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Abstract 

The quasi-potential transformation, based on the Kirchhoff 

transformation, simplifies the equations governing mass transfer in 

steady-state, nonconvective electrolytic systems. The major assumption 

is that the species concentrations can be written as single-valued func-

tions of the electrostatic potential. Methods are developed, based on a 

theorem presented by Gibbs,to solve the system-specific calculations-

those calcularions that are dependent only on the specific chemical sys-

tem used. Results are presented for the binary aqueous copper sulfate 

system with variable transport properties and for the acidic aqueous 

copper sulfate system accounting for variations in the dissociation con-

stant of the bisulfate ions. These results are combined with solutions 

of Laplace's equation for some simple boundary conditions to give com-

plete solutions for the disk and hemisphere electrodes. The effect of 

migration on limiting currents is discussed. 
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Introduction 

The quasi-potential transformation, introduced by Baker et al. [1], 

transforms the set of coupled, second-order, nonlinear partial differen

tial equations governing mass transfer by diffusion and migration in 

electrochemical systems into Laplace's equation for the quasi-potential 

and a set of coupled, first-order, nonlinear ordinary differential equa

tions. The first part, namely Laplace's equation, is referred to as the 

geometry-specific part since it accounts for the geometry and is 

independent of the specific chemical (or electrochemical) system used. 

The latter part is independent of the geometry and is referred to as the 

system-specific part. 

The resulting set of ordinary differential equations is relatively 

easy to solve. Furthermore, there is a vast body of literature detail

ing solutions to Laplace's equation subj ect to e1ectrochemica1- type 

boundary conditions. Conversely, the original set of governing equa-

tions can be difficult or impossible to solve without the introduction 

of restrictive conditions such as the neglect of migration as a mechan

ism of mass transfer. Another advantage is that the geometry-specific 

and system-specific parts are independent and can thus be readily com

bined to make the solutions for many geometries and systems easily 

accessible. 

Certain conditions apply to the use of the quasi-potential 

transformation. The convective contribution to the mass transfer must 

be negligible. We have not been able to solve systems in which multiple 

independent heterogeneous reactions take place. In the problems we have 
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solved, it has been found necessary that all homogeneous reactions be 

equilibrated. The transformation applies only to steady-state or 

quasi-steady-state systems. 

'>I 

Theoretical Development 

The fundamental equations governing mass transfer in a continuum 

are given by Newman [2]: 

Material balance: 

-V·N. + R. (1) 
~ ~ 

E1ectroneutrality: 

(2) 

Current density: 

(3) 

Newman also shows that 

V·i = 0, (4) 

which is a statement of the principle of conservation of charge. 

According to dilute - solution theory, the molar flux of species i is 

given by 

N. = -z.u.Fe.V~ - D.Ve., 
~ ~ ~ ~ ~ ~ 

(5) 

where the convective contribution to the flux has been neglected. 

Baker et al. [1] developed the quasi-potential starting from the 

assumption that a stagnant species satisfies a Boltzmann distribution in 
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the solution. Using this as their basis, they showed that the species 

concentrations may be written as single-valued functions of the e1ectro-

static potential. We start with the assumption that the species concen-

trations may be written as single-valued functions of the electrostatic 

potential (or the concentration of the principal reactant in the elec-

trode reaction). While the results obtained are identical, this basis 

is more general. Furthermore, starting from this basis gives us a sys-

tematic framework to develop the system-specific calculations. 

We cannot use the basis given above in systems in which convection 

contributes to the mass transfer, since the presence of a velocity term 

(which is a function of the spatial variables) makes the resulting solu-

tion inconsistent with the governing equations. Applying our fundamen-

tal assumption that the concentration is a single-valued function of the 

electrostatic potential we get 

where 

dc. 
~ 

f.(IP) = -z.u.Fc. - D. d~ . 
~ ~ ~ ~ ~ ~ 

(6) 

(7) 

Following the Kirchhoff transformation (see Cars1aw and Jaeger [3]), as 

used by Baker et a1. [1], we define a new dependent variable as 

q. = 
~ 

This allows us to write simply 

IP 
I f.(IP)dlP. 
o ~ 

N. = f.(IP)VIP = -Vq., 
~ ~ L 

(8) 

