
Submitted to Physical. Review 

• ....: ., ~- .~ j " 

FESR AND FIXED POLES FOR K+ p ELASTIC SCATTERING 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy, . 
which may be borrowed for two wee~s. 
for a personal retention copy, call 
Tech. Info. Division, Ext. 5545 

M. Dubovoy 

September 3, 1971 

AEC Contract No. W -7405-eng-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



-1-

FESR AND FIXED POLES FOR K+P 

M. Dubovoy 

* ELASTIC SCATTERING 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

September 3, 1971 

ABSTRACT 

LBL-325 

Assuming that Exchange degeneracy is exact, the 

residue of thE Pomeranchukon trajectory for + Kp elastic 

scattering is calculated from FESR's and the low-energy 

phase shifts. It is shown that in order to be consistent 

with some recent results on s-channel helicity conserva-

tion for Pomeranchukon dominated processes, at least one 

fixed pole must be included in the B amplitude, and 

in particular, this consistency is achieved by introducing 

a fixed pole at J = O. 
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I. INTRODUCTION 

It has been suggested by Gilman et al. l that s-channel helicity 

conservation might be a general property of all Pomeranchukon exchange 

ampli tudes. 

2 Furthermore, some recent work by Langacker shows that s-channel 

helicity conservation is very likely to hold approximately at high s 

for elastic processes, as a simple constraint of parity conservation 

and unitarity. If one assumes that exchange degeneracy is exact, one 

has only Pomeranchukon exchange'in K+P elastic scattering, and 

therefore this process seems to be ideally suited for studying s-channel 

helicity conservation. We will assume throughout that the Pomeranchukon 

is a simple Regge pole, and that the trajectory is given by 

1 . (1 ) 

The whole analysis has also been carried out using a slope of 0.3 for 

the Pomeranchukon trajectory;3 however, the final results are prac-

tically identical to those obtained by using Eq. (1). This implies 

that even if the Pomeranchukon cut is included, our conclusion remains 

unchanged. 
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II. ANALYSIS AND RESULTS 

A. Amplitudes and FESR 

We employ integer moment finite-energy sum rules (EESR) of the 

standard form.
4 

ThE notation for thE kinematics of the reaction 

K+p' __ K+P is shown-inFig. 1., ThE amplitude can be,written in terms 

of the invariant amplitudes A,B as.: 

M.(s,t,u) u(P')(-A(s,t,u) + ~ y.(q + q') B(s,t,u))u(p) 

Here the differential cross section is given by-_ 

dcr 
dt 

It is a mattEr of straightforward ca.lculation to obtain the 

s-channel helicity nonflip a.nd flip amplitudes 

-Sine :S)t2E:Ji. + 2IilwB) , 

as well as the t-chann'el helici ty nonflip and flip amplitudes 

f' ++ 

f 
+- (t 

1 
f~ . 

2 I B 
4m )2 

(2) 

where E and'. ware the C .M. energies of the nucleon and the kaon 

rEspectively and ¢ 
have' introduced the definition) 

.2" 
Sln "'t is. the Kibble function. ,We 
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A' 2 
(4m - t)A + m(s - u)B . (4) 

It is convenient to use the variables v ~ s-u/4m and t. Amplitudes 

with even or odd behavior under v __ -v may be formed in an obvious 

way: 

~ [A' ( v , t) ± A I ( -v , t) J 

~ [B(v,t) .+ B(-v,t)] 

and one can derive the following sum rules for these amplitudes,6 

L a. +(t) )a.+(t) 
--=---1 _. (Vl .1 

[a. + (t) + 2n + 2] \ v 0 . 
1 

(5· a ) 

i 

where the a.+(t) are.all the Regge trajectories contributing to the 
1 

, (+) 
amplitude A ,and where Vo is just a scale factor. Analogously, 

\"' __ b-=i_+_ (t_) __ 

L [ai+(t) + 2nJ 
i 

(5. b) . 

. . \ (
.",~ 
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( 
( 

( 

( 
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.. 
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-)-

and 

2n+l (-) 
v 1m B (v,t)dv 

The amplitude A' is given by A' = A'"( +) + A' (-), so that 

onE' is tempted to simply add (s.a) arid (s.b) to get a sum rule for the 

full amplitude A'; however, one immediately noti.ces that whereas (s.a) 

involves an odd moment sum rule, (5.b) involves an even moment sum 

rule. This problem can be overcome by taking a wrong moment sum rule 

for one of the amplitudes (say, A' (-)] and allowing for the possibility 

of nonsense -wrong signature fixed poles. 7 We ,vould like to remind the 

reader that a fixed pole in the partial-wave amplitude. at a nonsense 

value of J with the wrong signature has no effect on the asymptotic 

bE'havior of the physical amplitude. 

