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Abstract

v.The theoretipal basis forithe integrated finiﬁe difference:method‘
A(IFﬁM) is présented to deséribe a powerful numerical teChnique.fot
soiving problems of groundwater flow in'porous.media.‘ Tﬁe method com-
bines the advantages of.an integrél formulation‘with-fhe simplicity of
finite difference_gradients and is very convenient.fdr handling multi-
dimensional, heterogeneous systems composed of isétropic materiais. .Three
illustrative ﬁroblems are solved to demonstrate that two- and three-
dimensional ﬁrobléms are handled with eqﬁal éase; :Cqmparison of IFDM
witﬁ thg well known finite eleﬁent method (FEM).indicates thatvbotﬂ are
éonceptua}ly‘similar and differ only in the_prOCedure adopted fof-
measuring spatiélvgradienfs. The IFDM includes a simple criterion
fo; stability and an efficieht explicit-implicit, iterative-scheme fdr
- mArch1ng'in the time_domain. _If such a schéme can be incorﬁorated in
a new verSion'Qf‘FEM, it should be possible to develop an improved
numerical techniqgé that comﬁines the inherent édvéntages'of both

methods;



Introduction

.'Numerical'éﬁalysis of.fluid'floﬁ through porous‘mediavin problems Qiﬁh
complex geometry is greatly facilitated by the use of integral formulations.
Perhaps the most widely used integral method is the Finite Element Method (FEM),
which can be based on variational principles orvthé Galerkin approéch.'

In this paper we will describe another integral formulation which has

been successfully used to solve heat transfer problems in'heterogeneous; .
isoﬁroﬁic, multi-dimensional flow regions. For reasons that will become. J
clear later, we shali éall this meﬁhod the "Integrated Finite Difference

~ Method" (IFDM). AlthOﬁgh_the method has been.used in studying groundwater
systems [Todd, 1959§»Cooley; 1971] it does not appear to have been widéiy
employéd in the field of hydrogeology. It is our opinion, howeﬁer, thaf

the IFDM can be a very pqwerful tool in analyzing heterogeneous groundwater
systems'wiﬁh comﬁlex geometties; Furthermorg, in'comparing the concéptual
basés of.IFDM and FEM, we find that they have much in éommon. \

Tﬁe purpose of this paper is first to develop the.IFDM equations and
demonstrate the power of the method with three different problems.' Wé will
then‘exaﬁine ﬁhe conceptual bases of both IFDM and FEM and attempt.to identify
those features whicﬁ give each of these techniques unique advahtages in handling
speéific classes of probléms. Finally, we will considervthe possibility of‘ 

"developing a new techniqﬁe which could combiné some of the unidue'édvahﬁages :

of each method.

The Integrated Finite Difference Method

MacNeal {1953) is apparently the first worker to use the IFDM approach,

and he classified it as an "asymmetric finite difference network". He used



this approach in solving second érder boundary value.problems. Subseqﬁeptly,
the'method has been used successfully for solving heat trénsfer problems and
a.good description of the approach and related aspects can-be found in
‘Dusinberre [1961]. Edwards [1969] used the IFDM in devéloping a powerful
.compdter code galled TRUMf.for'calcqlating{transient and steady state .'
temperature distriﬁuﬁibné in multididimensional systems, and the following

~ discussion will be based iﬁ iarge measure on the TRUMP program. Althbugh
TRUM? can handle condﬁctive, convective; and radiative heat transfef, we
Qili festrict our attention to the heat conduction part of the prograﬁ since
cqnductive heat gransfer is qonceptually similar to fluid flow in,porpus 
medié. |

Consider the partial differential equation for groﬁndwater flow

div K gfgdd)+ g =c %% ‘ (L

.Fér the sake of simplicity, we shall assume K and c in (l)bto be.éonstant
5nd indépendent éf ¢ so that (1) is a linear ehuation,
_We can spa;ially:integrate (1) over a_confeniently sﬁali finitg-subregion

v 6£ the flow region and write [Encyclopedia of Science and Technology, 1960]

: /[div K grad ¢ + g] dv = % codv . (2)
v ‘ _ v :

.If-itvcan Qe‘aésumed thét c, ¢ and g rebresenﬁ,average values yitﬁin the

'isubtegion, we can now uéé the divergence theoreﬁ to convert the first'térm

‘on ﬁhe left hand side of (2) to a surface integral and obﬁain

./K g_r-;ldq)o;ds + gV = cV %—% o ‘ (3‘)
5 o . o



The‘central concept_of IFDM is to diecretize the totalfflow donein into
conveniently small subdomeins ot "elements" and evaluate the mass balance in -
eéch elementvas indicated in (3).. Physically,vthe surface inteérel on the |
left hand side-of'(3)‘is the summation of fluxes over the suriace‘S and thus
measures the rate at which mass is accumulating in the elenent, as governed
by initial and boqndary conditions. The right hand side converts'theiréte-