(9) 

or using the equation for the current density (equation 3) and the pro-

perty of the differential operator V that it operates linearly on sums 
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we write 

where 

i = f(~)V~ = -VQ, 

f(~) = F I z.f.(~)o . ~ ~ 
~ 

5 

(10) 

(11) 

Equation 10 defines the quasi-potential. The negative sign has been 

included to meet with convention in the mass- (and heat-) transfer field 

that the flux density should be in the direction of the negative of the 

gradient of potential. Since the divergence of the current density is 

zero, 

(12) 

The same results could be obtained by showing that the curl of the 

current density is zero and applying Stokes's theorem (see Pi11ay [4]). 

This treatment shows that the simple-potential theory shown here might 

apply only to simply-connected regions. We see also that the value of 

the quasi-potential can be arbitrarily specified at a chosen position. 

In all of the work that follows, we assume that the Stokes-Einstein 

equation 

D. = RTu. 
~ ~ 

holds. We write a nondimensiona1 potential as 

The equation for the flux becomes 

F~ 

RT' 

N. = -z.D.e.V~ - D.Ve., 
~ ~ ~ ~ ~ ~ 

or in terms of the electrostatic potential 

(13) 

(14) 

(15) 



where 

Also, 

N. "" f.(4J)V4J, 
~ ~ 

~ = -F L z.f.(4J) = -f(4J). 
i ~ ~ 

6 

(16) 

(17) 

(18) 

Central to the system-specific calculations is a theorem presented 

by Gibbs [5] (theorem 81, page 39): 

If throughout a certain space (which need not be continuous and 
which may extend to infinity) 

V·Vu = 0, 

and in all the bounding surfaces the normal component of Vu 
vanishes, and at infinite distances within the space (if such 

2 du 
there are) r dr = 0, where r denotes the distance from a fixed 
origin, then throughout the space 

Vu = 0, 

and in each continuous portion of the same 

u = constant. 

We have shown that all species fluxes may be written as the gra-

dient of some potential q. (equation 9). If the species does not parti
~ 

cipate-- in a homogeneous reaction, then it follows, from the material 

balance equation 1, that this potential is governed by Laplace's equa-

tion. If, furthermore, the species does not participate in the hetero-

geneous reaction, then the normal component of the flux is zero at the 

electrode surface. If there is a counterelectrode present at a finite 

distance, then the normal component of the flux must be zero at the 
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counterelectrode to preserve the steady state in the system, since the 

normal component of the flux is zero at all insulating surfaces. If the 

counterelectrode is infinitely far from the electrode surface, then it 

0 .. can be shown that the condition at infinity is met as long as the normal 

component of the flux is zero at all finite bounding surfaces and there 

are no external fields acting on the system (see Pil1ay [4]). For a 

species meeting these conditions, the theorem of Gibbs holds, and the 

flux of this species is zero everywhere; hence, we term such a species 

stagnant 0 It follows from equations 16 and 17 that, for a stagnant 

species, 

-z.t/J 
co ~ 

Co = c.e (19) 
~ ~ 

We have used the boundary condition that the concentration assumes its 

bulk value infinitely far from the electrode surface, where the e1ectro-

static potential is set to zero. 

If there are no homogeneous reactions taking place, we see from the 

material balance equations 1 that all the species fluxes are individu-

ally solenoidal. The only species with nonzero fluxes are those that 

participate in the heterogeneous reaction, which may be written 

S~R + L s.A. = ne . 
j~R J J 

(20) 

We have designated one of the species to be the principal reactant, and 

'. for each of the other species j, participating in the heterogeneous 

reaction, we write a solenoidal flux defined as 

(21) 

It is evident that the normal component of this flux is zero at all 
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finite boundaries, and if there are no external fields imposed on the 

system, it follows from the theorem of Gibbs that this flux is zero 

everywhere. We can solve for each c
j 

in terms of c
R 

to obtain 

dc. s. DR [ dCR] d/ co -ZjCj + ~ D
j 

zRcR + d4> • (22) 

Combining this set of equations with the equations 19 for the stagnant 

species, the equation of electroneutra1ity, the equation of current den-

sity, and the definition of the quasi-potential, we can solve for the 

various concentrations, the quasi-potential, and the current density as 

functions of the electrostatic potential as an initial-value problem 

using straightforward numerical methods. The initial conditions are 

normally specified infinitely far from the electrode surface, where the 

electrostatic- and quasi-potentials are set to zero and the concentra-

tions assume their bulk values. This constitutes the system-specific 

part of the calculations. 