When\ve write the sum rule for A', we will have contributions 

from both and 0:. 
1 

as well as contributions from the fixed 

poles, and due to exchange degeneracy the contribution coming from an 

0:. + \vill be cancelled by the contribution of an exchange degenerate 
1 

partner 0:. -, except for the Pomeranchukon contribution ivhich is the 
1 

only one that survives. The sum rule is therefore simplified and it 

reads 

2n+l 
v 1m A'(v,t)dv 

(6.a) 
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Here F.P. represents the fixed poles contribution, which we have not 

v.ri tten explicitly since we will discuss it later. Similar considera-

tions lead to [wrong moment sum rule for 

b p t (VI}' ( ) . )CL (t) 

~ ( t) + 2n \ v 0 + 
F.P. 

It is worth mentioning at this point that the possibility of fixE'd 

J-plane poles not associated with the third double-spectral function 

at right signa ture ;~oints has been rrorosed by Finkler. 8 These roles 

do contribute to the asymptotic behavior of the scattering amnlitude, 

and in particular to the real part of the physical amplitude. 9-13 

Unfortunately, from our FESR formulas [for instance U;.b)} it is 

impossible to tell whether F.P. is generated by a wrong signature pole 

in B 
(-) 

or by a right signature pole in (+) 
B 0 

B. Input 

We use as im~ut the low-energy phase-shift analysis of S. Kato 

14 
et al. (hereafter referred to as "Yokosawa' s solution") which seems to 

be the most recent and accurate at present. In Darticular, we use 

their solution I which seems to be favored with respect lo 

solution II.lS In this solution the Sl phase shifts are repulsive. 
·2 

Since attractive Sl phase shifts have also been proposed 
2 

in the past, we also rerformed our analysis using solution II of Ayed 

16 et al. (hereafter referred to as "Bar eyre ' s solution") ,which is a 

typical solution of this kind, and has been used by Meyers and Salin 

in their work on + 
K P scattering. 1'1 This solution, however, does not 

show the correct threshold behavior, and furthermore is incompatible 

with forward dispersion relations. 18 
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In the case of Yokosawa's solution, a linear interpolation for 

the phase shifts has been performed between 5£ = 0 at threshold and 

0E at Plab = 0.,)2 GeV/c which is the lowest value of the momentum 

in Yokosawa's analysis. This interpolation is consistent with s-wave 

dominance and k2e
+
l behavior of phase shifts at low energies, and as 

a matter of fact it turns out that the contribution from the low-energy 

part of the integrals in the FESR's is quite small, and therefore the 

results are insensitive to this interpolation. 

The cutoff' Values used for the upper limits of the integrals 

in the FESR's are those values of v corresponding to: 

(a) Plab 2.53 GeV/c in the case of Bareyre's solution, and 

(b) Plab 1.89 GeV/c in the case of Yokosawa's phase shifts. 

C. Results Neglecting the Contribution of Fixed Poles 

Throughout this section, we will assume that the fixed poles 

contribution is negligible in all our sum rules, and we will do our 

calculations using and S' o in (6). To leading order in s, the 

condition for s-channel helicity conservation is that the amplitude A 

vanish, or from Eq. (4), that the energy independent dimensionless ratio 

R 
m(s - u)B 

A' 
1 

In the case of Bareyre's solution, and for small t,we obtain R "" 1. 

A plot of R for different values of t is shown in Fig. 2 for 

YOkosawa's solution. The values of R for Yokosawa's solution. are 

clearly inconsistent with s-channel,helicity conservation. As we will 

show later however, different moment FESR's are not compatible with 

each other unless one introduces at least ·one additional J -plane 

singularity. 
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D. Results Including One Fixed Pole 

If one assumes that there is only one fixed pole in a certain 

amplitude, one can in principle calculate its position and residue by 

using different moment sum,rules; however, in practice this method is 

highly unreliable because one has to calculate certain rat'Y5sthat 

are very sensitive to small errors in the sum rules. 19 Therefore, we 

will not attempt to ca~culate the :position and residue of the fixed 

!101e in this fashion. 