. of éccnmulation ot fluid into the corresponding average time rate of change:'
in potentiél‘ovef the element.4 |

To illustrate the IFDM, let the shaded region in Figure‘l be an element
whose average propertles are associated with a representative nodal p01nt
m = 6, which may be located anywhere within or on the boundarles of the
element. Maximum aecurecy in transient problems is obtained if the element:_
shapes and nodal point locations are so chosen that lines joining nodal
ooints of adjacent'elements are perpendicularly bisected oy the'eommon.‘
interface. .In steady state ptoblems, the solution is independent of the
speCific storage associated with each element, so the nodal points may be
;located anywhere without loss of accutacy. In Figure 1, element m is con-.
nected'to adjoining elements n = 1 to 5. Under these conditioms, the finite

difference approximation for‘(3) can be written

. ' . ¢ - ¢ Ad : .
- n m 'm : o .
3mvm %EE:Km,n D . Am,n'- °n'm At : o (42_
n : s ) .

For appropriately small values of At, (4) can be written in explicit-form'

as

A +Z I CHERIN Y e

m



Fig.

1, Ah_element with its: 'réprese_ntative‘
nodal point in the IFDM network.

XBL 754-1093



Here, U = (K A )/D is'the-"cohductance" of the interface
_ m,n " m,n m,n’ “m,n R _ -

separating élements_m-and.n,~and represents the rate of fluid transfer per .

unit difference in potential between nodal points m and n. The terms ¢m

and ¢n represent the initial values of potentials at the beginning of the

interval At. EquationIS can be directly used to solve for A¢m if the

s D and-Vm are provided as input data, in addition

geometric parameters A
- m m,n

,n
to the material properties, K and c.

If it is desired to use lafgé valués of At, then equation 6 can be

expressed implicit1y as

. » . - _ _ - .._ . ) ‘
o {gmvm + ) U ol + 00 - (8, + AA%).]; =8, (6
: . n - ) 4 :

where 0 < A <1.

When X = 0, (6) reduces to the_fdrward differencing schéme'(S).‘ Wheh A=1,.
(6) becomes a fully implicit; backward differencing scheme while A = %—yields
the well known central differencing, or Crank—NichoiSon procedure. - For

unconditional stability, A > %u

To handle boundary conditibns; we can rewrite_(6) as

AR SLNRICAEE DD PRI BRSO

ahd blié'used tb distinguish boundafy elements from thevn elements in the
‘interior.v Using tﬁe last summation term on the.ieft hénd side Qf:k7); bofh.
preécribed ﬁoteﬁfial és well as prescribed flux boundaries or even mixed
bounda;yvconditions éan be suitably handled, as described by Edwards‘[1969]

and Narasimhan [1975];



.et al., 1954; Narasimhan, 1975] that for each element m there is a critical

It can be shown either from simple reasoning [Dusinberre, 1961] or based

on an elaboraté analysis of error propagation [O'Brien,et al., 1951; Evans, .

~

time conétant Atm such that equation 5 is unstable if At > Atm. The magnitude .

of this critical time constant is given by

Aty = —— _(8)

where n now stands for all elements connected'to\element m. Physically Atm>

represents the approXimate'time required for element m to react significantly

to changes in potential in the adjacent elements to which m is connected
[Edwards, 1969]. Obviously, if At > Atm for any elemenc‘m, one would have
to use (6) or (7) instead of (5) for that particular element.

The implicit calculations inherent in the application of equation_71can ‘

be carried out either with the help of matrix-inversion techniques or with

the help of iteraéive'techniques. The TRUMP computér pfogram [Edwards, 1969]
emplqys/an'itetative techﬁique,ﬁased on the generalizatioﬁ of a method suggested
by'EVaﬁs et-al,'[1954]. ‘Using this approach aﬁdvrecognizing the fact that the
criﬁical.time Qtep Atm is defined for‘each element, Edwardé [1969] has
succeséfully incorpqrated iﬁ TRUMP.a technique by which explicit éalculatibns '

are carried out for those elements where At < Atm'and implicit calculations

- for the balance where At > Atm. ‘The IFDM, when combined with the explicit-

implicit, iterative scheme developed in TRUMP, providés a very useful tool

in analyzing fluid flow problems in héterogeneous systemé.



