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ABSTRACT

Geothermal systems are receiving more and more attention as an
alternativé SOurce of energy and, consequently, thére is growing inter-
est in attempting to understand thefr nature and behavior. One approach
to this problem is to attempt to deduce the physical fehaviof of such
systems usihg a méthematical model. This paper presents the governihg
equations for energy and mass transfer in porous media thaf must be.
solved in using such models. Fundamental éoncepts that have been devel-
oped for factors that affect the developument of free and forced convec;
tion in geothermal systems under natural conditions are reviewed. The
results of modeling geothermal systems dufing exploitation using lumped-

parameter and distributed-parameter models are also presented.
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INTRODUCTION

Geothermal systems are receiving more and more attentiqn as an alternative
source of energy and, consequently; there is growing interest in atteﬁptihg to
understand their nature and behavior. One approach to this problem is to attempt
to deduce the physical behavior of such systems uéing a mathematical model. Such
a model consists of a set of equations that describe the processes occurring
within the system and thg solution to these equations subject to conditions that
prevail at a particular site.

The model approach has fwo important applications: ‘(l) the geothermal sys-—
tem under natural con&itions before being disturbed by mant;and (2) the geothermal
system during exploitation. Natural geothermal systems have been investigated by
a greét many workefs.' The main thrust of such studies has been to understand how
geothermal systems can form and persist within the earéh's crust.

The mathematical model can also be applied to the problem of evaluating the
behavior of a geothermél system during exploitation. One of the most critical
problems in developing such systems as a viable source of energy is that of deter-
mining that a particular reservoir once discovered is capable of producing signi-
ficant quantities of energy over meaningful periods of time. The model is one
of several tools that can be used to analyze this problem. During>the early
stages, the model may be crude, but its application in pérametric analysis of the
field data can provide valuable limits as to what can be expected. As more data
become available, the model can be refined and such engineering questions as
well spacing, optimum rateS of fluid withdrawal and effects of reinjection can
be studiéd.

In this review, we shall restrict our attention to hydrotherﬁal sysfems,

i.e., to geothermal systems involving water. We shall pay particular attention
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to hydrothermal—convection systems, in which most of the heat is transférred in
circulating fluids rather than gy heat conduction; Two broad types of hydro-
thermal systems are recognized: (1) hot-water, and (2) vapor-dominated (White
1973). -

In the hot-water type, water is the continuous phase throughout the system.
and thus provides the pressure control. Continuity of thg liquid phase is evident
from reservoir pressures that are near hydrostatic and the presence of soluble
salts that are not found to any significant degree in low-pressure steam. In the
vapor-dominated type, steam is the continuous, pressure¥controlling‘phase, although
there is general agreement that liquid water must also be present (Facca and Tonani,
1964, Elder, 1965; Craig,-1966; James, 1968; Mariﬁelli, 1969; Sestini, 1970; White
et al., 1971).

An intriguing question arises concerning the initial_conditions of vapor-
dominated systems. At depths below 350 m, they ail tend to have temperatures
near 240°C and pressures near 35 kg/cmz, which usually means well below hydro-
static (White, 1973). This uniformity in the initial conditions is believed to
be strongly influenced by the maximum enthalpy of saturated steam (James, 1968;
Sestini, 1970; White at al., 1971).

The material and thermodynamic properties of the different components of
geothermal systems are an important consideration in any attempt to develop real-
istic models of such systems. Fig. lvpresents a pressure-enthalpy diagram for
pure water at pressures up to 700 kg/cm2 and temperatures dp to SbOOC. Dissolved
salts are, of course, commoﬁ in geothermal waters and studies on the effect of
salinity on he#t capacity (Nevens and Pool, 1964; Likke and Bromley, 1973), density
(Haas, 1970), viscosity (Matthews and Russell, 1967, Fig. G4), and maximum thermal
gradient (Haas, 1971) of brines are available. Helgeson (1968) has investiga;ed\
the thermodynamic characteristics of the Salton Sea geothermal system where the

highest concentrations, approaching 300,000 ppm, have been found.
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Fig. 1. Pressure-enthalpy diagram for pure‘water and vapor, showing

contours of equal temperature, density and mass proportions
of steam to water. Open circle indicates maximum enthalpy
of saturated steam, 670 cal/gm at 236°C and 31.8 kg/cm2

(after White et al., 1971).
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The thermal properties of récks aré very important since the dominant frac-
tion of the total energy in a geothermal system is in the solid matrix. Compre-~
hensive tables of these properties for dry rocks have recently been compiled by
Kappelmeyer and Haenel (1974). Thermal conductivities f;r most dry rocks range
from 4 to 10 mcal/cm'sec 0C; specific heats are approximately 0.2 cal/g oC; and
thermal diffusivities range from 5 to 15 cmz/sec. Kapbelmeyér and Haenel also
include the effects on these thermal properties of temperature and pressure.

The thermal conductivity of fluid-saturated rocks is depehdent on the con-
.ductivities of the dry rock and the saturating fluid as well as the physical pro-
perties of the rock. Anand et al. (1973} and Somerton et al. (1974) have shown
how thermal conductivities increase with brine saturation and become more sensitive
to temperature change. They discuss correlations for predfﬁting thermal conduc-
tivity from other rock properties.

The hydraulic properties of the rocks are also important since they cqntrol
thé fluid movement. The absolute values of permeabilit? and‘porosity for rocks
vary cénsiderably and must be measured or estimated for any givgn system. A few
workers have studied the thermal effects and report that tﬁe absolute permeabiiity
tends to decrease, sometimes significantly, with increasing temperature (Greenberg
et ai., 1968;vSanyal et al., 1972; Casse, 1974). There are also important effects
of temperature on relative permeability'(Edponson, 1965; Davidson, 1969; Poston
et al., 1970; Weinbrandt et al., 1972; Lo and Mungan, 1973; Ramey et al., 1974).
In studying the>effecfs of pressure, a number of workers (Knutson and Bohor, 1963;
Brace et al., 1968; Vairogs et al., 1971) have suggested that permeability depends
only,on»effective stfess; that is, permeability is dependent only on the differ-
ence between hydrostatic confining pressure and internal pore pressure. However,
Zoback and Byerlee (1975), have recently shown that pore pressure has a signifi-
cantly larger effect on permeability under isoéhermal conditions than does con-

fining pressure.



In this review of the problems involved in modeling geothermal reservoirs,
we shall first present the governing equations for energy and mass transfer in
porous media. Then we shall consider some of the fundamental coqcepts tﬁat have
been developed for factors that affect the development of free énd forced convec-
tion in geothermal systems under natural conditions. Lastly, we shall review the
results of several efforts that have been made to model geotﬁermal systems during
exploitation.

GOVERNING EQUATIONS

Let us éonsider a porous medium completely saturated with a single-component
hoﬁogeneous fluid whiqh can be either in a liquid or gaseous state. The liquid
and gas phases are assﬁmed to be separated locally by a distinct interface due to
capillarity. Since mass may be transferred from one phase to another across the
interface byvvaporization or condensation, it is convenient to write a single mass

balance equation for both phases

9 L L G ?) 9 L L, G G E

3t (¢ Sp +¢ Sp ‘- axi (p vy +p vy ) , (1)
Rate of mass accumu- Convective mass flux

lation

All mathematical sjmbols appearing in the text are macroscopic quantities defined
over a representative elementary volume of the porous medium. For a definition of
these symbols the reader is referred to the Nomenclature.

It is generally believed that capillary pressure between the phases is small
relative to absolute pressure, and as each phase may flow independently, we shall

assume Darcy's law in the form

L
k,, k
L _ _ 4 = Jp__ L
Vi L <8xj P gj) ' @

R T 3 _ G |
\ 5 (ij p gj) - (3)
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The relative permeabilities er and krG are functions of fluid saturation
and, as mentioned earlier, they ﬁay also be functions ofvtemperature. Recent
studies (Coats et al.; 1974) indicate the latter effect is important and should
be taken‘into account.

An energy balance equation must also be considered, and one way to derive
such an equation in terms of macroscopic quantities is to follow én averaging pro-
cedure (see Appendix). EquationvAél is a general form of the Mmacroscopic energy
balance for the case where irreversible vigcouS’dissipation of mechanical energy
and transfer of kinetic energy between fluid and rock are neglected. - An attempt to
derive a set of more general equations considering mechanical interaction between
rock and fluid has been feported recently by B;ownell et al. (1975). It is custom-
ary to assume that ﬁot only is tﬁe_capillary pressure zero, but also thét the solid,

liquid, and gas are 16cally in thermal equilibrium. In this case (A21) reduces to

(A22) which can be written more conveniently without the’angulér brackets as

3 [ o L L ¢ G G s s| _ 3 [eff 3T
it—[das p e +¢S p e + (1-9) p e]— ai(Kij ij>

X

Rate of internal energy accumulation Conductive and dispersive
internal energy flux
] L L _ L G G _G d L G
ax (pevi+pevi)’pax (‘-’i +"i,> (4)
i - i '

Convective internal energy Rate of reversible mechanical energy
flux (work) conversion to internal energy

Our mathematical analysis indicates that

G
1]

eff _. L L
Kij ¢ S Kij

Laboratory experiments show that Keiivis not always given by (5) (Combarnous and

+ -9 € 8, (5)

+¢sG‘;< ;

Bories, 1973, Fig. 6), thus implying that the assumption of local thermal equili-
brium may not always hold. Moreover, as mentioned earlier, thermal conductivity

may also be a function of temperature.

Equation 4 can be reformulated in terms of enthalpy by hriting h - p/p

2}
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instead of e and, as shown in (AZS), one then has

3 L L,L.,, .G G.G s s| _ 3 [eff ar
3¢ [fbs P h”+¢ S p h + (1-¢)p h] ox, <»< 13 axj)
3 (L. L L, G.G_GY, 3(¢p) L, G\op_
- axi< hovy +e h "i>+ 3t +("i +vi>3xi (6)

This is identical with an expression reported earlier by Mercer et ;1.'(1974)
except that we have omitted source terms. |

In the particular case where only one fluid phase is present, the energy equa-
tion can be conveniently expressed in terms of temperature and, as shown in (A31),

one obtains for a liquid saturated medium

L L s sl.ar _ 8 [ eff 3T
[¢ e ‘v + (1-9) o v ] ot ox, (K ij 3x.>
av L 1 J
L L _Lar . fopy Vi | |
-Pvy ‘v axi - T (ST) ox ) (7
: v i

A similar expression hdlds for a medium saturatgd with gas.