If there are homogeneous reactions taking place, the method remains 

essentially the same; however, we combine the material balance equations 

to eliminate the reaction terms. The eliminated material balance equa-

tions are replaced by the applicable equilibrium relationships. If any 

of the species involved in the homogeneous reactions participate in the 

heterogeneous reaction, then we define a solenoidal flux vector as above 

using the combined material balance. This procedure can get involved, 

especially if the species chosen to be the principal reactant partici-

pates in homogeneous reactions. In any event, the system-specific part 

of the problem still reduces to an initial-value problem for the concen-

tration and the electrostatic potential as functions of the quasi-
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potential Q. 

We have shown that the assumption that the species concentrations 

can be written as single-valued functions of the electrostatic potential 

is consistent with the governing equations. In some systems, for exam-

ple nonelectrolytic systems or binary systems where the electrostatic 

potential becomes infinite at the electrode surface at limiting-current 

conditions, it is more useful to write the species concentrations as 

functions of a principal reactant. It can be shown that this is also 

consistent with the governing equations. 

Binary Systems: we derive general equations for binary electrolyte 

systems having one stagnant species. Since there can be no homogeneous 

reactions and it is often the case that only one species participates in 

the electrode reaction, one of the species is often stagnant. We desig-

nate the reactant ion to be species 1 and the stagnant ion to be species 

2. From equation 19 and electroneutrality 

(23) 

and 

(24) 

hence 

1 [C l
] ¢ = - - In - . 

z2 co c
1 

(25) 

Since we are using the reactant concentration as the independent vari-

able, we write the flux as 

~-.... ~ . .. 



N. - h.(c.)Vc., 
~ ~ ~ ~ 

and from equation 15 

h.(c.) ... -D.[Z.C. dd1> + 1]. 
~ ~ ~ ~ ~ c. 

~ 

In this particular case, since N2 is zero, 

therefore 

i = -VQ = F ~ ziNi = Fzl h1(c1)Vc1 ; 
~ 

10 

(26) 

(27) 

(28) 

(29) 

where we have substituted for the diffusion coefficient of species 1 in 

terms of the salt diffusion coefficient and the transference number, 

which are the commonly tabulated properties (see Newman [2]) 0 If the 

transport properties can be considered constant, then we can integrate 

this equation to obtain 

(30) 

where we have arbitrarily specified the quasi-potential to be zero at 

infinity. 

Binary Copper Sulfate 

The mechanism of the copper deposition reaction has been given by 

Mattsson and Bockris [6] and has been confirmed by various authors 

including Bertocci [7] and Brown and Thirsk [8] 
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Cu+ + e ~ Cu (fast). 

All of these authors investigated the mechanism in dilute sulfuric acid 

solutions. We are unaware of a study of the deposition reaction in 

nonacidic solutions. but since there is no obvious reason to suspect 

that there should be any difference in the mechanism in the absence of 

acid, we accept this as being the mechanism in the binary aqueous copper 

sulfate system, as well as in the acidic aqueous copper sulfate system. 

As previously indicated we have been unable to use the quasi-

potential in systems that have multiple independent heterogeneous reac-

tions taking place at the same time. We assume, therefore. that the 

reaction of the cuprous ion to form metallic copper occurs rapidly, and 

that there is no diffusion of cuprous ions away from the electrode sur-

face. The mechanism can then be written as 

2+ -
Cu + 2e ~ Cu. 

Since the second reaction in the sequence has been measured as being 

much faster than the first reaction, it is a fairly good assumption to 

write the deposition mechanism in this form, and we shall use it in the 

two systems studied here. 