Solutions to Illustrative Problems:

Tq'illustraté the utility of the IFDM, we shall consider three prbﬁléﬁs"
for which analytiéalvsolutions.are available. The first.of these has been .
chésén tb demqnsfraté.the accuracy that can be expected from IFDM aé compared 3
to that of FEM. ‘Thé second is designed to demonstréte fhe ability qf IFDM ﬁd
solve three dimensional problems. the last example SQrves to‘illustréte the
use of the méthbdvin approéching systems with radially symmetric geometry,
in which the.materiai distribution can be asymmetric.’ ‘ "

Theis Problem

A classical prpblemiin the field of'gfoundwater hydrology is that of
nonsteady, radial flow to a_well_discharging at a constant rate, Q, and
piercihg a horizontally infinite, homogeneous and isotropic aquifer. The

solution to this problem is the well known Theis [1935] equation

g =_4_Q_ / &  du , (9)
4rmr , . u , - .
: r S i
4Tt :

Pinder-and Frind [l972]'have'shqwn how the FEM devéloped ffom the Galerkin
formulation can be used to simulate the Theis solution. They vefified the
vaccufacy of their FEM results in comparisén with the anaiytical solution
using linear asvﬁeli as isoparametric elements., Their FEM mesh.consisted
of only nine nodal points along any radial line from the well. |

To check the acquracy of IFDM, we set up a mesh with the same number and | : v
a similar spacing of nodal points and solyed the same problem. Figure 2'éhows'
| drawdown as a fﬁﬁétiqn-of ﬁime; as computed by FEM and IFDM. A:comparison of
these ﬁumerical results_with the analytical soiutiQh shows thét IEDM resulté

compare somewhat more favorably with the analytical solution than has been



Drawdown, meters

20— ' ' -
“Theis soluﬁon—\_
Number of nodal points =9
T T=9.29xI0% m2/sec (0.0l ft2/sec) N
S=0.00
Q=1.42x10"2 m¥sec (0.5 cfs)
r=3.87m (12.7ft) ‘
Finite. | @ Lineor elements
Eiement { O Quodratic isoparometric elements
. ' - method | A Cubic isoparametric elements
Ol ' o -]
. ® Integrated Finite Difference method
0.03 ' L S —L . |
10° lo} 102 10° 104 10>
Time, seconds 2
: . . . XBL 754-1094
Fig. 2. Comparison of numerical results with

analytical solution for T

heis problem.
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repOrted'by‘Pinder and Frin& [1972] for their FEM approach.

'_ Continuous Boint Source Problem

i'An advaﬁtage of formulating the governing equation in the form of (5)
or (6) is.that these equations are equally validvin'one, two or.thrée
dimensiéns. Theréfbre, the~IFDM can handle one—; two- or threé—dimensional
problems with equal ease. .To vérify the ability of IFDM td haﬁdle three-
diﬁenéional fiow, we ;pplied the method to the p;qblem of-a continuous poiﬁt.

source in an isotropic medium._ The analytical solution is given by Carslaw

and Jaeger [1959] as

Bt - 6 (rt) = o erfe =] (10)
To- solve the above problém,iﬁ three-dimensions using the IFDM, the flow
region was-viéualiied as a sphere enclosed in a cube. Thus, the spherical
eléments ﬁeaf»the point source gradually lost their curvature in grading
outward to cubic shapea elements at the outer boundary (Figure 3). This
-~waS'donevsb_that one could accurately simulate spherical syﬁmetry close to
the source, while allowing for more general conditions of flow near the outer
iimits._.Thevflow.region was evefywhere subdivided into three-dimensional
_élements. From considerations of symmetry (eight octants in a cube and
tﬁree cartesian axes), a wedge-shaped portion of the flow region, whose
volumg is 1/24.of a cube was chosen for actual modelling as illustra;ed in
R Figure 3.
| The shortest &istance from the point soﬁrce to the outer boundary of the
'wedgelwas 460 m. The mesh éonsisted 6f 47 three-dimensional elements and 87
interfaces'Between eiements. Due to the curvilinear nature of the elements,

different nodal pointsvwere located along different radial lines from the
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Traces of 3-D elements

o ‘ —— —
- 7 e
-~ -

400 ~

3004
§ 200 /,
s i : /

| 100— - <

o- ;