The above equations must be supplemented by equations of state relating the
thermodynamic variabies e, h, p, H, S, p, T. Here it is customary to assume that
all phases are in equilibrium and that thermodynamic relatidnships between macro-
scopic quantities remain the same as those between the equivalent point quantities.
In pafticular, the macroscopic saturations SL and SG are assumed to be uniquely
determined by the pressure'and total energy or enthalpy of the fluid (both phases'.
combined). 1In other words, whenever two phases occur simultaneously at a point in
the system, their p-T relationship 1s uniquely determined by conditions at the
vapor pressure. .

Although capillary pressure is neglected in the governing equations, it may
still have an important effect on thermodynamic properties. Ramey et al. (1973)
explain that the vapor-pressure curve in the presence of uneven capillary surfaces
may be lower.than that quoted in steam tables. Calhoun et al. (1949) showed that

in consolidated sandstones the vapor-pressure curve at 36°C is significantly
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affected by a decréaSing liquid saturation. However, Cady (1969) and Bilhartz
(1971)’were unabie to confifm this effect on unconsolidaﬁéd sands with tempera-
.tures between 121°C and 240°C. The effect of capillary pressure therefore remains
unclear. ' , : B i : .

‘Some geothermél systemc such as those in Impérial_Valley (Californié) involve
Qéteré of high sélinity which cannot be”trédted as a h0m§geneous fluid because
salt concentrations ére not uniform. 1In this case the mass as well as energy
balance equations (see Appendix) may have to be modified'tq include a term for
dispersive mass flux and an additional equatién for maésvbalance of the solute}
Another complication may arise due to coﬁpling betweeh‘thermal and chemical gradi-
ents which modifies the form of Fourier's law of heat conduction (Dufour effec;)
and Fick's first laﬁ of diffusion (Soret effect). The presence of sal£s may also
cause a slightvlowering of the vapor-pressure curve (Haas; 1971; Ramey et al., 1973),‘
and this/effect becomes progressively more important as boiling proqeeds, due to.
the increas;ng salt céncentration (White, 1973). Very'little.is known about the
ﬁehavior of these so-éalled thermohaline systems,'but a few theoretical analyses
have appeared (Nield, ‘1968, 1974; Rubin, 1973, 1975 a,b,é). The discussion that

follows will be concerned solely with homogéneous fluids.

"GEOTHERMAL SYSTEMS UNDER NATURAL CONDITIONS

Fundamental Characteristics of Free Convection

Mathematical modeiing related to geothermal systems hasklong centered on pro-
blems of convectivé heaﬁ transfer in a homogeneous porous léyer heated from below.
Pionéering work on this subject has been performed independently by Horton and
Rogers (1945), Lapwood (1948), and Goguel (1953). Their efforts were directed
primarily toward developing criteria for the onset of convection currents in a
horizontal #nd latefally infinite layer. These analyses followed ﬁhe pattérn of
earlier work by Rayieigh (1916), Jeffreys (1930), and others who showed that in a

static layer of viscous fluid the critical temperature grédient (i.e., the



10

" gradient at>which ééllular or Bénard convection is formcd).depends on.thcrmal con-
ductivity, thermal coefficient of expansion,‘kinématic viscosity, thickness of the
layer, and the bbundary conditions. Wheh fluid cannot enter or leave the Sysfem,

the resulting flow battern is referred to as "natural" or "free'" convection.

When fluid flow is entirely due to hydraulic forces acting>at the boundaries, the
result is known as "foréed" convection, whereas "mixed"»éénvection includes a combin-
ation of both phenomena. Early work on the subjeét was festricted to free convec-
tion.

In reviewing thé mathema;ical approach to free éoﬁVection in porous media, we
find it instructivevté follow a recent development by ﬁe¢k (1972). Consider a
rectangular box of porous material resting on a horizontal surfacc and saturated
by a homogeneous liquid (see Fig. 2). The vertical sides are thérﬁally insulated
-(i.e., adiabatic), and the lower (z = 0) and upper (z = Dj.éurfaces are isothermal.
Temperature Tl at the bottom is greater than TB at the cop; gnd all boundaries
are impermeable fo fiuid.

In most analytical studies of thermal conVection;'it:is customary to invoke
the Boussinesq approximation that spatial aé well as teﬁporél variations in f]uid
density can be neglected except for buoyancy effects (i}e.; everywhefg except in
the gravity term in the equation of motion). 1In addition,:all coefficients in the
governing equétions arebassumed to be constant scalars. Under thesé conditions

the mass balance equation 1 reduces to

oV’ .
i _
8x1 0 . (®)

In writing Darcy's law, it is customary to replace p by Py [1 - B(T - To)] in the

gravity term and add a term including the time derivative of velocity (compare

with Eq. 2),

v ' : .
1 1, u - - e -1 3p
¢ 3t + kpo vi [l 8 (T TO)] gi po axi . (9)

w
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Fig. 2. Rectangular box of porous media sat-
urated with a homogeneous liquid.

~Fig. 3. Two convective rolls in rectangular:
box heated from below.
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~ Energy balance is usually expressed by a simplified version of equation 7, and

Beck writes, using our notation

- 2
eff 9T _ oT eff 3° T
(pcv) 3t = " P Sv Vi ox t K 2 (10)
i x
- i
eff _ S S
where (pc,) = ¢ p, e, ¥ (1-9) P c
Initially, the system is assumed to be in static equilibrium so that the
pressure is hydrostatic. Thus,
o o _ _ z :
vy - (0, 0, 0) and T~ = Tl + ('1‘o Tl) D (1)

Under these conditions, there are no convective currents and the system is said to
be "statically stable." Let a small volume of fluid suddenly be brought from eleva-
tion z = 0 to a highervelevation z > 0, thus superimposing a disturbance (vi', T',
p') upon the "basic state" (vio, To, po). We now want to determine whether or not
the system is '"dynamically stable," i.e., whether this disturbance will die out or
build up to the level of a discernible convective currehf? Equations 8 - 11 as
well as the boundary conditions must be satisfied by the disturbed state as well
as by the basic state. Thus, by writing these equationsrfirst in terms of

o

(vi + vi', To + 7', po + p') and then in terms of (vio, To, po), we can subtract

the second set from the first to obtain

ov,'
1 | |
o=, = ° | | - (12)
av 1]
1 _ i 2 vV e o ' 1 3p' '
¢ ot Tk Vi BT & - b . (13)
o o i |
v ) A
eff 3T' _ _ . 9(To+1') | eff 3T
(pcv) at o Sv Vi ox T« 2 (14)
i ox
i
subject to the boundary conditions
vi' n, = 0 at x= +4 a3 y= +% a,3 2=0, D | (15)

T =0 at 2=0,0D | (16)
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aT! = = 4 1 . = .
axi ni - 0 at X -:t 1 al, y i ;ﬁ az : (17)

where n, is the unit outward normal to the boundaries Qf;the box.

To reduce these equations to a dimensionless form it is helpful to use the

following dimensionless groups:

Thermal diffusivity: o = Keff/(éo cv) C (18)
Rayleigh nu@ber: Ra = k Py & B (Tl—To) D/(ua)‘ (19)
Prandti number : 'Pr = kcxpo/(u D2 ¢) v ,... 7 (20) .
Heat capacity ratio: H = (pcv)eff/(po c,) A (21)
Aspect ratios: D1 = al/D; D2 =’a2/D . ., : (22)

The Rayleigh number relates buoyancy to viscous retardation, whereas the Prandtl
number relates thermal diffusivity to viscous retardation. If we also define a

set of dimensionless variables

1
= Y 3 = ' - = ] !i
v; =D v, /(o Ra®) 06 =T /('I‘l To) Pp k p'/(u a Ra®)
T = to/D X = x/D Y=y/D z=2z/D
we can rewrite (12) - (17) as
axi
oV : op
1,y =nRat - D
Pr 57t Vg = Ra ] 613 axi (25)
zero for
i=1,2
H 8 .. R.a;5 \Y 8 _, Rak v, 6., + 33—9- (26)
9T i axi i 713 3% 2
. . "
zero for |
i=1,2
Vyn, =0 at X=+%D; Yai}snz; z=o.,,».1 o  (27)
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0 =0 at 2=0,1 (28)

30 .
Prudihu NN = = !/ . =
3x1 n, 0 at X=4#41% Dl’ Y=+ D2 (29)

The dynamic stability of this system can be investigated by a linear méthod
or by an energy approach. In the linear approach the disturbances are assumed to
be small enough for'secénd—order terms to be neglected. The conditions for marginal
stability (i.e., stability just at the onset of convection) can thus be determined

from the above equations after reducing (25) and (26) to

, o ap _ :
Ra®™ 6 643+ vy 3X, ' o (30)
» B 2 .
Ra% v & = - a6 (31)
i 13 2
, . ') ¢
i
. ' linear
According to the linear theory, the critical Rayleigh number, Rac , is the

 smallest eigenvalue of the resulting problem. ' However, this theory indicates only

a necessary condition for stability, and the true critical Rayleigh number may

Itrue» - 1linear

therefore be smaller, Ra_ < Ra_ .

The energy method was first applied to poréus media by Westbrook (1969) and
was later extended by Wankat and Schowalter (1970) and Beck (1972). Stability is
established relative to arbitrary disturbances subject only to the equation of con-
tinuity and corresﬁonding'boundary conditions. Since stability actually depends on

. a more restricted class of disturbances satisfying (24) - (29), the critical Ray-

leigh number obtained may be too conservative and we therefore have Racenergy.i

Ra true

c . However, in the particular case considered here, both methods lead to

linear Ra ©0ET8Y

the same eigenvalue problem and therefore Ra_ c

Beck showed that the eigenvalue problem has separable eigenfunctions, the

velocity components of which are
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v =sin [¢: nm)(1 + 2X/D)] cos [¢ )@ +‘ 2Y/p,)] U (2)
v, =cos [(s mm)(1 + 2X/D,)] sin [¢s nm) 1 + 2¥/D,)] V (2) - (32)
v = cos»[(% wm) (1 + 2x/D)] cos [(5 nm) (1 } 2Y/p,)] sin (2112)

m,ﬁ =0,1,2, ... . L =1, 2,
where U(Z) and V(Z) are. functions of Z only. The‘corrésponding critical Rayleigh

numbers are

Ra_ = w2 min (b + 2%/0)2 = womin b+ b 2 @33
o £,m,n . m,n '
* 1 o
where b = [(mZ/Dlz) + (nleZ?)] and L= 1.

