call finv(j,.2, n) 
ha=hl(2) 
hb=hl(3) 
ql=l. OdO 
call nepe(j,ha,hb,ql) 

go to 10 

508 if (j .ge. ni(3» go to 413 

c specify governing equations for the membrane [nj2< j < nj3] 
c 

c 

c 

c 

call mire(j,n,dp,dphi,d2phi) 
call rel (j ,1,1) . 
call electrolyte(j,n,dp,dphi,d2phi) 
call band(j) 

go to 10 

413 if (j .ne. ni(3» go to 13 

c' specify boundary conditions at L3 (j=ni(3» 
c 

call finv(j-l,l,n) 
call rearr(ni(4)+2,ni(3),1,nl) 
call rearr(ni(3) ,nr(4)+.1;1,nl) 
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c 

c 

c 

c 

c 

h=hl(4) 
call finv(j,2,n) 

ha=hl(3) 
hb=hl(4) 
ql--l. OdO 
call nepe(j,ha,hb,ql) 

nk=2 
phi=phi2 
go to 10 

13 if (j .ge. ni(4» go to 16 

c specify governing equations [ nj3 < j < nj4 ] /700/ 
c 

c 

call rzone(j,n) 
go to 10 

16 if (j .ne. ni(4» go to 108 

c specify boundary conditions at L4 (j=n(4» 
c 

c 

c 

c 

c 

c 

call rearr(ni(3),ni(4)+2,1,nl) 
call finv(j-l,l,n) 

call rearr(ni(4),ni(3)-1,nl+l,nm) 
h=hl(S) 
call finv(j,2,n) 

ha=hl(4) 
hb=hl(S) 
ql=-l.OdO 
call inter(j,ha,hb,-l,ql) 

go to 10 

108 if(j .eq. njj) go to 110 

c specify governing equations [ nj4 < j < njS ] 
call ginv(j,-l,ql) 
call rel(j, 1,1) 
call gas (j) 
call band(j) 
go to 10 

c 
c specify boundary conditions at right interface(j=ni(S» 
c 

110 continue 
c 
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c 

c 
c 

call rearr(ni(4),ni(4)-l,nl+l,nm) 

hd~h1(5) 

q1--1. OdO 
fd=fa 
call zbal(j,-I,ql,fd,hd,2) 

c begin check for ss convergence 
c 
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do 25 i=l,nm 
xp(i)=-(4.0dO*c(i,ni(2)-l)-3.0dO*c(i,ni(2»-c(i,ni(2)-2»/2.0dO(h 

c 

c 

c 

c 

c 

do 25 j=l,nj , 
if(c(i,j).lt.xx(i,j)/1.0d02) c(i,j)=xx(i,j)/1.0d02 
xx(n,j )=c(n,j) 

25 xx(i,j)=c(i,j) 

if (jcount .gt. lim) then 
print 99 

else 

call nucamb(n) 
stop 

do 55 ii=2, nm 
dxp=dabs( xp(ii)-xpO(ii) ) 
dxx=dabs( xx(ii,ni(2»-xxO(ii,ni(2» ) 

if ( dxx .gt. 1.0d-09*dabs( xx(ii,ni(2» » go to 8 
if ( dxp .gt. 1.0d-06*dabs( xp(ii) ) .and. 

1 z(ii) .ne. O.OdO) go to 8 

55 continue 

end if 

c print *, , , 
c print *, jcount,' iterations were reqd for ss convergence' 
c print *, , , 
c 

return 
end 

c************************************************************** 
subroutine band(j) 
implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,n1,ng,ni(6),nk 
common/mati b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 
dimension e(26,27,321) 

101 format (15h determ=O at j=,i4) 



if (j-2) 1,6,8 
1 np1~ n + 1 

do 2 i-1,n 
d(i,2*n+1)= g(i) 
do 2 l=l,n 
1pn- 1 + n 

2 d(i,lpn)- x(i,l) 
call matinv(n,2*n+1,determ) 
if (determ) 4,3,4 

3 print 101, j 
4 do 5 k=l,n 

e(k,np1,1)= d(k,2*n+1) 
do 5 l=l,n 
e(k,l,l)- - d(k,l) 
1pn= 1 + rt 

5 x(k,l)- - d(k,lpn) 
return 

6 do 7 i=l,n 
do 7 k=l,n 
do 7 1-1,n 

7 d(i,k)= d(i,k) + a(i,l)*x(l,k) 
8 if (j-nj) 11,9,9 
9 do 10 i=l,n 

do 10 l-l,n 
g(i)= g(i) - y(i,1)*e(1,np1,j-2) 
do 10 m=l,n 

10 a(i,l)= a(i,l) + y(i,m)*e(m,1,j-2) 
11 do 12 i=l,n 

d(i,np1)- - g(i) 
do 12 l-l,n 
d(i,np1)= d(i,np1) + a(i,1)*e(1,np1,j-1) 
do 12 k=l,n 

12 b(i,k)= b(i,k) + a(i,1)*e(1,k,j-1) 
call matinv(n,np1,determ) 
if (determ) 14,13,14 

13 print 101, j 
14 do 15 k=l,n 

do 15 m=1,np1 
15 e(k,m,j)= - d(k,m) 

if (j -nj) 20,16,16 
16 do 17 k=l,n 
17 c(k,j)= e(k,np1,j) 

do 18 jj=2, nj 
m= nj - jj + 1 
do 18 k=l,n 
c(k,m)= e(k,np1,m) 
do 18 l=l,n 

18 c(~,m)= c(k,m) + e(k,l,m)*c(l,m+1) 
do 19 l=l,n 
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do 19 k=l,n 
19 c(k,l)= c(k,l) + x(k,1)*c(1,3) 
20 return 

end 
c***************************************************** 

subroutine matinv(n,m,determ) 
implicit rea1*8(a-h,o-z) 
common/mati b,d 
dimension b(26,26),d(26,53) 
dimension id(26) 
determ=1.0 
do 1 i=l,n 

1 id(i)=O 
do 18 nn=l,n 
bmax-1.1 
do 6 i=l,n 
if(id(i).ne.O) go to 6 
bnext=O.O 
btry=O.O 
do 5 j=l,n 
if(id(j).ne.O) go to 5 
if(dabs(b(i,j)).1e.bnext) go to 5 
bnext=dabs(b(i,j)) 
if(bnext.1e.btry) go to 5 
bnext=btry 
btry=dabs(b(i,j)) 
jc=j 

5 continue 
if(bnext.ge.bmax*btry) go to 6 
bmax=bnextjbtry 
irow=i 
jco1=jc 

6 continue 
if(id(jc).eq.O) go to 8 
determ=O.O 
-return 

8 id(j co1)=1 
if(jco1.eq.irow) go to 12 
do 10 j=1, n 
save=b(irow,j) 
b(irow,j)=b(jco1,j) 

10 b(jco1,j)=save 
do 11 k=l,m 
save=d(irow,k) 
d(irow,k)=d(jco1,k) 

11 d(jco1,k)=save 
12 f=1.0jb(jco1,jco1) 

do 13 j=l,n 
13 b(jco1,j)=b(jco1,j)*f 

do 14 k=l,m 

149 



14 d(jcol,k)=d(jcol,k)*f 
do 18 i=1,n 
if(i.eq.jco1) go to 18 
f=b (i, j col) 
do 16 j-l,n 

16 b(i,j)-b(i,j)-f*b(jcol,j) 
do 17 k-l,m 

17 d(i,k)=d(i,k)-f*d(jcol,k) 
18 continue 

return 
end 
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c*********************************************** 
subroutine zbal(j,jl,ql,fd,hd,ii) 

c 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/calc/ h,hl(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
common/var/ cc(32l),xx(13,32l),xi(13,2),flux(12,32l) 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/mati b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,32l),g(26),x(26,26),y(26,26) 

call ginv(j,jl,ql) 
call rel(j, 1,1) 
do 722 i=nl+l,nm 

sl(i)=O.OdO 
s2(i)=0.OdO 
do 722 k=nl+l,nm 
sl(i)=sl(i)+binv(k,i) 
if(k.eq.i) go to 722 
s2(i)=s2(i)+flux(k,j)/dif(i,k,j) 

722 continue 

do 715 i=nl+2,nm 
do 727 k=nl+2,nm 
a2=ql*(binv(i,k)-c(i,j)*sl(k)) 
b(i,k)=b(i,k)-a2*s2(k) 
g(i)=g(i)-c(k,j)*a2*s2(k) 

do 712 l=nl+l,nm 
if(l.eq.k) go to 712 
b(i,1)=b(i,1)+a2*flux(k,j)/dif(k,1,j) 
g(i)=g(i)+a2*c(1,j)*flux(k,j)/dif(k,1,j) 

712 continue 
al=(c(i,j)*sl(k)-binv(i,k))/hd 
b(i,k)=b(i,k)+1.5dO*al 
if (ql .gt. 0.0) then 



c 

x(i,k)=al/2.0dO 
d(i,k)~-2.0dO*al 
else 
y(i,k)=al/2.0dO 
a(i,k)--2.0dO*al 
end if 

727 continue 

g(i)=g(i)+fd*xi(i,ii)(hl(6) 
b(i,i)=b(i,i)+fd(hl(6) 
do 5 l=nl+l,nrn 
b(i,i)-b(i,i)-ql*flux(l,j) 

5 g(i)-g(i)-ql*flux(l,j)*c(i,j) 
715 continue 

call band(j) 
return 
end 
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c*************************************************** 
subroutine inter(j,ha,hb,jl,ql) 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nrn,nj,njj,n1,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phil,phi2 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
common/var/ cc(32l),xx(13,321),xi(13,2),flux(12,321),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/ckbozb/ f1ix(12,2),dinv(13,13,2) 
common/mati b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 

n=nrn+1 
call rel(j ,2,1) 

c calculate intermediate values Sl,S2 
c 

c 

n=nrn+l 
do 122 i=n1+l,nrn 

sl(i)=O.OdO 
s2(i)=O.OdO 
do 122 k=n1+1,nrn 
if(k.eq.i) go to 122 
sl(i)=sl(i)+flix(k,1)/dif(i,k,j-1) 
s2(i)=s2(i)+flix(k,2)/dif(i,k,j) 

122 continue 

dphio=q1*(c(n,j+j1)-c(n,j»(ha 
do 65 i=2,n1 
coe=z(il*c(L,j)*frt 



c 

c 

c 

c 

b(i,i)~-q1jha 

if(q1.eq.1.0dO) then 
d(i,i)-+1.0dOjha 
d(i,n)~d(i,i)*coe 

else 
a(i,i)=-1.0dOjha 
a(i,n)-a(i,i)*coe 
end if 
b(i,n)-b(i,i)*coe 
b(i,i)=b(i,i)-z(i)*frt*dphio 

65 g(i)~g(i)-coe*dphio 

do 17 i=nl+1,run 
if (i.eq.n1+2) go to 17 
do 24 k=n1+1,run 
do 5 1~n1+2,run 
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if(l.ne.k) b(i,k)=b(i,k)+(-flix(l,1)/dif(k,1,j-1)*dinv(i,l,1) 
1+f1ix(1,2)/dif(k,1,j)*dinv(i,1,2»/2.0dO 
if(l.ne.k) a(i,k)~a(i,k)-flix(l,1)/dif(k,1,j-1)*dinv(i,1,1)/2.0dO 

5 if(l.ne.k) d(i,k)=d(i,k)+f1ix(1,2)/dif(k,1,j)*dinv(i,1,2)/2.0dO 
if(k.eq.nl+1) go to 124 
b(i,k)=b(i,k)+(sl(k)*dinv(i,k,1)-s2(k)*dinv(i,k,2»/2.OdO 
a(i,k)=a(i,k)+sl(k)*dinv(i,k,1)/2.0dO 
d(i,k)-d(i,k)-s2(k)*dinv(i,k,2)/2.0dO 

124 g(i)=g(i)+b(i,k)*c(k,j)+a(i,k)*c(k,j-1)+d(i,k)*c(k,j+1) 
24 continue 

do k=nl+2, run 
if (ql.eq. I.OdO) then 
b(i,k)=b(i,k)-(dinv(i,k,1)jhb+dinv(i,k,2)jha) 
a(i,k)=a(i,k)+dinv(i,k,l)jhb 
d(i,k)=d(i,k)+dinv(i,k,2)jha 
else 
b(i,k)=b(i,k)-(dinv(i,k,1)jha+dinv(i,k,2)jhb) 
a(i,k)=a(i,k)+dinv(i,k,l)jha 
d(i,k)=d(i,k)+dinv(i,k,2)jhb 
end if 
end do 

17 continue 

call band(j) 
return 
end 

c*********************************************** 
subroutine nepe(j,ha,hb,ql) 
implicit real*8(a-h,o-z) 
common/n/ nx, run, nj , njj , nl, ng~, ni (6) , nk 
common/const! fc,r,frt,p,phi,phil,phi2 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 



c 

c 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
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common/var/ cc(32l),xx(13,32l),xi(13,2),flux(12,32l),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/ckbozb/ flix(12,2),dinv(13,13,2) 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,32l),g(26),~(26,26),y(26,26) 
dimension xa(13),xd(13) 

n=nm+l 
call rel(j,l,2) 

c calculate intermediate values Sl,S2 
c 

c 

c 

do 222 i=l,nl 
sl(i)=O.OdO 
s2 (i)=O. OdO 
do 222 k=l,nl 
if(k.eq.i) go to 222 
sl(i)=sl(i)+flix(k,l)/dif(i,k,j-l) 
s2(i)=s2(i)+flix(k,2)/dif(i,k,j) 

222 continue 

dphi=c(n,j)-c(n,j-l) 
dpl=dphi*frt/ha 
dphi=c(n,j+l)-c(n,j) 
dp2=dphi*frt/hb 
do 115 i-I, nl 
if(i.eq.2) go to 115 
do 223 k=l,nl 
xa(k)=(c(k,j)+c(k,j-l»/2.0dO 
xd(k)=(c(k,j+l)+c(k,j»/2.0dO 
do 5 1=2,nl 
if(l.ne.k) b(i,k)=b(i,k)+(flix(l,2)/dif(k,l,j)*dinv(i,l,2) 

l-flix(l,l)/dif(k,l,j-l)*dinv(i,l,l»/2.0dO 
if(1. ne. k) a(i, k)=a(i, k) -flix(l,l)/dif(k,l,j -l)*dinv(i ,1,1) /2. OdO 

5 if(l.ne.k) d(i,k)=d(i,k)+flix(l,2)/dif(k,l,j)*dinv(i,l,2)/2.0dO 
if(k.eq.l) go to 126 
b(i,k)=b(i,k)+(dinv(i,k,l)*sl(k)-dinv(i,k,2)*s2(k»/2.OdO 
a(i,k)=a(i,k)+dinv(i,k,l)*sl(k)/2.0dO 
d(i,k)=d(i,k)-dinv(i,k,2)*s2(k)/2.0dO 

126 g( i)=g( i)+a(i, k)*c (k, j -l)+b (i, k)*c (k,j )+d( i, k)*c (k ,j+l) 
223 continue 

do 10 k=2,nl 
b(i,k)=b(i,k)+dinv(i,k,2)*(z(k)*dp2/2.0dO-l.OdO/hb) 
b(i,k)=b(i,k)-dinv(i,k,l)*(z(k)*dpl/2.0dO+l.OdO/ha:) 
a(i,k)=a(i,k)-dinv(i,k,l)*(z(k)*dpl/2.0dO-l.OdO/ha) 



d(i,k)-d(i,k)+dinv(i,k,2)*(z(k)*dp2/2.0dO+l.OdOjhb) 
b(i,n)=b(i,n)-xd(k)*z(k)*frt*dinv(i,k,2)jhb 
b(i,n)=b(i,n)-xa(k)*z(k)*frt*dinv(i,k,l)jha 
a(i,n)=a(i,n)+xa(k)*z(k)*frt*dinv(i,k,l)jha 
d(i,n)-d(i,n)+xd(k)*z(k)*frt*dinv(i,k,2)jhb 
g(i)=g(i)+dinv(i,k,2)*z(k)*dp2*xd(k) 
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10 g(i)-g(i)-dinv(i,k,l)*z(k)*dpl*xa(k) 
c 

115 continue 
c 

do 366 i=nl+2,nm 
if(ql .eq. 1. OdO) then 
a(i,i)=-l.OdOjha 
b(i,i)=+l.OdOjha 
else 
b(i,i)=-l.OdOjhb 
d(i,i)-+l.OdOjhb 
end if 

366· continue 
c 

call band(j) 
return 
end 

c******************************************************* 
subroutine rzone(j,n) 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phil,phi2 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
common/rxnl/ nr,gnu(12,5),rate(5,32l),equil(5,32l),gne(5) 
common/var/ cc(32l),xx(13,32l),xi(13,2),flux(12,32l),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,32l),g(26),x(26,26),y(26,26) 
dimension bb(5) 

c set up electrolyte matrix for inversion 
c 

c 

bb(1)=0.25dO 
bb(2)=0.5dO 
bb(3)=0.5dO 
bb(4)=0.5dO 

call mire(j,n,dp,dphi,d2phi) 
call ginv(j,jl,ql) 
call rel(j,l,l) 



.. 

