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PARAMETRIC INSTABILITIES IN INHOMOGENEOUS PLASMA* 

Dwight Roy Nicholson 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

June 6, 1975 

ABSTRACT 

We consider the nonlinear coupling of three waves in a plasma. 

One of the waves is assumed large and constant; its amplitude is the 

parameter of the parametric instability. The spatial-temporal evolu~ 

tion of the other two waves is treated theoretically, in one dimension, 

by analytic methods and by direct numerical integration of the basic 

equations.. Various monotonic forms of inhomogeneity are considered; 

agreement with previous work is fo~d and new results are established. 

Nonmonotomic inhomogeneities are considered, in the form of turbulence 

and, as a model problem, in the form of a simple sinusoidal modulation. 

Relatively small amounts of nonmonotonic inhomogeneity, in the 

presence of a linear density gradient, are found to destabilize the 

well-known convective saturation, absolute growth occurring instead. 

* This work was supported by the U. S. Energy Research and Development 

Administration. 

• 



o 

o 

o 

-1-

I. GENERAL CONSIDERATIONS AND MONOTONIC INHOMOGENEITIES 

A. IntrOduction 

The three wave 'coupled mode equations are encountered in many 

branches of physics. In solid state physics, an electromagnetic 

driver can couple an electronic disturbance and another electromagnetic 

wave, the process being called Raman scatteringl-J; replace the 

electronic disturbance by an ion lattice vibration and we have Brillouin 

scattering4-7. In 1 til i . i gui e ec r ca eng neer ng, a wave de couples two 

electromagnetic waves to produce parametric oscillators and parametric 

amplifiersS. A laser can be thought of as a coupled mode system, two 

of the modes being the population densities of the higher energy level 

and the lower energy level, the 'third mode being the pOPulation density 

of photons9 . In plasma physics, an electromagnetic wave in an isotropic 

plasma can decay into: an electron wave and an ion-accoustic wave, the 

parametric decay instabilitylO-14; two electron waves, the 2wp or 

15 16 .. 
Goldman-Jackson' instabillty; an electron wave and another electro-

magnetic wave, called Raman scattering17- l9 ; an ion-acoustic wave and 

an electromagnetic wave, called Brillouin scatteringlS,20-22. An 

electromagnetic w"ave in an anisotropic plasma has additional three-wave 

interactions2J- 25 . 

Each of these interactions can be described by a system of 

three equations, each one a partial differential equation in space -

and time governing the evolution of one of the modes, including the 

effects due to the other two modes. There are then two alternatives: 

(a) Solve all three equations on the same footing. This has been done 

26 JJ • by many workers - ; we will not be concerned with this procedure here. 

(b) Assume that one wave, called the pump, is much larger" than the two 

others, and that over times of interest its magnitude does not change 

-2-

appreciably. Then we can discard the equation for its evolution, and 

we are left with two linear coupled mode equations. The amplitude of 

the pump appears as a parameter in these two equations. It is this 

procedure which will be followed here. 

The standard coupled mode equations, in one dimension, for the 

amplitudes of the waves of interest are 

(1) 

where VI and V2 are the group velocities of waves 1 and 2, having 

either sign; VI and v2 are the damping rates of waves 1 and 2 in 

the absence of coupling; y (real and positive) represents the o 

coupling of the two waves due to the presence of the pump wave, assumed 

constant over times of interest; 

1 and 2; Le., 

and a2( x, t) are the slowly 

c\[ R.n al (x, t)] « WI' varying amplitudes of waves 

ax[R.n al(x,t)] « kl , where are the frequency and wave 

number of wave 1; and likewise for wave 2. 

Given suitable initial conditions and boundary conditions, Eqs. 

(1) can be solved. Before doing so, we give two examples of the 

derivation of Eqs. (1) from first principles. 

First, suppose we have two normal mode oscillations in a 

medium, in the absence of the third wave, described by the following 

wave equations: 

o 

(2) 

o 
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:.:. 

Assuming solutions of"t~e form <Pjx,±.)- exp(-iwjt + ikjx), j 1,2, 

we obtain the normal mode frequencies . 

J = 1,2 (3) 

where we have neglected Vl 'V2 as small. AS examples, consider: 

electromagnetic waves, with a
J 

= wp ' Vj = Cj Langmuir waves, with 

a j = wp ' Vj = Jive; and ion acoustic waves, with a
J 

= 0, Vj = Cs 

(sound speed). 

In the presence of the third wave, Eqs. (2) are coupled 

together as follows J4 (In Ramsnscattering, EM -+ EM + Langmuir, these 

equations are obtained from Maxwell's equations plus .the Lorentz force 

equation): 

* Bl <Po(x,t) <P2 (x,t) 

(4) 
2 2 2 2' * * . (at + 2ivl Clt + a2 · - v2 ax ) <P2 (x,t) = B2 <Po (x,t) <Pl(x,t) 

where Bl , B2 are real coupling constants, <po( x, t) is the third 

(pump) wave, and we have taken the complex conjugate of the second 

equation: We now assume that each field quantity <Pj(x,t) can be 

wri t ten as a slowly varying (in space and, time) amplitude times a 

rapidly varying (in space and time) phase: 

<PJ(x,t) = a/x,t) eXP(-iwJt + ikjx), J = 0,1,2. We further require 

the three-wave matching conditions.: Wo = WI + w2 ' ko = kl + k2• 

2 2 With these assumptions, and discarding terms in ax a
J

, Clt a
J

, 

J = 1,2, Eqs. (4) become 

-4-

(5 ) 

[-2i~Clt - 2iv2w2 - 2i V/k2Cl x ] a/(x,t) = B/ a:(x,t) al(x,t) • 

From Eq.(J), we obt~in the group velocities V
J

:: ClwJ/Clk
J 

= vJ~j/wJ' 

and defining Yo:: (BlB2/4wlW2)i ao( x, t) we have 

(6) 

. _ i - * . 
Defining a1 (x, t) :: ii1 (x, t); a2( x, t) = -i( B1(a)2IB2W:t) a2 (x, t) we 

find 

(7) 

When Yo is real and constant in space and time, these are Just 

Eqs.(l ). 