C Equatidﬁ 33 shows that the critical Rayleigh;nﬁmbér depends entirely on aspect
ratios Dl and D2. bThe minimum possible value of RacViskdnz corresponding to b = 1.
Lapyood'(1948) obtainéd Ra, = 472 for the case of a latgfaiiy infinite layer, thus
indicating that vgrtiéal walls tend to stabilize the system. Howe?er,vRac remains

nearly equal to 4n2 unless D1 or D, are less than about 0.8, as may happen in a

2
narrow and tall box.

Geometry becomes ﬁore important when one considers the mode of convection.
It is evident from (32) that when m = 0, the horizontal velocity'vl vanishes,
which gives rise to n convective cells known as "rolls"‘(sée Fig. 3).’ Since RaC
corresponds to»i = 1,'v3 in (32) is identically zero only atz = 0 and 2 =1,
and thus the vertical extent of each roll is equal to the height of the box. A
__typical temperature profiie in a plane perpendicular to' the axis of such a roll
is shown in fig. 4., Rolls are invariably preferred over three-dimensional cells
whenever the height ﬁ is not the smallest dimension. When rollé do form, they
are usually parallei to the shofter side, although the overriding rule is for
the number of rolls and the direction of their axes to be such that each roll has

the‘closest approximation to a square cross-section as possible. Three-dimensional

cells are preferred when al; a,, and D are nearly the same size (i.e., a cube)
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- Fig. 4. Typical temperature distribution in
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Sorey, 1975). '
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or when.the height 1s less than both latefal dimensions. For a cube, the motion
resembles a toroid with verticai axis through the center of the box. For further
details regarding these conclusions, the reader is referred.to Beck (1972).

It is importaht to recognize that all of these results have been obtained
from an analysis of mérginal stability and are fherefore limited to Rayleigh
numbers in the immediate neighborhood of-Rac. In order to ébtain results for
: higher Rayleigh numbers one must either perform experiments or solve the governing
equations by an appropriate analytical of numerical technique. A large number of
such studies concerned with both steady and nonsteady state situations have been
reported in the literafure and we shall try to summarize briefly some of the most
important aspects of this work.

One effect of convective motion is to increase the rate of vertical heat trans-
fér through the system. This is measured by the Nusselt number, Nu; which is defined
as the ratio of total heat flow in the presence of convection to that by coﬁduction
only. For Rayleigh numbers less than the critical valué; Nu = 1; otherwise Nu > 1.
Fig. 4 shows the steady state temperature distribution corresponding to a roll at.
Ra = 100 for which Nu = 2.6.

| According to thé criterion of Platzman (1965), a system will tend to establish

a mode of convection which maximizes the rate of heat transfer. At Rayleigh num-
bers near Rac, this ﬁeans that cells with nearly square»croés sections are preferred.
However, at large Rayleigh numbers, Combarnous and Bories (1973) and Horne and
0'Sullivan (1974) show that the preferred cell width depénds on Ra, with aspect
ratios of 0.5, .33, aﬁd .25 corresponding to Rayleigh numbers of 280, 400 and 700,
for layers with no restraiﬁing side walls. Similar effects of reduced cel% width
with increased Ra are observed for box models with restrain;ng side walls.

Combarnous and Bories (1973), Holst and Aziz (1972b), and Sorey (1975) found that

Nusselt numbers are nearly the same for two- and three-dimensional motions in stable
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convection states. The relationship between Ra and thg‘méximhm Nstelt number fdr a
1aterally infinite iayer ié plotted in Fig. 5.

Sorey (1975) further-indid;tes=that the cellular pattern and ﬁusselt number
'at>steady state may depend on the initial conditioms in tge box. Using uniform
initial temperature and.pressure distributions in a équére (two—diﬁensional problem)
with Ra = 100 led to development of two éells with Nu = 2;2} With a non-uniform
temperature distribution, the result was a single cell Qitﬁ Nu = 2.6. Horne and
0'Sullivan (1974) report from numerical as well as laboratory éxperiménts that for
a uniform initial tembérature distribution, heating the lower boundary slowly
insteady of instantaneously results in unicéllulaf rather than multicellular motion.
In othér.words, the.éode of convection is not neceSsaril& unique but may depend on
the past history of‘the system. A.hysteresié effect has also béen noted by Elder
{1967). and Karra (1968).

As Ra increases to 280, the system tends to develop a more favorable mode of
convection and, as a result, the fluid may start fluctuating. These fluctuations
will be irregular when the boundary conditions are uniform, but may develop into
stable oscillations when the boundaries are heated in a nonuniform fashion. Hdrne
and O0'Sullivan (1974) report isotherms during a single oscillation when half of the
bottom boundary has an elevated uniform'temperaﬁure as shbwn in Fig. 6. A rough
calculation for the Wairakei geothermal region indicates that, if the depth is 5 km,
the oscillations would have a time constant on the order‘of 1000 years, and it
would therefore be practically impossible to detect them.

Free Convection Models

Numerous authors have attempted to extend the analysis of free convection to
more realistic systems. There are, however, sgveral complicating factors. The
concept of a critical Rayleigh number may not apply in geothermal reservoirs where
horizontal temperature variations undoubtedly exist along bounding sgrfaces; Free

convection is then set up for any value of Ra > 0, although its effect on the
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Fig. 6. Isotherm plots at equal intervals of time
during a-single stable oscillation with
Ra = 750 (after Horne and 0'Sullivan, 1974).
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Fig. 7. Distortion of isotherms due to convection
in central permeable layer (after Sorey,
1975). ' '
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thermai and hydrologic regimes should be negligible unléss Ra is large. Donaldson
(1968b) estimates that in geothermal areas Ra is in thé range of 500-5000.
Caltagirone et al.;(i97l) suggest the concept of a local Rayleigh number which
varies spatially within the reservoir to account for the fluctuating convective
motions observed.

Combarnous and Bories (1973) evaluated the effects of assuming thermal equi-
librium between solid and fluid phases (Eqs. 4-7) for sysfems with Rayleigh numbers
well above theoretiéal critical values. Comparisons of experimental and numerical
results for the relationship between Ra and Nu numbers using various combina-
tiqns of porous media and fluid types indicate that the assﬁmptiOn'of thermal equi-
librium between solid and fluid phases is adequate for Ra at least as high as 2000.

Holst and Aziz (1972a) and Sorey (1975) investigated>effects of temperature
and bressure—dependenﬁ parameters on heat transfer in coﬁvecting systems. For
water, the dominant influence 1s the viscosity variation such that as the tempera-
ture difference across the permeable layer Tl-To increases, the effective Rayleigh
number increases over the value calculated from equation. 19 using parameters com-
puted at T = T,- Thé Nusselt number would be correspondingly greater and the
critical Rayleigh numﬁer, lower than for the constant parametef case. Alternatively,
if pafameters are‘evaluated at T = (Tl + TO)IZ, values of RaC and the Ra versus Nu
relationship stili vary with T1 - To due to the nonlineérity in the temperature
dependence of Cyo P, and u (Sorey, 1975). In contrast, realistic variations in
fluid density with pressure were found to have negligible effects on the cellular
convection problem.

Studies have also been made on the effect of various.uniform boundary condi-
tions at the surfaces of the homogeneous region on Rac.v Lépwood (1948) investi-
gated a laterally infinite layer in which the lower boundary is impermeable and
the upper boundary is maintained at constant pressure and found that Bac = 27.1.

' Lap&ood also found that when the upper boundary is a perfectly conducting free
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surface, then Rac = 47" ; but when it becomes an imperfect conductor, then

27.1 f_Rac f_4ﬂ2. " A table of Rac values for a variety of uniform boundary condi-

tions is given by Nield (1968) and in all cases, Rac 5_4n2.

Donaldson (1962) an&ined free convection in a two-layer systempin which
a permeable layer was underlain by an impermeable but thermally condﬁctiﬁe’layer
of equal thickness. This removes the assumption of an isothefmal surface at the
bottom of the cohvecting layer. Sorey (1975) extended,the énalysis to a three-layer
.system with impermeable zones above and beiow the reservoir and found, in agreement
with Donaldson's reSulté, that vertical heat transfer rates in the multilayer éys—
tems were significan;ly less than in the single-layer sys§Em for the same values of
Ra. The critical Rayleigh number was also less for the mpléilayer s§Stems. Fig.

7 shows how temperatutes within the impermeable layers ére_distorted by convection
in the central layer.