c 

call electrolyte(j,n,dp,dphi,d2phi) 
call gas(j) 

c homogeneous chemical reactions 
c 

c 

c 

c 

if(nr.eq.O) go to 38 
do 173 l=nk+l,nr+nk 

xf=gne(l)*frt*(phi-c(n,j»*bb(l) 
rjb=rate(l,j)*exp(-xf) 
xf=xf*(l.OdO-bb(l»/bb(l) 
rjf=rate(l,j)*equil(l,j)*exp(xf) 

do 32 i=l,nl 
if(gnu(i,l» 28,32,30 

28 if(c(i,j) .gt. O.OdO) go to 29 
rjb=O.OdO 
go to 32 

29 rjb=rjb*( c(i,j)*cc(j) )**(-gnu(i,l» 
go to 32 

30 if(c(i,j) .gt. O.OdO) go to 31 
rjf=O.OdO 
go to 32 

31 rjf=rjf*( c(i,j)*cc(j) )**gnu(i,l) 
32 continue 

cg=p/r/t 
do 232 i~nl+l,nm 

if(gnu(i,l» 228,232,230 
228 if(c(i,j) .gt. O.OdO) go to 229 

rjb=O.OdO 
go to 232 

229 rjb=rjb*( c(i,j)*cg )**(-gnu(i,l» 
go to 232 

230 if(c(i,j) .gt. O.OdO) go to 231 
rjf=O.OdO 
go to 232 

231 rjf=rjf*( c(i,j)*cg )**gnu(i,l) 
232 continue 

c electrolyte phase 
c 

do 37 i=2,nl 
do 37 k=l,nl 

if(k.eq.i) go to 37 
b (i, i)=b (i, i) -gnu(k, l)*(rj f -rjb) /dif( i, k,'j) 
b(i,k)=b(i,k)+gnu(i,l)*(rjf-rjb)/dif(i,k,j) 
sav=-(c(i,j)*gnu(k,l)-c(k,j)*gnu(i,l»/dif(i,k,j) 

do 36 jj=l, nm 
if~c(jj,j) .le. O.OdO) go to 36 
if(gnu(jj,l» 33,36,34 
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c 
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33 save=sav*rjb*gnu(jj,l)/c(jj,j) 
go to 35 

34 save=sav*rjf*gnu(jj,l)/c(jj,j) 
35 b(i,jj)=b(i,jj)+save 

g(i)=g(i)+save*c(jj ,j) 
36 continue 

g(i)~g(i)+sav*(rjf*(bb(1)-1.0dO)-rjb*bb(1»*gne(1)*frt*c(n,j) 
b(i,n)-b(i,n)+sav*(rjf*(bb(1)-1.0dO)-rjb*bb(1»*gne(1)*frt 

37 continue 

c gas phase 
c 

c 

c 

c 

do 137 i-n1+2,nm 
do 137 k=nl+1,nm 

if(k.eq.i) go to 137 
b(i,i)=b(i,i)-gnu(k,l)*(rjf-rjb)/dif(i,k,j) 
b(i,k)-b(i,k)+gnu(i,l)*(rjf-rjb)/dif(i,k,j) 
sav=-(c(i,j)*gnu(k,l)-c(k,j)*gnu(i,l»/dif(i,k,j) 

do 136 jj=l,nm 
if(c(jj,j) .1e. O.OdO) go to 136 
if(gnu(jj,l» 133,136,134 

133 save-sav*rjb*gnu(jj,l)/c(jj,j) 
go to 135 

134 save=sav*rjf*gnu(jj,l)/c(jj,j) 
135 b(i,jj)-b(i,jj)+save 

g(i)=g(i)+save*c(jj,j) 
136 continue 

g(i)-g(i)+sav*(rjf*(bb(1)-1.0dO)-rjb*bb(1»*gne(1)*frt*c(n,j) 
b(i,n)-b(i,n)+sav*(rjf*(bb(1)-1.0dO)-rjb*bb(1»*gne(1)*frt 

137 continue 

173 continue 
38 continue 

call band(j) 

return 
end 

c******************************************************* 
subroutine finv(jf,jg,n) 
implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,n1,ng,ni(6),nk 
common/const/fc,r,frt,p,phi,phi1,phi2 
common/ca1c/ h,h1(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12 ,12,321) 
common/var/ cc(321),xx(13,321),xi(13,2),f1ux(12,321),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/ckbozb/ flix(12, 2-)-, dinv(13 ,13-, 2) 



c 

c 

common/matI b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,32l),g(26),x(26,26),y(26,26) 
dimension dx(13),xd(13) 

if (jf .It. ni(2)-1 .or. jf .gt. ni(3» go to 50 
dphi~c(n,jf+l)-c(n,jf) 
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c electrolyte species 
c 

do 14 k=l,nl 
xd(k)~(c(k,jf+l)+c(k,jf»/2.0dO 

\ b(l, k)=wt(k) 
d(k, k)-l. OdO 
dx(k)=c (k,j f+l) -c (k,j f) 
if(k.eq.1) go to 14 

do 18 i=1,n1 
if(i.eq.k) go to 18 
b(k,i)~(c(k,jf)/dif(i,k,jf)+c(k,jf+1)/dif(i,k,jf+1»/2.0dO 

b(k,k)=b(k,k)-(c(i,jf)/dif(i,k,jf)+c(i,jf+1)/dif(i,k,jf+1»/2.0dO 
18 continue 

d(k,n1+1)=(dx(k)+z(k)*frt*xd(k)*dphi)/h 
14 continue 

call matinv(nl,n1+1,determ) 
do 20 i=1,n1 

flix(i,jg)=d(i,n1+l) 
do 19 k=l,nl 

dinv(i,k,jg)-d(i,k) 
b(i,k)-O.OdO 

19 d(i,k)=O.OdO 
b(i,n1+1)=0.OdO 
d(i,n1+1)=0.OdO 

20 continue 
50 if (jf .gt. ni(2)-2 . and. jf .It. ni(3)+1) go to 150 

c - gas species jf+1/2 
do 702 k=l,ng 

b(1,k)=wt(k+n1) 
xd(k)=(c(k+n1,jf+1)+c(k+nl,jf»/2.0dO 
d(k,k)=l.OdO 
dx(k+n1)=c(k+nl,jf+1)-c(k+n1,jf) 
if(k.eq.1) go to 702 

do 703 i=l,ng 
if(i.eq.k) go to 703 
b(k,i)=(c(k+n1,jf)/dif(i+nl,k+nl,jf)+ 

1 c(k+nl,jf+1)/dif(i+nl,k+nl,jf+1»/2.0dO 
b(k,k)=b(k,k)-(c(i+nl,jf)/dif(i+nl,k+nl,jf)+ 

1 c(i+nl,jf+1)/dif(i+nl,k+nl,jf+l»/2.0dO 
703 continue 

d(k,ng+l)=dx(k+nl)/h 



c 

c 

702 continue 
call matinv(ng,ng+l,determ) 

do 761 i-1,ng 
f1ix(i+n1,jg)-d(i,ng+1) 
do 761 k-1,ng 

dinv(i+n1,k+n1,jg)-d(i,k) 
b(i,k)-O.OdO 

762 d(i,k)-O.OdO 
b(i,ng+1) ... 0.OdO 
d(i,ng+1)=0.OdO 

761 continue 
b(ng+1,ng+1)=0.OdO 
d(ng+1,ng+1)-O.OdO 

150 continue 
return 
end 
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c******************************************************* 
subroutine gas(j) 

c 

implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,n1,ng,ni(6),nk 
common/ca1c/ h,h1(6) 
common/pdata/z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,321) 
common/var/ cc(321),xx(13,321),xi(13,2),f1ux(12,321) 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/mati b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 

do 922 i=n1+1,nm 
sl(i)-O.OdO 
s2(i)-0.OdO 
s4(i)=0.OdO 
s5(i)-0.OdO 
do 922 k=n1+1,nm 
if(k.eq.i) go to 922 
a2=f1ux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+f1ux(~,j)/dif(i,k,j+1) 
s5(i)-s5(i)+f1ux(k,j)/dif(i,k,j-1) 
al=(c (k, j+1) /dif(i, k, j+1) -c(k-, j --l)/dif(i, k, j-l» /2. OdO/h· 
sl(i)=sl(i)+a1 
s2(i)=s2(i)+a2 
do 921 1=n1+1", nm 

921 s3(1,k)=s3(1,k)+binv(i,1)*al 
922 continue 

do 915 i"";,;nr+2,nm 



.. 

905 
927 

923 

924 
\ 

g(i)=g(i)-f1ux(i,j)*sl(i) 
s4(i)=s4(i)/2.0dO/h 
s5(i)=s5(i)/2.0dO/h 
do 927 k=n1+1,nm 

s3(k,i)-s3(k,i)-binv(i,k)*sl(i) 
if(k.eq.n1+1) go to 905 
d(i,k)=d(i,k)+s3(k,i) 
if(k.eq.i) go to 927 

continue 
do 924 k=n1+1,nm 

d(i,k)~d(i,k)/2.0dO/h 

a(i,k)=-d(i,k) 
do 923 1-n1+2,nm 
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if(l.ne.k) b(i,k)=b(i,k)+f1ux(1,j)/dif(k,1,j)*s3(1,i) 
if(k.ne.n1+1) b(i,k)=b(i,k)-s2(k)*s3(k,i) 
if(k.eq.i) go to 924 
g(i)-g(i)+b(i,k)*c(k,j) 
d(i,k)=d(i,k)-f1ux(i,j)/dif(i,k,j+1)/2.0dO/h 
a(i,k)=a(i,k)+f1ux(i,j)/dif(i,k,j-1)/2.0dO/h 

continue 
d(i,i)=d(i,i)+s4(i)-1.0dO/h/h 
a( i, i)=a( i, i) -s5 (i) -1. OdO/h/h 
g(i)=g(i)+b(i,i)*c(i,j)+s4(i)*c(i,j+1)-s5(i)*c(i,j-1) 
b(i,i)=b(i,i)+2.0dO/h/h 

915 continue 
return 
end 

c****************************************************** 
subroutine mire(j,n,dp,dphi,d2phi) 
implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,n1,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phi1,phi2 
common/ca1c/ h,h1(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,321) 
common/var/ cc(.321),xx(13,321),xi(13,2),flux(12,321),t 
common/comp/ sl(13),s2(13),s3(26,26),s4(13),s5(13),binv(13,13) 
common/matI b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 
dimension dx(13) 
dphi=c(n,j+1)-c(n,j-1) 
dp=dphi*frt/2.0dO/h 
d2phi=c(n,j+1)-c(n,j)*2.0dO+c(n,j-1) 
do 14 k=1,n1 

b(l,k)=wt(k) 
d(k, k)=1. OdO 
dx(k)=c(k,j+1)-c(k,j-1) 



if(k.eq.1) go to 14 
do 18 i-1,n1 

if(i.eq.k) go to 18 
b(k,i)-c(k,j)/dif(i,k,j) 
b(k,k)-=b(k,k)-c(i,j)/dif(i,k,j) 

18 continue 
d(k,n1+1)-(dx(k)+z(k)*frt*c(k,j)*dphi)/2.0dO/h 

14 continue 
call matinv(n1,n1+1,determ) 
do 20 i=1,n1 

flux(i,j)=d(i,nl+l) 
do 19 k=l,nl 

binv(i,k)=d(i,k) 
b(i,k)=O.OdO 

19 d(i,k)-O.OdO 
b(i,nl+1)-0.OdO 

20 d(i,nl+1)=0.OdO 
return 
end 

c*************************************************** 
subroutine electrolyte(j,n,dp,dphi,d2phi) 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phi1,phi2 
common/calc/ h,hl(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(l2,l2,321) 
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common/var/ cc(32l),xx(13,321),xi(l3,2),flux(12,32l),t 
common/comp/ sl(l3),s2(l3),s3(26,26),s4(13),s5(13),binv(l3,13) 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,32l),g(26),x(26,26),y(26,26) 
dimension dx(13) 
do 722 i=l,nl 

sl(i)=O.OdO 
s2(i)=0.OdO 
s4(i)=0.OdO 
s5(i)=0.OdO 
do 722 k=l, nl 
if(k.eq.i) go to 722 
a2=flux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+flux(k,j)/dif(i,k,j+1) 
s5(i)=s5(i)+flux(k,j)/dif(i,k,j-1) 
a1=(c(k,j+l)/dif(i,k,j+1)-c(k,j-1)/dif(i,k,j-1))/2.0dO/h 
s1(i)=s1(i)+a1 
s2(i)=s2(i)+a2 
do 721 1=1, n1 

721 s3(1,k)=s3(l,k)+binv(i,l)*a1 



722 continue 
do 715 i=2,n1 

g(i)=g(i)-flux(i,j)*sl(i) 
s4(i)=s4(i)/2.0dO/h 
s5(i)=s5(i)/2.0dO/h 
do 727 k=l, nl 

s3(k,i)-s3(k,i)-binv(i,k)*sl(i) 
if(k.eq.l) go to 705 
d(i,k)-d(i,k)+s3(k,i) 
d(i,n)=d(i,n)+z(k)*c(k,j)*frt*s3(k,i)/2.0dO/h 
a(i,n)=a(i,n)-z(k)*c(k,j)*frt*s3(k,i)/2.0dO/h 

705 if(k.eq.i) go to 727 
727 continue 

do 724 k==l, nl 
d(i,k)=d(i,k)/2.0dO/h 
a(i,k)=-d(i,k) 
do 723 l-2,nl 
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723 if(l.ne.k) b(i,k)=b(i,k)+flux(1,j)/dif(k,1,j)*s3(1,i) 
if(k.ne.l) b(i,k)=b(i,k)-s2(k)*s3(k,i)+s3(k,i)*z(k)*dp 
if(k.eq.i) go to 724 
g(i)=g(i)+b(i,k)*c(k,j) 
d(i,k)=d(i,k)-flux(i,j)/dif(i,k,j+l)/2.0dO/h 
a(i,k)-a(i,k)+flux(i,j)/dif(i,k,j-l)/2.0dO/h 

724 continue 
d(i,i)=d(i,i)+s4(i)-1.OdO/h/h-z(i)*dp/2.0dO/h 
a(i,i)=a(i,i)-s5(i)-1.OdO/h/h+z(i)*dp/2.0dO/h 
g(i)=g(i)+b(i,i)*c(i,j)+s4(i)*c(i,j+l)-s5(i)*c(i,j-l) 

1 -z(i)*frt*(c(i,j)*d2phi+0.25*dx(i)*dphi)/h/h 
a(i,n)=a(i,n)+z(i)*frt*(dx(i)/4.0dO-c(i,j))/h/h 
b(i,n)=z(i)*frt*2.0dO*c(i,j)/h/h 
d(i,n)-d(i,n)-z(i)*frt*(dx(i)/4.0dO+c(i,j))/h/h 
b(i,i)=b(i,i)+2.0dO/h/h-d2phi*z(i)*frt/h/h 

715 continue 
return 
end 

c************************************************** 
subroutine rearr(ii,jj,kl,k2) 
implicit real*8(a-h,o-z) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,32l) 
do 5 k=kl,k2 
do 5 1=kl,k2 
if(k.eq.l) go to 5 
dif(k,l,ii)=dif(k,l,jj) 

5 continue 
return 
end 

c************************************************** 
subroutine rel(j,kk,ll) 



implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12,321) 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 
n=nm+l 
g(n)=O.OdO 
if(j .It. ni(l) .or. j .gt. ni(4) ) then 

do 5 i=l,nl 
b(i, i)-l.OdO 

5 g(i)-O.OdO 
b(n, n)-l. OdO 

else 
do 10 i=l,nl 
b(n,i)==z(i) 

10 b(11,i)=1.0dO 
g(1l)=1.0dO 

end if 
if(j .gt. ni(2) .and. j .It. ni(3) ) then 
, do 15 i-nl+l,nm 

b(i,i)=l.OdO 
15 g(i)-O.OdO 

else 
do 20 i=nl+l,nm 

20 b(nl+kk,i)=1.0dO 
g(nl+kk)=l.OdO 

end if 
return 
end 
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c************************************************** 
subroutine ginv(j,jl,ql) 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm.,nj ,njj ,nl,ng,ni(6) ,nk 
common/calc/ h,hl(6) 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

l,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,l2,32l) 
common/var/ cc(32l),xx(l3,321),xi(13,2),flux(12,321) 
common/comp/ sl(13),s2(l3),s3(26,26),s4(13),s5(13),binv(13,13) 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,321),g(26),x(26,26),y(26,26) 
dimension dx(13) 

do 10 k=l,ng 



c 

b(1,k)=wt(k+n1) 
d(k,k)~1.0dO 

if(j .eq. 1 .or. j .eq. njj ) then 
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dx(k+n1)-q1*( -c(k+n1 ,j+2*j 1)+4. OdO*c(k+n1 ,j+j 1) -3. OdO*c (k+n1 ,j» 
else 

dx(k+n1)-c(k+nl,j+1)-c(k+n1,j-1) 
end if 

if(k.eq.l) go to 10 
do 15 i-l,ng 

if(i.eq.k) go to 15 
b(k,i)~c(k+n1,j)/dif(i+nl,k+n1,j) 
b(k,k)=b(k,k)-c(i+n1,j)/dif(i+nl,k+nl,j) 

15 continue 
d(k,ng+l)-dx(k+nl)/2.0dO/h 

10 continue 
call matinv(ng,ng+1,determ) 

do 23 i=l,ng 
flux(i+n1,j)=d(i,ng+1) 
do 19 k=l,ng 

binv(i+nl,k+nl)~d(i,k) 

b(i,k)-O.OdO 
19 d(i,k)-O.OdO 

b(i,ng+1)-0.OdO 
23 d(i,ng+1)-0.OdO 

return 
end 

c************************************************ 
subroutine nucamb(n) 

c 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/calc/ h,h1(6) 
common/const/ fc,r,frt,p,phi,phi1,phi2 
common/var/ cc(32l),xx(13,321),xi(13,2),flux(12,321),t 
common/res/ xo(13,10,321) 
dimension zz(321) 

k-1 
do 7 i=1,5 
do 5 j-k,ni(i) 
w=j-k 
if ( i. eq . 1) then 
zz(j)~w*hl(i)*1.0d06 

else 
zz(j) = zz(ni(i-1» + w*h1(i)*1.0d06 
end if 

5 continue 
7 k=ni(i) 

print*,flux(1,117),flux(3,117)*9648.7 



do 10 j-ni(2),ni(3) 
10 print *, zz(j)-370.0dO,char(9),xx(1,j)/xx(3,j) 

c 10 print *, zZ(j),char(9),xx(7,j) 
c 

return 
end 

c***************************************************** 
subroutine guess(n) 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/calc/ h,hl(6) 
common/var/ cc(32l),xx(13,32l),xi(13,2),flux(12,32l) 
dimension bc(12) 

c flat profile in reaction zone/linear in electrolyte 
c 

c 

c 

c 

c 

c 

c 

c 

xx(4,ni(1»-0.30dO 
xx(5,ni(1»=O.57dO 
xx(6,ni(1»=O.13dO 
xx(4,ni(4»=0.44dO 
xx(5,ni(4»=0.18dO 
xx(6,ni(4»=0.38dO 

do 22 i-l,n 
if«i.gt.nl) .and. (i.lt.n» then 

bc(i)=(xx(i,ni(l»-xi(i,l»/(ni(l)-l) 
do 15 j=l,ni(l) 

15 xx(i ,j )=xi(.i, l)+bc(i)*(j -1) 
do 20 j=ni(1)+1,ni(2) 

20 xx(i,j)-xx(i,ni(1»+bc(i)*(j-ni(1»*hl(2)/hl(1) 

bc(i)-(xi(i,2)-xx(i,ni(4»)/(njj-ni(4» 
do 25 j=ni(4)+1,njj . 