In the presence of plasma spatial inhomogeneity, the derivation 

of Eqs. (1) must be modified. The inhomogeneity enters into Eqs. (4) 

through the parameters a
1
(x), a2(x), v

1
(x), v2(x), wp(x), v1(x), and 

v
2
(x). Each field quantity' is now assumed to vary in a WKBJ sense as 

<p/x,t) = aj(x,t) exp[-iWjt + i.[ X k/xt) dXt], j = 0,1,2. That 

is, we choose {Wj}' and find {kjrX)} from the dispersion relation 

Eq. (3). 

y 
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The frequencies are required to match, Wo = wI + w2; we choose Xo 

to be the position where the wavenumber mismatch K(X) vanishes: 

K(X) == ko(x) - kl(X) - k2(x), K(X = xo) = O. The derivation of 

Eqs.(5) remains unchanged, except that now we do not have 

exp i(ko - kl - k2 )X =xl, but rather exp iJ[x [ko(X') - kl(x')­

k2( x' ) ] dx' == exp i 1 It( x' ) dx'. The other 0 steps remain unchanged, 
Xo 

and Eqs. ( 1) are replaced by 

Yo(X) "2(x,t) exp[iJt"oX .(x') Ox'] 

(8) 

These equations were first introduced by Harker and CrawfOrd35 , and 

much of the work on parametric instabilities in inhomogeneous 

Plasma34- 75 is based on these equations. Despit'e the large amount of 

work, on these equations in ,the years 1971-1975, new results 

are forthcoming, and much remains to be done. As evidence, of some 

sixty papers delivered at the Fifth Annual Anomalous Absorbtion 
. 76 

Conference ,held in Los Angeles in April, 1975, three papers were 

devoted entirely to solving these equations under various circumstances, 

We present now an alternative derivation77 of Eqs.(l), more 

general than the one above. Consider the model field equations 

-6-

where Dl and D2 are linear differential operators acting on the 

wave amplitudes 4>1,4>2; 4>1 and 4>2 are coupled to the third wave 

4>0 through the coupling constant r. Assuming that each wave varies 

as 

(10 ) 

where "1. and w2 are chosen to satisfywO = wl + w2; lr j is 

ob.tained from Wj through the equation Re[Dj(wj,kj )] = 0, j 1,2; 

and again ko = kl + k2' (In general, of course, all of thes~ 

equalities'· may not be self consistent; we assume here that they are. ) 

Equations. ( 9) become 

(11 ) 

find 

{Re!DI(WI,kl )] + i '-(D,(w"k, )] 

Equation (12) continued next page 
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Equation (12) continued 

Dividing out the coefficient of at in each equation; recalling that 

Re[Dj(Wj,kj )] = 0, j = 1,2; introducing the damping rates 

~j - J 1,2 (13 ) 

we have from Eq. (12) 

- * 
Define 

-i cjl2 

-8-

then we find, assuming y real and positive, 
o 

-
(at + v2 + v2ax ) a2(x,t) 

which are Just Eqs. (1). 

(15 ) 

These have been two different derivations of Eqs. (1). The 

rest of this report is devoted to the solution of Eqs. (1), and their 

inhomogeneous counterpart Eqs. (8), in various situations. ,We will 

find that different forms of the wavenumber mismatch k(x) give very 

different results for the evolution of a pulse, the main distinction 

being between absolute instabilities, which grow in time at fixed 

position for t ~ m, and convective instabilities, which are bounded 

in time at fixed position. 

B. Parametric Instabili ties in Hanogeneous Plasma 

In this section, we discuss solutions of Eqs. ('1), the coupled 

mode equations in a homogeneous medium. In subsection 1, the pump 

extends over infinite distance, ~,< x < m, and we consider the 

stability properties for various initial conditions. In subsection,2, 

the pump is finite in extent, 0 < x ~, L, and the stability properties 

are found to depend on the length L. 

1. Pump Infinite in Extent 

In this subsection, the pump extends from x = -00 to X = m. 

We first consider the response to a spatia1lyun1form excitation. 

Next, we use Bers-Briggs analysis78 to distinguish'absolute and 

-convective instabilities for the Green's function response. Finally, 

we discuss the exact Green's function. 