Some work has'aiso been done on the problem of an inclined system bounded by
isothermal surfaces (Combarnous and Bories, 1973; Kaneko et al., 1974). Combarnous
.and Bories show that, since the temperature gradient and gravity are‘no longer
colinear, the fluid is constantly moving regardless of the Rayieigh number. In a
layer of infinite lateral extent, the tendency at low Rayleigh numbers is to dev-
elop unicellular convection parallel to the slope. If ;his'is considefed‘;he stable
state, instabilities dgvelop at critical Rayleigh numbers which depend on the angle
of inclination. When'this angle is less than 150, RaC ~ 40 and the mode of con-
vection is similar to that obsefved in a horizontal layef; Above this lower limit,
Rac increases rapidly with the angle'of inclination and coﬁvective mo§ements take
the form of adjacent coils climbing upslopé. Fluctuating conditions develop at
higher and higher Rayleigh numbers (Ra 2_240 - 280 for hﬁrizontal layer) as the
angle of inclination increases. The case of the inclined box is more complex

(Holst and Aziz, 1972a; Kaneko et al., 1974).
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Wooding (1963) and McNabb(1965) have studied the effect of localized heat
sources on the formation of vertical jet flows. McNabb developed a boundary layer
theory for conveotive flow over a finite circular "hot plate'" at the bottom of a
semi—infinite porous medium. He estimated the amount of.heat convected from the
hot plate as a function of its temperature and suggested that a similar approach
could be used_to‘evaluafe the rate of cooling of a magma chamber beneath a water
saturated porous fofmation . |

Cheng and Lau (1974) have investigated steady state free convection in a verti-
cal cross section of an unconfined aquifer in which the, position of the water table
is not known a priori. The aquifer is assumed to rest on an impermeable horizontal
heat source of variable temperature and is bounded on its sides by vertical iso-
thermal surfaces of constant hydraulic head, representing contact with the ocean on
a volcanic island. Dispersion and gravity effects due tovvariations in salt con-
tent between fresh water and sea water (mixing occurs by Qirtue of the vertical
boundary conditions) are‘implicitly neglected. By solving a linearized version of
the governing equations, the authors show that pressure in the aquifer ;emains
nearly hydrostatic. Temperature is greatly affected by the size of the heat
source but its 1océtion is less important. There is a noticeable upwelling of the
water table directly above the heat source, which depends primarily on vertical
temperature gradients and nature of the heat source. |

Much additional literature on various theoretical ano experimental aspects of
free convection in homogeneous media is available. Holst (1970) has published an
extensive review of the literature and the state of the a:f has been summarized
more recently by Combarnous and Bories (1973). For subsequent developments, the
reader should consult the works of Fernandez (1972), Holst and Aziz (1972 a,b),
Masuoka (1972), Palm et al. (1972), Sun et al. (1972), Gupta aod Joseph (1973),
Cheng and Lau (1974), Combarnous and Bories (1974), Horme and 0'Sullivan (1974),

Kaneko et al. (1974), Straus (1974), Yen (1974), Weber (1975 a,b), and Sorey (1975).



Pipe Models

An alternative concept for convection in geothermal areas is the pipe system
in which the fluid no longef flows through a homégeneoué layer but is channeled
through zones of relatively high permeability. Such zénéé’may be caused by fis-
sures or fractures which are known to control iocal phenomena such as springs,
fumaroles, and géySeré. .As discussed by Einarsson (1942); Bodvarsson (1961), and
Donaldson (1970), the occurrence and distribution of thermal areas in‘Iéeland and New
Zealand could be controlled by variations in permeabilitf as well as by.spatial dis-
tribution of the heat:source.

Einarsson (1942) and Bodvarsson (1961) discuss the thermal areas of Iceland in
terms of pipe systems involving deep circulation bf water (2 to 3 km) and discharge
in hot springs. Elder (1966) analyzed hydrothermal systems in Iceland and New
Zealand using lumped‘pafameter'and multi-dimensional models to quantify the géneral
geatures of heat and mass transfer. White (1957, 1961) used.pipe systems to explain
the chemical composition of waters associated with volcanic and hydrothermal systems.

Donaldson (1968b, 1970) suggests the model in Fig;_8 for a hot-water geothermal
system. The model consists of cold reservoirs rechérged_from the surface, a verti-
cal column through which hot water flows, and a permeable horizontal channel connect-
ing the two. The sﬁtrounding medium is assumed'iméermeable; and heat supplied at
the.lower boundary maintains the density imbalance and reéulting convective motion.
Though the model is oversimplified, Donaldson's analysis allows for throughflow
from récharge to discharge areas and secondary (circulatofy) convection in fhe
upflow column. Gross characteri;tics of hydrothermal systems are simulated by
adjusting temperatures at the base of the model, dimensions and permeability of
the vertical column, and resistance to flow in the remainder of the pipe system,

Mathematical description of the model involves the single phase, steady state
equivalents of (1) andv(7) which are solved by numerical ;elaxation for the bound-

ary conditions shown in Fig. 8. Uniform thermal properties are assumed throughOut
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and constant values for k and Y are used in each of the permeable channels. In the
absence of secondary convection in the upflow column, the mean mass flow rate is

given by
o o Lo kBB T
(u/p) b

(34)

where Tm = mean tempetature in the column and b = 1 +.aL/le+ A/D. It is not clear
from Donaldson's analysis whether u/p is determined at To_or Tm. " Fig. 9 illus-
trates the relatiohship between Ra and Nu with throughflow_and secondary convection
for a column aspect ratio 2a/D = 0.5. Here W = o, k B 'g‘(T1 —vTo)/(u/p) is a mea-
sure of the maximum possible throughfloﬁ from buoyancy unbalance alone. Hence,

Q/W = [(Tm - To)/(T1 - To)]~(1/b)' It is seen from Fig.‘9 that the heat transferred
by.circulatory flow decreases markedly as the th:oughflqw increases. Fig. 10 illu-
strates how throughflow in a column with éa/D = (0.2 and Q/Q‘= 0.05 tends to sweep the
circulatory motion up the channel.

Sorey (1975) modeled heat and liquid mass transfef in hot spring systems using
the two-dimensional models shown in Fig..ll. Transient and steady state con&itions
were simulated numericaliy to'deﬁermine éonductive heat losses from the vertical
conduig and its'effeét on temperature Tsp of watef discharging at the spring.

The lower bdundary was formed by the top of a reservoir with water at temperature

Tb’ and the upper boundary was'the land surface at temperature TS. The relation-
ships between dimensionless temperature drop, 1 - Bsp, and the‘dimensionless mass
flow rates for the circular conduit, mc; and the fault plane conduit, mp, are

plotted in Fig. 12,

f

Expressions for the total conductive heat loss are [2# Ke £ D.(Tb'- TS) mc
Q- Gsp)] for the cylinder and [2 et p (T, - T.) , Q- esp) L/a] for the

b
plane. The plane model applies where fluid rises in a fault zone whose lateral
extent isconsiderably greater than the discharge area of the hot springs. Compar-

ing the two .models for the samé total mass flow, the fault plane model has greater
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Fig. 11. Two-dimensional models for hot spring
systems (after Sorey, 1975).
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conduit, m , and fault plane conduit, m_, in
hot springcsystems (after Sorey, 1975).
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heat loss and more temperature drop than the cylindrical conduit model.

The stea&y—state temperature distribution iﬁ a fault plane model with a spring
discharge of 100 lpm is shown in Fig. 13. Distortion of the temperatures due to
convective motion in the conduit is confined to a zone of’ébout 1 km on either side
of the fault. At the land surface, the conductive heat riux near the spring is
approximately 50 heat flow units (50 Hcal/sec cmz) and decreases to about 3.4 heat
floﬁ units as distance exceeds 1 km. These results were obtained using Keff =
2 x 10_3 cal/cm sec oC'and c, =1 cal/gm °cC.

Analysis of the transient behavior of these systems (Sorey, 1975) shows that
periods of 30,000 years or more are required for the conductive thermal regime to
reach equilibrium foilowing the geologic development of the spring system. Somewhat
shorter time periods are required if convéctive motions in the rock surrounding the
spting conduit are considered. Simulationé under these co;ditions are described by
Sorey (1975).

Analysis of pipe models has been extended by Elder (1966) and Donaldson (1968a,
1970) to include boiiing in the upflow channel. Elder hés developed relationships
between mass flow rate, fluid enthalpy, resistance to fléw, and the energy supplied
by a heat source for channeled circulation caused by buoyancy differences between
recharge and discharge areas. He concludes that for systems with large enérgy
input of large resistance, the discharge (mass flow) is not sufficient to transporﬁ
the energy unless the fluid moves in the form of steam. . With low energy inputs or
small resistance, the circulating fluid should remain a 1i§uid except for a shallow
zone which may contain steam. This approach has been apﬁlied to the Tuscany thermal
areas near Lardarello, Italy, and the Taupo systems in New Zealand.

Donaldson's (19683) work involves steady flow of a boiling liquid in a verti-
cal channel. The remainder of the circulation system including the heat source
is considered only as.controlling temperature, pressure, and mass flux at the

bottom of the discharge channel. Lateral heat conduction is neglected so that the
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T —— T
m/k=3x10% g
260
P
’220 —
et
3
° 4
o I180{f 3xI10 —
g 03
3xi
2 .
140 —
100 | ] l
0 . 200 400 . 600 800
: Depth,meters
Fig. 14.

Temperature versus depth in a boiling system as a
function of m/k (after Donaldson, 1968a).



30

equations are one-dimensional. For the case of uniform permeability and small
mass flow rate, only liquid flow is considered. Comparison of the resultant pres-
'sure-depth relations with saturation pressure curves indicates that boiling will

eff <7x 10—5 cm—l, where m is mass flux per

not occur for systems with c m/K
unit area. When thisAcritical value is exceeded, boiling must occur in the upper
section of the channel.

Two-phase flowjin this upper region is described b? the one-dimensional, steady
state forms of equations 1 - 3 and 6 without the préssuré.terms. At the interface
between the two—phése and liquid-saturated regions, the boundary conditions are
constant maés flux and constant temperature equal to that at the channel base.

Thus, the lower regioh is treated as isothermal, and in the upper region, tempera-
ture and pressure are related by the vapor pressure curve.for water. The equations
~are solved analytically to yield temperature and pressufe,vwater fraction,vand water
and steam flow rates as functions of depth. The controlling parameter in these
relationships is m/k as seen in Fig. 14. Thus, the onset of boiling is indicated by

eff

the value of ¢, m/K » whereas when two-phase conditions exist, the controlling

parameter is m/k. Effects of vertical heat conduction are significant only if

eff 8

k" /k is greater than 3 x 10 °

cal/cm3 sec C. analdsoh'concludes that once boil-
ing commences, it must extend some 200 - 500 ﬁeters downwafd and hence this two-
phase region must be comnsidered in studying geothermal systems. Two-phase condi-
tions in columns with variations in vertical permeability have also been discussed
by Donaldson’ (1968a, 1970).