On the other hand, WE; can still estimate very roughly the 

magnitude of the relative contribution of the fixed pole to the ,sum 

20 rule as follows: Assume that the fixed pole has a trajectory 

and a residue Yo Let us also assume that E f O. Then, using the 

fact that OJ,(t) = 1, from (6) .'.<le have 

vl 
E 

S' o b +(t) Y + - (~~) , 

S' 
1 

b +(t) 

Vo 

vl 

3vO 

so that. the quantity, 

R.C. 
381 - 80 
3Si + So 

E 

(V )E 'Y . 1 +--- -
E + 2 . vO.. ' 

should gIve us a good idea of the relative contribution of the fixed 

pole to the B amplitude. The same argument holds in the case 

E = 0, for which 

S' o (8) 



.-. 
J 

S' 
1 
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By the way, from the above formulas we see that if there is a fixed 

pole at J = 0 in B, one should use the sum rule S' 
1 

and not S' 
0 

in computing bp ' It is now obvious that for A' one has a relative 

contribution 

R.C. 

given by 

3S0 - ')Sl 

')Sl + 3S0 

The results are shown in Fig. 3; and it is evident that there is a 

negligible relative contribution to A', whereas there is a very 

sizeable contribution to B, for both sets of phase· shifts. 

One might interpret this contribution as coming from broken 

exchange degeneracy; however, the very flat K+P total cross section 

indicates that exchange degeneracy holds very accurately for this 

process (at least at t = 0). 

An alternative interpretation (which by the way happens to be 

consistent with Finkler's predictions) is that the additional contribu-

tion comes from a fixed ]Jole at J = 0 in the B amplitude sum rule; 

i.e., we use (9) to calculate bp(t), and combine this with (8) to 

obtain '(. OncE'these quantities are known, one can easily calculate 

~.. R [see Eqo en ~i by using tJ1e asymptotic behavior of, A' and B in 

Regge theory, Furthermore, one can calculate the ratio [see Eq. (2)] 

1 

R' 
g /S2 sinCe /2) 

+- 's 
g /cos(8 /2) )( m 

++ s. 

for any large value of s. We show our results in Figs. 4 - 6. All 
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the results are shown at the cutoff value of the FESR integrals, and 

in Fig. 6 we also include a plot of R' for s = 10 GeV2 . Bareyre's 

solution is clearly incompatible with s-channel helicity conservation., 

For Yokosawa' s, solution, R is seen to be very close to 1, and R' 

is very small and decreasing as s increases, in' agreement vii th some 

1 · k KN tt' 21 ear ~er wor on sca ·en.ng. Our results are in sha.rp contradic-

tion \-li th those of Meyers and Salin after we introduce the fixed ::::ole 

at J = O. It is now only fair to ask what happens if instead of 

using (6) , one uses a wrong momEnt sum rule for A 
' (1-) 

and a \ITong 

moment sum rule for B (+) . We find that if onE does the calculation 

in this manner, there is no evidence of a fixed pole a.t J = -1, and 

furthermore, all our previous results are essentially unchanged. 
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III. CONCLUSIONS 

As I'le have mentioned befor~, the repulsive 131 
-2 

wave solution 

seems to be favored at the present time, and therefore we will draw 

our conclusions from the results given by Yokosawa's solution. We-would 

like to -('oint out that Yokosawa' s solution is a typical solution of 

this kind, and very similar solutions have previously been proposed in 

the literature.
l
'! Therefore" we expect our qualitative results to hold 

not only for Yokosawa's phase shifts, but also for the other similar 

S,~ repulsive phase-shift solutions. 

The FESR's indicate that in order to have s-channel helicity 

- conservation for K+_ elastic scattering, at least one fixed pole must 

be included in the B amplitude, and in particular, ,s-channel helicity 

conservation is achieved by introducing a fixed pole at J = O. 

Furthermore, there is no evidence of fixed poles in A'. Unfortunately, 

we cannot test Finkler's prediction since we have no way of determining 

"hether our role has right or wrong- signature; and for that matter, we 

may even have a combination-of both types of poles contributing to 

our FESR's. 

A firial remark is in order here. Yokosawa's solution seems to 
'-' 

indicate some evidence for an exotic baryon resonance with strangeness 

+1. If this is the case, and if duality holds for this type of reson-

ance, the fixed pole introduced here may be reinter-pretedas one or 

more very low-lying ordinary Regge trajectories with fairly large 

residues. 

I' 
\. 
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FIGURE CAPTIONS 

Fig. 1. Kinematics of the reaction. ~ = kaon mass; m = proton mass. 

Fig. 2. R as a function of t for Yokosawa's solution I, without 

including fixed poles. 

Fig. 3a. R.C. for B as a function of t. 

Fig. 3b. ,R.C. for A' as a function of t., 

Fig. 4a. Res,idue of fixed pole for Bareyres solution. 

Fig. 4b. Residue of fixed pole for Yokosawg.'s solution. 

Fig. 5. R as a function of t, including one fixed pole at J = O. 

Fig. 6. R' as a function of t and energy in Yokosawa's solution, 

including one fixed pole. 
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