The first system we discuss is the binary copper sulfate solution, 

with the copper depositing on a copper electrode. We assume that the 

copper sulfate salt is completely dissociated into cupric and sulfate 

ions; there are no cuprous ions present in the solution. The equations 

derived above for binary electrolytes are directly applicable here, with 

the cupric ions being species I and the sulfate ions species 2. 
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Correlations for the salt diffusion coefficient as a function of 

the salt concentration are taken from the critical review of Miller et 

al. [9], and the transference-number data are taken from Pikal and 

Miller [10]. In some of the results we present, the bulk concentration 

is indicated as being 1.40 mol.dm-3 , which is above the range of appli-

cability of the diffusion-coefficient correlations. The error in the 

diffusion coefficient obtained by using the correlations at these con-

centrations is estimated by Miller et al. [9] to be less than 0.3%. The 

transference-number data are correlated (like the diffusion-coefficient 

data) as a quadratic in the square root of concentration. For the 

constant-transport properties case, we averaged the values of the diffu-

sion coefficient and transference number over the entire range from the 

limit of solubility -3 (1.4083 mol·dm ) to zero concentration. It is 

believed that it is more realistic to use these average values in the 

model, rather than those at infinite dilution. The resulting equation 

for the quasi-potential, from equation 30, is 

Q = 0.12054c
l 

- 0.16876 (Aim), (31) 

-3 where c l is in mol·dm . For the variable-transport properties case, we 

inserted the correlations for the transport properties into equation 29 

and integrated using a fourth-order Runge-Kutta algorithm. 

Figures 1 and 2 show the results of the system-specific calculation 

for the binary copper sulfate system. Figure 1 shows the concentration 

and electrostatic potential as functions of the quasi-potential. For 

the limiting-current and uniform-potential distributions, we are 

interested in the maximum current that can be passed. Figure 2 shows 

the variation of the value of the quasi-potential on the electrode 
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surface with changes in the value of the bulk concentration of copper 

sulfate. The value of the average current density depends only on the 

system-specific part of the calculation through QO and depends on the 

geometry through the coefficient of QO as indicated in the figure cap

tion. These values of QO also are one boundary condition in the 

limiting-current and uniform-potential distributions. 

Methods of solution of Laplace's equation were taken directly from 

the literature and combined with the system-specific calculations to 

give the concentration and potential distributions as functions of the 

spatial variables. Figures 3 and 4 show the distributions of concentra

tion (or equivalently potential) over a disk and hemisphere electrode at 

limiting- current conditions. The solution for the disk is taken from 

Newman [11]. The values of ~ in figure 3 indicate the fractions of the 

total current passing between the corresponding current-lines and the 

insulating plane. The solution for the hemisphere is obtained by 

integrating twice Laplace's equation written in spherical coordinates. 

The limiting-current condition is very similar to the uniform-potential 

distribution when the quasi-potential transformation is used, since the 

boundary condition on the electrode surface has the same form 

(QO = constant). The solution for the hemisphere electrode incorporates 

the solution for uniform-current-density distribution on the electrode 

surface, since the hemisphere electrode is uniformly accessible to mass 

transfer. The method of solution of Laplace's equation for a disk elec

trode subjected to a uniform-current-density distribution is taken from 

Nanis and Kesselman [12]. Figure 5 shows the variation of electrostatic 

potential adjacent to a disk electrode at uniform-current-density-
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distribution conditions. 

Acidic Copper Sulfate 

The homogeneous reaction to be considered here is the incomplete 

dissociation of bisulfate ions 

- + 2-
HS04 ~ H + S04 ' 

and we assume that this reaction is at equilibrium. Young et al. [13] 

used Raman spectroscopy to measure the equilibria present in, among oth-

ers, aqueous solutions of H
2

S0
4

, From their measurements, it would 

appear safe to assume that, for solutions more dilute than 10 M, all of 

the H
2

S0
4 

is completely dissociated into H+, HSO~, and SO~- ions. In 

keeping with the assumptions implicit in dilute-solution theory. we 

ignore the interactions between the ions in the solution and assume that 

the behavior of the H2S0
4 

is the same when CUS0
4 

is present. 