25 xx(i,j)=xx(i,ni(4»+bc(i)*(j-ni(4» 
do 30 j=ni(3),ni(4)-1 

30 xx(i,j)=xx(i,ni(4»+bc(i)*(j-ni(4»*hl(4)/hl(5) 

else 

do 5 j=ni(1),ni(2) 
xx(i,j)=xi(i,l) 

5 xx(i,j+ni(3)-ni(1»=xi(i,2) 
bc(i)=(xi(i,2)-xi(i,1»/(ni(3)-ni(2» 
do 10 j=ni(2),ni(3) 

10 xx(i,j)=xi(i,1)+bc(i)*(j-ni(2» 

end if 
22 continue 
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return 
end 

c**************************************************** 
subroutine prop(n,jcount,li) 

c 

implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,n1,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phi1,phi2 
common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 

1,ww(6,2),sd(6,2),ed(6,2) 
common/prope/dif(12,12 ,321) 
common/rxn1/ nr,gnu(12,5),rate(5,321),equi1(5,321),gne(5) 
common/var/ cc(321),xx(13,321),xi(13,2),f1ux(12,321),t 

c homogeneous reaction data 
c 

if(jcount.ne.O) go to 51 
c 
c gas diffusion coefficients 
c 

c 

eps1=0.4dO 
eps2=0.2dO 
ca-ni(3)-ni(1) 
cg=p/r/t 

do 105 i=1,2 
do 105 j=n1+1,nm 
do 105 k=n1+1,nm 
if (j.eq.k) go to 105 
if (Leq.1) then 
ii=l 
else 
ii=njj 
end if 
sab=«sd(j-n1,i)+sd(k-n1,i»**2.0dO)/4.0dO 
ts=t/(dsqrt(ed(j-n1,i)*ed(k-n1,i») 
oab=1.06036dO/(ts**0.15610dO)+0.193dO*dexp(-0.47635dO*ts) 
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1+1. 03587dO*dexp (-1. 52996dO*ts)+1. 76474dO*dexp (- 3. 89411dO*ts) 
dif(j,k,ii)=dsqrt(t**3.0dO*(1.OdO/ww(j-n1,i) 

1+1.0dO/ww(k-n1,i»)*1.88292d-02/p/sab/oab 

c 
105 continue 

do 15 k=n1+1,nm 
do 15 1=n1+1,nm 
if(k .eq. 1) go to 15 
dif(k,1,1)=dif(k,1,1)*eps1*cg 
dif(k,1,njj)=dif(k,1,njj)*eps1*cg 
dif(k,1,ni(1»=dif(k,1,1)*eps2/eps1 
dif(k,1,ni(4»=dif(k,1,njj)*eps2/eps1 
dif(k,1,ni(2)+1)=dif(k,1,1) 
dif(k,1,ni(3)-1)=dif(k,1,njj) 



c 

do 16 j~1,ni(1)-1 
dif(k,1,j)~dif(k,1,1) 

16 dif(k,1,j+ni(4»=dif(k,1,njj) 
do 17 j=ni(1),ni(2) 
dif(k,I,j)=dif(k,I,ni(I» 

17 dif(k,I,j+ca)~dif(k,l,ni(4» 
15 continue 

c OPEN CIRCUIT CELL POTENTIAL 
tu=1.229dO-(t-298.15dO)*8.456d-04 
tu=tu+r*t*dlog(p*xx(6,nj)/1.0d05)/fc/2.0dO 
tu-tu+r*t*dlog(p*xx(6,1)/1.0d05)/fc/4.0dO 
vp=I.333d02*dexp(18.3036dO-3816.44dO/(t-46.13dO» 
al-xx(4,1)*p/vp 

c 

c 

a2-xx(4,njj)*p/vp 
tu=tu-r*t*dlog(a1)/fc/2.0dO 
u-0.043+17.81*al-39.85*a1*a1+36*a1**3 
ch-l.98d06/1.1d03/(1.0dO + 6.48d-02*u) 
co=I.98d06*u/1.1d03/(1.0dO + 6.48d-02*u) 
tv=1.229dO-(t-298.15dO)*8.456d-04 
tv=tv-r*t*dlog(a1)/fc/2.0dO 
tv=tv+r*t*dlog(p*xx(6,1)/1.0d05)/fc/4.0dO 
ql-ch**4.0dO*p*xx(6,1)/co/co/r/t 
ql-q1*dexp(-4.0dO*fc*tv/r/t) 
q2=ch*ch*r*t/1.0d05 

tr-353.0dO 
rr-8.0d02 
rc-rr*dexp(fc*(tr-t)*8.456d-04/r/t)* 

Idexp(8.807d03*(1.0dO/tr-1.0dO/t» 
rate(k,1)=rr 

51 continue 

u=xx(I,ni(3»/xx(3,ni(3» 
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au--5.0933d-02+0. 185299dO*u-l.0495d-02*u*u+1. 71175d-04 *u**3.0dO 
te=r*t*I.8d03*u/(1.0dO+O.0648dO*u)/dexp(18.3036dO-3.81644d03/ 

l(t-46.13dO»/au/l.3332d02 
equil(I,1)=q1 
equil(2,1)=te 
equil(3,1)=q2 
equil(4,1)=te 
ca=ni(3)-ni(l) 
do 4 k=1,nr 
do 4 i-ni(I),ni(2) 
rate(k,i) = rate(k,1) 
equil(k,i) = equil(k,l) 
rate(k+nr,i+ca) = rate(k+nr,l) 

4 equil(k+nr,i+ca) = equil(k+nr,1) 
do 10 j=ni(1),ni(4) 
u=xx(I,j)/xx(3,j) 



c 

if(jcount .eq. 0 . and. Ii .eq. 1) u=9.0dO 
co=I.98d03*u/l.ld03/(I.OdO + 6.48d-02*u) 
ch=1.98d03/1.ld03/(I.OdO + 6.48d-02*u) 
cm=1.98d03/7.7d01/(1.0dO + 6.48d-02*u) 
cc(j)-(2.751d04+1.8d03*u)/(1.0dO + 6.48d-02*u) 
ek -(3.375d-OI*u-O.2l4IdO)*dexp(-1.268d03/t) 
dp -«O.35dO*u)**(-4.0dO)+O.2142dO)**(-O.25dO) 
rO-(1.98d03+32.4dO*u)/(1.OdO+6.48d-02*u) 
af=O.04dO*r*t*«(u+61.lldO)**2)/u/u+l.OdO) 
df=rO*(3.5d-06*exp(-2.436d03/t»/af 
df=df*u*(u+61.lldO)/I.lOdO/14.0dO 

c calculate Lij's 
c 

a - ek*dp/fc/fc/ch/co/l.Od04 
c 

b - df/co/co/l.Od06 + ek*dp*dp/co/co/fc/fc/l.Od04 
c 

c - ek/fc/fc/ch/ch/I.Od04 
c 
c calculate Kij's 
c 

c 

xl - a/(-a*a+b*c) 
yl - (c-a)/(-a*a+b*c) 
zl ~ (b-a)/(-a*a+b*c) 

c calculate Dij's 
eps=I.OdO 

c 

if (j .It. ni(2) .or. j .gt. ni(3» eps=0.2dO 
dif(I,3,j) = I.Od06*eps*r*t*co*ch/xl 
dif(2,3,j) ~ I.Od06*eps*r*t*ch*cm/zl 
dif(I,2,j) ~ I.Od06*eps*r*t*co*cm/yl 
dif(2,l,j)=dif(l,2,j) 
dif(3,l,j)=dif(l,3,j) 

10 dif(3,2,j)-dif(2,3,j) 

do 34 k=l,nl 
do 34 l=l,nl 
if(k .eq. 1) go to 34 
dif(k,l,ni(1)-I)=dif(k,1,ni(2)-1) 
dif(k,l,ni(4)+1)=dif(k,I,ni(3)+1) 

34 continue 
return 
end 

c******************************************************** 
subroutine heat(tl,t2,fa,fb) 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nl,ng,ni(6),nk 
common/const/ fc,r,frt,p,phi,phil,phi2 
common/calc/ h,hl(6) 
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c 

c 

c 

common/pdata/ z(12),wt(12),ae(6,2),be(6,2),ce(6,2),ee(6,2) 
1,ww(6,2),sd(6,2),ed(6,2) 

common/var/ cc(321),xx(13,321),xi(13,2),flux(12,321),t 

tr-298.15dO 
ta-298.15dO 
hc-3.6dOl 

al-O.OdO 
a2=O.OdO 
bl-O.OdO 
b2=O.OdO 
cl-O.OdO 
c2-0.0dO 
df=O.OdO 
do 5 i=l,nm-nl 
df=df-(flux(i+nl,1)*ee(i,1)-flux(i+nl,njj)*ee(i,2»*hl(6) 
al=al+fb*xi(i+nl,1)*ae(i,1)+fa*xi(i+nl,2)*ae(i,2) 
a2=a2+(fb*xi(i+nl,1)-flux(i+nl,1)*hl(6»*ae(i,1)+ 

1(fa*xi(i+nl,2)+flux(i+nl,2)*hl(6»*ae(i,2) 
bl-bl+fb*xi(i+nl,1)*be(i,1)+fa*xi(i+nl,2)*be(i,2) 
b2-b2+(fb*xi(i+nl,1)-flux(i+nl,1)*hl(6»*be(i,1)+ 

1(fa*xi(i+nl,2)+flux(i+nl,2)*hl(6»*be(i,2) 
cl=c1+fb*xi(i+nl,1)*ce(i,1)+fa*xi(i+nl,2)*ce(i,2) 

5 c2-c2+(fb*xi(i+nl,1)-flux(i+nl,1)*hl(6»*ce(i,1)+ 
1(fa*xi(i+nl,2)+flux(i+nl,2)*hl(6»*ce(i,2) 

cpl-al*(tl-tr)+bl*(tl*tl-tr*tr)/2.0dO-cl*(tr-tl)/tr/tl 
cp2=a2*tr+b2*tr*tr/2.0dO-c2/tr 
w-flux(3,117)*hl(6)*fc*(phi2-phil) 
ql=-hc*hl(6)*(t-ta) 
rk=cpl+cp2-df+ql-w 
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rp=-2.0dO*rkjb2-4.0dO*a2*a2jb2jb2/3.0dO 
rq=-2.0dO*c2jb2+4.0dO*a2*rkjb2jb2/3.0dO+l.6dO*(a2jb2)**3.0dO/2.7dO 
u=dsqrt(-27.0dO*rq*rq/rp/rp/rp/4.0dO) 
v=dacos(u) 
v=v/3.0dO+2.0dO*3.1415926535dO/3.0dO 
yr=-dsqrt(-4.0dO*rp/3.0dO)*dcos(v) 
t2=yr-2.0dO*a2jb2/3.0dO 
return 
end 
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Chapter 7 

Transient Analysis of Solid-Polymer-Electrolytes 

7.1 Introduction 

In this chapter, we are concerned with the transient response of 

a fuel-cell system. In a recent review [1], Srinivasan points to 

scale-up, start-up time, and peaking capabilities as the primary con­

cerns for developing fuel cells for transportation applications. 

High current densities can result in the transport of water from the 

anode-membrane interface at a rate that is greater than that at which 

it can be restored by back diffusion or absorption from the gas phase 

(see the preceding chapter). While continued operation at high 

current densities can dehydrate the polymer electrolyte and degrade 

the performance of the cell, short periods of operation at high power 

may be possible. 

Examination of transport in the separator of a solid-polymer­

electrolyte fuel cell following a step change in current or voltage 

should help to elucidate the behavior under these conditions. Here 

we limit our study to transport in the membrane under isothermal con­

ditions. We also include the response to a small sinusoidal pertur­

bation in current or voltage (see appendix D for an analysis of the 

impedance). Extension to the porous gas-diffusion electrode and the 

fuel-cell system is straightforward (see reference [2]). 
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7.2 Transient response 

We consider a membrane of thickness i, with an electrode at each 

end. At the anode-membrane interface, y=O, the flux of water is zero 

and the current is specified. At the cathode-membrane interface 

thermodynamic equilibrium is assumed. Therefore, at y-i, the concen-

tration and potential are specified. 

The transport equations for the solid polymer electrolyte were 

developed in chapter two. With the potential defined by F~ = ~+' 

and 

N 
o 

i = -".V~ - !3.VII 
F "'0' 

A material balance on water gives 

ac 
o 

at V·N . 
o 

The divergence of the current density is zero; therefore, 

2 !3. 2 ".V ~ = - V II 
F "'0· 

(1) 

(2) 

(3) 

(4) 

Taking the divergence of equation 2 and substituting for V2~ from 

equation 4 yield 



• 

ac 
o 

at 
2 a'il Jj 

o 
2 

D'il c , 
o 
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(5) 

aRT 
where D .. Using separation of variables, a series solution is 

c 
o 

possible; however, we will not pursue this approach here. See 

Carslaw and Jaeger (p. 104) [3] for further information. We can, 

nevertheless, obtain an estimate of the diffusion-time constant for 

the system. For a 175 Jjm membrane and a diffusion coefficient of 

-2 2 
3xlO cm /s, 

2 
r = i. /D ::= 10 s. 

The time-dependent equations derived in chapter three were 

solved numerically using a time-stepping procedure. This approach 

allows one to use variable physical properties. The Crank-Nicolson 

method, an implicit method which can be found in most books on numer-

ical methods [4], was used to evaluate the time derivatives. The 

computer program transient. for is listed in appendix E. 

Figures 1 and 2 show the ratio of water concentration to hydro-

gen ion concentration under transient conditions. The separator had 

a thickness of 175 Jjm. The transport properties are the same as 

those described in chapter 5. Figure 1 corresponds to zero initial 

2 current followed by a step change to 400 rnA/cm . Figure 2 is the 

converse and shows the back diffusion of water following steady-state 

operation. Steady state is reached in about 20 s. A higher value of 

the diffusion coefficient results in faster back diffusion and allows 
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for higher current densities. One conclusion is that, under these 

conditions, the fuel cell would be able to handle only short periods 

of high current density without dehydration of the membrane. In an 

operating fuel cell, after a step change in voltage, one observes a 

jump in current followed by a transient of about one minute. 

may be associated with the transport of water in the membrane. 

c. 
~ 

D 

F 

i 

N. 
~ 

R 

t 

T 

y 

a 

T 

List of Symbols 

3 concentration of species i, mo1/m 

diffusion coefficient, cm2/s 

Faraday's constant, 96,487 C/eq 

current density A/m2 

width of membrane, cm 

molar flux of i, m01/cm2 .s 

universal gas constant, 8.3143 J/mo1·K 

time, s 

temperature, K 

distance across membrane, cm 

defined in equation 5 

dimensionless distance 

electrical conductivity, S/cm 

electrochemical potential of species i, J/mo1 

transport number of water 

time constant for diffusion, s 

This 
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electrostatic potential, V 

Subscripts 

o water 
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Appendix D 

Electrochemical systems are often characterized with impedance 

methods. Because the physical phenomena can occur over different 

time scales, impedance spectroscopy may be used to obtain transport 

properties and kinetic data. Impedance techniques are discussed in 

[1] and [2]. We can measure the impedance of the system by introduc­

ing a small sinusoidal perturbation to the steady-state solution. 

The amplitude is small to ensure a linear response; and, because the 

system is linear, either a small perturbation in cell voltage or 

current gives identical results. 

Often, impedance data are interpreted with equivalent electrical 

circuits [3]. Our approach is to formulate the time-dependent con­

servation equations in terms of fundamental transport and kinetic 

phenomena and then solve these equations directly. Although we con­

sider a specific system, our approach is general and could be applied 

to other polymer electrolytes with little modification. Furthermore, 

this model should provide the basis for analysis of experimental 

results. 