GEOTHERMAL SYSTEMS DURING EXPLOITATION

Lumped~-Parameter Models

The concept of a lumped-parameter model provides one bf_the simplest means
for describing behavior of a geothermal system during exploitation. The basic
idea is to view the entire system as a perfect mixing cell for both mass and

energy so that spatial variations in concentration can be neglected. Instead of
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considering the internal distribution of mass and energy; attention is restricted
to the total ambunts generated within the system as well as that crossing the
boundaries. Since tiﬁe is the only independént variable, the system can be char-
acterized mathematically by a set of ordinary differentia1 équations or an equiv-
alent set of algeb:aiﬁ expéessions representing total méss and egergy balance.

The first and best known lumped-parameﬁer model of a producing geothermal
reservoir was developcd by Whiting and Ramey (1969). Their system -has a bulk
volume V and contains vapor, water, and rock. Figufe lS is-a schematic diagram
of the system from which a simple mass balance yields

Mc - Mo» = Me f Mp - MQ .. ' (35)
where Mc ='current‘mass of water'(vaéor + liquid) in place, Mo = jpnitial mass of
water in place, Me = influx of liquid (no'vapor is assumed to enter the system),

Mp = mass of water (vapor + liquid) produced, and MQ = mass of water'(vapor +
liquid) lost by leakage. Water may flow in from an adjaceﬁt aquife; or leak out

of the system via steam vents,'springs, wild wells, etc. The wgter influx, Me, is
represented by a linear gombinatién of terms each of which is the product of a theo—
retical time-dependent response function characterizing a certain aquifer flow
geometry (hemisphericai, linear, or radial) and pressure. Theéé calculations
further assume thaﬁ the liquid inflow is isothermal with qonstant enthalpy, he.

In the energy balance calculation the system is assumed to be in complete
thermodynamic equilibrium. According to the first law of thermodynamics one then
has

eff

M_e =M e +V (1-¢)(pc )% (T - T)

Internal energy Internal energy change
change in fluid in solid rock

= - Q “+ Me he - Mp hp-- MZhl . (36)
Net conduc- Net convective

. tive heat enthalpy influx
influx ' v
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with enthalpy h,
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Schematic diagram of lumped-parameter model for geo-
thermal systems (after Whiting and Ramey, 1969).
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Fig. 16. Comparison of calculated with measured pressures for

Wairakei geothermal system (after Whiting and Ramey, 1969).
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The volume V can be éxpressed as
G G, , G L G G G L
) _Mo[sovo+(1so)vo] Mc[chc+(lsc)v] (37)
G . ' G L . '
where S 1is vapor (gas) saturation and v and v are specific volumes of vapor and
liquid, respectively. The phase diagram for water (see.Fig. 1) indicates that in
the particular case where the system contains only compressed liquid, the thermo-
dynamic path of decreasing pressure due to production will be essentially isother-
mal and isoenthalpic. Equations 35-37 then lead to a mass-volumetric balance simi-

lar to that employed for petroleum production above the bubble-point,

L

L. (M, + M) v =0 | : (38)

Mb (vL - voL) + Me v
Additional working hypotheses made by Whiting and Ramey are that Q is negligibly
small relative tb other terms in (36) and that hp = hz (1Le;, the enthalpy of pro-
duced and lost fluid is the same).

The compressed liquid version of this lumped-paraﬁeter_model was applied by
Whiting and Ramey to the Wairakei geothermal system in New Zealand. The initial
temperature and enthalpy were estimated from field data, and a least-square fit
to the production history from 1956 to 1961 was used to_dgtermine the initial water
in place and the initial pressure.' The model was then_used.to predict performance
thréugh 1965 and agreement with measured data was excellent (see Fig. 16). Predic-
tion of future performance from 1966 to the year 2000 took into account ;wo—phase
~ conditions and indicated that pressure and temperature Qodld decrease very little
during this period. Recent field data from Wairakei have shown this prediction
to be incorrect. The model was also used by Cady (1969) to simulate a laboratory
setup but hgd to be épplied separately to the two-phase'#nd dry steam regions
that developed. |

Brigham and Morrow (1974) have adapted the lumped-parameter approach to
vapor-dominated systems (i.e., systems with a significant dry steam region) by

A

considering three different distributions of vapor and liquid. 1In each case
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the system is assumed to be completely closed (i.e., the Soundaties are imperm-
eable and adiabatic) and energy is derived onlyhfrom the rock mass itself.
Their first model concerns a single-phase system'comﬁletely saturated with
vapor. They assume ghat since the heat capacity of solid rock is much greater
than that of steam, the éystem is essentially isothermal. Thus, there is no need
for an energy equatibn and one can use a mass balance appréach similar to that
commonly employed in natural gas reservoirs. This appfoaéh leads to a linear
relationship.between p/i and cumulative éroduction AMG accordiﬁg to the equation

of state for a real gas,

P p Mm% p fmC - »
1 _ Co 1 _ 0 [o) : v (39)
- 2 CZo G YA G :
1 o M o M
. [o} o

where Z is compressibility factor, MG is mass of steam in place, and the subscripts
indicate different values of time. The intercept of thié line on the abscissa is
équal to the original fluid in place, Mbc.

In the second model the vapor phase is separated from an underlying layer of
liquid by a horizontéi interface at which boiling takes place. Since the vapor
phase is again assumed to be isothgrmal, its treatment is similar to.ﬁhat in the
previous model. The liquid phase changes ité volume continuously and the corfes—
ponding lumped system is therefore defined as'the'pdre space filled with liquid at
the beginning of eéch.pressure deérement. For this system the mass balénce is
siﬁply . _

- - | (40)
whereas the energy balance for the fluid is expressed as
MlL elL + Mlc EG - MOL eoL = Mls cps (To - Tl)

Internal energy change Heat transferred from
rock to liquid

T +7T '
‘(v S s\ R _o_ 1 L_,L_ G\
+ (Mo Ml») c, (To 5 ) (Mo M T - M ) h (41)

Heat trans:ierred from rock to Enthalpy of vapor
steam _ _ leaving system
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where Ms is mass of rock in contact with liquid, ﬁc is évéfage enthalpy of vapor
leaving system and EG is average internal energy of vapor (both calculated at
the averagé temperature (TO + Tl)/Z) and the subscripts o and l_indicate the
beginning and end of.a depletion step, respectively. Brigham and Morrow further
simplified this équation by ceformulating it in terms of énthalpy and neglecting

the resulting pressure terms and obtained

L. L L., L. S S
T - T ‘
S sy s o 1) (L _,L):G
+(M° .Ml ) <5 (—————2 ) (*10 Ml ) h (42)

Given a rate of production, the resulting system of nonlinear equations can be
solved in an iterative manner. _ |

The third model considers a vapor phase overlying'é layer of iiquid exéept
that now boiling onnurs throughout the entire thickness of this layer and its
depth remains fixed in time. The resulting energy equation is essentially similar
to that of Whiting and Ramey (1969) with the exception ;hat only steam is allowed
.to leave the system. ’ |

Application of these models to various hypotheficél reservoirs has shown
that in estimating available reserves by extrapolation:of eérly p/Z behavior, the
results will tend to be optimistic when porosity is low, but pessimistic when
porosity is high. The constant liquid level model was found to predict higher
recovery for a given{ptessure depletion than the falling iiquid level model.
The presence of even a small amount of liquid in the lower part of a geothermal
gsystem was shown to be extremely important because.it can account for a large
fraction of the total fluid mass and can significantly affect the fesults of a
p/Z analysis. Finally, Brigham and Morrow conclude that .''the steam portion of a.
reservoir will always remain isothermal whether or not there is boiling water

below the steam. Thus pressure, temperature, and enthalpy measurements will

not be completely diagnostic for determining the original,state of the reservoir
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fiuid system. Because the steam remains essentially isothermal, it gradually
increases in eﬁéhalpy and becomes superheated as the pressure declines."

An interesting lumped-parameter model based on the‘aséumption that the liquid
and gas phases are ﬁniformly distributed throughout the system has been proposed
recently by Martin (1975). The system is assumed to be'completely closed and each
phase is produced at a rate which is related to its relative permeability. His
approach is based on a simplified form of equations 1-3 and 6. If we neglect the
gravity term in Darcy's law and substitute (2) and (3) into (1), we can write for

an isotropic medium

f .
] oM v
= fxt L) = & . (43)
axi ( Bxi) at |
where .

. oLkl o6y 6
A=k o+ =

L G

u u
M= g ¥ s+ o€ 56

Neglecting heat dispersion and the pressure terms in (6) we obtain by the same pro-

N

cedure .

2 finap) _ af | | )

axi vaxi ot _ - _
where S

L. L L G.G G
Ab prh ke 40 Rk ke eff dT
= L G A T
M u

Crap e’

Mh = ¢ SL pL hL + ¢ SG pG h
since T and p are uniquely related by the boiling curve. The notion of a lumped-
parameter model implies that gradients of pressure, temperature, and saturation
are small. Expanding (43) and (44) and neglecting the products of these gradients

leads to

.]'_.BM = d p 3—;-3}_4__ (45)
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Expanding the time derivatives with respect to p and S yiélds the nonlinear
ordinary differential equation | -
nat £ oM®
L AN e— -
as’ ap op ‘
dp h f (46)
Af aM Ah aM '
LN L
as - 9§

In the case of single-phase flow, T and p are not related uniquely to each
other, and the above procedure must therefore be modified. If we neglect heat
conduction as well as dispersion, we obtain the single-phase equivalent of (45)

f

with Ah = hA” . Expanding the time derivatives with reépect to p and T leads to

the following nonlinear ordinary differential equation,

' g!i - h ng . ’
. = % _ | | o wn
dp amf P

hyr ~a3r

Equations 46 and 47 were used by Martin to caltul#te numerically the relation-
ships between T, p and S in a hypothetical system free of gravity effects. Inte-
gration of (47) showed that in tBe case of a single phase; dT/dp is very smali and
the exploitation'procéss is essentially isothermal. This is clearly illustrated
in Fig. 17 which shows the‘thermodynémic paths for variogs initial p-T conditions

in a system with ¢ = 0.25, ps = 162 lb/ft3 (2.6 gm/cm3), cvs = 0.2 Btu/lb °F (0.2

cal/gm °cy, Keff = 40 Btu/ft day p (0.0069 cal/cm sec °C), k = 1 darcy (9.87 x 10_9
cmz), and typical kr values. For example, from initial conditions correspoﬁding

to point A, the temperature will drop slightly along line 1 as pressure declines.