Point source

XBIL 754-1095

Fig. 3. Three-dimensional IFDM network of
elements for point source problem.
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' point source. . Distances from the source to nodal points varied from 1 m for

the closest to 593 m for the farthest, while element volumes ranged from

6

9.1 x 10_1 to 1.09 x 10 m3. The problem was solved with the following,

arbitfary_parametérs; Q= 103 m3/sec, K =.10—3 m/sec,'aﬁd c = 10-2/m_l-
Impermeable conditions were assumed on all faces of the wédge—shaped flow
fegion;‘ | |

The resuitsvdf the‘computations are presentedvin Figure 4. In Figure

4A, drawdown as a function of time.is compared to the analytical solution’

for various distances froﬁ the point source. 1In Figure 4B, drawdown as a

function of distahce is compared to the anaiytical solution for various values

of time. The results pertain to poiﬁts,located on different radial lines and
hence they give an idea of the overall accuracy of the solution over the
entiréﬁmesﬁ.  Thé transient problem.was solved from 0 to:lo6 seconds
in 683 time-Cycles. The magnithde of the time stepS'ﬁaried froﬁ 1fx lofl'jf
to 8,5 x 103 seconds. The simulation took 8.5 seconds of-CﬁC 7600 machine
;iﬁe.

Figgrés 4A and 4B show .t,hat‘: the computed resﬁits deviate from the
analytical éélution.for small Qalues of time'and at small rédial-distanées{
However, we believe that the ovérall agreement'with'the'analytical solution

is quite good, and we conclude that the IFDM has successfully been used’iﬁ_

solving this three-dimensional problem.

Fracture Flow Problem

The parallel pléte formulatioﬁ for flow in a fracture is widely used’

by many workers [Snow, 1965; Romm,'1966; Louis, 1969; Sharp and Maini, 1973A

and Wilson and Witherspoon, 1974; Gale et al., 1974] and leads to a fracture

permeability defined as
b2 . N | o
k = %u_ : , : (12)
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XBL 754-1100
Fig. 4. Comparison of numerica;l results wifh

analytical solution for point source problem:

~ A, time drawdown; B, distance drawdown
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H0wevef; when the fractﬁre closes, the surfaces do not necessarily ﬁpuch at
every point, and_this.becomes quite obvious when any natural fracture is
examined in detail. This Haé léd some investigators {Louis, 1969; Sharp and
Maini, 1972] to suggest that the exponent in (12) is séme valué less than 2
for a fracture that is being closed under normal stress.

In other work in this labqratory, we are currently investigating"ﬁhis prbblem i
using»A.single; horizontal fracture under conditions of radial flow. The ffacture
is formed by two cjlindrical blocks of impermeable fock,..152'm in diaﬁeter, each
having smooth faces. Flow originates at a .0254 m diameter.hole in the center
that is concentric with the external boundary; If the ciréular fractﬁre is -
~open -and the planar surfaces are parallel, then‘the steady—étate flow_ié given
by

3, |
_ 2m pg b~ A¢ o _
A VTR FYCHS) S (13)

To investigaté.this problem, we have used the IFDM an& setup a flow net of
elements as showﬁ'in'Figure 5. The flow region_has.beenvdiscretized into 264
eleﬁents with 456 interfaces, and permeability wi?hin-eéch elemént is given
by (12). |

As a practicai pioblém of interest in the laboratory work, we solved an
arbitrafy>case where A¢ = 21.09 m of water (30 psi), p = 1000 Kg/m3, M= .001

Kg/m sec and b = 1.27 x_lO-"4 m. From (13), one can quickly compute

_ 21 _(1000)(9.8) (1.27 x 10%)3(21.09)
Q 12 (.001) In (.076/.0127)

=1.237 x 10_4m3/sec

We then solved the.same.problem using IFDM and the network shown in Figure
5 and.obtéined Q =1.227 x 10_4 cm3/sec. Pressures éhould be a linear function
of #nr and comparison.of IFDM results with those from the analytical solution

are shown in Figure.6.A The agreement is very good.
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Pressure, m of H,O
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N
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o

15a

|} { Ll L ! | L
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O Open fracture

a Partially closed
fracture —~

r, cm

XBL 754-1104

Fig. 6. Comparison of numerical results with
analytical solution for fracture flow
problem
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0f considerably more interest is the case where the ffacture partially

closes and the areas of contact are impermeable. This is easily handled with

‘the IFDM by assuming that certain elements within the network of FigUré'S have

zero permeability;._The results of a hypotheticai problem with a random distri-
bution of impermeabié elements is giﬁen in Figure 7. Here; the pressure head
has been normélized'ih terms‘éf percent of the injecfion pressuré. The pressure
profile:along line AB of Figure 7 is shown in Figure 6._ For the saﬁe apefture

5

and flow conditions as given above, the flow was found to be 8.032 x 10~

3 _ : .
m~/sec. In other words, the impermeable contact area that amounts to about

15 percent of the total fracture surface caused a reduction in flow of approxi-

mately 35 percent. Computer simulations of carefully chosen hypothetical situa-
tions for this kind of fracture flow can providé valuable assistance in analyzing

laboratory data.

