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Abstract 

The theoretical basis for .. the integrated finite difference method 

,(IFDM) is presented to describe a powerful numerical technique for 

solving problems of groundwater flow in porous media. The method com-

bines the advantages of an integral formulation· with the simplicity of 

finite difference gradients and is very convenient for handling multi-

dimensional, heterogeneous systems composed of isotropic materials. Three 

illustrative problems are solved to demonstrate that two- and three~ 

dimensional problems are handled with equal ease. Comparison of IFDM 

with the well known finite element method (FEM) indicates that both are 

conceptually similar and differ only in the procedure adopted for 

measuring spatial gradients. The IFDM includes a simple criterion 

for stability and an efficient explicit-implicit, iterative scheme for 

marching in the time domain. If such a scheme can be incorporated in 

a new version of FEM, it should be possible to develop an improved 

numerical technique that combines the inherent advantages of both 

methods. 
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Introduction 

Numerical analysis of fluid" flow through porous media in problems with 

complex geometry is greatly facilitated by the use of integral formulations. 

Perhaps the most widely used integral method is the Finite Element Method (FEM) , 

which can be based on variational principles or the Galerkin appro?ch. 

In this paper we will describe another integral formulation which has 

been successfully used to solve heat transfer problems in heterogeneous, 

isotropic, multi-dimensional flow regions. For reasons that will become 

clear later, we shall call this method the "Integrated Finite Difference 

Method" (IFDM). Although the method has been used in studying groundwater 

systems [Todd, 1959; Cooley, 1971] it does not appear to have been widely 

employed in the field of hydrogeology. It is our opinion, however, that 

the IFDM can be a very powerful tool in analyzing heterogeneous groundwater 

systems with complex geometries. Furthermore, in comparing "the conceptual 

bases of IFDM and FEM, we find that they have much in common. 

The purpose of this paper is first to develop the IFDM equations and 

demonstrate the power of the method with three different problems. We will 

• 

then examine the conceptual bases of both IFDM and FEM and attempt to identify 

those features which give each of these techniques unique advantages in handling 

specific classes of problems. Finally, we will consider the possibility of " 

developing anew technique which could combine some of the unique advantages 

of each method. 

The Integrated Finite Difference Method 

MacNeal [1953] is apparently the first worker to use the IFDM approach, 

and he classified it as an "asymmetric finite difference network". He used 
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this approach in solving second order boundary value problems. Subsequently, 

the method has been used successfully for solving heat transfer problems and 

a good description of the approach and related aspects can be found in 

Dusinberre [1961]. Edwards [1969] used the IFbM in developing a powerful 

computer code called TRUMP.for calc41ating ,tranSient and steady state 

temperature distributions in multididimensiona1 systems, and the following 

discussion will be based in large measure on the TRUMP program. Although 

TRUMP can handle conductive, convective, and radiative heat transfer, we 

will restrict our attention to the heat conduction part of the program since 

conductive heat transfer is conceptually similar to fluid flow in porous 

media. 

Consider the partial differential equation for groundwater flow 

~. .£! 
div K grad 4> + g = c at (1) 

For the sak~of simplicity, we shall assume K and c in (1) to be constant 

and independent of 4> so that (1) is a linear equation. 

We can spatially integrate (1) over a conveniently small finite subregion 

V of the flow region and write [Encyclopedia of Science and Technology, 1960] 

![diV K g;ad4> + g] dV = 
V 

(2) 

If it can be assumed that c, 4> and g represent average values within the 

subregion, we can now use the divergence theorem to convert the first term 

on the left hand side of (2) to a surface integral and obtain 

~ ~ 

grad 4>endS+ gV It cV at (3) 
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The central concept of IFDM is to discretize the total, flow domain into 

conveniently small subdomains or "elements" and evaluate the mass balance in 

each element as indicated in (3). Physically, the surface integral on the 

left hand side of (3) is the suunnation of fluxes over the surface S and thus 

measures the rate at which mass is accumulating in the element, as governed 

by initial and boundary conditions. The right hand side converts the rate 

of accumulation of fluid into the corresponding average time rate of change 

in potential over the element. 