We investigated a thin membrane with an electrode at y=O. At 

y=,e, the potential is set to zero, and the concentration is fixed. 

This is equivalent to a Nernst stagnant diffusion layer, for which an 

analytic solution is possible [4]. At open circuit, a small pertur­

bation in the potential of the solution, ~, is introduced. The 

impedance is defined as 



-·V 
Z = -

l' 
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(D-l) 

First we examine a system with constant physical properties; then we 

consider the detailed model. 

The transport equations for the solid polymer electrolyte were 

developed in section 7.2. Substituting 

r = y/i., and () 

into equation 6 of section 7.2 yields 

With the boundary conditions 

c 
o 

C (0)' 
o 

()=O at r=l and ()=l at r=O, 

the solution is well-known: 

() = 

Substituting 

sinh (JjW1 2 /D(l-r) 1 
sinhJjwi.

2/D 

(D-2) 

(D-3) 



and 

- {- jwt} ~ = ~ + Re ~ e 
000 

into equation 1 (section 7.2) and integrating gives 

178 

(0-4) 

This allows us to relate differences in the chemical potential of 

water to the current. At r-O, the flux of water is zero; therefore, 

Equation 0-4 can be expressed as 

i ... ~2 '":" 
Ie ~ ---2 0' (0) , QF 

(0-5) 

(0-6) 

where c (0) is obtained from equation 0-5. Equation 0-3 is differen­
o 

tiated to yield 

1 
- 0'(0) (0-7) 

In the absence of kinetic resistance, the impedance is therefore 

given by 



.. 

i 
z~­

IC 

At high fr~quency, only the ohmic resistance, 

Z 
r 

is present. At low frequencies, 

IC' 

z =!:. [1 + ~] , 
r IC a.F2 
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(D-8) 

which also results from the steady-state solution of equations 1 and 

2 
2 (section 7.2), with the flux of water set to zero. With 1C{2 as a 

aF 

parameter, the real and imaginary parts of equation D-8 are shown in 

figure 1. 
-5 2 With D = 1.0xlO cm Is and i=0.02 cm, the real and ima-

ginary portions are plotted against frequency in figure 2. 

Next, we wish to calculate the frequency response using the 

detailed model developed in the preceding chapters. Newman et al. 

[5] [6] have examined the impedance of a concentrated solution for a 

rotating-disk system; we took a similar approach. Pollard and Comte 

recently presented work relating to the imp~dance of solid-po1ymer-

electrolytes [7] . 

Each of the dependent variables can be expressed as the sum of a 

steady-state part plus- a small pe-rturbation 
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calculated from equation D-8. 
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x. 
~ 
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(D-9) 

(D-lO) 

One substitutes these into the governing equations (see chapter 3). 

The steady- state solution will cancel out, leaving an equation for 

the real and imaginary parts of the variables. If there are n equa-

tions and unknowns for the steady-state problem there will be 2n 

equations for the transient case. 

At y=O, the flux of- each species to the electrode surface is 

described by Butler-Volmer kinetics. At y=l, the potential and com-

position are fixed. Because there is no capacitance in this model, 

the kinetic resistance can simply be added to the ohmic resistance. 

Numerical results for the model are shown in figure 3. These 

agree with the analytic results. Here, the electrode is reversible 

to hydrogen and blocks water. The parameters used are given in table 

® 
D-l and are typical values for a Nafion membrane. The computer pro-

gram transient. for is listed in appendix E. 

Table D-l. 

1 
O-cm 

2 teg 2 
-
te' 

aF
2 

0.1735 0.006974 

.. 
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While it is possible to obtain transport data from impedance 

® 
spectroscopy, in the case of the Nafion membrane, this would require 

data at low frequencies. Furthermore, it would be difficult to find 

an electrode reversible to hydrogen but which blocks water under 

these conditions. In the preceding chapter we mentioned difficulties 

with the conductometric method. At high frequencies, only ohmic 

resistance is present; however, there was significant contact resis-

tance between the membrane and electrode, which could be reduced only 

by applying pressure between the two blocks. 

c. 
~ 

D 

F 

i 

R 

t 

T 

v 

x. 
~ 

y 

z 

a 

List of Symbols 

concentration of species 3 
i, mol/m . 

diffusion coefficient, cm2/s 

Faraday's constant, 96,487 G/eq 

current density A/m2 

width of membrane, cm 

universal gas constant, 8.3143 J/mol·K 

time, s 

temperature, K 

overpotential or cell potential, V 

mole fraction of species i 

distance across membrane, cm 

impedance 

defined in equation 5 (section 7.2) 
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r 

8 

w 

i 

o 

r 

dimensionless distance 

dimensionless concentration 

electrical conductivity, S/cm 

electrochemical potential of species i, J/mo1 

transport number of water 

electrostatic potential, V 

frequency, rad/s 

imaginary 

water 

real 

Subscripts 

Superscripts 
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Appendix E 

c*********************************************************** 
c 
c 
c 
c 

time stepping 
trans.for (5/20/92) 

c********************************************************** 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb,kk,kmax 
common/const/ fc,r,t,frt,phi,phil,phi2 
common/calc/ h,rr 
common/pdata/ z(12),wt(12),dif(12,12,12l) 
common/ssblock/ xpO(13),xxO(13,12l) 
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common/rxnl/ nr,gnu(12,5),rate(5,32l),equil(5,32l),gne(5) 
common/var/ barm(12l),cc(12l),hh(12l),zz(12l),xp(26),xx(13,12l) 

c 
c 

c 

1,xi(13,12l),bc(12),ce(12l),xt(13,12l,500),fi(12) 
common/g/ gf(12),ref(12),rho(12l),vis(12l),flux(12,12l) 

data nm/3/,nr/l/,nb/ll/ 
n=nm+l 

c mesh size and number of iterations 
c 

c 

c 

data lim/lSI, njj/8l/, hl/2.0d-04/ 
h=hl/(njj-l) 
lim2=8 

t-353.0dO 
rr=5.00d-Ol 

c physical constants 
c 

c 

data fc/96487.0dO/,r/8.3l4dO/ 
frt=fc/(r*t) 

c charges of electrolyte species 
c 

data (z(i), i=1,3 )/O.OdO,-l.OdO,l.OdO/ 
c 
c set flux of membrane to zero 
c 

data (wt(i), i=1,2)/0.OdO, 1.OdO/ 
do 2 i=3,nm 
wt(i)=O.OdO 

2 continue 
c 

c********************************************************* 
c ** first steady-state .** 
c 
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xi(1,1)-0.882dO 
xi(1,njj)=0.882dO 
xi(2,1)-0.059dO 
xi(2,njj)-0.059dO 
xi(3,1)~0.OS9dO 

xi(3,njj)-0.OS9dO 
xi(4,1)-0.OdO 
xi(4,njj)=1.0d-02 

c 
fi(l)=O.OdO 
fi(2)-0.OdO 
fi(3)--4.146d-02 

c 
call guess(n,njj) 

c 
call compos(n,lim) 

c 
do 7 i=l,njj 
do 7 j-1,n 

7 xt(j,i,l)=xx(j,i) 
c 
c ** second steady-state ** 
c 

kmax - 40 
xi(1,1)-0.882dO 
xi(1,njj)-0.882dO 
xi(2,1)=0.OS9dO 
xi(2,njj)-0.OS9dO 
xi(3,1)-=0.OS9dO 
xi(3,njj)-O.OS9dO 
xi(4,1)=0.OdO 
xi(4,njj)=1.0d-02 

c 
fi(l)-O.OdO 
fi(2)=0.OdO 
fi(3)=-1.146d-OS 

c 
call guess(n,njj) 

c 
call compos(n,lim) 

c 
do 8 i-l,njj 
do 8 j=l,n 

8 xt(j,i,kmax+1)=xx(j,i) 
c 
c **time stepping** 
c 

do 10 i=2,kmax 
kk=i 

10 call xomb(n,lim2) 



c 

c 
call nucamb(n) 

stop 
end 

c********************************************************* 
subroutine compos(n,lim) 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb,kk,kmax 
common/const/ fc,r,t,frt,phi,phil,phi2 
common/calc/ h,rr 
common/pdata/ z(12),wt(12),dif(12,12,12l) 
common/ssblock/ xpO(13),xxO(13,12l) 

189 

common/rxnl/ nr,gnu(12,S) ,rate(S,32l),equil(S,32l) ,gne(S) 
common/var/ barm(12l) ,cc(12l) ,hh(12l) ,zz(12l) ,xp(26) ,xx(13,12l) 

c 

c 

c 

c 

c 

1,xi(13,12l),bc(12),ce(12l),xt(13,12l,SOO),fi(12) 
common/g/ gf(12) ,ref(12),rho(12l) ,vis(12l) ,flux(12,12l) 
common/mati b,d 
common/band/ a,c,g,x,Y 
dimension b(26,26),d(26,S3) 
dimension a(26,26),c(26,12l),g(26),x(26,26),y(26,26) 
dimension dx(13),sl(13),s2(13),s3(26,26),binv(13,13),s4(13),sS(13) 

99 format (lh ,//Sx,'this run did not converge'//) 
nn-n 
nx=n 
nj-njj 

do 1 j=l,nj 
do 1 i=l,n 

xx ( i ,j ) =xi ( i , j ) 
1 c(i,j)=xx(i,j) 

call prop(n,njj) 

jcount=O 
do 4 i=l,nm 

4 xp(i)-O.OdO 

c initialize variables to begin each iteration 
c (jcount is iteration #) 

c 

8 j=O 
jcount=jcount+l 
do 9 i=l,n 
do 9 k=l,n 

x(i,k)=O.OdO 
9 y(i,k)=O.OdO 

c store previous iteration of (xp in xpO) & (xx in xxO) 
do 6 i=l,nm 



c 
c 
c 
c 

c 

c 

6 

10 

xpO(i)=xp(i) 
xxO(i,nj)=xx(i,nj) 
xxO(n,nj)=xx(n,nj) 

for a given iteration, set up governing equations and bc's 
at the left interface and move across membrane start 

j-j+1 

do 11 i=l,n 
g(i)=O.OdO 
xx ( i , j ) =c ( i , j ) 

do 11 k=l,n 
a(i,k)-=O.OdO 
b(i,k)-O.OdO 
s3(i,k)=0.OdO 

11 d(i,k)=O.OdO 

c * update physical properties * 
call prop(n,njj) 

c 
if(j . ne .1) go to 13 

c ________ ~~----~----~~~ __ --~~----------
c specify boundary conditions at left interface (j=l) 
c 

c 

do 12 i=l,n 

b(i, i)=1.0dO 
g(i)=xi(i,l) 

12 continue 

call band(j) 
go to 10 

c ~~~~~ ______ ~ __________________________ __ 

13 if (j .eq. nj) go to 16 
c 
c specify governing equations [ 1 < j < nj ] 
c 

dphi=c(n,j+1)-c(n,j-1) 
dp=dphi*frt/2.0dO/h 
d2phi=c(n,j+1)-c(n,j)*2.0dO+c(n,j-1) 
do 14 k=l,nm 

b(l,k)=wt(k) 
s4(k)=0.OdO 
sS(k)=O.OdO 

c equation n, e1ectroneutra1ity 
b(n,k)=z(k) 

d(k,k)=1.0dO 
dx(k)=c(k,j+1)-c(k,j-1) 
if(k.eq.1) go to 14 
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do 18 i=l,nm 
if(i.eq.k) go to 18 
b(k,i)=c(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-c(i,j)/dif(i,k,j) 

18 continue 
d(k,n)-(dx(k)+z(k)*frt*c(k,j)*dphi)/2.0dOjh 

14 continue 
call matinv(nm,n,determ) 
do 20 i=l,nm 

f1ux(i,j)=d(i,n) 
do 19 k=l,nm 

binv(i,k)=d(i,k) 
b(i,k)-O.OdO 

19 d(i,k)~O.OdO 

b(i,n)-=O.OdO 
d(i,n)-O.OdO 

c equation 1, the sum of mole fractions equals 1.0 
20 b(1,i)=1.0dO 

do 22 i=l,nm 
sl(i)=O.OdO 
s2(i)=0.OdO 
do 22 k-=l,nm 
if(k.eq.i) go to 22 
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a2=flux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+f1ux(k,j)/dif(i,k,j+1) 
s5(i)=s5(i)+f1ux(k,j)/dif(i,k,j-l) 
a1=(c(k,j+1)/dif(i,k,j+1)-c(k,j-1)/dif(i,k,j-l»/2.0dOjh 
sl(i)=sl(i)+al 
s2(i)=s2(i)+a2 
do 21 l=l,nm 

21 s3(1,k)=s3(1,k)+binv(i,1)*a1 
22 continue 

do 15 i=2,nm 
g(i)=g(i)-f1ux(i,j)*sl(i) 
s4(i)=s4(i)/2.0dOjh 
s5(i)=s5(i)/2.0dOjh 
do 27 k-l,nm 

s3(k,i)=s3(k,i)-binv(i,k)*sl(i) 
if(k.eq.l) go to 5 
d(i,k)=d(i,k)+s3(k,i) 
d(i,n)=d(i,n)+z(k)*c(k,j)*frt*s3(k,i)/2.0dOjh 
a(i,n)=a(i,n)-z(k)*c(k,j)*frt*s3(k,i)/2.0dOjh 

5 if(k.eq.i) go to 27 
27 continue 

do 24 k=l,nm 
d(i,k)=d(i,k)/2.0dOjh 
a(i,k)=-d(i,k) 
do 23 1=2,nm 

23 if(l.ne.k) b(i,k)=b(i,k)+flux(1,j)/dif(k,1,j)*s3(1,i) 
if(k.ne.l) b(i,k)=b(i,k)-s2(k)*s3(k,i)+s3(k,i)*z(k)*dp 



c 

if(k.eq.i) go to 24 
g(i)-g(i)+b(i,k)*c(k,j) 
d(i,k)-d(i,k)-f1ux(i,j)/dif(i,k,j+1)/2.0dO(h 
a(i,k)=a(i,k)+f1ux(i,j)/dif(i,k,j-1)/2.0dO(h 

24 continue 
d(i,i)-d(i,i)+s4(i)-1.0dO(h(h-z(i)*dp/2.0dO(h 
a(i,i)-a(i,i)-s5(i)-1.0dO(h(h+z(i)*dp/2.0dO(h 
g(i)=g(i)+b(i,i)*c(i,j)+s4(i)*c(i,j+1)-s5(i)*c(i,j-1) 

1 -z(i)*frt*(c(i,j)*d2phi+0.25*dx(i)*dphi)(h(h 
a(i,n)=a(i,n)+z(i)*frt*(dx(i)/4.0dO-c(i,j))(h(h 
b(i,n)=z(i)*frt*2.0dO*c(i,j)(h(h 
d(i,n)-d(i,n)-z(i)*frt*(dx(i)/4.0dO+c(i,j))(h(h 
b(i,i)=b(i,i)+2.0dO(h(h-d2phi*z(i)*frt(h(h 

15 continue 

c eqn 1, mole fractions equal 1 
g(l)-l. OdO 
g(n)-O.OdO 

c 
c 1 < j < nj, governing equations 

call band(j) 
go to 10 

c ~~ ______________________________________ _ 

16 continue 
c specify boundary conditions at right interface(j=nj) 
c 

c 

c 

do 42 i=l,n 
g(i)=O.OdO 
xx ( i , j ) =c ( i , j ) 

do 42 k=l,n 
a(i,k)=O.OdO 
b(i,k)=O.OdO 
s3(i,k)=0.OdO 

42 d(i,k)=O.OdO 

dphio=+(2.0dO*c(n,nj-1)-1.5dO*c(n,nj)-0.5dO*c(n,nj-2))(h 
do 66 i=2,nm 
a(i,i)--2.0dO(h 
y(i,i)=0.5dO(h 
b (i, i)=l. 5dO(h 
coe=z(i)*c(i,nj)*frt 
a(i,n)=a(i,i)*coe 
y(i,n)-y(i,i)*coe 
b(i,n)=b(i,i)*coe 
b(i,i)=b(i,i)+z(i)*frt*dphio 
g(i)=g(i)+coe*dphio 

b(n, i-)=z(-i-) 
66 b(l,i)=l.OdO 

- b(l,l)=l.OdO 
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c 

c 

c 

g(l)=l.OdO 
b(n,l)=z(l) 
g(n)=O.OdO 

do 49 i-l,mn 
49 flux(i,nj)-fi(i) 

do 48 i-2,mn 
do 48 k-l,mn 
if(k.eq.i) go to 48 
b(i,k)-b(i,k)+flux (i,nj)/dif(i,k,nj) 
b(i,i)-b(i,i)-flux (k,nj)/dif(i,k,nj) 

48 continue 

call band(j) 
c __________________________ ~------------________ -------------------------------------------
c begin check for ss convergence 
c 

c 

c 

c 

c 

do 25 i-l,mn 
xp(i)=-(4.0dO*c(i,nj-l)-3.0dO*c(i,nj)-c(i,nj-2»/2.0dO/h 
do 25 jo=l, nj 

if(c(i,j).lt.xx(i,j)/l.Od02) c(i,j)=xx(i,j)/l.Od02 
xx(n,j )-c(n,j) 

25 xx(i,j)-c(i,j) 

if (jcount .gt. lim) then 
print 99 

else 
go to 56 

do 55 ii=2, mn 
dxp=dabs( xp(ii)-xpO(ii) ) 
dxx=dabs( xx(ii,nj)-xxO(ii,nj) ) 

if ( dxx .gt. l.Od-09*dabs( xx(ii,nj) » go to 8 
if ( dxp .gt. l.Od-07*dabs( xp(ii) ) .and. 