~ This corresponds to a single phase (essentially steam) reservoir wiﬁh temperature
and pressure above the critical point. However, if the systemlis initially satur-
ated with liquid wa;er.at point C, production causes an isothermal decrease 1in

pressure until the boiling curve is reached. At this stage p ahd T begin to fol-

low the boiling curve with a gradual increaée in steam saturation. Production of
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éteam,.however, starts only when SG reaches 1its so-called equilibrium value at
which the vapor phase becomes mobile (below this value krG = 0). The ratio
between produced steaﬁ and liquid water continues to increase until SL ié reduced
to a stage where the liquid becomes immobile and production is restricted to sat-
urated steam. When all thke water has been boiled‘away and SL = 0, the tempera-
ture departs from the bolling curve and Supefheated steam is produced under
essentially isothermal conditions.

From his study Martin further concluded that "undéf.certain conditions only
a relatively small amount of the hgét initially contained in a geothermal reser-
voir will be produced during pressure depletion. Much of this heat may be con-
tained iﬁ the produced steam even though initially the reservoir contains only
hot water." This is‘aue to the higher heat content and lower viscosity of steam
as compared with liquid water. A similar reasoning also.led Martin to conclude
that "for many con&itions'where gravity segregation of the steam and hot water
occurs during depletion, more of the total heat can be produced by completing
'wells high in the reservoir to enhance steam production and suppress water prbduc—
tion." When gravity effects are important, system C sh6u1d>f6110w the path shown
in Fig. 17 until the steam phase becomes mobile and gravity seg;egation begins.
Since SG increases rapidly in the upper portion of the sYstem, departure from
the boiling curve will occur at considerably higher p and T values thanvis shown
in the figure. In the lower'portion of the system SL decreases slowly and
therefore departure from the boiling curve will occur at lower p and T values
than in Fig. 17.

Distributed-Parameter Models

A model in which the properties of the rock and/or the fluid (e.g., satura-
tion, viscosity, pressure, etc.) are allowed to vary in space will be called a
distributed-parameter model. By taking into account Spatial variations of these

properties the resulting problem may become too complex to be. treated analytically.
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An alternati%é approach is to replace the governing partial differential equations
by anféﬁuivalent sétvof algebraic equations and then solve the problem numerically
- with thevaid of a coﬁputer, The purpose of the following discussion is to acquaint
the reader with some of the results obtained to date by numerical.simulation of
relatively complex geothermal systems. |

A considerable degree of sophistication in the numerical simulation of immisc-
ible, multiphase and multicomponent fluid flow problems under nonisothermal condi-
tions has been achieved in recent years by petroleum enginéers. A brief review
of this work has been included in a recent paper by Coats et al. (1974). Most of
this effort, however, was not concerned with geothermai systems but was directed
toward the problem of oil recovery by steamfiooding, hot waterflooding, steam
stimulation, and other thermal processes which are of immediate concern to the
petroleum industry. For example, Spillette and Nielsen (1968) have studied the
response of an o0il reservoir to hot water injection by assuming that the hydrocar-
bons and the water will appear only as a liquid phase. Their model consists of a
vertical cross-section including a horizontal layer of sand enclosed between two
impermeable shale strata. Energy is transported by.conduction and convection in
the sand layer and.by conduction in the shale layers. Flﬁid-densities and viscos-
ities are taken to be temperature dependent and capillary pressure'between the
two fluid componehts is taken into account. The equations governing mass trans-
port are solved by an alternating direction implicit (AD1) iterative finite differ-
ence procedure whereas.the energy equation is solved by the method of characteris-
tics. One of the conclusions of this étudy was that fldid segregation due to
gravity has a significant effect on the system considered.

" Another two-d;mensional vertical model consisting of a sand layer sandwiched
between two 1npetmeab1e strata has been developed more recently by Weinstein et
al. (1974). In this:model fluid flow is allowed to take place only in one

horizontal direction whereas energy may be transferred by conduction both
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horizontally and verﬁically through the entire system; 'However, the hydrocarbons
and water can céexist both in the liquid and vapor states, so that one must now
deal with three'distinct phases: o0il, water, and gas. The gas phasé is a mixture
of steam and hydrocarbon vapor. Interphase mass transfer'ﬁithin each component 1is
allowed to accouﬁt for processes chh as wvater v&porization, steam condensation,
hydrocarbon'distillation, solvent extgaction, and soldﬁion—gas drive. The energy
equation.is expressed in terms of enghalpy,'rock compressibility is taken into
account, but capillary pressure effects are neglected. A finite difference
approach is employed with an implicit pressure-explicit saturation formulation of
the mass balance equation, which is solved simultaﬁeoﬁgly with the energy equation.
The authors also diséuss various improved numerical teéhniques for invoking phase
constraints and calculating mass transféf;terms. |

A three-diménsioual finite difference model describiné nonisothermal, three-
phase flow of o0il, liquid water, and steam has been described by Coats et al.
(1974) for the purpose of simulating oil recerry by steam and hot 'water iﬁjection.
In this model fluid densities are taken to be linear functions of temperature and
pressure, and the éffect of pressure on porosity 1s'alsb taken info‘account. The
mass ahd energy balance equations are solved simultaneously by a direct method.

A comparison éf calculated results with experiﬁéntal daté indicated‘that the sim-
ulation process is sensitive to temperature effecté on re1at1ve permeability.

The authors concluded that such data, especially the temperature dependence of
water relative permeabilities; must be taken into account..

The first application of a distributed-parameter model to a geothermal sys-
fem was made by Mercer (1973) and Mercer and Pinder (1974). A comprehensive
account of tﬁia work has been described more recently by Mercer et al. (1975).

The modei consists of a single-phase, two-dimensional areal (horizontal) repre-
sentation of the hot-water Waiora aquifer in the Wairakei hydrothermal system of

New Zealand. The mass and energy balance (Eq. 7 without the pressure term)
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are solved in the horizontal plane of the aquifer by the Galerkin finite element
épproach, using isdpérametric elements as shown in Fig. 18. Since the governing .
equations are éveraged over the thickness of the aquifer; cellular convection
does not play a role in the resulting model. |

However, vertical flow of fluid as well as energy ic ailowed to take place
between the Waiora formation and the overlying Wairakei breccia aquifer througﬁ
the intervening Huka Falls shale (see Fig. 19). The'raté.bf this vertical léakage
is taken to be propoftional to the differences in head and temperature between
the two aquifers, the values of p and T in the upper aqdifer being kept constant.
Inflows of heat ffom the underlying ignimbrites into the Waiora aquifer are
treated as unknowh source terms to be determined by'model.calibration. The lateral
boundaries of the Waiora aquifer are assumed to be impermeable and isothermal.
Viscosity is allowed to vary with temperature whereas flqid density is calculated
as a linear.functién of temperature and pressure. The model is alsd capable of
treating the heat Aispersion term in its proper tensorial form.

The first step in applying the model to Wéirakei was to adjust‘the parameters
so as to reproduce the.steady state conditions exisﬁing in 1955, prior to exploi-
tation. The parame;ers'that were adjusted at this stage inciﬁded element configu-
ration, heat sources at the bottom of the aquifef, disper;ion coefficients, and
permeabilities. A sensitivity analysis was performed indicating that dispersion
had little influence on the results, whereas the permeability of the Huka Falls
formation had an important effect on the temperature distribution in the thermal
reservoir. |

The secoqd step was to simulate the response of the geothermal field to
withdrawal of hot water from a series of wells during thé period between 1955 and
1962, using time steés of 30 days. The parameters of the model were again
adjusted so as to bring about a fit betwéen calculated and observed data. The

results shqwed only a slight change in the configuration of the isotherms during
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the period investigéted. Fig. 20 is a comparison of computed and observed po-
tentiometrié“;urfaces in the Waiora aquifer for 1958 aﬁd 1962. The single-phase
model failed to reproduce historical data after the cal?bration period of 1955-
1962 due to a considerable quantity of steam tﬁat had formed in the Waiora aquifer
as a r;sult of exploitation. Faust and Mercer (1975) are now developing a two-
phase model to handle such problems.

A two-dimensidnal model of transient single-component, two-phase flow in a
geothermal system has been developed b& Toronyi (1974). The model is based on
Equations 1-3 and 6 (without the last two terms involving pressure) and utilizes
a block-centered rectangular finite difference grid capable of simulating flow in
either a horizontal or vértical pPlane. The resulting equations are expressed in
an implicit backward &ifference form and are solved simulfaneously by a line iter-
ative quasi-linearization (Newton-Raphson) scheme. Anisotfopy is taken into
account with the restriction that principal permeabilities‘and heat.conductivities
‘must remain parallel to the coordinates. Thermal conductivity is calculated
according'tov(S) but dispersion is not taken into a;count. The fluids are assumed
to have temperaﬁures and pressures that are always on the vapor pressure curve‘
implying that liquid and vapor co-exist at every point in the system. Consequently
p and S are the two dependent variables for which a solution is sought simultan-
eously.

The external boundaries are impermeable and adiabatié'with the understanding
that forced convecfion due to production is much greater than conduction across
these boundaries. The distributed-parameter model is coupled to a one-dimensional
steady state model of a producing well in which the fluid is assumed to form a
homogeneous two-phase mixture. The well is ;reated as a point source in the
finite difference model which, in turn, provides boundary values of p and S for
the steady state wellbbre model. The wellbore model is represented mathematically

by first order ordinary differential equations which are solved by the Runge-

Kutta method.
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(A)
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Fig. 20. Comparison of computed with observed potentiometric surfaces in
Waiora hot-water aquifer for (A) 1958 and (B) 1962. Values in
meters from datum 152.4 m above sea level (after Mercer et al.,

1975).