To illustrate the IFDM, let the shaded region in Figure 1 be an element 

whose average properties are associated with a representative nodal point 

m = 6, which may be located anywhere within or on the boundaries of the 

element. Maximum accuracy in transient problems is obtained if the element 

shapes and nodal point locations are so chosen that lines joining nodal 

points of adjacent elements are perpendicularly bisected by the common 

interface. In steady state problems. the solution is independent of the 

specific storage associated with each element, so the nodal points may be 

located anywhere without loss of accuracy. In Figure 1, element m is con-

nected to adjoining elements n = l'to 5. Under these conditions, the finite 

difference approximation for (3) can be written 

c V 
m m ~t 

(4) 

For appropriately small values of ~t, (4) can be written in explicit form 

as 

~t 
c V 
mm 

U m,n 
(5) 
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An element with its representative 
nodal point in the IFDM network. 
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Here, U = (K A )/D is the "conductance" of the interface m,n m,n m,n m,n 

separating elements mand.n,·and represents the rate of fluid transfer per 

unit difference iIi potential between nodal points m and n. The terms 4>m 

and 4> represent the initial values of potentials at the beginning of the 
n 

interval ~t. Equation 5 can be directly used to solve for ~4> if the m 

6 

geometric parameters A , D and V are provided as input data, in addition m,n m,n m 

to the material properties, K and c. 

If it is desired to use large values of ~t, then equation 6 can be 

expressed. implicitly as 

{
2' V + "U [(4) + M4» - (4) .+ A~4> )]} = ~4> 
~ m ~ m,n n n m m m 

n . 

(6) 

where 0 < A < 1. 

When A =0, (6) reduces to the forward differencing scheme (5). When A = 1, 

(6) becomes a fully implicit, backward differencing scheme while A = ! yields 
2 

the well knOwn central differencing, or Crank-Nicholson procedure. For 

1 unconditional stability, A > I. 

To handle boundary conditions, we can rewrite (6) as 

flt 
c V mm 

[g V +" U mm ~ m,n 
n 

where¢ = 4> + Afl4> . 
m m m 

. (jin = 4>n + Afl4>n 

«jin - (jim) + ~ Um,b «jib - (jim)] = 

b 

(7) 

and bis used to distinguish boundary elements from the n elements in the 
. . 

interior. Using the last summation term on the left hand side of (7), both 

prescribed potential as well as prescribed flux boundaries or even mixed 

boundary conditions can be suitably handled, as described by Edwards [1969] 

and Narasimhan [1975]. 
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It can be shown either from simple reasoning [Dusinberre, 1961] or based 

on an elaborate analysis of error propagation [0' Brien, et al., 1951; Evans, 

et al., 1954; Narasimhan, 1975] that for each element m there is a critical 

time constant f1tm such that equation 5 is unstable if f1t > f1tm• The magnitude 

of this critical time constant is given by 

, 
c V 

f1t mm (8) = m 

LUm,n 
n 

where nnow stands for all elements connected to element m. Physically ~t , m 

represents the approximate time required for element m to react significantly 

to changes in potential in the adjacent elements to which m is connected 

[Edwards, 1969]. Obviously, if f1t > f1t for any element m, one would have 
m 

to use (6) or (7) instead of (5) for that particular element. 

The implicit calculations inherent in the application of equation 7 can 

be carried out either with the help of matrix-inversion techniques or with 

the help of iterative techniques. The TRUMP computer program [Edwards, 1969] 

employs an iterative technique based on the generalization of a method suggested 

by Evans et al. [1954]. Using this approach and recognizing the fact that the 

critical time step f1t is defined for each element, Edwards [1969] has m 

successfully incorporated in TRUMP a technique by which explicit calculations 

are carried out for those elements where f1t < f1t and implicit calculat-.ions 
m, 

'. for the balance where f1t > f1t. The I~DM, when combined with the exp1icit-
m 

implicit, iterative scheme developed in TRUMP, provides a very useful tool 

in analyzing fluid flow problems in heterogeneous systems. 
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Solutions to Illustrative Problems 

To illustrate the utility of the IFDM, we shall consider three problems 

for which analytical solutions are available. The first of these has been 

chosen to demonstrate the accuracy that can be expected from IFDM as compared 

to that of FEM. The second is designed to demonstrate the ability of IFDM to 

solve three dimensional problems. The last example serves to illustrate the 

use of the method in approaching systems with radially syunnetric geometry, 

in which the material distribution can be asyunnetric. 