1 z(ii) .ne. O.OdO) go to 8 

55 continue 

end if 

print *, , , 
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print *, jcount, , iterations were reqd for ss convergence' 
print * ' , 

c 
56 return 

end 
c *************************************************************** 

subroutine xomb(n,lim2) 
implicit real*8(a-h,o-z) 
common/n/ nx,mn,nj,njj,nb,kk,kmax 



common/const/ fc,r,t,frt,phi,phi1,phi2 
common/calc/ h,rr 
common/pdata/ z(12),wt(12),dif(12,12,121) 
common/ssblock/ xpO(13),xxO(13,121) 
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common/var/ barm(121),cc(121),hh(121),zz(121),xp(26),xx(13,121) 

c 

c 

c 

c 

c 

l,xi(13,121),bc(12),ce(121),xt(13,121,SOO),fi(12) 
common/g/ gf(12),ref(12),rho(121),vis(121),flux(12,121) 
common/matI b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,S3) 
dimension a(26,26),c(26,121),g(26),x(26,26),y(26,26) 
dimension dx(13),sl(13),s2(13),s3(26,26),binv(13,13),s4(13),sS(13) 

99 format (lh ,//Sx,'this run did not converge'//) 
nn-n 
nx-n 
nj-njj 

do 1 i=l,n 
xx(i,l)-xi(i,l) 
xx(i,nj)-xt(i,nj,kk-1) 
c(i,l)=xi(i,l) 
c(i,nj)-xt(i,nj,kk-l) 
do 1 j=2, nj-1 

c(i,j)-xt(i,j,kk-l) 
1 xx(i,j)-c(i,j) 

call prop(n,njj) 

jcount=O 
do 4 i-1,nm 

4 xp(i)=O.OdO 

c initialize variables to begin each iteration 

c 

8 j-O 
jcount=jcount+l 
do 9 i-l,n 
do 9 k=l,n 

x(i,k)=O.OdO 
9 y(i,k)=O.OdO 

c store previous iteration of (xp in xpO) & (xx in xxO) 
do 6 i=l,nm 

c 

xpO(i)=xp(i) 
6 xxO(i,nj)=xx(i,nj) 

xxO(n,nj)=xx(n,nj) 

c for a given iteration, set up governing equations and be's 
c start at the left interface and move across membrane 
c 

.. 



c 

c 

10 j=j+1 

do 11 i-=l,n 
g(i)=O.OdO 
xx ( i , j ) -c ( i , j ) 

do 11 k=l,n 
a(i,k)-O.OdO 
b(i,k)=O.OdO 
s3(i,k)=0.OdO 

11 d(i,k)=O.OdO 

c * update physical properties * 
c 

call prop(n,njj) 
c 

if(j.ne.1) go to 13 
c 
c specify boundary conditions at left interface (j=l) 
c 

c 

c 

c 

do 12 i-1,n 
b(i, i)-l. OdO 
g(i)-xi(i,l) 

12 continue 

call band (j ) 
go to 10 

13 if (j .eq. nj) go to 16 

c specify governing equations [ 1 < j < nj ] 
c 

c 

c 

18 

dphi=c(n,j+1)-c(n,j-1) 
dp=dphi*frt/2.0dOjh 
d2phi=c(n,j+1)-c(n,j)*2.0dO+c(n,j-1) 

do 14 k=l,nm 
b(l,k)=wt(k) 
s4(k)=0.OdO 
s5(k)=0.OdO 

equation n, e1ectroneutra1ity 
b(n,k)=z(k) 

d(k,k)=1.0dO 
dx(k)=c(k,j+1)-c(k,j-1) 
if(k.eq.1) go to 14 
do 18 i=l,nm 

if(i.eq.k) go to 18 
b(k,i)=c(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-c(i,j)/dif(i,k,j) 

continue 
d(k,n)=(dx(k)+z(k)*frt*c(k,j)*dphi)/2.0dOjh 
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14 continue 
call matinv(nm,n,determ) 
do 20 i=l,nm 

flux(i,j )=d(i, n) 
do 19 k=l,nm 

binv(i,k)-d(i,k) 
b(i,k)=O.OdO 

19 d(i,k)=O.OdO 
b(i,n)=O.OdO 
d(i,n)=O.OdO 

c equation 1, the sum of mole fractions equals 1.0 
20 b(l,i)-l.OdO 

do 22 i-l,nm 
sl(i)-O.OdO 
s2(i)-0.OdO 
do 22 k=l,nm 
if(k.eq.i) go to 22 
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a2=flux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+flux(k,j)/dif(i,k,j+l) 
s5(i)=s5(i)+flux(k,j)/dif(i,k,j-l) 
al=(c(k,j+l)/dif(i,k,j+l)-c(k,j-l)/dif(i,k,j-l))/2.0dOjh 
sl(i)-sl(i)+al 
s2(i)=s2(i)+a2 
do 21 l-l,nm 

21 s3(1,k)=s3(1,k)+binv(i,1)*al 
22 continue 

do 15 i=2,nm 
g(i)-g(i)-flux(i,j)*sl(i) 
s4(i)=s4(i)/2.0dOjh 
s5(i)=s5(i)/2.0dOjh 
do 27 k=l,nm 

s3(k,i)=s3(k,i)-binv(i,k)*sl(i) 
if(k.eq.l) go to 5 
d(i,k)=d(i,k)+s3(k,i) 
d(i,n)=d(i,n)+z(k)*c(k,j)*frt*s3(k,i)/2.0dOjh 
a(i,n)=a(i,n)-z(k)*c(k,j)*frt*s3(k,i)/2.0dOjh 

5 if(k.eq.i) go to 27 
27 continue 

do 24 k=l,nm 
d(i,k)=d(i,k)/2.0dOjh 
a(i,k)=-d(i,k) 
do 23 1=2,nm 

23 if(l.ne.k) b(i,k)=b(i,k)+flux(l,j)/dif(k,l,j)*s3(I,i) 
if(k.ne.l) b(i,k)=b(i,k)-s2(k)*s3(k,i)+s3(k,i)*z(k)*dp 
if(k.eq.i) go to 24 
g(i)=g(i)+b(i,k)*c(k,j) 
d(i,k)=d(i,k)-flux(i,j)/dif(i,k,j+l)/2.0d9!h 
a( i, k)=a( i, k)+flux(i, j) /dif( i, k, j --1) /2. OdOjh 

24 continue 
d( i, i)=d( i, i)+s4 (i)-I. OdOjhjh-z (i)*dp/2. OdO/h 



c 

a(i,i)=a(i,i)-s5(i)-1.0dO/h/h+z(i)*dp/2.0dO/h 
g(i)~g(i)+b(i,i)*c(i,j)+s4(i)*c(i,j+1)-s5(i)*c(i,j-1) 

1 -z(i)*frt*(c(i,j)*d2phi+0.25dO*dx(i)*dphi)/h/h 
a(i,n)=a(i,n)+z(i)*frt*(dx(i)/4.0dO-c(i,j»/h/h 
b(i,n)-z(i)*frt*2.0dO*c(i,j)/h/h 
d(i,n)-d(i,n)-z(i)*frt*(dx(i)/4.0dO+c(i,j»/h/h 
b(i,i)=b(i,i)+2.0dO/h/h-d2phi*z(i)*frt/h/h 

15 continue 

c **time-derivatives** 
c 

do 31 i=2,nm 
do 31 k=1,nm 
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if(i.ne.k) b(i,k)-b(i,k)-2*xt(i,j,kk-1)/(rr*dif(i,k,j)/cc(j» 
if(i.ne.k) go to 31 

c 
do 32 l-l,nm 

32 if(i.ne.1) b(i,k)-b(i,k)+2*xt(1,j,kk-1)/(rr*dif(i,1,j)/cc(j» 
c 

31 continue 
c 
c eqn 1, mole fractions equal 1 

g(l)-1. OdO 
g(n)=O.OdO 

c 
c 1 < j < nj, governing equations 

call band (j ) 
go to 10 

c 
16 continue 

c specify boundary conditions at right interface(j=nj) 
c 

c 

c 

c 

do 42 i=l,n 
g(i)=O.OdO 
xx ( i , j ) =c ( i , j ) 

do 42 k=l,n 
a( i, k)=O .. 0dO 
b(i,k)-O.OdO 
s3(i,k)-0.OdO 

42 d(i,k)=O.OdO 

dphio=+(2.0dO*c(n,nj-1)-1.5dO*c(n,nj)-0.5dO*c(n,nj-2»/h 

do 105 i=l,n 
105 gf(i)=(1.5dO*xt(i,nj,kk-1)-2.0dO*xt(i,nj-1,kk-1)+0.5dO* 

1xt(i,nj-2,kk-1»/h 

do 66 i=2,nm 
a(i,i)=-4.0dO/h 
y(i, i)=1. OdO/h 



c 

c 

c 

c 

c 

c 

b(i,i)-3.0dO/h 
coe~z(i)*c(i,nj)*frt 

a(i,n)-a(i,i)*coe 
y(i,n)-y(i,i)*coe 
b(i,n)-b(i,i)*coe 
b(i,i)-b(i,i)-2.0dO*z(i)*frt*dphio-2.0dO*z(i)*frt*gf(n) 
g(i)-g(i)-2.0dO*z(i)*frt*xt(i,nj,kk-l)*dphio-z(i)*frt* 

lxt(i,nj,kk-l)*gf(n) +gf(i) 

b(n,i)=z(i) 
66 b(1,i)-1.0dO 

b(l, 1)-1. OdO 
g(l)-1. OdO 
b(n,l)-z(l) 
g(n)-O.OdO 

do 49 i-l,nm 
49 flux(i,nj)-=fi(i) 

do 48 i=2,nm 
do 48 k-l,nm 
if(k.eq.i) go to 48 
b(i,k)-b(i,k)+2.0dO*flux (i,nj)/dif(i,k,nj) 
b(i,i)-b(i,i)-2.0dO*flux (k,nj)/dif(i,k,nj) 

48 continue 

do 106 i~2,nm 
do 106 k~l,nm 
if (k.eq.i) go to 106 
g(i)-g(i)+xt(k,nj,kk-l)*flux(i,nj)/dif(i,k,nj)-

. lxt(i,nj ,kk-l)*flux(k,nj)/dif(i,k,nj) 
106 continue 

call band(j) 

c begin check for convergence 
c 

c 

do 25 i=l,nm 
xp(i)~-(4.0dO*c(i,nj-l)-3.0dO*c(i,nj)-c(i,nj-2»/2.0dO/h 
do 25 }==l, nj 

if(c(i,j).lt.xx(i,j)/1.Od02) c(i,j)=xx(i,j)/1.Od02 
xx(n,j )=c(n,j) 

25 xx(i,j)-=c(i,j) 

if (jcount .gt. lim2) then 
print 99 
go to 57 

else 
do 55 ii=2, nm 

dxp=dabs( xp(ii)-xpO(ii) ) 
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c 

c 

dxx=dabs( xx(ii,nj)-xxO(ii,nj) ) 
if ( dxx .gt. 1.0d-09*dabs( xx(ii,nj) )) go to 8 
if ( dxp .gt. 1.0d-07*dabs( xp(ii) ) .and. 

1 z(ii) .ne. O.OdO) go to 8 

55 continue 

end if 

57 do 59 ii=l,n 
xt(ii,l,kk)=xi(ii,l) 
do 59 jj=2,nj 

59 xt(ii,jj,kk)=2*xx(ii,jj)-xt(ii,jj,kk-1) 
return 
end 

c ******************************************************* 
subroutine band(j) 

c 

implicit rea1*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb,kk,kmax 
common/mati b,d 
commonjband/ a,c,g,x,y 
dimension b(26,26),d(26,53) 
dimension a(26,26),c(26,121),g(26),x(26,26),y(26,26) 
dimension e(26,27,121) 

101 format (15h determ=O at j=,i4) 
n=nx 
if (j-2) 1,6,8 

1 np1= n + 1 
do 2 i-1,n 
d(i,2*n+1)= g(i) 
do 2 l=l,n 
1pn= 1 + n 

2 d(i,lpn)= x(i,l) 
call matinv(n,2*n+1,determ) 
if (determ) 4,3,4 

3 print 101, j 
4 do 5 k=l,n 

e(k,np1,1)= d(k,2*n+1) 
do 5 l=l,n 
e(k,l,l)= - d(k,l) 
1pn= 1 + n 

5 x(k,l)= - d(k,lpn) 
return 

6 do 7 i=l,n 
do 7 k=l,n 
do 7 l=l,n 

7 d(i,k)= d(i,k) + a(i,l)*x(l,k) 
8 if (j-nj) 11,9,9 
9 do 10 i=l,n 
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do 10 l~l,n 
g(i)~ g(i) - y(i,1)*e(1,np1,j-2) 
do 10 m=l,n 

10 a(i,l)= a(i,l) + y(i,m)*e(m,l,j-2) 
11 do 12 i-1,n 

d(i,np1)- - g(i) 
do 12 l-l,n 
d(i,np1)= d(i,np1) + a(i,1)*e(1,np1,j-1) 
do 12 k=l,n 

12 b(i,k)= b(i,k) + a(i,1)*e(1,k,j-1) 
call matinv(n,np1,determ) 
if (determ) 14,13,14 

13 print 101, j 
14 do 15 k=l,n 

do 15 m-1,np1 
15 e(k,m,j)- - d(k,m) 

if (j-nj) 20,16,16 
16 do 17 k-1,n 
17 c(k,j)= e(k,np1,j) 

do 18 jj=2, nj 
m= nj - jj + 1 
do 18 k-=l,n 
c(k,m)- e(k,npl,m) 
do 18 l=l,n 

18 c(k,m)= c(k,m) + e(k,1,m)*c(1,m+1) 
do 19 I-l,n 
do 19 k-1,n 

19 c(k,l)- c(k,l) + x(k,I)*c(1,3) 
20 return 

end 
c ********************************************************** 

subroutine matinv(n,m,determ) 

c 

implicit real*8(a-h,o-z) 
common/mati b,d 
dimension b(26,26),d(26,53) 
dimension id(26) 

determ=1.0 
do 1 i=l,n 

1 id(i)=O 
do 18 nn=l,n 
bmax~l.l 

do 6 i=l,n 
if(id(i).ne.O) go to 6 
bnext=O.O 
btry=O.O 
do 5 j=l,n 
if(id(j).ne.O) go to 5 
if(dabs(b(i,j».le.bnext) go to 5 
bnext=dabs(b(i,j» 
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.. 

c 

if(bnext.le.btry) go to 5 
bnext=btry 
btry=dabs(b(i,j)) 
jc=j 

5 continue 
if(bnext.ge.bmax*btry) go to 6 
bmax=bnext/btry 
irow=i 
jcol=jc 

6 continue 
if(id(jc).eq.O) go to 8 
determ=O.O 
return 

8 id(j col)-l 
if(jcol.eq.irow) go to 12 
do 10 j=l,n 
save-b(irow,j) 
b(irow,j)=b(jcol,j) 

10 b(jcol,j)=save 
do 11 k=l,m 
save=d(irow,k) 
d(irow,k)=d(jcol,k) 

11 d(jcol,k)=save 
12 f=1.0/b(jcol,jcol) 

do 13 j=l,n . 
13 b(jcol,j)=b(jcol,j)*f 

do 14 k=l,m 
14 d(jcol,k)=d(jcol,k)*f 

do 18 i=l,n 
if(i.eq.jcol) go to 18 
f=b( i, j col) 
do 16 j=l,n 

16 b(i,j)=b(i,j)-f*b(jcol,j) 
do 17 k=l,m 

17 d(i,k)=d(i,k)-f*d(jcol,k) 
18 continue 

return 
end 
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c ********************************************************* 
subroutine nucamb(n) 

c 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb,kk,kmax 
common/calc/ h,rr 
common/var/ barm(12l),cc(12l),hh(12l),zz(12l),xp(26),xx(13,12l) 

1,xi(13,12l),bc(12),ce(12l),xt(13,12l,500),fi(12) 
common/g/ gf(12),ref(12) ,rho(12l) ,vis(12l) ,flux(12,12l) 

do 5 i=l,nj 
w=i-l 
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5 zz(i) = w/(nj-1) 
c 
c print*,f1ux(3,nj-1),xx(1,nj)/xx(3,nj) 
c do 10 j-1,nj,1 
c 10 print *, zZ(j),char(9),xx(1,j)/xx(3,j) 
c 

c 

do 10 i-1,kmax+1,4 
t-rr*(i-1) 
print *, , , 
print *,t, 'time' 
do 10 j=l,nj,l 

10 print *,zz(j),char(9),xt(1,j,i)/xt(3,j,i) 
return 
end 

c *************************************************************** 
subroutine guess(n,njj) 

c 

c 

c 

c 

implicit rea1*8(a-h,o-z) 
common/ca1c/ h,rr 
common/pdata/ z(12),wt(12),dif(12,12,121) 
common/var/ barm(121),cc(121),hh(121),zz(121),xp(26),xx(13,121) 

1,xi(13,121),bc(12),ce(121),xt(13,121,500),fi(12) 

u=xi(1,1)/xi(3,1) 
ct-1.0d06*(0.1168dO-1.42d-03*u-59.1dO*(2.103dO-2.55d-2*u)/(1.ld03+ 