46

Toronyi applied his model only to a homogeneous and isotropic geotherﬁml
system B;vusing abxb6 rectangular finite difference grid; His purpose was
to investigate the effects of porosity, permeabiiity, and various uniform initial
P and S distributions on the production of geothermal fluid in a horizontal and
vertical plane. On the basis of these studies, Toronyi classified the béhavior
of two-phase geothefmal systems into three types in terﬁsvof initial liquid sat-
uration: (1) vapor dominated, with initial SL < 40%; (2) liquid dominated, with
initial SL > 60%,_and (3) mixed or intermediate, with initial SL within ;he range
40 - 60%Z. Condensation and vaporization were found to be‘very important phenomena
that could create éxceedingly high liquid saturations near a wellbore and disrupt
gravitational equilibfium by causing more liquid to occur.at the top of the sys-
tem than at the bottom. Toronyi also found that superheated regions form faster
in rocks having relatively low porosity and permeability values. The quality ;f
the p:oduced fluid (in terms of percent steam) was always found to be greater
at the wellhead than at the bottom, although the maximum change in quality was
small.

'A two-phase, mdlti—diménsional model for geothermal systems has receantly
been developed by Lasseter et al. (1975) based on an extension of an earlier
investigation of single-phase flow under noniosthermal conditions (Lasseter and
Witherspoon, 1974); This model utilizes Equations 1 through 4. 1In the numerical.
process, Equations 1 through 3 are combinéd into‘a flow equation which is then
solved in conjunction with the energy equation (Eq. 4). These two equations
expressed in an integrated finite difference form (Narasimhan and Withersboop,
1975) are solved for the two dependent variables, density #nd energy of the
fluids, as a function of time and position within the syscem. Advantage can be
taken of the fact that the time constants for the energy equation are typically
several ordgrs of magnitude larger than the time constants of the flow equation,

which permits one to decouple the governing equations and still handle the
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non-linearities satisfactorily.  Thus, while it is necéésary to take relatively
small time steps fo accurateiy solve the flow eqﬁation,’the energy field time
steps can be much larger. | |

Some preliminary results for a model of a vapor—dominated geothermal system
are shown in fig. 21. A vertical cross-section of a cyiindrical system with a
heightvof 3000lm and a radius of 2000 m was set up using 150 elements. The vapor
column had an average initial temperafure and pressure of 250°C and 40 kg/cm2
throughout, and an attempt was also_made to simulate a 200 m bottom layer that
was essentially 1iqqid saturated. The lower boundary of the boiling water layer
was maintained at ZSOPC while the other boundaries were arbitrarily made imperme-
able to both heat and fluid. Typical values for ;hermai and fiow pfoperties of the
‘materials -were a$SUmed.‘ Relative permeability data were temperature indeéendent.

Figure 21 shows_reproductiéns of coﬁputer plots after ;bout lSOO‘days ét a
 steam withdrawal rate from the producing interval of‘3 X 107~kg/day (1380 t/h).
As a result of this ﬁigh rate of production; the pressuré ih the vapor column
dropped to about 25 kg/cm2 (Fig. 21A) and the temperature decreased to about 225°C
(Fig. 21B). Figure 21C is a vector plot of the vapor flux showing how vigorous

boiling at the bottom of the system is producing substahﬁiai steam. Figure 21D

is a vector plot of the liquid flux and shows how water is separating from the
steam at the base of the system. These preliminary resuits serve to illustrate
the power of this numerical approach in analyzing such complex systems;

Gringarten and Sauty (1975) have developed an analytical model for nonsteady
temperature behavior of pro&uction wells during reinjection.of heat-dépleted
water into a horizontal aquifer with uniform regional flow. The aquifer is of
infinite lateral extent and is confined between two impermeable semi-infinite
laye;s. Initially, the system has a uniform temperature; To’ At time t = 0, a
well starts producing water at rate Q and injection of relatively cold water

starts in a second well in the same aquifer at the same rate. The temperature
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system showing reservoir conditions after 1500 days of
‘production: (A) pressure field, (B) temperature field,
(C) vapor flux, (D) liquid flux.



o
L
e
-
o,
2]
oo
o
L
<
W
$

49

of the injected water 1s set equal tq T1 and maintainedrconstant thereafter. Such
a pair of wells is known as a '"doublet."

The authors assume that steady state fluid flow is established much faster
than thermal eqﬁilibrium and that temperature transfer occurs only by foiced hori-
zontal convection in the aquifer and verticai cbnductibn‘in the confining beds.
vAssuming further’that-the waters at temperatures To andvT1 do not mix (piston
displacement), they have arrived at a simple closeg‘form’ﬁathematical relationship
between temperature, c¢rtain dimensionless parameters, énd the stream function
characterizing wacervflow. Gringarten and Sauty used their solution to calculate
the optimum spacing of isolated doublets to be drilled for space heaging purposes
'in the 1800 m deep Dogger aquifer around Paris, under the réqui:eﬁent that the
cold front does not reach the'producing well in less than 30 years when Q = 100'm3/h.

By introducing a safety factor into their calculations, the optimum spacing was

found ﬁo be about 900 m for an aquifer 50 m thick.

NOMENCLATURE
Symbol : ) Description . Dimensions
a, a;, a, width o ‘ o L
cp | specific heat at constant pgessure | L2t 277!
<, specific heat at constant volume g L2217}
D : depth . L
D, D, aspect ratio ' | -
Dij mechanical heat dispersion tensor bdet'3'I"1
e - ._specific internal energy - L2t™2
f , fluid property ' ' | ) arbitrary
g acceleration due to gravity Lt™?

8 ) gravity vector (0, 0, -g) i Lt~?
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Description

specific enthalpy

heat capacity ratio

intrinsic permeability
intrinsic permeability tensor
relative permeability |
length

specific mass flux

mass

outward unit normal vector on T
Nusselt number

pressure .

dimensionless pressure

Prandtl number

specific conductive heat flux vector
heat flux

radius

representative elementary volume
Réyleigh number

criti;al Rayleigh number

fluid saturation

time

temperature

specific volume

darcy velocity vector

volume

velocity vector of solid fluid

interface
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Dimensions
L?t™?

LZ

L3M!?

LT}

Lt™!?
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GS
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Subscfigts
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Superscripts

eff

G

4 20 490 6
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Description Dimensions.
vector of space coordinates (x,y,z)
z Being the vertical : L
comﬁressibility factor for real‘gas . -
thermal diffusivity L%¢~!
coefficient of volumetric thermal
expansion ' ' . : T-!
liquid-solid interface in R | L2
liquid-gas interface in R o L?
gas-solid interface in R _ | L2
kronecker delta (1 if 1 = j and |
01if 1 # J) -
dimensionless temperature o -
thermal conductivity MLt™ 31!
thermal &iépersipn tensor MLt™3T7!
viscqéity ML~ ¢!
dimensionless velocity vector ' -
density. '» : ML~ 3
dimensionless time ' ' -
porosity o -
average over R arbitrary
average over.pore.space of R arbitrary
average over liquid, gas, or.éplid
phases in R | arbitrary

reference quantity

effective quantity for fluid-filled rock

gas phase
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Symbol ' Description : Dimensions
L _ liquid phase '
S ' solid phase
o deviation from average over R
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APPENDIX .

The purpose ofjthis appendix is to derive a hacroscopic form-of the energy
balance equation for.a two-phase, single component fluid in a porous medium.
This is accomplished by aQeraginé the microscopic'equatiéné over a representa-
tive elementary volume (Bear, 1972, p.‘19) of the mediuﬁ. The particular method
of averaging that is.used here has been applied by lLee et al. (1975) to the
energy equation and, in this context, was brought to our atﬁencion by Gray and
Pinder (1974, personal communication). We recognize that the mécrOSCOpic energy
equation can be derived directly from macroscopic balance éonsidérations, without
resorting to an'averaging process. However, the formal évgraging procedure is
helﬁful in gaining insight into the numerous assumptions ;hat one must make in
order to arrive at a manageable macroscopic expression. Such assumptions are
implicitly inherent in every macroscopic equation and, by facing them explicitly,
one should be-able to appreciate some of the limitations ofvthe'differential
equations used té describe geothermal systems.

Mathematical Preliminaries |

Let R be a representative elementary volume of the pbrous medium and let ¢
be the porosity of R. Whitaker (1969) demonstrated that the averaging précedure
used below will lead to meaningful results if the chéracteristic length of R is
much greater than the characteristic length of the pores, and is much smaller
than the characteristic length of the entire porous medium. An obvious require-
ment is that R be lérge enough to provide a fair representation of all the statis-
tical properties of the pore space. Our analysis is restricted to hombgeneous
porous ‘media which means that the porosity, ¢, as well as all other.statistical
properties of the pore space, must remain unchanged as one focuses his attention
on different elementary representative volumes in the medium. Furthermore, the

size and shape of R must be constant and its orientation must remain unchanged.
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Let fL(xi) be some property of the liquid (e.g., density, temperature, etc.)
wﬁich, by definition, is zero im the gas phase and in the solids. Then the

"liquid phase average' of ' 1s defined as

) |
<l = lL f £& 4R | (A1)
- osR 4

Similarly, the "pore volume average" of fL is defined as

@t fom - -
) _

and the "bulk volume average" as

<> =2 ffL dR | (A3)
4 ‘

From (Al) - (A3) it is evident that

| L L L L L

<E> = ¢ <E>k = 98T <E> - (a4)

These averages can be viewed as point macroscopic quantities associated with

the centroid of R. vThus, there is an average associated with each point in R
(each such point being the centroid of another R), and it therefore makes sense
to talk about the average value of these averages over R. Whitaker (1969) showed
that

<<fl>> = <> | B ~ (A5)
i.e., the average of the average is equal to the average (note that this is by
no means self evident). .

At any point in the liquid phase within R, fL can be expressed as

L

-]
L. <els 4 ¢ S (A6)

f
: . A
where fL is simply the deviation from the phase average of fL. From (A5) and

(A6) it follows that
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L
°
< zo - o (A7)

Note that just like fL, the function of fL is taken to be zero everywhere outside

the liquid phase.

According to the general transport theorem (c.f. Whit#ker, 1968) one has

L

. L .
: af 9<f™> 1 L
AS T T ’E/ £ wy my dF (48)

FLS,PLG

where n, is a unit normal pointing out of the liquid phase. Another useful
relationship known as the "avefaging theorem" (Whitaker;,1969; Slattery, 1972,

pp. 192-196) states that

L

- <f> .