Theis Problem 

A classical problem in the field of groundwater hydrology is that of 

nonsteady, radial flow to a well discharging at a constant rate, Q, and 

piercing a horizontally infinite, homogeneous and isotropic aquifer. The 

solution to this problem is the well known Theis [l935] equation 

-u e -- du 
u 

(9) 

Pinder and Frind [l972] have shown how the FEM developed from the Galerkin 

formulation can be used to simulate the Theis solution. They verified the 

accuracy of their FEM results in comparison with the analytical solution 

using linear as well as isoparametric elements. Their FEM mesh consisted 

of only nine nodal points along any radial line from the well. 

To check the accuracy of IFDM, we set up a mesh with the same number and 

a similar spacing of nodal points and solved the same problem. Figure 2 shows 

drawdown as a function of time, as computed by FEM and IFDM. A comparison of 

these numerical results with the analytical solution shows that IFDM results 

compare somewhat more favorably with the analytical solution than has been 
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reported by Pinder and Frind [1972] for their FEM approach. 

Continuous Point Source Problem 

An advantage of formulating the governing equation in the form of (5) 

or (6) is that these equations are equally valid in one, two or three 

dimensions. Therefore. the .IFDM can handle one-, two- or three-dimensional \,/ 

problems with equal ease. To verify the ability of IFDM to handle three-

dimensional flow, we applied the method to the problem of a continuous point 

source in an isotropic medium. The analytical solution is given by Carslaw 

and Jaeger [1959] as 

~(r,t) - ¢ (r,t ) = ~4 erfc [~] 
o 0 TIKr (4Kt 

(10) 

To solve the above problem in three-dimensions using the IFDM, the flow 

region was visualized as a sphere enclosed in a cube. Thus, the spherical 

elements near the point source gradually lost their curvature in grading 

outward to cubic shaped elements at the outer boundary (Figure 3). This 

was done so that one could accurately simulate spherical symmetry close to 

the source, while allowing for more general conditions of flow· near the outer 

limits. The flow region was everywhere subdivided into three-dimensional 

elements. From considerations of symmetry (eight octants in a cube and 

three cartesian axes), a wedge-shaped portion of the flow region, whose 

volume is 1/24 of a cube was chosen for actual modelling as illustrated in 

Figure 3. 

The shortest distance from the point source to the outer boundary of the 

wedge was 400 m. The mesh consisted of 47 three-dimensional elements and 87 

interfaces between elements. Due to the curvilinear nature of the elements, 

different nodal points were located along different radial lines from the 
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point source. Distances from the source to nodal points varied from 1 m for 

the closest to 593 m for the farthest, while element volumes ran'ged from 

9.1 x 10-1 to 1.09 x 106 m3 • The problem was solved with the following, 

. 3 31 -3 I -2 -1 arbitrary parameters: Q = 10 m sec, K = 10 m sec, and c = 101m . 

Impermeable conditions were assumed on all faces of the wedge-shaped flow 

region. 

The results of the computations are presented in Figure 4. In Figure 

4A, drawdown as a function of time is compared to the analytical solution 

for various distances from the point source. In Figure 4B, drawdown as a 

function of distance is compared to the analytical solution for various values 

of time. The results pertain to points located on different radial lines and 

hence they give an idea of the overall accuracy of the solution over the 

entire mesh. 
. 6 

The transient problem was solved from 0 to 10 seconds 

in 683 time cycles. The magnitude of the time steps varied from 1 x 10-1 

3 
to 8~5 x 10 seconds. The Simulatiori took 8.5 seconds of CDC 7600 machine 

time. 

FiguJ'es 4A and 4B show that the computed results deviate from the. 

analytical solution for small values of time and at small radial distances. 

However, we believe that the overall agreement with the analytical solution 

is quite good, and we conclude that the IFDM has successfully been used in 

solving this three-dimensional problem. 

Fracture Flow Problem 

The parallel plate formulation for flow in a fracture is widely used 

by many workers [Snow, 1965; Ronun, '1966; Louis, 1969; Sharp and Maini , 1972; 

and Wilson and Witherspoon, 1974; Gale et al., 1974] and leads to a fracture 

permeability defined as 

2 
~ 

k = l2l.! (12) 
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However, when the fracture closes, the surfaces do not necessarily touch at 

every point, and this becomes quite obvious when any natural fracture is 

examined in detail. This has led some investigators [Louis, 1969; Sharp and 

Maini, 1972] to suggest that the exponent in (12) is some value less than 2 

for a fracture that is being closed under normal stress. 