' .. -



o 
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We treat the temporal response of the system to a Uniform 

.excitation as follows. Ignoring spatial derivatives in Eqs. (1), we 

look for a solution ~ exp( -iwt ), and find 

~l + V~ . ~ 2 (VI - V2)2 w = -i t 1 Y + 
2 0 2 

( 16) 

(Note that this w is a frequency associated with the slowly varying 

ampli tudes al ('X, t ), a2( x, t ), and has nothing to do with the original 

frequencies of the three coupled modes.) For vI = v
2 

= 0, Eq.(16) 

yields w = tiyo. For vl ,v2 t 0 instability results when 

(17 ) 

In other words, there is instability when the pump strength exceeds a 

threshold determined by the geometric mean of the damping rates. , 

Next, we treat the tempQral response to an excitation at x = 0: 
~', . 

initial conditions al(x,t = 0) = o(x), a2(x,t= 0) = OJ boundary 

conditions alex = ~,t) = 0, a2(x = ~,t) = O. As in Fried, Schmidt, 

and Gould 79, we perform a Bers-Briggs analysis on Eq. (8); with 

solution ~ exp( -iwt + ikx) we have the dispersion relation 

(18) 

For VIV2 > 0 there is only convective instability, with convective 

* . growth rate glVen by Eq. (18) with k = 0; thus the threshold is the 

same as in Eq. (17) of the last paragraph, or 

(19 ) 

* The convective growth rate is that measured by an observer moving 

with the pulse peak. The absolute growth rate is that measured at 

fixed position. 

-10-

(19 ) 

For VI V 2 < 0, Eq. (19) again determines the thr.eshold for convective 

instability, but there is absolute instability at a higher threshold: 

vliV2! + v21VlI 

2~ VIV2 

(20 ) 

In terms·of.the basic length Lo == IV
1
V2!i/yo ,and the spatial damping 

rates Kl == vl/IV1 !, K2 == v/!V2!, criterion (20) states 

L -1 > !(K. + K ) 
o 2 ~ 2 (21 ) 

which seys that the spatial growth rate must exceed the arithmetic 

mean spatial damping rate in order for absolute instability to occur. 

The growth rate y of the absolute instability, with VI = v2 = 0, is 

y ( 22) 

If IV 11 = !V2! ~ we have the absolute growth rate y = y 0' wh~ch is the 

same growth .rate obtained above for the uniform exel tation in the 

absence of damping. The reason is that when V2 = ~Vl' the peak of the 

pulse remains at x = OJ the absolute and convective growth rates are 

then equal and are obtained from the dispersion relation (18) with 

k = O. 

Exact solutions to Eqs. (1) (the Green's functions) giving the 

response of the system to the initial conditions (23),' 

al(x,t = 0) = o(x), a2(x,t = 0) = 0, can be obtained in a straight­

forward fashion by Laplace transforming in time. (t ~ w) and Fourier 

transforming in space (x ~ k). The responses al(x,t) and a2(x,t) 



-11-

are then obtained as an inverse Fourier-Laplace transform. Cassedy 

80 and Evans first perform the inverse Laplace transform, and then the 

inverse Fourier transform, for VI V2 > ° and for VIV2 < 0. 

Bobroff and Haus81 perform the inverse Fourier transform first, and 

then the inverse Laplace transform, for the case VIV2 < 0. KroU7 

and Kelley82 have also treated this problem. We note that the sign of 

VIV2 depends on the observer's frame of reference; in particular, it 

is always possible to transform to a frame where V2 = -VI; thus we 

need only do this case. 

The nui1!ber of independent parameters in Eqs. (I) can be made 

explicit by defining the dimensionless variables: 

x x. 
- Lo' 

(~) 

a = I~I 
Substituting these new variables into Eqs.(l), we find 

(25) 

where the top sign is for V2 > 0, the bottom sign is for V2 < 0, 

and we always take VI> 0. 

In the form Eq. (25), the coupled mode equations have only 

three independent parameters: Dl , D2, 8. 

-12-

An example of the solution of Eqs.(25), with the initial 

81 
conditions (23), is shown in Fig. 1, taken from Bobroff and Haus • 

Here we see the temporal-spatial evolution of al(X,T), a2(X,T), for 

Dl = 0, D2 = 0, V2/Vl = -1' (8 = 1). This is an example of an 

absolute instability, where ~(X = O,T), a2(X = O,T) grow for all 

time. 
81 

Equations (25) may be further simplified by the substitution 

Then Eqs. (25) become 

(3 +..L oX) ~(X,T) T-ve 

J 1,2 (26 ) 

(27) 

The effects of damping have now been formally removed, and the only 

remaining explicit parameter is V2/Vl (8 plus a sign). If we now 

make a Galilean transformation to a frame where 8 = 1 (V 2 = -VI)' 

we have no remaining parameters: 

(28 ) 

(3·",,3)A 
T X2 

Eliminating A2, we find 

(3 2 _ 3 2 _ 1) A_(X,T) 
T X -"1. 

o (29 ) 

.' 

'. 



,. 

o 

o 

o 
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which would be the well-known Klein-Gordon equation83 if the sign of 

-1 were reversed. The Green's function of (29) is a modified Bessel 

function, yielding the behavior. shown in Fig. 1. 

2. Pump Finite in Extent 

We next consider the case where the pump, represented by y, o 

exists over only the finite range 0 ~ x S L (see Fig. 2). We can 

regard this either as the case of Eqs. (1) with boundary conditions 

at x = 0, x = Lj or as a special case of an inhomogeneous pump, 

with amplitude Yo = 0 for -00 < X < 0, L < x < ~: and Yo finite 

for 0 ~ x !> L. The USual boundary conditions specify that a right 

going (VJ. > 0) amplitude a J. (x, t) ~sh at the left boundary, 

8j(X = O,t) = OJ and that a left going (Vj < 0) amplitude vanish 

at the right boundary, &j(x = L,t) = O. 