118.0dO*u)) 
dif(1,3,1)=ct*(+6.7209d-10+3.7856d-10*u-5.6593d-12*u*u) 
b-fi(3)*h*njj/dif(1,3,1) 

bc(n)=(xi(n,njj)-xi(n,1))/(njj-1) 
do 10 j=l, njj-1 

10 xi(n,j)-xi(n,1)+bc(n)*(j-1) 

do 15 i=2,njj 
w=i-1 
c2=w/(njj-1) 
xi(1,i)=xi(1,1)*exp(b*c2) 
xi(2,i)-(1-xi(1,i))/2.0dO 

15 xi(3,i)-xi(2,i) 

return 
end 

c *********************************************************** 
subroutine prop(n,njj) 
implicit rea1*8(a-h,o-z) 
common/const/ fc,r,frt,phi,phi1,phi2 
common/pdata/ z(12),wt(12),dif(12,12,121) 
common/rxn1/ nr,gnu(12,5),rate(5,321),equi1(5,321),gne(5) 
common/var/ barm(121),cc(121),hh(121),zz(121),xp(26),xx(13,121) 

1,xi(13,121),bc(12),ce(121),xt(13,121,500),fi(12) 



c 

c 

t=353.0dO 
do 10 j=l,njj 
u=xx(1,j)/xx(3,j) 
co=1.98d03*u/l.ld03/(1.OdO + 6.48d-02*u) 
ch-l.98d03/l.ld03/(1.OdO + 6.48d-02*u) 
cm=1.98d03/l.ld03/(1.OdO + 6.48d-02*u) 
cc(j)-(3.60d03+l.8d03*u)/(1.OdO + 6.48d-02*u) 
ek -(3.375d-Ol*u-0.2l4ldO)*dexp(-1.268d03/t) 
dp =«0.35dO*u)**(-4.0dO)+0.2l42dO)**(-0.25dO) 
rO=(1.98d03+32.4dO*u)/(1.OdO+6.48d-02*u) 
af=0.04dO*r*t*«(u+6l.lldO)**2)/u/u+l.OdO) 
df-rO*(3.5d-06*exp(-2.436d03/t»/af 
df-df*u*(u+6l.lldO)/1.10dO/14.0dO 

c calculate Lij's 
c 

a = ek*dp/fc/fc/ch/co/l.Od04 
c 

b = df/co/co/l.Od06 + ek*dp*dp/co/co/fc/fc/l.Od04 
c 

c = ek/fc/fc/ch/ch/l.Od04 
c 
c calculate Kij's 
c 

c 

xl - a/(-a*a+b*c) 
yl = (c-a)/(-a*a+b*c) 
zl - (b-a)/(-a*a+b*c) 

c calculate Dij's 
dif(1,3,j) = 1.Od06*r*t*co*ch/xl 
dif(2,3,j) = 1.Od06*r*t*ch*cm/zl 
dif(1,2,j) = 1.Od06*r*t*co*cm/yl 
dif(2,1,j)=dif(1,2,j) 
dif(3,1,j)=dif(1,3,j) 

10 dif(3,2,j)=dif(2,3,j) 
te=ek*dp*dp*r*t/co/df/fc/fc/10.OdO 

c te=2.0d-02*(1.OdO+te)/ek 
c 

return 
end 
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c************************************************************* 
c 
c Impedance imp. for (3/18/92) 
c 
c************************************************************* 

implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb 
common/const/ fc,r,t,frt,phi,phil,phi2 
common/calc/ h 
common/pdata/ z(12),wt(12),dif(12,12,12l) 
common/ssblock/ xpO(13),xxO(13,12l) 
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common/rxnl/ nr,gnu(12,5),rate(5,32l),equil(5,32l),gne(5) 
common/var/ barm(12l),cc(12l),hh(12l),zz(12l),xp(26),xx(13,12l) 
1,xi(13~12l),bc(12),ce(12l),fi(12) 

common/g/ gf(12),ref(12),rho(12l),vis(12l),flux(12,12l) 
c 
c number of species and equations 
c 

c 

data nm/3/,nr/l/,nb/ll/ 
n~nm+l 

c mesh size and number of iterations 
c 

data lim/9/, njj/8l/, hl/2.0d-04/ 
h=hl/(njj-l) 

c 
c************************************************************** 
c read in parameters 
c 

c 

read*,t,(xi(i,l),xi(i,njj),i=l,n),«gnu(i,j),i=l,nm),j=l,nr), 
l(gne(i),i=l,nr),(rate(j,njj),j-l,nr),(equil(j,njj),j=l,nr), 
lphil,phi2 

c************************************************************** 
c 
c physical constants 
c 

c 

data fc/96487.0dO/,r/8.3l4dO/ 
frt=fc/(r*t) 

c charges of electrolyte species 
c 

data (z(i), i~1,3 )/O.OdO,-l.OdO,l.OdO/ 
c 
c set flux of membrane to zero 
c 

data (wt(i), i=1,2)/O.OdO, 1.OdO/ 
do 2 i=3,nm 
wt(i)=O.OdO 

2 continue 



.. 

c 
c************************************************************** 
c 

call guess(n,njj) 
c 

call compos(n,lim) 
c 

stop 
end 

c 
c************************************************************** 

subroutine compos(n,lim) 
implicit real*8(a-h,o-z) 
common/n/ nx,nm,nj,njj,nb 
common/const/ fc,r,t,frt,phi,phil,phi2 
common/calc/ h 
common/pdata/ z(12),wt(12),dif(12,12,12l) 
common/ssblock/ xpO(13),xxO(13,12l) 
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common/rxnl/ nr,gnu(12,S),rate(S,32l),equil(S,32l),gne(S) 
common/var/ barm(12l),cc(12l),hh(12l),zz(12l),xp(26),xx(13,12l) 

c 

1,xi(13,12l),bc(12),ce(12l),fi(12) 
common/z/ zre,zim 
common/matI b,d 
common/band/ a,c,g,x,y 
dimension b(26,26),d(26,S3),bd(13,lOO) 
dimension a(26,26),c(26,12l),g(26),x(26,26),y(26,26) 
common/g/ gf(12),ref(12),rho(12l),vis(12l),flux(12,12l) 
dimension dx(13),sl(13),s2(13),s3(26,26),binv(13,13),s4(13),sS(13) 
dimension bb(S) 

99 format (lh ,//Sx,'this run did not converge'//) 
nn=n 
nx=n 
nj=njj 

c the steady-state mesh size remains a constant = hO 
hO=h 

c 

c 

c 

pi=3.l4dO 

do 1 j=l, nj 
do 1 i=l,n 

xx(i,j )~xi(i,j) 
1 c(i,j)=xx(i,j) 

call prop(n,njj) 
jcount=O 
do 4 i=l,nm 

4 xp(i)=O.OdO 

c initialize variables to begin each iteration 
8 j=O 



c 

jcount-jcount+1 
do 9 i~l,n 
do 9 k=l,n 

x(i,k)=O.OdO 
9 y(i,k)-O.OdO 

c store previous iteration of (xp in xpO) & (xx in xxO) 
do 6 i-1,run 

xpO(i)~xp(i) 

6 xxO(i,l)-xx(i,l) 
xxO(n,l)-xx(n,l) 

c 
c for a given iteration, set up governing equations and bc's 
c start at the left interface and move across membrane 
c 

c 

c 

c 

10 j==j+1 . 

do 11 i-1,n 
g(i)=O.OdO 
xx (i , j )=c (i , j ) 

do 11 k=l,n 
a(i,k)-O.OdO 
b(i,k)-O.OdO 
s3(i,k) ... 0.OdO 

11 d(i,k)-O.OdO 

if(j.ne.1) go to 13 

c specify boundary conditions at left interface (j=l) 
c 

c 

c 

c 

do 12 i=l,n 
b(i, i)=1. OdO 
g(i)-xi(i,l) 

12 continue 

call band(j) 
go to 10 

13 if (j .eq. nj) go to 16 

c specify governing equations [ 1 < j < nj ] 
c 

dphi-c(n,j+1) -c(n,j -1) 
dp=dphi*frt/2.0(h 
d2phi=c(n,j+1)-c(n,j)*2.0+c(n,j-1) 
do 14 k=l,nm 

b (1, k)=wt(k)· 
s4(k)~0.OdO 

s5(k)=0.OdO 
c equation n, electroneutrality 
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b(n,k)=z(k) 
d(k,k)-1.0dO 
dx(k)=c(k,j+1)-c(k,j-1) 
if(k.eq.1) go to 14 
do 18 i=l,nm 

if(i.eq.k) go to 18 
b(k,i)=c(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-c(i,j)/dif(i,k,j) 

18 continue 
d(k,n)=(dx(k)+z(k)*frt*c(k,j)*dphi)/2.0(h 

14 continue 
call matinv(nm,n,determ) 
do 20 i=l,nm 

flux(i,j)-d(i,n) 
do 19 k-1,nm 

binv(i,k)-d(i,k) 
b(i,k)-O.OdO 

19 d(i,k)-O.OdO 
b(i,n)=O.OdO 
d(i,n)=O.OdO 

c equation 1, the sum of mole fractions equals 1.0 
20 b(1,i)=1.0dO 

do 22 i=l,nm 
sl(i)=O.OdO· 
s2(i)-0.OdO 
do 22 k=l,nm 
if(k.eq.i) go to 22 
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a2=flux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+f1ux(k,j)/dif(i,k,j+1) 
s5(i)=s5(i)+f1ux(k,j)/dif(i,k,j-1) 
a1=(c(k,j+l)/dif(i,k,j+l)-c(k,j-1)/dif(i,k,j-1»/2.0(h 
sl(i)=sl(i)+a1 
s2(i)=s2(i)+a2 
do 21 l=l,nm 

21 s3(1,k)=s3(1,k)+binv(i,1)*a1 
22 continue 

do 15 i=2,nm 
g(i)=g(i)-f1ux(i,j)*sl(i) 
s4(i)=s4(i)/2.0dO(h 
s5(i)=s5(i)/2.0dO(h 
do 27 k=l,nm 

s3(k,i)=s3(k,i)-binv(i,k)*sl(i) 
if(k.eq.1) go to 5 
d(i,k)=d(i,k)+s3(k,i) 
d(i,n)=d(i,n)+z(k)*c(k,j)*frt*s3(k,i)/2.0(h 
a(i,n)=a(i,n)-z(k)*c(k,j)*frt*s3(k,i)/2.0(h 

5 if(k.eq.i) go to 27 
27 continue 

do 24 k=l,nm 
d(i,k)=d(i,k)/2~OdO(h 
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a(i,k)=-d(i,k) 
do 23 1=2,run 

23 if(l.ne.k) b(i,k)=b(i,k)+flux(1,j)/dif(k,1,j)*s3(1,i) 
if(k.ne.l) b(i,k)=b(i,k)-s2(k)*s3(k,i)+s3(k,i)*z(k)*dp 

c 

c 

if(k.eq.i) go to 24 
g(i)-g(i)+b(i,k)*c(k,j) 
d(i,k)=d(i,k)-flux(i,j)/dif(i,k,j+l)/2.0/h 
a(i,k)~a(i,k)+flux(i,j)/dif(i,k,j-l)/2.0/h 

24 continue 
d(i,i)=d(i,i)+s4(i)-1.0/h/h-z(i)*dp/2.0/h 
a(i,i)=a(i,i)-ss(i)-1.0/h/h+z(i)*dp/2.0/h 
g(i)=g(i)+b(i,i)*c(i,j)+s4(i)*c(i,j+l)-ss(i)*c(i,j-l) 

1 -z(i)*frt*(c(i,j)*d2phi+0.2s*dx(i)*dphi)/h/h 
a(i,n)=a(i,n)+z(i)*frt*(dx(i)/4.0-c(i,j))/h/h 
b(i,n)=z(i)*frt*2.0*c(i,j)/h/h 
d(i,n)~d(i,n)-z(i)*frt*(dx(i)/4.0+c(i,j))/h/h 

b(i,i)=b(i,i)+2.0/h/h-d2phi*z(i)*frt/h/h 
15 continue 

g(l)=l. OdO 
call band(j) 
go to 10 

16 continue 
c specify boundary conditions at right interface(j=nj) 
c heterogeneous chemical reactions 
c 

c 

phi=phi2 
dphio~-(2.0dO*c(n,nj-l)-1.sdO*c(n,nj)-0.sdO*c(n,nj-2))/h 
do 66 i=2,run 
a(i,i)=-2.0dO/h 
y(i,i)=+O.sdO/h 
b(i,i)=b(i,i)+l.sdO/h 
coe=z(i)*c(i,nj)*frt 
a(i,n)=a(i,i)*coe 
y(i,n)=y(i,i)*coe 
b(i,n)=b(i,n) + b(i,i)*coe 
b(i,i)=b(i,i)+z(i)*frt*dphio 
g(i)=g(i)+coe*dphio 

b(n,i)=z(i) 
66 b(l,i)=l.OdO 

b(l,l)=l.OdO 
g(l)=l.OdO 
b(n,l)=z(l) 
g(n)=O.OdO 
if(nr.eq.O) go to 38 
do i=l,nr 
bb(i)=O.sdO 
end do 



" 
c 

c 

c 

c 

28 

29 

30 

31 
32 

do 37 l=l,nr 
xf=gne(l)*frt*(phi-c(n,j»*bb(l) 
rjb=rate(l,j)*exp(-xf) 
xf-xf*(1.0dO-bb(1»fbb(1) 
rjf=rate(1,j)*equi1(1,j)*exp(xf) 

do 32 i-1,run 
if(gnu(i,l» 28,32,30 

if(c(i,j) .gt. O.OdO) go to 29 
rjb=O.OdO 
go to 32 
rjb=rjb*( c(i,j )*cc(j) )**(-gnu(i,l» 
go to 32 
if(c(i,j) .gt. O.OdO) go to 31 
rjf-O.OdO 
go to 32 
rj f-rj f*( c(i,j )*cc(j) )**gnu(i,l) 

continue 

do 37 i=2,run 
do 37 k=l,run 

if(k.eq.i) go to 37 
b(i,i)-b(i,i)-gnu(k,l)*(rjf-rjb)/dif(i,k,j) 
b(i,k)=b(i,k)+gnu(i,l)*(rjf-rjb)/dif(i,k,j) 
sav=-(c(i,j)*gnu(k,l)-c(k,j)*gnu(i,l»/dif(i,k,j) 

do 36 jj=l,run 
if(c(jj,j) .1e. O.OdO) go to 36 
if(gnu(jj,l» 33,36,34 

33 save=sav*rjb*gnu(jj ,l)/c(jj,j) 
go to 35 

34 save=sav*rjf*gnu(jj,l)/c(jj,j) 
35 b(i,jj)-b(i,jj)+save 

g(i)=g(i)+save*c(jj,j) 
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36 continue 
g(i)=g(i)+sav*(rjf*(bb(I)-1.0dO)-rjb*bb(1»*gne(I)*frt*c(n,j) 
b(i,n)=b(i,n)+sav*(rjf*(bb(I)-I.OdO)-rjb*bb(l»*gne(I)*frt 

37 continue 
38 continue 

call band(j) 

c begin check for ss convergence 
c 

c 

do 25 i=l,run 
xp(i)=(4.0*c(i,2)-3.0*c(i,I)-c(i,3»/2.0/h 

do 25 j=l,nj 
if(c(i,j).lt.xx(i,j)/1.0d02) c(i,j)=xx(i,j)/I.Od02 
xx(n,j )=c(n,j) 

25 xx(i,j)=c(i,j) 



c 

c 

c 

if (jcount .gt. lim) then 
print 99 
call nucamb(n) 

else 
do 55 ii-2, nm 

dxp-dabs( xp(ii)-xpO(ii) ) 
dxx-dabs( xx(ii,l)-xxO(ii,l) ) 

if ( dxx .gt. 1.Od-09*dabs( xx(ii,l) » go to 8 
if ( dxp .gt. 1.Od-07*dabs( xp(ii) ) . and. 