In other work in this laboratory, we are currently investigating this problem 

using a single, horizontal fracture under conditions of radial flow. The fracture 

is formed by two cylindrical blocks of impermeable rock, .152m in diameter, each 

having smooth faces. Flow originates at a .0254 m diameter hole in the center 

that is concentric with the external boundary. If the circular fracture is 

I open and the planar surfaces are parallel, then the steady-state flow is given 

by 

(13) 

To investigate this problem, we have used the IFDM and setup a flow net of 

elements as shown in Figure 5. The flow region has been discretized into 264 

elements with 456 interfaces, and permeability within each element is given 

by (12). 

As a practical problem of interest in the laboratory work, we solved an 

arbitrary case where ~¢ = 21.09 m of water (30 psi), p = 1000 Kg/m3 , lJ = .001 

Kg/m sec and b -4 = 1.27 x .10 m. From (13), one can quickly compute 

Q 
2n (1000)(9.8)(1.27 x 104)3(21.09) 

12 (.001) tn (.076/.0127) 
-4 3 1.237 x 10 m /sec 

We then solved the same problem using IFDM and the network shown in Figure 

5 and obtained Q = 1.227 x 10-4 cm3/sec. Pressures should be a linear function 

of tnr and comparison.of IFDM results with those from the analytical solution 

are shown in Figure 6. The agreement is very good. 

\r 
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Of considerably more interest is the case where the fracture partially 

closes and the areas of contact are impermeable. This is easily handled with 

the IFDM by assuming that certain elements within the network of Figure 5 have 

zero permeability. The results of a hypothetical problem with a random distri-

bution of impermeable elements is given in Figure 7. Here; the pressure head 

has been normalized in terms of percent of the injection pressure. The pressure 

profile along line AB of Figure 7 is shown in Figure 6. For the same aperture 

and flow conditions as given above, the flow was found to be 8.032 x 10-5 

3 m /sec. In other words, the impermeable contact area that amounts to about 

15 percent of the total fracture surface caused a reduction irt flow of approxi-

mat ely 35 percent. Computer simulations of carefully chosen hypothetical situa-

tions for this kind of fracture flow can provide valuable assistance in analyzing 

laboratory data. 

Comparison of IFDMand FEM 

From the above discussion, we have seen how the IFDM can be used to analyze 

transient fluid flow problems in multi-dimensional systems with complex geometry. 

The FEM is also well suited to such problems, and the question will arise as to 

how the two methods compare. A detailed analysis is not an easy task, and only 

a comparison of the overall features will be attempted here. Our purpose is to 

provide some clues when choosing an approach to certain classes of problems and 

also to provide an insight into the development of new techniques of analysis 

that will combine the inherent advantages of both IFDM and FEM. 

Although FEM equations can be developed from variational principles 

[Javandel and Witherspoon, 1968] or physical considerations [Wilson, 1968], 

mathematically the most direct method is the Galerkin approach [Zienkiewicz 

artd Parekh,1970; Pinder and Frind, 1972; Neuman, 1973]. In the following 
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we will analyze the Ga1erkin formulation of the FEM; and since the IFDM uses 

a linear approximation for potential gradient, we will restrict our analysis 

of FEM to "linear" elements. 

In the Ga1erkin scheme, the partial differential equation is first weighted 

with an appropriate weighting function and then integrated. Thus, after 

neglecting the source term in (2), we have. 

~ ['i,7.K'i,7~ ¢ J Em n n 
- c o (14) 

V 

In writing (14) we have not only expanded divergence and gradient in 

Cartesian coordinates but also have replaced ¢ by the approximate relation, 

¢ ~ ~ ¢ where the repetition of n denotes summa~ over n nodal points. The n n 

particular feature of the Galerkin procedure is that the weighting function 

~m(xi) is the same as the coordinate function ~n(xi) that is used to approximate 

In the FEM, which is a sub domain scheme, ~ is defined as unity at nodal 
m 

point m and zero at all other nodal points. 

In the simplest case involving linear elements, the FEM flow region is 

discretized into a series of appropriately small triangles, within each of which 

¢ is assumed to vary linearly. Thus, ~ also varies linearly from a value of 1 
m 

at nodal point m to zero along the line connecting the remaining two nodal points 

of the triangular element. For isotropic media, K in (14) is a scalar; and for 

anisotropic media, K is a second rank, symmetrical tensor. 