The most important question we may ask is this: Gi ven an 

ini tial perturbation, is the time-asymptotic (t + cO) response 

bounded, or does it grow without bound? One way to answer this 

question is to look for normal modes in time; that is, a response which 

may depend on x but which has the time dependence 

exp(yt): aj(X,T) = aj(X) exp(yT). Implicit inthe.work of Bcbroff and 

81 Haus ,this was carried out explicitly by Pesme, Laval, and Pellat 56 • 

Set Dl = D2 = 0 in Eqs. (25),and assume temporal dependence 

exp(yT)j then Eqs. (25) become 

(30 ) 

-14-

For VIV2 > 0 the boundary conditions are alex = 0) = a2(X = 0) =-0. 

Finding no solution with y > 0 for these boundary conditions, we 

conclude that no absolute instability exists for VI V2 > O. 

For VI V 2 < 0 the boundary conditions are al (X = 0) = 

a2(x = L/Lo) = O. (We always take VI > 0, so here V2 0.) Solving 

Eqs. (30) with these boundary conditions, WP. find unstable normal 

modes when 

,L > ! L 2 0 

We can understand this threshold heuristically" as follows. 

Consider Eqs. (1) with V 1 = -v 2 :: V, and suppose that 1 ~ (x', t ) 12 

represents an energy density. Suppose further that al (x,t) and 

aix,t) are equal and independent of x. Then from Eqs. (1) with 

VI = v2 = 0, atal = yoa2 - yoal • MUltiply by ali then ignoring 

factors of 2 we find atl~12 - yolall2. The time rate of increase of 

energy in the system is then at[LI~112] - YoLlall2. The rate of loss 

of energy through the sides is -Vlal I2. For net energy gain, we need 

(rate of energy increase) > (rate of energy loss), or 

YoLI~12 > Vlall2, or L > V/Yo;' Lo. The latter. corresponds to Eq. 

(29 ). 

The temporal growth rate itself is given by the formula 

y V8 n 
1 + B 

where 

n = :;: 2cos y 

and y is a solution. of 



L 
+ 0 
-L 
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The top (bottom) signs in Eqs. (33) and (34) go together. (See Fig. 3.) 

For ° ~ L/1o ~ 1 there is no real solution to Eq. (32). For 

1 ~ L/1 < n/2, there is a solution y for the top sign in Eq. (34), o 

giving n < ° and so a stable solution y < 0. For 

13· 
(n + 2)n ~ L/1o $ (n + 2)n, n = 1,2,3,···, there are 2n+l roots 

to Eq.(34), roughly half of which correspond to unstable y's. The 

most unstable mode is always the one at the smallest value of y. 
. 81 . 

Figure 3, adapted from Bobroff and Raus ,shows the graphical solution 

of Eq.(34) for L/1 = (9/2)n; there are four stable roots and five 
o 

unstable roots. 

For very large L/1 , o 

In dimensional units, this is 

y '" n, 

which is the same as Eq. ( 22) for the medium of infinite extent. 

(35 ) 

There is an alternative derivation of .the threshold Eq. (31), 

due to Liu and Nishikawa 84, which uses the well-known properties of the 

SchrOdlnger equation. Consider Eqs. (1) with \11 = \12 = 0, and elim­

inate a2(x,t); we have 

° (36) 

Laplace transform in time, neglect initial conditions, and divide by 

Define 

and find 

° 

2 

! (.l-.- ::L ~ $. 
4~ V2) . 

This is Just Schr6dinger's equation for a square well potential: 

(37) 

(38) 

(39) 

Lo-2:: y02/IVlV21 is finlte,Os x S L, and zero otherwise. If we 

can find an unstable eigenvalue Re( y) > 0, with e.igenfunction 

1jJ (x) corresponding to a bound state, then we have an absolute y 

instability. For Vl V2 > ° (top sign in Eq. (39»), there is a 

potential hump, and thus no bound state. For Vl V2 < ° (bottom sign 

in Eq. (39»); there is a potential well. Apply the boundalYconditions 

$( x = :to:» = 0, and assume the solution 

1jJ(X) = exp( +k x) 
o 

-00 < x <, () 

(40 ) 

exp(-k x) 
o 

L < x < CIO 

where k =! (~ ~ ; V 
20 ' k = 

o \ 12 / 
Requiring the continuity of 1jJ 

"'\ IL -2 _ k 2 
V 0 0 

and ¥x- at x 

, VI > 0, V2 < 0. 

° and x = L, we 

find an eigenValue condition which is equivalent to Eq.(3l). 

82 In a somewhat different approach, Kroll and Kelley con-

sidered the temporal evolution of a pulse in a finite, homogeneous 

medium, with the further specification that the pump be square in time 

, 

. (' 
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and in space. They feund different qualitative behaviors 'in three 

'. temperal regimes: sh0rt, intermediate, and leng. 

Gerbunev85 censidered the case V
2 

= 0, where we know there are 

no. temperally grewing selutiens. Assuming V
l

< 0, he applies a 

censtant level alex = L,t) = Cl at the beundary. With initial 

cenditiens al (x, t = 0) = Cl ' a2( x, t = 0) = C2' he' finds that the 

transient respense at early times can be erders ef magnitude greater 

than the final steady state response. We have verified this .result 

by direct numerical integration ef the equatiens. 