1 z(ii) .ne. O.OdO) go to 8 

55 continue 

end if 
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print *, jcount, ' iterations were reqd for ss convergence' 
print *, ' , 

c 
c 

call nucamb(n) 

c store the ss solution for the concentration profile in xxO(i,j) 
do 26 j-l,nj 

c 

c 
c 

c 

xx(n,j )-c(n,j) 
xxO(n,j )==c(n,j) 

do 26 i=l,nm 
xx(i,j)-c(i,j) 

26 xxO(i,j)-c(i,j) 

n=2*n 
nx=n 

param, f, is the perturbation frequency in hz 

do 61 ik=l,nb 
pl=ik-6.0dO 
do 61 il=1,15 
p2-pl+(il-l)/15.0dO 

param-lO.OdO**(p2) 

j-O 
c initialize variables for each frequency 

do 69 i-l,n 
do 69 k=l,n 

x(i,k)=O.OdO 
69 y(i,k)=O.OdO 

c 
c for a given frequency, 
c set up governing equations and boundary conditions 
c start at the left interface(j=l) and move to the right 
c 

70 j=j+l 



c 

c 

c 
c 
c 

c 

c 

c 

c 

do 71 i~l,n 
g(i)""O.OdO 

do 71 k=l,n 
a(i,k)-O.OdO 
b(i,k)-O.OdO 
s3(i,k)-0.OdO 

71 d(i,k)-O.OdO 

if(j .ne.l) go to 73 

specify boundary conditions 

do 72 i-l,n 
72 b(i,i)-l.OdO 

call band(j) 

. go to 70 

73 if ( j .eq. nj ) go to 76 

at the left interface (j=l) 

c specify governing equations 1 < j < nj ] 
c 

c 

78 

74 

79 

dphi=xx(nn,j+l)-xx(nn,j-l) 
dp-dphi*frt/2.0(h 
d2phi-xx(nn,j+l)-xx(nn,j)*2.0+xx(nn,j-l) 
do 74 k-l,nm 

b(l,k)=wt(k) 
s4(k)=0.0 
s5(k)=0.0 

equation nn, electroneutrality 
b(nn,k)=z(k) 

d(k,k)=l.O 
dx(k)=xx(k,j+l)-xx(k,j-l) 
if ( k .eq. 1) go to 74 

do 78 i-l,nm 
if ( i .eq. k) go to 78 

b(k,i)=xx(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-xx(i,j)/dif(i,k,j) 

continue 
d(k,nn)=(dx(k)+z(k)*frt*xx(k,j)*dphi)/2.0(h 

continue 
call matinv(nm,nn,determ) 
do 80 i=l,nm 

flux(i,j)=d(i,nn) 
do 79 k=l,nm 

binv(i,k)=d(i,k) 
b(i,k)=O.OdO 
d(i,k)=O.OdO 
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c 

80 

b(i,nn)=O.OdO 
d(i,nn)-O.OdO 
b(l,i)=l.OdO 

do 82 i=l,nm 
sl(i)-O.OdO 
s2(i)-0.OdO 

do 82 k-1,nm 
if (k .eq. i) go to 82 

a2=f1ux(k,j)/dif(i,k,j) 
s4(i)=s4(i)+f1ux(k,j)/dif(i,k,j+1) 
s5(i)=s5(i)+flux(k,j )/dif(i, k,j -1) \ 

a1=(xx(k,j+1)/dif(i,k,j+1)-xx(k,j-1)/dif(i,k,j-1»/2.0/h 
sl(i)=sl(i)+a1 
s2(i)=s2(i)+a2 
do 81 l-l,nm 
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81 s3(1,k)=s3(1,k)+binv(i,1)*a1 
82 continue 

do 75 i=2,nm 
s4(i)-s4(i)/2.0/h 
s5(i)-s5(i)/2.0/h 

do 87 k-1,nm 
s3(k,i)-s3(k,i)-binv(i,k)*sl(i) 
if (k .eq. 1) go to 65 

d(i,k)-d(i,k)+s3(k,i) 
d(i,nn)=d(i,nn)+z(k)*xx(k,j)*frt*s3(k,i)/2.0/h 
a(i,nn)=a(i,nn)-z(k)*xx(k,j)*frt*s3(k,i)/2.0/h 

65 if (k .eq. i) go to 87 
87 continue 

do 84 k=l,nm 
d(i,k)=d(i,k)/2.0/h 
a(i,k)--d(i,k) 

do 83 1=2,nm 
83 if(l.ne.k) b(i,k)-b(i,k)+f1ux(1,j)/dif(k,1,j)*s3(1,i) 

if(k.ne.1) b(i,k)-b(i,k)-s2(k)*s3(k,i)+s3(k,i)*z(k)*dp 
if(k.eq.i) go to 84 

b(i+nn,i)-b(i+nn,i)+cc(j)*2.0*pi*param*xx(k,j)/dif(i,k,j) 
b(i+nn,k)-b(i+nn,k)-cc(j)*2.0*pi*param*xx(i,j)/dif(i,k,j) 
b(i,i+nn)--b(i+nn,i) 
b(i,k+nn)=-b(i+nn,k) 
d(i,k)=d(i,k)-f1ux(i,j)/dif(i,k,j+1)/2.0/h 
a(i,k)=a(i,k)+f1ux(i,j)/dif(i,k,j-1)/2.0/h 

84 continue 
d(i,i)=d(i,i)+s4(i)-1.0/h/h-z(i)*dp/2.0/h 
a(i,i)=a(i,i)-s5(i)-1.0/h/h+z(i)*dp/2.0/h 
a(i,nn)=a(i,nn)+z(i)*frt*(dx(i)/4.0-xx(i,j»/h/h 
b(i,nn)=z(i)*frt*2.0*xx(i,j)/h/h 
d(i,nn)=d(i,nn)-z(i)*frt*(dx(i)/4.0+xx(i,j»/h/h 
b(i,i)=b(i,i)+2.0/h/h-d2phi*z(i)*frt/h/h 

75 continue 



c 
c governing equations unique to ac problem 

do 68 i=l,nn 

c 

c 

do 68 k=l,nn 
a(i+nn,k+nn)-a(i,k) 
b(i+nn,k+nn)-b(i,k) 

68 d(i+nn,k+nn)-d(i,k) 

call band(j) 
go to 70 

76 continue 
c specify boundary conditions at right interface(j=nj) 
c 
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phi-phi2 
dphio-(-2.0dO*xx(nn,nj-l)+1.5dO*xx(nn,nj)+O.5dO*xx(nn,nj-2»jh 
do 366 i-2,nm 

c 

c 

a(i,i)=-2.0dOjh 
y(i,i)-+O.5dOjh 
b(i,i)=+1.5dOjh 
coe=z(i)*xx(i,nj)*frt 
a(i,nn)-a(i,i)*coe 
y(i,nn)=y(i,i)*coe 
b(i,nn)-b(i,i)*coe 
b(i,i)=b(i,i)+z(i)*frt*dphio 
b(nn,i)-z(i) 

366 b(1,i)=1.OdO 
b(1,1)=1.0dO 
b(nn,l)-z(l) 

if(nr.eq.O) go to 338 
do i=1,nr 
bb(i)=0.5dO 
end do 
do 337 1-1,nr 

xf=gne(l)*frt*(phi-xx(nn,j»*bb(l) 
rjb=rate(l,j)*exp(-xf) 
xf=xf*(l.OdO-bb(l»/bb(l) 
rj fc:rate (1 ,j )*equil(1 ,j )*exp (xf) 

do 332 ic:l,nm 
if(gnu(i,1» 328,332,330 

328 if(xx(i,j) .gt. O.OdO) go to 329 
rjb=O.OdO 
go to 332 

329 rjb=rjb*( xx(i,j)*cc(j) )**(-gnu(i,l» 
go to 332 

330 if(xx(i,j) .gt. O.OdO) go to 331 
rjf=O.OdO 
go to 332 



c 

c 

331 rjf=rjf*( xx(i,j)*cc(j) )**gnu(i,l) 
332 continue 

vv-1.0d-04*frt 
do 337 i=2,nm 
do 337 k-1,nm 
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if(k.eq.i) go to 337 
b(i,i)-b(i,i)-gnu(k,l)*(rjf-rjb)/dif(i,k,j) 
b(i,k)=b(i,k)+gnu(i,l)*(rjf-rjb)/dif(i,k,j) 
sav=-(xx(i,j)*gnu(k,l)-xx(k,j)*gnu(i,l»/dif(i,k,j) 

do 336 jj==l,nm 
if(c(jj ,j) .le. O.OdO) go to 336 
if(gnu(jj,l» 333,336,334 

333 save-sav*rjb*gnu(jj,l)/xx(jj,j) 
go to 335 

334 save-sav*rjf*gnu(jj,l)/xx(jj,j) 
335 b(i,jj)-b(i,jj)+save 
336 continue 

g(i)=g(i)-sav*vv*(rjf*(l.OdO-bb(l»+rjb*bb(l»*gne(l) 
b(i,nn)-b(i,nn)-sav*(rjf*(l.OdO-bb(l»+rjb*bb(l»*gne(l)*frt 

337 continue 
338 continue 

c governing equations unique to ac problem 
do 468 i=l,nn 

c 

g(i+nn)=g(i) 
do 468 k=l,nn 

a(i+nn,k+nn)=a(i,k) 
b(i+nn,k+nn)-b(i,k) 

468 y(i+nn,k+nn)-y(i,k) 
call band(j) 
corr=(rjf+rjb)*(vv-c(nn,nj)*frt)-2.0dO*rjb*c(3,nj)/xx(3,nj) 
cori=(rjf+rjb)*(vv-c(n,nj)*frt)-2.0dO*rjb*c(7,nj)/xx(3,nj) 
corr--2.0dO*9.6487dO*corr 
cori=-2.0dO*9.6487dO*cori 

c make impedance calculations & print results 
do i=l,nn 
do k=l,nn 
b(i,k)=O.OdO 
d(i,k)=O.OdO 
end do 
end do 
j=nj -1 
dphi=c(nn,j+l)-c(nn,j-l) 
dphio=xx(nn,j+l)-xx(nn,j-l) 
do 314 k=l,nm 

b(l,k)=wt(k) 
d(k, k)=1. OdO 
dx(k)=c(k,j+l)-c(k,j-l) 



c 

c 

if(k.eq.1) go to 314 
do 318 i=l,nm 
if(i.eq.k) go to 318 

318 

1 
314 

b(k,i)=xx(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-xx(i,j)/dif(i,k,j) 
d(k,nn)-d(k,nn)+c(k,j)*f1ux(i,j)/dif(i,k,j) 
d(k,nn)=d(k,nn)-c(i,j)*f1ux(k,j)/dif(i,k,j) 
continue 
d(k,nn)=d(k,nn)+(dx(k)+z(k)*frt*(c(k,j)*dphio+ 
xx(k,j)*dphi»/2.0/h 

continue 

320 

call matinv(nm,nn,determ) 
curr-d(3,nn)*9.6487dO 

do 320 i=l,nn 
do 320 k-1,nn 
b(i,k)-O.OdO 

d(i,k)=O.OdO 

dphi=c(n,j+1)-c(n,j-1) 
dphio=xx(nn,j+1)-xx(nn,j-1) 
do 914 k-1,nm 

b(l,k)-wt(k) 
d(k, k)-l. OdO 
dx(k)=c(k+nn,j+1)-c(k+nn,j-1) 
if(k.eq.1) go to 914 
do 918 i=l,nm 
if(i.eq.k) go to 918 
b(k,i)=xx(k,j)/dif(i,k,j) 
b(k,k)=b(k,k)-xx(i,j)/dif(i,k,j) 
d(k,nn)=d(k,nn)+c(k+nn,j)*f1ux(i,j)/dif(i,k,j) 
d(k,nn)=d(k,nn)-c(i+nn,j)*f1ux(k,j)/dif(i,k,j) 

918 continue 
d(k,nn)=d(k,nn)+(dx(k)+z(k)*frt*(c(k+nn,j)*dphio + 

1 xx(k,j)*dphi»/2.0/h 
914 continue 

call matinv(nm,nn,determ) 
curi=d(3,nn)*9.~487dO 
do 920 i=l,nn 

do 920 k=l,nn 
b(i,k)=O.OdO 

920 d(i,k)=O.OdO 

vtotr=c(nn,l)-vv/frt 
vtoti=c(nn+nn,l)-vv/frt 
zr=(vtotr*corr+vtoti*cori)/(corr**2.0dO+cori**2.0dO) 
zi=(vtoti*corr-vtotr*cori)/(corr**2.0dO+cori**2.0dO) 
print*,param,char(9),zr 

61 continue 
return 

215 
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Chapter 8 

Convective Diffusion near a Consolute Point 

8.1 Introduction 

The driving force for diffusion is the gradient of chemical 

potential of the diffusing species. Usually, one defines the diffu­

sion coefficient in terms of a gradient in concentration. Thus, in 

the vicinity of a consolute point, the temperature and composition 

where two liquid phases become completely miscible, this diffusion 

coefficient becomes zero. Krichevski and Tshekhanskaya [1] and Vita­

gliano et a1.[2] observed this experimentally in the water­

triethylamine system. Krichevski and Tshekhanskaya also measured the 

rate of dissolution of a rotating disk of terephtha1ic acid in the 

water-triethylamine system. Levich [3] examined this system theoret­

ically, accounting for variations in the diffusion coefficient with 

the concentration of triethylamine as well as the effects of variable 

phys ical properties on the hydrodynamics. However, Levich made a 

number of untenable assumptions, which call to question the validity 

of his conclusions. Although the behavior of transport properties at 

a consolute point is often discussed in the literature, see 

Sengers[4] and Cuss1er[5] for example, convective-diffusion problems 

when a consolute point is present in the system have not been 

addressed other than in Levich's original work. 

Our objective is to reexamine convective diffusion to a rotating 

disk theoretically, without arbitrary assumptions, and to elucidate 
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better the behavior of the system in the region of the consolute 

point. In the analysis below we do not consider variations in the 

density or viscosity. Clearly, variations in physical properties 

affect the hydrodynamics and convective diffusion to the disk. 

Nevertheless, these effects are omitted here for two reasons. First, 

Hsueh and Newman[6], and others[7] [8] have treated variable physical 

properties previously. Second, variations in the hydrodynamics will 

have only a secondary effect on convective diffusion near the conso-

lute point and will add little to our understanding of the. behavior 

in this region. The principal effect we wish to investigate is the 

consequence of a zero diffusion coefficient at a point in the flow 

and mass-transfer process. 

8.2 Analysis 

The rotating disk is uniformly accessible to mass transfer. The 

convective diffusion equation in terms of the mass fraction of react-

ing species in a binary fluid is[9] 

v dw = .!i( n$J P z dz dz P dz . 

The general boundary conditions considered are 

w = w at z = 0, 
o 

w = w at z = ~ 
co 

(1) 

At high Schmidt number, the diffusion layer is much smaller than the 
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hydrodynamic boundary layer, and the velocity normal to the surface 

of the disk may be accurately written as [3] 

v z 

With the dimensionless variable 

1/3 

e - [3~O] z, 

(2) 

(3) 

where e can be regarded as the axial distance z divided by the thick-

ness of the diffusion layer and D is the value of the diffusion 
o 

coefficient at infinite dilution, equation 1 becomes 

2dw d [D dW] e de = de 3D
o 

de . (4) 

The implicit solution to equation 4 is 

e D e 3D 
e2de J D

Oexp J 0 de W - W D 
9 

0 0 0 
(5) W W ~ D {~ 3D 2 } co 0 

~ DO exp ~ - D
O e de de 

For constant diffusion coefficients, Levich gave the solution 

1 e 3 
e = r(4/3) ~ e-

x 
dx. (6) 
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When the diffusion coefficient is a function of concentration, 

equation 5 can be integrated numerically, iteration being necessary 

because D depends on w. ,For a solution with a consolute point, how-

ever, the diffusion coefficient becomes zero at some value of e, and 

equation 5 cannot be integrated directly. 

The diffusion coefficient based on a concentration driving force 

can be related to a diffusion coefficient based on a chemica1-

potential driving force through an activity correction 

(7) 

If the Gibbs energy is expressed by a three~suffix Margules equation, 

then the activity coefficient for a two-component solution is given 

by 

(8) 

At the consolute point 

If the concentration at the consolute point is known, these relation-

ships allow the evaluation of the two constants' i:n- e-quati:on- 8-. 

Reference [1] gives the consolute point for the water-triethylamine 

system as 1re and 0.261 mass fraction of triethylamine. These 
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values are not in exact agreement with others reported in the litera-

ture[lO] but suffice to illustrate our technique. Figure 1 shows the 

activity factor for this system based on the 3-suffix Margules equa-

tion and the molar masses of the components. It is evident that the 

diffusion coefficient is zero at the consolute point. Additionally, 

one sees that in the vicinity of the consolute point the diffusion 

coefficient may be approximated by 

.J 

(9) 

Similar behavior is observed in other systems. [11] The exponent of 2 

in equation 9 corresponds to a critical exponent of 6 ~ 3 for the 

classical analysis of the critical isotherm. Nonclassical analysis 

and experimental data yield a value of about 4.8 for the critical 

exponent [12]. In appendix F, the analysis that follows is repeated 

for an exponent of 3.8 in equation 9. 

In order to solve the convective diffusion equation in the 

vicinity of the consolute point, we should formulate the problem so 

that the singularity is removed. The flux near the consolute point 

is 

(10) 

Variations in the velocity and flux are small compared to variations 

in the diffusion coefficient and concentration in this region; and, 

assuming that the diffusion coefficient is of the form given in equa-
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Figure 1. Activity-factor correction to the diffusion 
coefficient based on the 3-suffix Margules equation . 
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tion 9, we conclude that in the vicinity of the consolute point 

z-z 
c 

D 
c 

3 
3 

(w - w ) , c 
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(11) 

where z is the distance from the surface of the disk to the conso­
c 

lute point, also called the critical distance. Therefore the z coor-

dinate is stretched so that w is proportional to X near the consolute 

point: 

3 
X - z - zc' 

and equation 1 becomes 

(12) 

Equation 12 was solved by breaking the problem into two regions: 

1) from the consolute point to the surface of the disk, and 2) from 

the consolute point out to infinity. At the consolute point the con-

centration is known, but the position is not. The boundary condi-

tions considered were 

dw 
w ~ Wc and dX = A at X = 0, 

w = 0 at X = -X . 
c 

The concentration at the surface was set equal to zero, representing 

the reaction of diffusing species at the surface of the- disk with 
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fast kinetics. For a given value of X , the slope A at the critical 
c 

point was adjusted to give a zero concentration at the surface. The 

bulk concentration was then determi~ed by using the same value for 

the slope at the consolute point and integrating out to infinity. 