Assuming K and c to be constant within each triangular element, and making 

use of Green's first identity [Sokolnikoff and Redheffer, 1966] we can rewrite 

(14) as 

~I- o (15) 
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In (15), the superscript e denotes a triangular element and the summation denotes 

integration over all elements of the flow region. One equation such as (15) is 

set up for each nodal point m at which the time rate of change of potential is 

to be determined. Furthermore, the nature of the weighting function E;;is such 
m -

"'; that the surface integral is zero for all interior nodal points. If m lies on 

a boundary of the flow region where the flux is prescribed, the surface integral 

becomes a known quantity. 

Hence, we need to concern ourselves only with the two volume integrals in 

Equation 15. Moreover, by definition,E;; has nonzero values only in those 
, m 

elements that include nodal point m. Thus, the summation implied in (15) 

actually means summation only over those triangular elements at whose apex m 

lies (see Figure 8). For convenience we shall call the subdomain composed of 

these triangles as the "primary" element of m, while each triangular element 

will be called a "secondary" element. 

Let us now consider the first volume integral in equation 15 as applied to 

secondary element II in Figure 8. It can be shown [Narasimhan, 1975] that the 

integral IVE;; eKVE;; </> dV evaluated with respect to nodal point m is simply the 
m n n 

flux normal to the line connecting the mid points A and B of the sides adjacent 

to m, as shown in Figure 9. Furthermore, if G is the centroid of secondary 

element II, then, because of the constant gradient of </> within the element, 

the flux across the line AB is exactly equal to the flux across the line AGB. 

Hence, extending this approach to all secondary elements shown in Figure 8 leads 
'.1 

to the conclusion that r./VE;; eKV~ </> dV is a summation of fluxes across the sur-. e m n n 

face enc10'sing the subregion around nodal poin t m as shown in Figure 10. 

Comparison of Figures 10 and 1 shows that the weighted integration of 

the spatial integral in the Galerkin scheme and the evaluation of the surface 

integral in the IFDM both lead to a summation of fluxes across the surface of 
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of a subdomain associated exclusively with the nodal point of interest. This 

summation therefore,yeilds the net rate at which fluid is accumulating within 

the exclusive subdomain associated with nodal point m. 
a~nCPn 

The other volume integral in (15), f~mc ~ dV, determines how the excess 

fluid accumulating in'the exclusive subdomain of nodal point m (Figure 10) is 

distributed within the subdomain so as to cause cP . to change with time. We 
m 

will consider two possible ways of interpreting this integral. 

First, let us review the conventional Galerkin procedure (equation 14) in 

which ~ cP (""CP) is substituted for cp in the time derivative. Assuming c is 
n n 

constant within e and recognizing that ~ (x.) is independent of time, we get 
m ~ 

1 a~ cp 

E. r.- c n n dV = 
~m at 

e ve 
(16) 

Using Felippa's [1966] evaluation of f ~m~n dV for triangular elements, we 
Ve 

can rewrite (16) as 

~ ~ ce [6e 
aCPm + 6e 

L..J 6 at 12 
(17) 

e 

, acpl acp2 
where at

n 
and at

n 
are time derivatives at the remaining two nodal points of 

element e. If we recognize that the shaded subregion associated with nodal 
, ,. 

point min Figure 10 is 1/3 the area of the entire pentagon, equation 17 implies 
acp 

that at
m 

, which is an average value representative of 1/6 of the area of the 

pentagon, actually denotes the mean rate of change in potential over one half 

of the shaded subregion in Figure 10. Over the remaining half of this subregion, 

the fluid is assumed to be distributed in accordance with the average time rates 
aCPn 
at at the neighboring nodal points of m. 

as ¢J . 
The second way to interpret the integral f S c n n dV is to consider 

Ve m at 
that the net rate of mass accumulation arising out of the first volume integral 
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in equation 15 is distributed in such a fashion within the shaded subregion in 

Figure 10 that the time rate of change in potential is uniform throughout. 

This would imply that in the second volume integral in (15) we should replace 
a~ ¢ acpM 
a~ n by at ' which is now the mean rate of change in potential over the 

~~' exclusive subdomain of nodal polnt m. According to this interpretation, we 

get instead of (17) 

(18) 

The approach suggested by (18) has been used by Neuman [1973] in developing 

the FEM equations for saturated-unsaturated groundwater flow, involving the 

solution of non-linear equations. Equation 18 also results from the purely 

physical development of the FEM equations carried out by Wilson [1968]. 