There are several analytic metheds fer ebtaining exact Green's 

functiens fer the tinite, homogeneous system. The results ef ene ef 

these, taken from Bobrof'f and Haus8l, are shown in Fig. 4, fer an 

abselutely unstable case. A particularly interesting methed, based 

on the concept ef "reflectiens", is discussed in Appendix A. 

C. The Effects ef Inhomegeneity 

So. far we have discussed.only a homegeneeus medium in the 

presence'ef a homogeneeus pump, ef finite er infinite extent, repre-

sented by Yo.. We new wish to. discuss the pessibility that the pump 

0' and the medium are inhomogeneeus. Pump inhemegenei ty can be intre-

::> duced by simply allowing 

(j 

0'" 
Inhomegeneity ef the medium is intreduced threugh the wave number 

mismatch i«x), as discussed in Section I-A. With beth types ef 

inhomogenei ty, Eqs. (8) beceme 

-18-

Yo(x) ,xp[ i loX «x') dX'] "2(x,t) 

(42) 

where we, again ass.ume Yo. ( x) real. Tayler expanding the functien 

K(x) abeut the peint xe = 0, and keeping enly the first term 

i«x)/ == j('x, we have 
x=o 

(43) 

Ignering VI and v2' whic!l ceuld be removed by the transfermatien 

Eq. (26 ), we define dimensionless variables . 

T - Ye(x = O)t 

Le 
. t 

- IVI
V

21 Iye(x 0) 

X - x/Le (44) 

e - Iv21\\1 

K" -, L 2 - K . 
. 0. 

A 11K' 2 -
- Yo. IK'I V1V21 

and ebtain frem Eqs. (43) 
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(45) 

Note that inhomogeneity of the pump enters as a!!!!. amplitude of X; 

inhomogeneity of the plasma as a complex function of X, with unit 

absolute value; we might therefore suspect that the effects of these 

-two types of inhomogeneities are entirely different. 

1. Inhomogeneous Plasma, Homogeneous Pump 

In this section, we consider Eqs. (45) in their dimensionless 

form, with K(X):: L K(x), and with y (x) = constant ..tX> < X < co,· 
00' 

then 

(46 ) 

We ask the following question: Given an initial perturbation 

are there any solutions a1 (X, T) which remain unbounded as T + co. 

This question was first answered by Piliya58 for the case V V > 0, 
1 2 

57 and then by Rosenbluth for arbitrary V
1 
V

2
, both for the case 

K(X) = K'X. In ~~ elegant application of WKBJtheOry86, Rosenb1uth57 
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showed that for arbitrary V1V, there is no absolute instability for 
2 

T + 00, but rather a saturation of the amplitudes la1(X,T)1 and 

la2(X,T)1 at a value -exp('ITA) where A:: K,-l. Note that this 

®esdot correspond to Briggsl usual definiton of convective instabilit18 

either, since the amplitude asymptote. to a certain level exp('ITA) 

(when "1 = "2 = 0) rather than falling to zero. 

In the case K( X) = ~ K" Y!-, with K" = constant, Rosenb1uth57.­

showed that for V1V2 < 0 there can be an absolute instability for 

sufficiently large y. In Appendix B we discuss these results in o 

relation to the general criterion for absolute instabilities in an 

inhomogeneous medium proposed by Sudan87 • • 
The exact solution of Eqs. (46) with initial conditions (47), 

and with K{X):o K' X, was first worked out by Rosenbluth, White, and 

60 Uu • Their exact results were in good agreement with the WKBJ results 

of Rosenb1uth57• Figure 5 shows the evolution of I ~(X, T ) I for the 

case V1V2 < 0, B = ~.2, K' = 1, taken from Rosenbluth, White, and 

Liu60 • Figure 6 shows the results of our direct numerical intel!rC8.t1on 

of Eqs. (46) for the same case. Figure 6 also shows the behavior of 

I a2( X, T) \. which includes a pulse growing ex: T following the initial 

delta-function. For la1(X,T)1 we see the same behavior as in the 

60 work of Rosenbluth, White, and Liu , (Fig. 5), except that the satura-

tion occurs at a value somewhat less than exp('ITA). This is due to a 

factor which was dropped in the last half of Ref. 60; for V2 = -V -1 

this factor is [2(2'IT)i]-1. With its inclusion, our results are in 

exact agreement with Ref. 60. 

An alternative solution to Eqs. (46), with K(X) = K'X, was 

provided by Laval, Pe11at, and Pesme61 , and independently by Kaufman62 • 
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ay making a transformation of variables, Eqs. (43) can be put In the 

'. form 

'0/ b(T)- f(T) beT) o (48 ) 

In this form y == V'i'fT) is found to be real and positive only for 

a finite time, implying no absolute instability. The form of f(T) 

also provides easy access to the result lal(X,T ~ ~)I ~ exp(nA). 

We consider next the form K(X) = A tanh(BX), which is a 

possible model of the Junction between two regions of homogeneous plasma 

with different densities. By direct numerical integration of Eqs. (46) 

we obtain the behavior shown in Fig. 7, for A = 10, 1 
B = !O' and 

V2/Vl = -1. With theSe parameters, dK/dXlx=o = 1, and the region of 

nearly constant dK/dX is large enough to see the beginning of 

convective saturation. The pulse response to the initial conditions 

al(X,T = 0)= 6(X), a2(X,T = ?) = 0, grows initially with the 

homogeneous growth rate y = 1 (see Eq. (22), which in dimensional 

units yields y/yo = 1). The pulse begins to saturate at -exp(~A), 

then feels the homogeneous regions and takes off again at the hcmo-

geneous growth rate y = 1. 