The mass transfer in this system has been investigated previously 

for the rotating-disk and the stagnant diffusion-cell configurations by 

Hsueh and Newman [14]. For the relationship between the apparent disso-

ciation constant 

K' 
c 

(32) 

HSO~ 

and the thermodynamic dissociation constant 

K K' (33) 



they used the formula 

In(K'/K) 
5.29 I~ 

r 

1 + 0.56 I~' 
r 

where K = 0.0104 mol.dm-3 and I is the true ionic strength, 
r 

I 
r 

2 z.e .. 
~ ~ 

20 

(34) 

Hsueh and Newman assumed that K' remained constant at its value infin-

itely far from the electrode. In this work, we allow K' to vary with 

ionic strength, which varies with position. We shall show the effect of 

assuming K' to be constant with respect to position. 

In this system we ignore the variation of transport properties with 

concentration, as there is no straightforward way to correlate the 

transport properties as there is in the binary system. The diffusion 

coefficients used are those at infinite dilution and are taken from New-

man [2]. The solubility data of Goodwin and Horsch [15] indicate that 

the solubility of CUS0
4 

is at least 0.9 mol.dm-3 at a H
2

S0
4 

concentra-

-3 -3 tion of 1.50 mol·dm and goes up to 1.4083 mol·dm at zero H
2

S0
4 

con-

centration at 25°C. 

bulk concentration 

-3 1. 50 mol· dm . 

In this work, the results we show are for a CUS0
4 

-3 
of 0.50 mol·dm and a H

2
S0

4 
bulk concentration of 

If . l' h C 2+ . . 2' h S02-. spec~es ~s t e u ~on, spec~es ~s t e 4 ~on, species 3 

is the H+ ion, and species 4 is the HSO~ ion, then the material balances 

for species 2, 3, and 4 are 

-V'N + R 
2 

0, (35) 

'. 
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(36) 

and 

-V·N - R =.0, (37) 
.. :! 4 

where Ris the molar rate of the dissociation reaction. Adding and com-

bining, we get 

V· (N + N ) -= 0 .' 2 4 
, (38) 

and 

'. (39) 

and by the theorem of Gibbs, since the normal components of N2 , N3 , and 

N4 are zero at all finite boundaries, 

(40) 

and 

o· .' (41) 

everywhere. These two equations (after·· substituting' equations 16 and 

17), together with the equation of electroneutrality and the equilibrium 

condition, relate the species concentrations to the electrostatic poten-

tial. The quasi-potential is related to the electrostatic potential by 

equation 18. These five equations constitute the system-specific calcu-

lations and were solved using a fourth-order Runge-Kutta algorithm. 

Figure 6 shows the values of the concentrations and electrostatic 

potential as functions of .the quasi-potentiaL Figure 7, analogous to 

figure 2, shows values of the quasi-potential at the limiting current 

evaluated at the electrode surface for various values of bulk H
2

S04 and 

CUS04 concentrations. Of course, the results of the system-specific 
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Figure 7. Quasi-potential at the sutface of the electrode as a function of the concentration 

of CuS04 in the bulk of the solution, in acidic CuS04 solution at limiting-current 

conditions, for varying values of bulk H2S04 concentration. iavg = 4QoI7ra for the disk, 

and iavg = Qola for the hemisphere, where a denotes the radius of the electrode. 

-,", . 



24 

calculations can be combined with any number of solutions of Laplace's 

equation to complete the solutions of the mass-transfer problem. We 

choose to present only the results for the disk electrode at 1imiting-

current conditions. Figure 8 shows the species concentrations and 

electrostatic potential as functions of the rotational elliptic coordi-

nate e. The solution is taken, as previously, from Newman [11], The 

curves show a marked effect due to holding the dissociation constant 

invariable with respect to position. 