When m is an interior nodal point, the surface integral in (15) disappears 

and, depending on the choice of (17) or (18), the FEM equations can be written 

in either of the following two forms: 

a) The conventional Galerkin form 

(19) 

or b) The modified Galerkin form: 

(20) 

Comparison of (20) with (5) or (6) shows that conceptually, the modified 

Galerkin form is almost t~e same as the IFDM, except for the difference in the 
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procedure used for evaluating the gradient of~. Comparison of (19) with (5) 

and (6) shows that the IFDM and the conventional Galerkin procedures are con-

ceptually similar in associating an exclusive subdomain with each nodal point 

of interest and summing the surface fluxes to evaluate the rate of fluid 

accumulation within the subdomain. They only differ somewhat in the procedure 

adopted for redistributing the fluid accumulation over the subdomain. 

The interesting fact that emerges out of a comparison of IFDM with FEM 

is that the chief difference between the two approaches lies in the manner in 

which the spatial gradients in ~ are evaluated. As will be seen, the relative 

advantages and disadvantages of the IFDM and the FEM depend by and large on 

the technique employed for measuring these gradients. 

The IFDM employs the simple finite difference approximation and is thus 

constrained to measurement of gradients normal to a given surface and is 

restricted to first order approximations. As a result, it cannot handle 

general tensorial quantities, since the latter require evaluation of tangential 

gradients along the reference surface in addition to the normal gradient. More-

over, when the spatial variation of ~ is rapid, the IFDM would require a large 

number of mesh points to accurately simulate the rapid variation of ~ in terms 

of successive linear segments. 

By choosing to set up a surface, ~ = ~.~ , for the variation of ~ over an 
n n 

elemental region, the FEM achieves a very general and powerful torm of expressing 

the spatial variation of~. As a result, the FEM is not only well suited for 

handling general tensorial parameters (e.g., stress, permeability, dispersion) 

but is also well suited to the utilization of higher order surfaces, which can 

approximate the rapid spatial variation of ~ with greater accuracy. 

The basic integration scheme in the FEM involves evaluation of volume 

integrals. Hence, the FEM has to choose, at the outset, a coordinate system 

\./ 
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of known symmetry, usually Cartesian. In addition, to facilitate evaluation of 

the volume integral, the elemental volume has to have a simple shape whose 

volume can be expressed as a simple function if its dimensions. As a result, 

when the flow domain has a complex geometry with mixed symmetry, the FEM has 

to approximate the domain using simple elemental shapes, which may not always 

be easy. To some extent, this difficulty can be overcome by resorting to 

higher order, isoparametric elements. 

In the case of IFDM which basically evaluates surface fluxes and in 

which geometrical parameters are provided as input information, there is no 

restriction on choosing any basic elemental shape. Therefore, arbitrarily 

shaped elements can be chosen judiciously not only to handle mixed symmetries 

(as in Figure 3), but also to fit complex boundaries with a small number of 

elements. A very desirable feature of the IFDM is that it can, in a simple 

way, handle complex boundaries. while still retaining a linear approximation 

for potential variation. 

In the IFDM, care must be taken to design the mesh so that the lines 

joining nodal points coincide with the normals to the interfaces between the 

points. This restriction, as well as the requirement for providing geometrical 

parameters as input data. may require added effort in designing networks for 

complex problems. To some extent this effort can be minimized by developing 

auxiliary computer programs for mesh and input data generation. On the other 

hand, the design of the FEM mesh may be less restrictive since the geometric 

parameters are generated implicitly in the volume integration. However, even 

in the FEM it may be necessary to have basic elements with some regularity of 

shape (e.g., avoiding obtuse angled triangles), in order to avoid undesirable 

matrix properties that affect the efficiency of the solution process. 
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Certain other differences between IFDM and FEM arise mostly due to the 

conventions and customary procedures that are followed. If we look at the 

conventional Ga1erkin form of the'FEM equation (equation 19), we note that 

the equation for nodal point m also contains the unknown time derivatives at 

the neighboring nodal points n. Hence, the set of equations atising out of 

(19) would have to be solved as a set of simultaneous equations involving 
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the unknown time derivatives. In other words (19) cannot be solved explicitly, 

even for small time steps. On the other hand, the modified Ga1erkin equation 

in (20), ~hich is similar to the IFDM equations (5) or (6), can be solved 

explicitly or implicitly. 