[Equation 12 also was put in a form like equation 5 and solved by 

numerical integration, but this did not prove to' be an efficient 

method. ] 

The problem was reformulated with the following variables 

x 

and 

-X 
1/3' z 

c 

w .., 1 - w 

w 
c 

Thus equation 12 becomes 

where € is defined by 

3 2 dW 
€ (l-x) -

dx 

€ = 

d Dc dW 

[ 

D ] =----
dx w~x2 dx ' 

3Kz3 
c 

2 . 
wD 

c c 

This can be split into two first-order differential equations 

(13) 

(14) 

(15) 
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2 2 
dP (1_x3)2 

w x 
c 

P, - - f D dx (16) 

D 
c 

2 2 
dW 

wx 
c 

P, 
dx D (17) 

D 
c 

and solved as an initial value problem with the boundary conditions 

W - 0, P - P at x - O. o 

Equations 16 and 17 were solved using a Runge-Kutta routine. The 

value of f was fixed, corresponding to a given critical distance. At 

x=O the value of P was adjusted until the calculated surface concen­
o 

Then with the known value of P , the equations 
o tration was zero. 

were integrated from x=O to x= ~ to determine the value for the con-

centration far from the disk. The Runge-Kutta routine gave identical 

results to the previous method but was considerably more efficient. 

Assuming equation 9 is valid near the consolute point does not 

restrict the validity of the method. It is important that the diffu-

sion coefficient vary as shown in equation 9 only in the vicinity of 

the consolute point. In the analysis below we assume that the func-

tiona1 form of equation 9 is valid over all compositions only to 

illustrate more clearly our method without the introduction of 

detailed physical-property variations, which would restrict our 

results to only one physical or chemical system. The concentration 

profiles for w > ware shown in figure 2. Figure 3 shows the con-
<Xl C 



• 

3 

2 

1 

o 

., ,.. '" ,. '" '" 
" " 

, , 
I 

J 
I 

I 

225 

1 2 

Figure 2. Concentration profiles for bulk concentrations 
above or at (dashed line) the consolute-point composition. 
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Figure 3. Concentration profiles for bulk concentrations 
below or at (dashed line) the consolute-point composition. 
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centration profiles when the bulk concentration is below the 

consolute-point composition. In both cases the concentration is 

plotted against €, which is related to x by 

• 
(lB) 

As the bulk concentration is raised, the consolute point moves 

closer to the surface of the disk, and the slope dW/dx at this criti-

cal distance increases. Figure 4 shows the slope dW/dx at the conso-

lute point as a function of the concentration far from the disk. For 

values of £>2, solutions were not possible. We wished to investigate 

the behavior when the bulk concentration was arbitrarily close to 

that of the consolute composition, and to determine the maximum value 

of E. 

8.3 Perturbation Analysis 

Figure 5 shows W against x, which is related to the distance 

from the critical point by equation lB. The stretching of the above 

formulation eliminated any sharp variation in this curve, in contrast 

to figure 2. As w is lowered toward the consolute-point composi-
<Xl 

tion, £ increases, and dW/dx at x=O appears to be approaching zero. 

For £=l.B the curve shows significant curvature. Suppose there is a 

value of £ for which dW /dx = 0 at x=O. The solution in the outer 

region would then be W=O for x<O. For x>O look for a solution of the 

form 
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Figure 4. The slope at the consolute point. Dashed line is 
the asymptote given in equation 28. 
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the case when the bulk concentration nearly equals the 
consolute-point composition. 
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2 
W ~ Ax + Bx + ... (19) 

near x~o. Substituting into the differential equation and equating 

equal powers of x gives 

4AB ., f. 

If f approaches a limit, somewhat greater that 1.B, then B approaches 

infinity as A goes to zero. The region where 

2 Ax :::::,Bx 

defines an inner region (in the sense of a singular-perturbation 

expansion). Let 

x 

w f 
-3 w. 
4A 

The problem in the inner region becomes 

[1 3r b2x
] dW 

4 
dx 

with the boundary conditions 

dW 

d 

dx 

W = 0 and 1 at 
dx 

To a zeroth approximation, W satisfies 

(20) 

(21) 

[-2 -] ;2: ' (22) 

x o. 

• 

• 



231 

4 -: = -~ [;: ~l (23) 

" 
with the implicit solution 

• 

16x3 -2 - 1 
-3- = 2W - W + 4" 1n(1 + 4W). 

(24) 

As x - co 

W _ (~) 1/2 x3/ 2 , (25) 

or 

(26) 

The outer region satisfies equation 15. - 3/2 h Let X=X ,and t e 

problem becomes 

2 E -2 2 dW d W dW 
[ 2 J T(l-x) dx - dx x dx . (27) 

The solution must match the inner solution as x - 0, 

W_(23E)1/2 x as x-O, 

and 

W = 1 at x = 1. 

Thus E can be adJusted- to give W=l at x=l. The- numerical solution 
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gives e=1. 9967 . The concentration profiles for this condition are 

the dashed lines in figures 2 and 3 and the solid line in figure 5. 

We are also able to find an asymptote for dWl As x ~ - ~ dx x=O· 

dW 
and since A = --I dx x=O 

w~ I I [64X3] 7; - 7; exp -3- , 

This is the dashed line on figure 4. 

8.4 Mass Transfer 

(28) 

The rate of mass transfer to the surface of the disk is given by 

n 
p 

_ D dWI 
dz z=O· (29) 

The coordinate transformation allows us to define a dimensionless 

rate of mass transfer j and to express it as 

. I 0 3 dw 
[
3D ]1 

J = we K dz1z=0 = 
I dW l _ . 

(3e)I/3 dx x-I 

(30) 

For a constant coefficient of diffusion, equation 6 shows that j 

takes the limiting form 

v 

'. 
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. 1 3D 0 dw 1 W <Xl 

[ ]

1/3 

J - Wc K dz1z-=0 - r(4/3) wc· 
(31) 

Figure 6 shows the flux to the surface of the disk from our numerical 

calculation as compared with the theoretical line predicted by equa-

tion 31. The results are summarized below in table 1. 

8.5 Discussion 

From figure 2 one observes that the consolute point moves 

farther from the surface of the disk as the bulk concentration is 

decreased and reaches a maximum distance €=0.6054 when the bulk con-

centration equals the consolute composition. The slope at the conso-

lute point is infinite when plotted against e. Figure 3 shows the 

behavior as a consolute point is approached from concentrations below 

the critical value. As the concentration becomes closer to w , the 
c 

slope increases sharply and is infinite when the consolute point is 

Table 1. 

w 

dW/dx I x=O dW/dx I x=l 
<Xl 

f - j 
w 

c 

0.01 0.99809 1.00064 3.30252 3.22036 
0.05 0.99039 1. 00321 2.71153 1.88811 
0.1 0.98065 1.00647 2.45832 1. 50347 
0.2 0.96069 1.01299 2.18820 1.20103 
0.3 0.94009 1. 01961 2.01483 1.05606 
0.4 0.91878 1.02632 1. 88162 0.96580 
0.5 0.89668 1. 03310 1.77097 0.90250 
0.6 0.87372 1.04000 1. 67523 0.85495 
1.0 0.77077 1. 06851 1.38024 0.74086 
1.8 0.43457 1.13238 1. 04281 0.64545 
1. 9967 0.0 1.15076 1.0 0.63363 
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Figure 6. Rate of mass transfer to the surface of a rotating 
disk. Dashed line is that predicted by equation 31 for a 
constant diffusion coefficient. 0=4.8 is based on the 
development in Appendix F for nonclassical behavior at the 
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reached. 

At low values of w , the diffusion coefficient is nearly con­
co 

stant, and the profile approaches that predicted by equation 6. The 

rate of mass transfer is therefore identical to that predicted by 

equation 31, the dashed line in figure 6. 

As the consolute point is approached, the diffusion coefficient 

becomes smaller, and the rate of mass transfer is reduced as seen by 

the leveling off of the solid lines in figure 6. This does not con-

tinue indefinitely because there is a competing effect. As the bulk 

concentration is increased above the consolute-point composition, the 

diffusion coefficient increases sharply, and the critical distance 

moves toward the disk. Thus, the rate of mass transfer becomes 

larger than that predicted by equation 31. The leveling off was 

observed experimentally by Krichevski and Tshekhanskaya [1] and 

predicted by Levich [3]. The concentration range in Krichevski and 

Tshekhanskaya's experiments was not large enough to verify the up-

turn in the rate of mass transfer. 

Levich arbitrarily divided the problem into three regions: 1) 

far from the disk the concentration was constant and equal to the 

bulk concentration, 2) close to the disk the concentration varied 

approximately linearly with distance from zero to the consolute com-

position, and 3) a thin intermediate region showed negligible resis-

tance to mass transfer. Figures 2 and 3 clearly contradict this pic-

ture. 
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List of Symbols 

constant ~ 0.51023 

dW -- at x-O 
dx 

Margu1es constant 

constant in equation 19 

Margu1es constant 

2 
diffusion coefficient, cm /s 

parameter used in equation 9 

Gibbs energy, J/mo1 

dimensionless flux defined in equation 30 

parameter in equation 2 

2 mass flux, g/cm ·s 

velocity normal to disk, cm/s 

dimensionless concentration 

distorted dimensionless distance variable 

mole fraction 

variable defined below equation 11, cml / 3 

distance from surface of disk, cm 

activity coefficient 

gamma function 

critical exponent 

parameter defined in equation 15 

dimensionless concentration defined by equation 5 

k . ., . 2/ 1nemat1c V1SCOS1ty, cm s 
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p 

w 

o 

co 

o 

c 

dimensionless distance 

density, g/cm
3 

mass fraction 

rotation speed, rad/s 

Subscripts 

far from disk 

surface of disk, infinite dilution 

critical or consolute value 

Superscripts 

inner region variable 

outer region variable 
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Appendix F 

In the vicinity of the consolute point, the diffusion coeffi-

cient may be approximated by 

and therefore, 

z-z 
c 

D = D /W - W /3.8. 
c c' 

(F-l) 

(F-2) 

The z coordinate is stretched so that W is proportional to X near the 

consolute point: 

and equation 1 becomes 

(F-3) 

The problem was reformulated with the following variables 

-x x = 
1/4.8' (F-4) z 

c 

and 

W = 1 W 

W (F-5) 
c 



Thus equation F-3 becomes 

where £ is defined by 

£ = 

3 
4.8z 

c 

This can be split into two first-order differential equations 

dP ~ £ (1_l x I3 . 8x)2 
Iw x1 3 . 8 

c 
P, dx D 

D c 

dW 
Iw x1 3 . 8 

c 
P, dx D 

D c 
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(F-6) 

(F-7) 

(F-8) 

and solved as an initial value problem with the boundary conditions 

W = 0, P = P at x = 0. 
o 

Equations F-7 and F-8 were solved using a Runge-Kutta routine. £ was 

fixed, corresponding to a given critical distance. 

The concentration profiles for w > ware shown in figure 7. 
ex> c 

Figu-re- 8 shows the concentration profiles when the bulk concentration 

is below the consolute-point composition. Qualitatively these are 

1,.1 

'., 
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~ 

Figure 7. Concentration profiles for bulk concentrations 
above or at (dashed line) the consolute-point composition. 
The critical exponent was 4.8. 
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Figure 8. Concentration profiles for bulk concentrations 
below or at (dashed line) the consolute-point com­
position. The critical exponent was equal to 4.8. 
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very similar to the profiles shown in figures 2 and 3. In both cases 

the concentration is plotted against e, which is now related to x by 

(F-9) 

We wished to investigate the behavior when the bulk concentra-

tion was arbitrarily close to t~at of the consolute composition, and 

to determine the maximum value of f. 

Perturbation Analysis 

Suppose there is a value of f for which dW/dx - 0 at x=O. The 

solution in the outer region would then be W-O forx<O. For x>O look 

for a solution of the form 

W 
2 

Ax + Bx + ... (F-lO) 

near x=O. Substituting into the differential equation and equating 

equal powers of x gives 

If f approaches a limit, somewhat greater that 1.5, then B approaches 

infinity as A goes to zero. The region where 

defines an inner region (in the sense of a singular-pertur!>ation 



expansion). Let 

w = e w. 
5.8A4 . 8 

The problem in the inner region becomes 

dW d 5.S - = -

dx [W
3

.

8 ~l' dx -3.S dx 
x 

with the boundary conditions 

w = 0 and 
dW 

1 at x = o. 
dx 

To a zeroth approximation, W satisfies 

dW d 5.S - = -

dx [
W

3
.
S ~l 

dx -3.S dx 
x 

with the implicit solution 

As x --+ co 

-4.S 
x 

W4 . S dri4 . S 

I 
o 1 + 5. SW 

W --+ (5.SX3.8)l/3.8 -4.S/3.8 
4.8 x , 
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(F-ll) 

(F-l2) 

(F-13) 

(F-l4) 

(F-l5) 

'. 

"(F-l6) 
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or 

W 
_ (3.8f)1/3.8 4.8/3.8 

4.8 x . 
(F-l7) 

The outer region satisfies equation F-6. - 3/2 h Le t x-x , and t e 

problem becomes 

3 . 8 f (1_x3 . 8) 2 ~ = c: [w3 . 8 ~]. 
4. 8 dx dx -2. 8 dx 

x 

The solution must match the inner solution as x - 0, 

and 

w- (3 . 8 f) 1/3 . 8 x as x-O , 
4.8 

w = 1 at x = 1. 

(F-18) 

Thus f can be adjusted to give W-1 at x=1. The numerical solution 

gives f=1. 5069. The concentration profiles for this condition are 

the dashed lines in figures 7 and 8. 

Mass Transfer 

The rate of mass transfer to the surface of the disk is given by 

n 
p 

_ D dWI 
dz z=O· (F-19) 

The coordinate transformation allows us to define a dimensionless 

rate of mass transfer j and to express it as 
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[
3D ]1 []1/3 . 1 0 3 dw 3 dW 

J ~ z;-- K dz1z=0 = 2 dx 1x=1' 
c 4.8 f 

(F-20) 

Figure 6 shows the flux to the surface of the disk from our numerical 

calculation as compared with the theoretical line predicted by equa-

tion 31. The dimensionless rate of mass transfer for 6=4.8 is lower 

than for 6=3. The results are summarized below in table F-1. 

Table F-l. 

w 

dW/dxlx=o dW/dx l x=l 
<Xl 

f - j 
w 

c 

0.01 0.993 1.00049 2.81242 2.35375 
0.05 0.965 1.00244 2.4929 1. 37916 
0.1 0.9301 1. 00489 2.34046 1.09731 
0.2 0.8606 1. 00986 2.1591 0.87524 
0.3 0.7915 1. 01488 2.02681 0.76840 
0.4 0.72285 1.02 1.91271 0.70166 
0.5 0.6546 1.02515 1. 80678 0.65465 
0.6 0.58685 1.03041 1.70452 0.61921 
0.7 0.5196 1. 03576 1. 6037 0.59126 
0.8 0.45283 1.04116 1. 50379 0.56846 
0.9 0.38662 1.04666 1.40617 0.54946 
1.0 0.32105 1.05233 1.31409 0.53337 
1.1 0.2561 1.05808 1. 23126 0.51952 
1.2 0.19182 1.06393 1.1596 0.50746 
1.3 0.12835 1.06998 1.09871 0.49690 
1.4 0.06573 1. 07615 1.04695 0-.48758 
1.5 0.00419 1.08258 1. 00239 0.47934 
1. 5069 1. 04752 0.85739 1.0 0.47881 
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Appendix G 

C PROGRAM FOR CRITICAL DIFFUSION 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(10),a(201) 
COMMON EPS 
READ *, PO,EPS,IMAX 
Z==O.O 
H-+1.0/DBLE(IMAX) 
Y(l)=PO 
Y(2)-0.0 
PRINT 102, Z,Y(1),Y(2) 

c t=(1.0-z**3.0)*(eps/9.0)**(1.0/3.0) 
c print*,t,1-y(2) 

JPRINT=10 
IMAX-IMAX*5 
DO 10 I-1,IMAX 
CALL RUNGE (2,H,Y,Z) 
a(i)-y(2) . 
IF(I.EQ.JPRINT) THEN 
PRINT 101, Z,Y(1),Y(2) 

c t=(1.0-z**3.0)*(eps/9.0)**(1.0/3.0) 
c print*,t,1-y(2) 

JPRINT=JPRINT+10 
ENDIF 

10 CONTINUE 
101 FORMAT (3X,F10.3,2F12.5) 
102 FORMAT (lOX, 'X' ,5X,' P' ,4X, 'OMEGA' /3X,F10.3,2F12.5) 

sl=(-1.5*a(1)+2.0*a(2)-0.5*a(3»/h 
print*,sl 
STOP 
END 
SUBROUTINE RUNGE(N,H,Y,Z) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION PHI(10),YSAVE(10),Y(10),F(10) 
M=l 
H2-0.5*H 

1 CALL DERFUN (Z,Y,F) 
M=M+1 
GO TO (1,2,3,4,5), M 

2 DO 22 I=l,N 
YSAVE(I)=Y(I) 
PHI(I)=F(I) 

22 Y(I)=Y(I)+H2*F(I) 
Z=Z+H2 
GO TO 1 

3 DO 33 I=l,N 
PHI(I)=PHI(I)+2.0*F(I) 

33 Y(I)=YSAVE(I)+H2*F(I) 
GO TO 1 

4 DO 44 I=l,N 
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PHI(I)-PHI(I)+2.0*F(I) 
44 Y(I)-YSAVE(I)+H*F(I) 

Z~Z+H2 

GO TO I 
5 DO 55 I-I,N 

55 Y(I)-YSAVE(I)+(PHI(I)+F(I»*H/6.0 
RETURN 
END 
SUBROUTINE DERFUN(Z,Y,F) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION Y(IO),F(IO) 
COMMON EPS 
IF(Z.NE.O.O) THEN 
F(2)-Y(I)*(Z/y(2»**2 
ELSE 
F(2)-Y(I)**(I.O/3.0) 
ENDIF 
F(I)-EPS*(I.O-Z**3)**2*F(2) 
RETURN 
END 
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