Effect of Migration on Limiting Currents 

The effect of migration on limiting currents is often quantified by 

the ratio of the limiting current obtained with consideration of migra-

tion to the diffusion-limiting current, which is the limiting current 

obtained when diffusion is considered to be the only mechanism of mass 

transfer. If the quasi-potential transformation is applicable, this 

ratio takes on the simple, geometry-independent form 

(42) 

where the subscript D indicates that the property is obtained with dif-

fusion considered to be the only mechanism of mass transfer. 

The quasi-potential at the electrode surface at diffusion-limiting 

conditions is simple to obtain if the principal reactant does not parti-

cipate in homogeneous reactions. The quasi-potential is defined as pre-

vious1y 

(43) 
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H2S04 is 1.50 mol.dm ,3. 
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Faraday's law states that 

SR . 
N - - - ~ Rn nF n' 

(44) 

at the electrode surface. Since the current density and the flux of the 

principal reactant are individually solenoidal, it follows from the 

theorem of Gibbs and Faraday's law that 

SR 
NR + nF i =- O. (45) 

Substituting for NRD and iD and rearranging gives 

(46) 

For binary- electrolyte systems, the effect of migration reduces. 

after integrating this equation and equation 29, to 

(47) 

This equation applies to both the constant- and variable- transport pro-

perty cases. For the binary copper sulfate, specifically. 

If we assume that the transport properties are constant, then 

nFDR 
QDO = sR 

It follows that for the acidic copper sulfate system, specifically, 

(48) 

(49) 

(50) 

In figure 7 we presented values of Q
O 

calculated for various values of 
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bulk composition of copper sulfate and sulfuric acid. In figure 9 we 

use these results to show the effect of migration on limiting currents 

in the copper sulfate system. The parameter r is that defined by Newman 

[2 ] 

r = 
co co 

cCUS0
4 

+ cH SO 
2 4 

(51) 

Newman [2] presents results (figure 19.2, page 402) showing the 

effect of migration on limiting currents in the Nernst stagnant diffu-

sion layer for the acidic KCl system. Since this is one of the 

geometries to which the quasi-potential transformation is applicable, 

this curve could easily be derived using similar methods to those used 

for the acidic CUS0
4 

system. Newman also presents results (figure 

19.13, page 415) for the acidic CUS0
4 

system for various values of the 

ratio of the bulk ionic strength at complete bisulfate dissociation to 

the dissociation constant evaluated at bulk conditions. Since the dis-

sociation constant is not held constant in our system, this parameter is 

not really relevant. For all of the curves shown' in figure 9, this 

parameter assumes values between 2.72 and 4.72; this gives an indication 

of where our system lies in the parameter space of Newman's figure. 

Newman also shows the change in concentration of the supporting 

electrolyte between the bulk and the surface. In terms of the quasi-

potential transformation, this can be interpreted as a result of the 

system- specific part of the problem and independent of the geometry. 

Thus, for all geometries satisfying the conditions of the quasi-

potential transformation, Newman's results for the Nernst stagnant dif-
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fusion layer apply and are different from those for two other classes of 

systems--the systems of the Lighthill transformation exemplified by the 

rotating-disk results and the transient systems (of the penetration 

model) exemplified by the results for a growing-mercury drop and for 

transient transport in a semi-infinite stagnant diffusion layer. 
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current density, A/cm2 or A/m2 

true ionic strength, mol/dm3 

3 thermodynamic dissociation constant, mol/dm 

apparent dissociation constant, mol/dm3 
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in the 

potential governing the flux of species i, 
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quasi-potential, A/m 

radial coordinate, m or ~m 
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universal gas constant, 8.314 J/mol·K 
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heterogeneous reaction, dimensionless 

time, s 

transference number of species i, dimensionless 
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i, cm ·mol/J·s 
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charge number of species i, equiv/mol 

'1 rotational elliptic coordinate, dimensionless 

rotational elliptic coordinate, dimensionless 

electrostatic potential, dimensionless 

electrostatic potential, V or mV 

.' j 

Subscripts 

0 evaluated at electrode surface 

avg average value 

D evaluated with consideration of diffusion only 

i species i 

j species j 

- " 

L, lim evaluated at limiting-current conditions 

n normal component 

R principal reactant 
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