Comparisdn of IFDM'and FEM

From the abo§e discussion, we have seen how the IFDM can be used to analyze
transient fluid flow problems in multi-dimensional systems with complex geometry.
The FEMAis also well suited to such problems, and the question will arise as to

how the two methods compare. A detailed analyéis is not an easy task, and only

a comparison of the overall features will be attempted here. Our purpose is to

provide some clues when choosing an approach to certain classes of problems and

also to provide an insight into the development of new techniques of analysis

‘that will combine the inherent advantages of both IFDM and FEM..

Although FEM equations can be developed from variational principles

[Javandel and Witherspoon, 1968] or physical considerations [Wilson, 1968],

mathematicélly the most direct method is the Galerkin approach [Zienkiewicz °

and Parekh,.1970; Pinder and Frind, 1972} Neuman;v1973]. 1In the following



/

Fig. 7.

XBL 754-1098

Pressure distribution in a partially

closed fracture
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we will analyze the Galerkin formulation of the FEM; and since the IFDM uses
a linear approximation for potential gradient, we will restrict our analysis

of FEM to "linear" elements.
In the Galerkin scheme, the partial differential equation is first weighted
with an appropriate weighting function and then integrated. Thus, after

neglecting the'source term in (2), we have v

' a 6 - |
EqlVeKVE b - B qv = 0 | ’ (14)

v

In writing (14) we have not only expanded divergence and gradient in
Cartesian coordinates but also have replaced ¢ by the approximate relation,
¢ = E ¢ where the repetition of n denotes summation over n nodal points. The
particular feature of the Galerkin procedure is that‘the weighting function
Em(xi) is the same as the coordinate function gn(xi) that is used to approximate
¢. In the FEM, which is a subdomain scheme, £m is dgfined as unity at nodal
point m and zero at all ofher nodal points.

In the simplest case involving linear elements, ﬁhe FEM flow.region is
discretizéd iﬁto a series of appropriately small triangles, within each of which
¢ is assumed to vary linearly. Thus, Em also varies linearly from a value of i
at nodal point m to zero along the line connecting the remaining two nodal points
of the triangular'element. For isotropic media, K in (1l4) is a scalar;. and for
anisotropic media, K is a second rank, symmetrical tensor.

Assuming K and c to be constant within each triangular element, and making v
use of Green's first identity [Sokolnikoff and Redheffer, 1966] we can rewrite

(14) as

> . agn(bn
VE QKVE ¢ av + EmKVEn¢non ds - Emc e dv) = 0 (15)
e Ve

all e S
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In (15), the superscript e denﬁtes a triangular element and the summation denotes
_integration over.ali.élements-of the flow region. One equation such as (15) is
set up for each nodal point m at which the time rate of change of potential is
to be determined. Furthermore, the nature of the'weighting furiction g, is such
that:the surface integral-is zero for all interior nodél points. If m ligs oﬁ
a boundary’of the flow region where\;he flux is prescribed, the surface integral
becomes a known quaﬁtity. |

Hence, we need to'concern outéelves only with the two volume integrais in
EQuation'15. MoréQVer, by definiﬁion,'gm hés nonzero values only in those
elements that iﬂclﬁde nodal point ﬁ. Thus, the summation implied in (15)
actually means summation only over those triangular elements at whose apex m
;ies (see Figure 8). For convenience we shall call the'subdomain composéd'of
- these triangles as the "primarf".elementvof m, whiie each triangular element
will be called a Vsecondafy" element.