In addition to their simplicity, an added advantage of IFDM equations is 

that stability conditions are easier to define (equation 8) and this has 

enabled the development of an optimal explicit-implicit procedure used. in 

the program TRUMP. The IFDM has also been amenable to the development of a 

successful iterative scheme, that has produced satisfactory results for,a 

wide class of problems [Edwards, 1969; Narasimhan, 1975]. The result of using 

such a scheme is that IFDM is not constrained by the need for optimal numbering 

of nodal points. Furthermore, a single computer program is able to handle 

one-, two-or three-dimensional problems and the size of a problem does not 

necessarily depend on its dimensionality. 

Although iterative schemes are occasionally used in the FEM, solutions are 

normally obtained with matrix-inversion techniques. Matrix inversion schemes 

are more accurate than iterative schemes, especially in the case of matri~es 

which are not very well behaved. However, such inversion techniques are 

generally constrained by the need for an optimal nodal point numbering and by 

the need for keeping band width small in order to conserve computer storage. 

The latter may often prove to be a handicap in handling reasonably large 
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three-dimensional problems with the FEM. 

From the above discussion of IFDM and FEM, we have seen that some of the 

differences are intrinsic in the methods used while others are mainly a ma~ter 

of convention. If suitable changes in convention could be made, it would appear 

that one could combine the advantages; of both methods and develop an improved 

numerical process. 

As was discussed earlier, the modified Galerkin approach (equation 20) 

is conceptually very similar to equations 5 or 6 in the IFDM. It would appear, 

therefore, that the stability criterion for IFDM given by (8) should be equally 

applicable to (20). For the same reason, it also seems likely that the itera-

tive procedure used in TRUMP could be successfully applied to the modified 

Galerkin equation. This suggests that, a priori, there is good reason to 

attempt to develop an FEM code with linear elements using an explicit-implicit, 

iterative solution scheme. The advantages of such an approach are obvious. 

In addition to using the simple explicit procedure wherever possible, one 

could handle multi-dimensional problems as well as problems with complex 

geometry without being constrained by either an optimal scheme for nodal 

point numbering or by the size of band width. 

Conclusions 

The theoretical basis for the integrated finite difference method reveals 

a rather simple but powerful numerical technique for solving groundwater flow 

problems. Examples have been provided to demonstrate that- the IFDM as incor-

porated in TRUMP can handle two- or three-dimensional problems with ease. 

A comparison of IFDM and FEM indicates that each of these integral methods 

has distinct advantages in handling certain classes of problems. The modified 

Galerkin form of the FEM is conceptually almost the same as the IFDM, except 



28 

for the difference in the procedure used in evaluating the gradient of cp. 

This suggests the possibility of developing a new FEM code that can incorporate 

the explicit-implicit iterative solution scheme in TRUMP and thus combine the 

advantages that are inherent in both IFDM and FEM. 
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'-' 
Nomenclature 

Area of interface between elements m and n in IFDM [L]2 

Fracture aperture [L] 

Specific fluid capacity or specific storage [IlL] 

Distance between nodal points m and n in IFDM 
, 

i) Flow rate per unit volume [lIT] 2 
ii) Acceleration due to gravity in fracture flow problem [LIT ] 

Flow rate per unit volume of element m [lIT] 

Hydraulic conductivity [LIT] 

Mean hydraulic conductivity between elements m and n [LIT] 

Subscript used to denote an element or a nodal point [1] 

Subscript used to denote an element or a nodal point [1] 

Unit outer normal to a surface [1] 

Flow rate [L 3/T] 

Radial distance [L] 

Radial distance to external boundary in fracture flow problem [L] 

Radial distance to internal boundary in fracture flow problem [L] 

i) Storage coefficient in Theis equation [1] 
11) Surface of integration 

Time [T] 

Coefficient ofttansmissibility in Theis equation [L2/T] 
. 2 

Conductance between elements m and n [L IT] 

Volume [L3] 

3 Volume of element m [L ] 

Area of triangular element e 

2 
Diffusivity [L IT] 

Weight given to the backward differencing operation in the' 
implicit scheme [1] 
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Viscosity of fluid [MILT] 

Function to express the variation of potential over an element 
e in the FEM; Also the Galerkin weighting function [1] 

Weighting function pertaining to nodal point m 

Density of fluid [M/L3] 

Fluid potential or hydraulic head [L] 
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