2. Homogeneous Plasma , Inhomogeneous Pump 

We have already considered a special case of homogeneous 

plasma, ,inhomogeneous pump in Section I-B-2, where the pump was 

constant over the region 0 ~: x !i L, and zero otherwise. There we 

found an absolute instabi li ty only for Ll10 > 1£/2. ' 

When the pump has a parabolic shape, and the medium is 

homogeneous, we have Yo(x) = y (1 - x2JL 2), and K(X) = 0 in 
• 0 y 

Eqs. (42). Following Liu and Nishikawa84 , we again put Eqs. (42) 

in the form of a Schrodinger equation. For Vl V2 > 0, we again find 
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a potential hump, no bound eigenfunctions, and no unstable eigenvalues. 

For Vl V2 > 0, an infinite number of unstable modes are found, with 

threshold pump width \110 = (2n + 1), n = 0,1,2, .. ·, for onset of 

the nth mode. With damping, . and taking the limit L ~ ~, the homo-. . y 

geneous medium threshold is' regained (See Eq.(2l~; when both the 

damping threshold and pump length threshold are greatly exceeded the 
- '. 

modes grow at.nearly the largest possible growth rate, "'fly ~ 1. o 

From the form of the eigenfunction solutiop to the'Schrodinger 

equation, it can be seen that the absolutely growing modes are local­

ized with characteristic dimension -(LyLo )'. 

3. Inhomogeneous Plasma and Pump 

We turn now to the study of Eqs. (42) in their full compiexity: 

'o( x) "2(" t) "XP [1 LX «x') dx'] 
(49) 

'o(x) "l(·,t)" .. [-1 f .t..) dx'] 

The simplest oose, and the most enlightening, involves a pump existing 

over a finite region, Yo = constant, 0.$ x .$L, and zero otherwise; 

and. a linear inhomogeneity of the plasma, j(x) = j('x. This conffg-

uration is sketched in Fig. 8. First considered by Forslund, Kindel, 

aridLindman63 , and by Pesme, Laval, andPellat56 , additions to the 

theory of this case have been made by: the present author, to be 

discussed below; Jha and srivastava75 ; Dubois, Forslund, and Williams65 ; 

66 and Chambers and Bers . 

Recall first that when K' 0, this is just the case con-

sidered in Section I-B-2, the finite pump, homogeneous plasma case. 
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There we found absolute instability for L/1 > n/2; we expect that 
o 

very small inhomogeneity K' will not change this qualitative 

behavior. 

Forslund, Kindel, and Lindman63 proceed as follows. With 

K(X) = K'X, assume a solution al(x,t) = alex) exp(yt), 

a2(x,t) = a2(x) exp(Yt); then Eqs. (42) become 

(50) 

:here a2(x) = a2(x) exp[iJ:X K(X') dX']. Define a new space seale 

X :: xy /VI; then Eqs. (50) are 
• 0 

• 4 (51) 

where K{X):: iC(x) Vl/y. Assume now that IV2/Vll« 1, and define o _ V 
a new temporal quantity y:: L~; then Eqs. (49) are 

Yo 2 

Since Iv 2/V 11 «1 we can neglect the first term in the first 

equation, being left to solve 

( 52) 
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(53 ) 

-with K(X) = K'X. We wish to find the eigenvalue y. With VI > 0, 

V2 < 0 we have the boundary conditions aleX = 0) = 0, a2(X = t) = 0, 

where E:: LY/Vl • We guess a value for Y, set aleX = 0) = 0 and 

a2(x = 0) = 1, and integrate the Eqs. (53) numerically from X = 0 

to X = L, where we desire ;2(X = E) = O. Adjust the guessed value 

of Y until this is so; y is then the desired eigenvalue. The 

results of this procedure are shown in Fig. 9, for the case ti = 5, 

VI = 24, V2 = -1, Yo =...[24. For small K~, we find two real 

eigenvalues, in agreement with Section I-B-2 for the homogeneous 

(K' + 0) case. As K' increases, the eigenvalues move together; at 

a particular value of K' the two real roots .merge to become two 

complex roots, complex conjugates. For very large K', the real 

growth rate goes to zero and the instability disappears. 

To verify these results, we have numerically integrated 
• 

Eqs. (42). The large points in Fig. 9 are the eigenfrequencies 

obtained from our numerical integration; we see exact agreement with 

the results of Forslund, Kindel, and Lindman63 , within the accuracy 

of our numerical calculation. 

We can gain. further understanding of this problem by calculating 

the Green's function response 6f Eqs. (45) to the initial conditions 

o( X) o (54 ) 

.. 

• ... 
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Such a calculatio~, by direct integration of the fundamental equations, 

is shown in Fig. 10, where we plot lal(X,T)1 and la2(X,T)1 vs. X 

at different times T, for the parameters K' = 1, VI = 24, V2 = -:i, 

Yo = 'i24 , L = 5. (These parameters were chosen for easy comparison 

with Fig.9 and Fig. 11.) Here we see quite clearly the presence of 

two normal modes; in particular, at the point X = 5, we seem to have 

equal amounts of each normal mode, because at T = 3.25, . 

lal(X = 5, T = 32.5)1 .. 0. We .interpret this behavior as being of the 

form 

(55) 

which varies between a maximum value -exp( yT ) and a minimum value 

zero, just as seen in Fig. 10 at the position X = 5. This oscillating 

behavior, on top of the exponential growth, occurs in the time 

asymptotic response. This behavior differs from that of the finite, 

homogeneous case, seen in Fig. 4, where the asymptotic behavior con-

sists of purely exponential growth at each position. 