Let us now consider the first volume integral in equation 15 as applied to
 secondary element II in Figure 8. It can be shown [Narasimhén, 1975] that the
integrél fVEmOKV£n¢n dvV evaluated with respect to nodal ﬁdint m is simply the
flux normal to the line conhecting the mid points A and B of the sides adjacent
to m, as shown in figure 9. Furthermbre, if G is the centroid of secoﬁdary
elemenf II, then, because of the constant_grédient of ¢vwithin the eleﬁent,
the flux across the line AB.is exactiy'equal to the flux across the line AGB.
Hencé, extending this approach to all secondary elements shown in Figure 8 leads
to the cqnclusion that ngSmOKVSn¢n dV is a summation of fluxes across the sur-
face.encldsing the subregion around nodal poinf m as shown in Figure lO.f

Comparison of Figures lO and 1 shows that the weightéd in£egrétion of .
.the spatial inﬁegral in the Galerkin scheme and the evaluation of the surface

: intégral in the IFDM both lead to a summation of fluxes across the surface of
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v

with nodol point. m elements

[E==) Primary element ossociated [ I | Secondary

Fig. 8. Primary and secondary elements of a FEM network -
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Fig. 9 - Expanded view of secondé.rfy elément
II in Figure 8 ’

XBL 7541101

Fig. 10 .Evaluation of Galerkin spatial
' . integral for nodal point m
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of a subdomain associated exclusively with the nodal p01nt of 1nterest. 'This
summation therefore -yeilds the net rate at which fluid is accumulating w1thin -
the exclusive subdomain associated with nodal point m.

9 b,

The other volume integral in (15), fEm T dV, determines how the excess

fluid,accumulating in'the‘exclusive subdomain of nodal point m (Figure.lO) is "
distributed within the subdomain so as to cause ¢m,t0 change with time. We
uill consider two possible ﬁays of interpreting this integral.

First,‘letgus review the conventional Galerkin procedure (equation l4)-in

which_£n¢n (*¢) is substituted for ¢ in the time derivative. Assuming c is

constant within e and recognizing that Em(xi) is independent of time, we get

3E b,
Z: nt e 2; o 3 as)
e V .

Using Felippa's [1966] evaluation of fe §m£n dV for triangular elements, we .

. V.
can rewrite (16) as _ _ :
3 0 A 2 e 261 29 -
¢ ol gy oG e A P a0 o, T an
n® "ot c 1% 5 iz B T
e _ .
e V _ _ e
O SO . - N
where 5;— and 3¢ are time derivatives- at the remaining two nodal points of

element e. If we recognize that the shaded subregion associated with nodal

point m in Figure 10 is 1/3 the area of the entire pentagon, equation. 17 implles
3
at

pentagon, actually denotes the mean rate of change in potential over one half'

that m_’ which is an average value representative of 1/6 of the area of the

of the shaded subregion in Figure 10. Over the remaining half of. this subregion

the fluid is assumed to be distributed in accordance with the average time rates

3¢
BEE-at the neighboring nodal points of m. , :
_ . 3E & .
The second way to interpret the integral fegmc 32 n_dV is to consider

. that the net rate of mass accumulation arising out of the first volume integral
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in equation 15 is distributed in such a fashion within the shaded subregion in
Figure 10 that the time rate of change in potential is-uniform throughout.

This would imply that in the second volume 1ntegra1 in (15) we should replace

9.0, oM

at by ot ’

exclusive subdomain of nodal point m, According to this interpretation, we

which is now the mean rate of change in potential over the
get instead of (17)

M e e "ﬁ
E f 3¢ dv-i— ‘/e‘gmdv=%9:; E A3° (18)

e A e

The approach suggested by (18) has been used by Neuman [1973] in developing

the FEM equations for saturated—unsaturated groundwater flow, 1nvolv1ng the

solution of non-linear equations. Equation 18 also results from the purely '

thsical development of the FEM equations carried'out-by Wiléon [1968].

ﬁhen m is an interior nodai'point; the surface integral inv(l5) disappears
and, depending on the choice of (17) or (18), the FEM equations can be written
in either'of,ﬁne following two forms:

a) The conventional Galerkin form

A | ' . 2
- 2 e . 36
2 : - ; _2 : e [a% Pm A% Fn  Pn
T 'lvgn:KV'gn¢n'dv'—' P [6 5t T 12 (Bt ot )]
e V ‘ e ‘ _
or b) The modified Galerkin form:

M e e - . v - -
E ﬁ%-we¢ v = %{L 2—3— . 20)

e

(19)

Comparison of (20) with (5) or (6) shows that conceptually, the modified

Galerkin form is almost the same as the IFDM, except for the difference in the



24
procedure usad fon evaluating the gradient of ¢. Comparison of (19) with (5)
and (6) shows that the IFDM and the conventional Galenkin procedures are con-
ceptually similar in associating an exciusive subdomain with each nodal point
of interest and summingvthe surface fluxes to evaluate the rate of fluid
accumulation within the subdomain. They only differ somewhat in the procednre
adopted for redistributing the fluid.accumulation over the sundomain; |

The interesting fact that emerges out of avcomparison of IFDM with FEM
is that the chief difference between the two approaches lies in the manner in
which the spatiallgradients in ¢ are evaluaned. As will He seen, the relative
advantages and disadvantages of the IFDM and the FEM depend by and large on
tne technique employed for measuring these gradients.