Ay -3 i +z £ n, dr . (49)
1 (LS (LG

Similar relationships will hold for properties of the solid phase, fs, and the

gas phase, fG.

Derivation of Energy Equation for Two-Phase Fluid

In the following analysis, the pore space is assumed to be saturated by a
single-component fluidiwhich can be either in a liquid or gaseous state. The
liquid and gas.phases are assumed to be separated by a_distinct interface, FLG,
across which there may be a finite éhange in pressure. If one neglects viscous

dissipation, then the energy equation at a point within the liquid can be written

(c.f., Currie, 1974, p. 17) as

L L L L aViL 9q,
e v, ) -p ax - 3% (A10)

8 L. L __ 3
at (D e ) - xi (D

Taking the average of (Al10) over a representative elementary volume, R, and

using (A8) and (A9), the result (after rearrangement) 1is
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Equation All is tnsed on the assumption that fluid velocity-normai.to a solid-
fluid interface is zero (i.e., there is no transfer of'kinetiC’energy between
the fluid and the solid). Furthermore, in order to replace the term pL(BviL/Bxi)
in (A10) by its macroscopic equivalent in (All), it is necessary to assume that -
; and B;inlaxi are uncorrelated so that the average of their product is zero.
A possible phfsical justification for this is to say thét local variatiqns in
fluid velocity within‘a pore are controlled primarily b& yiscous stresses and
can therefore be assumed to be ihdépendent of pressure.

The energy equation for the gas phase at a point within R has the same form

as (All). When this equation is averaged over R, the result is

--§-<(DG¢-:G>==———a——<pcerG>+—l-‘/‘pGéG (vG-w.) n, dl
LG i i i

at ox i R
1 T
c G
G 9<v, > G
- ¢SG <pG> ——5—1———+ SG <pG> —1-/ v Gn dar
X R i i
i LG
r
G
9<q, >
i 1 el 1 G
-'—a?-—‘—i/ 9y ni dr+§fqi n, dr (Al12)
' i I.GS r.LG '

Here n, points into the gas along FLG and into the solid along FGS.

The energy equation at a point within the solid is simply
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S.
dq .
9, S S i : _ - .
e (P &) =~ 8%, (A13) .
Integrating over R gives
S 9<q, >
A<e" > .
A A m etk ay’ ny dr (AL4)

i ; LS .GS ,

where n, pointé into the solid.

From the requirément of energy continuity at a liquid—gas‘interface, it can
be shown that -
lq,X + plebwv.l - w)Inar = [ 1q.%+ 0%Cv.® - w)In,ar  (a15)
i i i i i i i i
LG ~LG :
r _ _ , r
A similar condition must also hold for the conductive energy flux q n, at any

solid-fluid interfacé; Thus,>by adding (All), (Al2), and (Al4) and using (A4)

we obtain , .
L G S
-5%:— [¢SL<pL eL> + ¢SG<pG eG> + (1 - ¢) ps <e_s> ]
L G
I [¢SL<pL el vis 4 ¢S <p C oy G>_ ]
- 9x X, i i
‘ L G . S
9 - L L G G . S
- x; (¢s <q > +¢5<q > + 1 -9¢) <q, "> ]
’ L , G
L , G
L a<v, > G 9<v, >
‘L L i G G i :
TSR T T TS T
1 c.c®1 [ ¢
- S <p Ef ni dl + S <p > i‘f Vi ng dr (Ale)
L I.LG :

-

We now introduce:anotber assumption that thermodynamic relationships between
- average (macroscopic) quantities remain exactly the same as those between the
equivalent point (microscopic) quantities. This assumption is implicit in all

macroscopic equations that we have encountered in the literature. Its implication
* and & Lol 1l Ll
is that p and e are uncorrelated and one can thus replace <p e > by <p™> <e™>

- ¢ GG ¢ 6 ¢66G .
and <p e > by <p > <e > . Since mass dispersion is not considered in the
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(-] -] . )
present analysis, p and v, are also uncorrelated and we can therefore write

L L L L

v ey o ¢ L
¢SL <pL eL viL> = ¢SL (<pL> <eL> <viL> + <pL eL viL> )
L L ' oy o L
= <pL> <el> <viL> + ¢SL <pL el viL> (A17)

where the second term represents mechanical dispersion of energy. Following the
current trend in the literature (c.f., Bear, 1972; Gray, 1975) we assume that

dispersion is mathematically equivalent to a diffusion ptocess, so that one can

write '
L L L :
L °L ? Ly L 9<T > .
P e vy - Dy x, (18)

where D}j is known as the mechanical (or convective) dispéréion tensor. The

conductive flux, q? , 1s expressed by Fourier's law using a scalar thermal

conductivity,

= -2 | O (AL9)

the average of which is given by (A9) as

- L L
<q > = -kt a;,T( > -5 / " n, dr (A20) .
i LG LS
r6 r

In order to eliminate the surface integral from (A20) we assume that the orienta-
tion vector ng is éymmetrically distributed about a zero average value (this is
true if the orientations of FLG and PLS are random). Then, since temperature is
independent of interface orientatién (i.e., random temperatﬁres may exist at
various points along I' having a given orientation) TL and n, are uncorrelated

and the surface integral in (A20) can be neglected. In a similar manner, it may
appear reasonable to assume that viLni is symmetrically distributed about a zero
average value along FLG so that the first surface integral in (Al16) vanishes.
Similar considerations hold for the gas phase. If we further assume that ¢, SL,

and SG remain practically constant for any averaging volume whose centroid is’
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inside R, then (A16) can finally be reduced to
L . L G G .S
2 195" <pb> el + 958 0% <o+ (- 9 0° <>
L L G G -
T (<pL> e < s 4 <pG> <e® <v'G>)
3xi i , i
+ -9 [}SL k L a<TL>L + ¢SG g G a<TG>G + Q- ¢).KS 3<Ts>s ]
axi ij 8xj . ij ij ax;
LLaw™ 6w S
-<p> g - <p> : ' , (A21)
Bxi ‘ ax,

where k,. = k§ + D,. is the combined conductive and mechanical dispersion tensor.

1] i3 1]

" In the literature it is customary to assume that all phases are in thermal
equilibrium and that capillary pressure differences between the fluid phases are

negligible. In this case (A21) reduces to

' L L G G S
53-{ [os” <p¥> <el> + 9% <% <eO + (1 - ¢) o5 <e5> ]
= -~ —2—-(<pL> <eL> <v'L> + <pG> <e > <v G>)
Xy i ) i

+ 3%—-( eff 8<T>*) - <p>* —é—-(<v L> + <v G>) : v (A22)

K
ij ij Bxi i i
where

eff - L

1]

This shows that the assumption of thermal equilibrium implies viewing the solid,

L G _G ‘ S
K ¢S Kij + ¢S Kij + (1 - ¢) x 6ij

liquid, and gas as.three anlsotropic conductors arrangedbpatallel to the direction
of heat flow.

Recalling our assumption that thermodynamic relationships between average
fluid properties are the same as between the equivalent point properties, we can

define the average (macroscopic) enthalpy of the liquid as

L .
L L L :
<hl> = <>+ 5P—>L g (A24)

<pL>
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Similar definitions will hold for the gas and the solid. If we now replace each

<e> in (A22) by <h> - <p>/<p>, we obtain a macroscopic energy equation in terms

of enthalpy.

. L - L G G _ S
-a%' [¢SL <pL> <hL>’ + chG <pG> <hG> + (1 - ¢) pS <hS> ]
| L L L .6 G
9 L L G G .. G
= - ax (<p > <h™> v, > + <p > <h> <v, >)
9 eff o<T> 3(¢<p> ) L 3<2>
+ 5;;-( 13 ij ) + YR + (<vi >+ <v, ) (A25)

Temperature Equation for a Single Phase

In the particular case where the pores are completely saturated by a single
fluid phase (say liquid), one can use the equation of mass continuity to rewrite

(A21) in the form
’ S

L * S . L *
8<e > S 3<e™> L_* L d<e >
depl>” F5T— k(1 - 9) 0% BGE- = - BT v b Tox,
s
L a<r>” S 9<T> L% 9%vy>
Wiy Tk, PO T T | TR i 20
1 i i

Assuming that the thermodynamic relationships

3¢ T S Qe

Je

a N .
p=T (—5%) (%‘e;)r | _  (A28)

hold for the average quantities appearing in (A26), this latter equation can be

rewritten as

de (ae) av +c aT ' _ (A27)
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-1 e | L
L L_* L_* o<v, >
de” ¢<pL>* 9(<p >) + <pL>* <v L, o(<p > ) _ i
v /. ot i oXy 9x
T : i
: S
SR AT A ¥ o (- ¢y o5 ¢ T2
$p> ey e . % Tt .
L ¥ L L 9<T >*' 9 L 8<TL>* S a<'r5>S
= - {p > g > c, Bx + axi [fKij BXj + (1 - ¢) kK —3;;——-]
: ‘ L
L* fop) 2> ,
- <P o\er), T (A29)

The first term in brackets can be reformulated as

: L # v
1’ 9<p > ] L. * L
' ¢ + (<p™> <v,.™>)
<pL>* [ at Bxi i

which vanishes by virtue of mass continuity. Thus, the energy equation for the

liquid phase can be expressed entirely in terms of temperature,

, . S
L_*® S
L. * L a<T > S S 9<T™> L_* LL3<T>
P> e, T (L-9)p" ¢, ot TSP > <y ey dx,

o S L
S o<v, >

0 L 8<T >* (S 9<T > L * f[dp i

+ oK + (1 - ¢) x -<T> ( )
Bxi [ ij ij Bxi ] aT v Bxi

(A30)

If the solid and the liquid are assumed to be in thermal equilibrium, (A30) reduces

to |
*

L* L S S| I<T> L. * L L a<T>

[¢<°> gt Q-4 p Cv]":aT_“<p Vi oy

L ' .

I<v. >
2 (et 2> * f3p i
+ ( 1j ax )‘ <I> (a'r) 7% | (a31)
i v i :
eff L
where Kij = ¢K 19 ( -¢) K Gij

Equations A30 and A3l are also applicable when the pores are completely

saturated by the gas phase, provided that the superscript L is replaced by G.
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