A further calculation by Forslund, Kindel, and Lindman88 is 

shown in Fig. 11. Here we see the behavior of the fastest growing 

normal mode as a function of pump length· L, for fixed K' = 0.4 

V =-1 
2 ' 

\I -\I =0). 1 - 2 The real part of the 

growth rate reaches a constant value for large pump length L, while 

the imaginary part of the growth rate is linearly proportional to L 

for large 1. 

At this point, we must pause to consider an apparent contra-

diction. Figure 11 predicts an absolute instability for fixed K', 
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57 E ~ ~, whereas the work of Rosenbluth ,discussed in Section I-C-l, 

indicated no ~bsolute instability. 

tion. 

There are two possible resolutions to this apparent contradic-

57 The first is that perhaps Rosenbluth should have found a root 

(y + in) wi th fini te growth rate y and infinite imaginary' part n, 

as indicated in Fig. 11 for L + 00. It is possible that his WKBJ pro­

cedure could have missed such a root, since it would have an infinite 

absolute value. 

The ~possible resolution lies in the limiting procedures 

88 involved. Mathematically, Forslund et al., take T ~ ~ first and 

then L ~~; Rosenbluth, on the other hand, takes L ~ 00 and then 

T ~~. It is well known mathematically that changing the order of 

lim! ts can completely change the result; witness, for example, 

Lim a 2' which yields either zero or infinity depending on the 
a-+O a2 + b 
b-+O 

order of the limits. Physically, Forslund88 et al. assume that each 

wave has had the chance to "reflect" many times from boundary to 

boundary,and vice versa. But Rosenbluth's57 pulse never reaches the 

boundaries, and never has time to reflect. Thus, the absolute growth 

rate of Forslund88 et al. never makes its appearance. 

At this time, it is not clear whether one, or both, or neither, 

of the above resolutions is the appropriate one. 

The Green's functions shown in Fig. 10 can be obtained analyt-

ically, as well as' by direct numerical integration of the coupled mode 

equations. We have done this, and present the calculation in 

Appendix C. Due to the complexity of this solution, it is easier in 

practice to numerically integrate the basic equations. 
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Finally, let us briefly discuss three other contributions to 

.. this plIoblem of finite pump, inhomogeneous plasma, Fig. 8. Jha and 

Sri vastava 75 obtain an analytic solution for the growth rate (y + in), 

using perturbation theory for small K'. Dubois, Forsl.und, and 

Williams65 use the WKBJ theory to obtain approximate results for the 

growth rate (y + il1) VB. pump length L and inhomogeneity K'. They 

also considered the case Yo(x) - Sin2(X/Ly.)' -L < X < L , as well y y 

as other smooth functions for. yo(x). In all cases, results similar 

to those of this section were found. Chambers and Bers66 solve Eqs. 

( 42) in the same manner as we do in Appendix C. However, they look 

for a special value of temporal variable y, rather than regarding 

y as a Laplace transform variable to be integrated over. Applying 

boundary conditions at X = ° and X = L, they find the eigenfrequency 

y + in, which agrees exactly with those shoWn in Figs. 9 and 11. They 

next obtain the full spatial solution to Eqs. (42) in terms of para­

bolic cylinder functions. These solutions are found to hug the walls 

as L +00, thus leaving no effect in the middle of the system. This 

phenomenon is claimed by Chambers and Bers66 to provide yet a third 

possible resolution to the Forslund-Rosenbluth paradox. 

Another interesting characterutic of the fini te pump case is . 

the following. With Vl > 0, V2 < 0, suppose the system is too short 

to be absolutely· unstable. Then suppose we input a constant value 

aleX = O,T) =8
0 

at the left-hand boundary. What will be the amplifi-

cation aleX = L/L ,T)a, measured at the right-hand boundary 
o 0 

after the steady state has been reached? For V2/Vl = -1, LlLo 

we determine the amplification A for various values of K', by 

direct numerical integration. Figure 12 shows the results. We see 

1, 
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that the greatest amplification is for the homogeneous case K' 0, 

and the amplification decreases for increasing inhomogeneity. 

We turn next to the work of White, Kaw, Pesme, Rosenbluth, 

Laval, Huff, and Varma64 , who considered the inhomogeneous pump, 

inhomogeneous medium case. Starting with the equations 

( 56) 

with Vl 'V2 > ° (note the (-) sign in the second equation), Yo(x) 

is then expressed in the form 

lox a(x')dx' 
y (x) = y e o 0 

Laplace transform in time, f( p) :: forO e -pt f( t) dt, and define 

[
If p + Vl P + v 2\ 

. F( x,p) exp . -:2\. --v;:- + -V;-) x 

+ ~ f (o(x' l + iK(X' l] "',] 

obtaining the equation for F(x,p) 

d 2 F(x,p) + f(x,p) F(x,p) 
x ° 

( 57) 

(58) 

(59 ) 



o 
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where 

r(x,p) 
1 [ . (~+ vI P + 'i\] 2 
1; a( x) - iK( x) - \....--v:;- + --v;;-:; + 

2 2(Xa(x' )dx' 
1 . Yo Jo 

+ - (a a - ia K) + 'I'P""'Il'"" e . 2.x x vl v2 
(60) 