The IFDM employs the simple finite difference approximation and is thus
constrained to measurement of gradients normal to a given surface and is
restricted to first order approximations. As a resuit, it cannot handle
general tensorial quantities, since the latter réquire evaluation of tangential
gradients along thelreference.snrface in addition to the normal gradient. .More-
. over, when the spatial variation of ¢ is rapid; the IFDM would require a large
number of mesh pbints to accurately simulate the rapid variation of ¢ in terms
~ of successive iinear segments. |

ﬁy choosing-to set up a surface, ¢ = £ﬁ¢n, for the variation of ¢ over an
elemental region, the FEM achievea a very general and powerful form of expressing
the spatial variation of ¢. As a result; the FEM is no; only well suited.for
handling general tensorial parameters (e.g., stress, permeability, dispersion)
but is alsoc well suited to the utilization of higher order surfaces, which can
anproximate the rapid spatial variation of ¢ with greater accuracy. .

The basic.integration scheme in the FEM involves evaluation of volume

integrals. Hence, the FEM has to choose, at the outset, a coordinate system
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of known symmetry, usually Cartesian.. In additi&n, to facilitate evaluafion of
?he.ﬁolume integral,.the elemental volume has to have a simple shapé whose
volume can be expressed as a simple fuhction if its'diﬁensidns. As a fesult,
when the fléw ddmain has a compléx geometry vith mixed symmetry, the FEM has
fofapproxiﬁaté'fhe'domain using simple eleﬁental'shapes, which may not always
‘bé easy. To some extent, this difficuity caﬁ be overcﬁme by resorting to
highef érder, isopafametric elements:

' In the case of IFDM which baéically'évaluétes surface fluxes and in
whiéh geometricél parémetérs are prdvided as input information, there iérno
restriction on éhooéing'ény basic eieﬁental shape. Tﬁefefore, arbitrarily
shéped elements can be‘chosen-ju&iciously not only to ﬁandie mixéd.symmetries
(as in ?igure 3),>but also to fit complex boundaries with a small number.of
élements. "A very desirable féature ;f thé IFDM is that it can, in a simple
way, handle compleg boundariés4while still retaining a linear approximation
for potential variation.

| Iﬁ the IFDM, care must bé taken td design the mesh so that the. lines
joinihg nodal ?oints coiﬁéide witﬁ the normals to the interfaces between the
points.:_This restrictiqﬁ, as well as the requirement for pfoviding geomet:ical
parameterévas input data;may-reqdire added effort inbdesigning networks for
complex prbblems; _To some extent this effort can be minimized by developihg.
au#iliéry computef prdgraﬁs for mesh and input data generation. On the other
hand,»tﬁe.design of the FEM ﬁesh may be less restrigfive éiﬂce the_geométric

~parameters are generated impliéitly,in the volume integratién. Howeve:; even
in the fEM it may be'ﬁecessary to have baéic eleﬁents'witﬁ'some regularify of

| -shébe (e.g;, avoiding obtuse.angléd triangles), iﬁ.order to avoid undesirable

matrix properties that affect the efficiency of the solutibh process.
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Certain other_differences between IFDM énd FEM arise-mostly due tolfhe
cohveﬁtions‘and éustomary procedures that are follo&éd. If we look at the
conventional Galerkin formlof the FEM eqﬁation (equation 19), we note tﬁat
thé'equation for nodal point m also contains thé unknown time derivatives at
the neighboring nodal points n. Hence, the set of equafions arising out of
'(195 would have to be solved as a set of simultaneous equations inQolving - -
the unknown time derivatives. In other words (l9)»cannot be solved expliciély, .. o
evén for small time steps. On the other hand, the mddified Galgrkin eduation |
in (20), which is similar to the IFDM equations (5) or:(6), can be solved
explicitly or‘implicitly. |

jIn éddigion.to their simplicity; an added advantage of IFDM eqﬁations is
that stability conditions are easier to define (équatioq 8) and this has. |
enabled ghe.development of an‘optimai explicit—implicit procedure used in
‘the progfam TRUMP. The IFDM has also been amenable to the development of a
successful iterative‘scheme, that has produced satisfactqry‘results for a
wide ciasé of ;:oblems_[Edwards, 1969; Narasimhan, 1975]. The result of using
such a scﬁeme is that IFDM is not constrained by the need for optimal_numbering
of nodal points. Fufthermoré, a single computer program is able to handle
one-, two- or fhree~dimensional problems and the si;e of a éroblem does not
‘nécessarily depend on its'dimensibnality. |

Although iterative schemes are occasionally used.in the FEM, solutions afe
normélly_obtainea.wifh matrix-invenﬁxulﬁechniqués; Matrixvinversion schemes
are mofe accurate thén iterative schemes, especially in the case of matriges
 whiéh are not very well behéved. Hdwever, such_inversion';echniqﬁés are'.
genefally constraiped by the need forvan éptimalvﬁodal point numbering and by_v
‘the need fpr keeping band width small in érder to conserve computer storage;

The latter may often prove to be a handicap in handling reasonably large
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three—diménsiohal pfoBiems wifh_theiFEM;

. From the abpyefdiscussion of IFDM and FEM, we have seen fhat some of the
differenceé.are infriﬁsiC'ih the methods used'while others afe mainlf a matter
of convention. If suitable changes in.cqhvention cquld'bg made, it would appéar
that‘one couldvcombine the advantages of both methods and deVelop an improved
numerical process.

Aé was &iécuséed earlier, the modified Galerkin approach (equation 20)
is conceptually Very similar to equations 5 or 6 in the IFDM. It would appear,
therefore, that_the stability criterion for IFDM given by (8) shouldvbe equaily
‘applicablevto'(ZO).' For the same reason, it also seems likely that the itera-
tivé'procedurevuSed in TRUMP céuld be succeésfully applied to the modified
G;ierkiﬁ eqﬁation._ fhis éugggsts that, a priori, there is good reason to
attempt to develop'én>EEM code witﬁ'liﬁeér elements using ah explicit;implicif,
iterafive'séiﬁtién SChgme.‘ The advantages‘of such an approach‘are obvioUs.
In addition'to‘usiqg the simple ekplicit_p;ocedure wherever possible, one
'codldbhéndie multi;diménsional problems as well as problems with coﬁplex'
geométry without beihg éonstrained by éither an optimal scﬁeme for hodai

_point'numbéring or by the size of band width.

Conclusions

The'theoretical'baSis for the’integféted finite difference method revealé
a“rathér simpie but pove#ful numerical technidﬁe for'sql§ing g;oundwatef flow
problemé. 'Exampigs Have_Bgen brdvided fd demonstrate that the IFDM’as incor- -
porated in TRUMP_can'hand1e ;Qo— or thfee-dimensional problems with ease.

A comparison of IFDM and FEM ihdicateé that gach df'thése integral methods -
has distinct advan;éges in handling certain classes §f pfobléms. The modifiéd 

Galerkin form of‘thevFEM.is conceptually almost the same as the IFDM,'excépt
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for the difference in the pfogedure used in evaluating the gradient of ¢.
This suggests the possibility. of developing a new FEM code that can incorporate
the éxplitit-implicit iterative sqlu;ion scheme in TRUMP and thus éombine the

advantages that are inherent in both IFDM and FEM.
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Nomenclature

Area of interface between elements m and n in IFDM [L]
Fracture aperture [L]
Specific fluid capacity or specific storage [1/L]

[Distance between nodal points m and n in IFDM

i) Flow rate per unit volume [l/T] '
ii) Acceleration due to gravity in fracture flow problem [L/T ]

Flow rate per unit volume of element m [1/T]
Hydraﬁlic conductivity [L/T]
Mean hydraulic con&uctivity between elements m and n [L/T]
Subscript used to denote.an element or a podal point [1]
Subscript used to_denote an element or a qodal point [1]
Unit oetef norﬁal_to ansurface {1] |

M'Fiow rate [L3/T]
Radial distance [L]
Radial diatance>to;external boundafy in fracture flow p;oblem [ﬁ].
Radial distance to internal boundary in fracture flow problem [L]

i) : Storage coefficient in Theis eqﬁation [1]
ii) Surface of integration

Time [T]

_Coefficient oftxansm1531bility in Theis equation [L /T]

Conductance between elements m and n [L /T]

Volume [L ] |
_.Volume of.element m.[L3]

Area ef triaﬁgular element e -

'Diffusivity [LZ/T]

Weight given to the backward differencing operation in the =
implicit scheme [1]
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Viscosity of fluid [M/LT]

Function to express the variation of poténtial over an element
e in the FEM; Also the Galerkin weighting function [1]

Weighting function pertaining to nodal point m
Density of fluid [M/L3]'

Fluid potential or hydraulic head [L]
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