Choose a Gaussian profile for the pump, a(x) :: -2x/L 2, . y 

and let K( x) = K'X; we obtain 

f(x) 
[ ~ l iK':\ l(P + VI P + V2'J 2 

- x ~ + 2) + 2\--V;- + -V;-) 
y 

y 2 '-2i/L 2 

-(L> + i~~ + "lV2 e y 
(61 ) 

From this point, White64 et a;. analyze Eq. (56) using WKBJ tecbnique96 

and looking for normal modes. For VI and V2 in the same direction, 

there are no unstable normal modes. For VIand V 2 in opposite 

directions, there exists an unstable normal mode provided three neces~ 

sary conditions for absolute instability are satisfied, namely 

(i) the threshold for instability in an infinite, homogeneous 

.medium must be satisfied, (see Eq. (21)) namely 

y > 
o 

vllv21 + 1>I21Vl I 

2-V V
l
V

2 

(62) 

( ii ) we require Ly > Lo. This corresponds to the threshold 

for absolute instability in a homogeneous plasma with finite length 

pump, Section I-B';'2. (See Eq. (29 ).) 

(iii) we require 

If K'L 2 » 1, this becomes. 
y 

1 
L < ":'"IL 

y K 0 

-)0-

(63 ) 

(64) 

This ~ bound on Ly' perhaps surprising, could have been predicted 

on the basis of Section I-B-2, the infinite p~p, inhomogeneous medium 

case, where we found no absolute instability; there we had Ly +~. 

White64 et ale interpret this upper bound on Ly as being a 

condition on the sharpness of the boundary yo(x), a sufficient amount 

of sharpness being necessary to cause the "reflections" needed to 

produce absolute instability. 1his interpre:ation is along t~e same 

lines as the "reflections" of Bobroff and Haus8l (Appendix A). Another 

waY to discuss this phenonenon is to say that in the infinite, 

inhomogeneous case there are destructive interferences, originating at 

large x, which quench the absolute instability. Cutting off the 

pump at large x destroys the source of these destructive inter-

ferences, allowing the absolute instability to exist. 

In this section, we have been concerned with inhomogeneities 

which vary monotonically. In the next section, we consider. non-

monotonic inhomogeneities in the form of spatial turbulence. 
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II. PARAMETRIC INSTABILITIES IN THE PRESENCE 

. OF LONG WAVELENGTH TURBULENCE 

A. General Results 

In this section, we discuss the influence of irregular 

inhomogeneities on parametric instabilities. First, we review pre­

vious work. Then we discuss our own work67 on long wavelength 

turbulence, in the presence of a linear density gradient, for anti­

parallel group velocities. 

There is a substantial body of work on parametric instabilities 

driven by a pump which has finite bandwidth89-95 , the bandwidth being 

thought of as a random phase cpr t) in the temporal behavior of the 

pUmp, which varies . ...e%V[- fwo t + cpr t )J. An important effect is found 

when the bandwidth is of order Yo' 

The earliest treatment of three wave interactions in the 

presence of spatial turbulence is due to Tamoildnand Fainsh~ein 96 ) 

who consider all three equations and find that the turbulence 

suppresses the usual.relaxation oscillations. There has also been 

some work on all three waves in the presence of a random phase, by 

Wilhelmsson28~ 

The case of spatial turbulence in a homogeneous plasma, using 

Eqs. (42 ) with K( x) a random function characterized by amplitude 

tJ. :: < [K( x) Y)' and correlation length LT, has been considered by 

Kaw, White, Pesme, Rosenbluth, Laval, Varma, and Huff69 for the case 

of parallel group velocities. For LotJ.2~» 1 » tr/Lo' they find an 

increase in the growth length from Lo ( for tJ. = 0) to (LotJ. 2tr )Lo ' 

Kaw69 et al. have also considered, for parallel group veloci­

ties, the case of a linear density gradient in the presence of spatial 

turbulence, K(X) = K'X + OK(X), where OK(X) is the turbulent 
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wavenumber mismatch with correlation length ~ «L 
o 

We know that 

in the absence of turbulence, a constant input at x = 0 saturates 

spatially at a level exp(TIA), where A:: yo2/(K'IV1V21). In the 

69 presence of turbulence, Kaw . et al. find the same result, spatial 

saturation at eXP(TIA), but with an increased growth length before 

saturation. 

We wish to generalize the results of the last paragraph in 
-67 . 

two ways ,by con~idering. the space-time behavior for anti parallel 

group velocities, and by considering correlation lengths LT - Lo' 

We do so by direct n~ertca~ integration of Eqs. (42). 

The. turbulent part of the wave number mismatch is characterized 

by amplitude tJ. and correlation length Lr. We take the correlation 

function to be statistically uniform and Gaussian, 

< ~K( x) OK( x' ) > = tJ. 2 exp [-(x - x,)2 /:21./ J (65) 

Since th~ spectral function S(k):: f dy eiky (OK(X) oKCx + y» 
= (2TI)i tJ. 2 ~ exp( -k' 2 /2), we take as a model * for the random 

function oK( x) a sum of sine waves with random phases, 

* 

(32TI i -vr:i tJ. ~' exp[-'k/ L,/ /4 J sin(kjx + aj)· (66) 

j=l 

The model mismatch Eq. 

(oJd:x) OK(X' »- [ 
j 

(66) has a correlation function of the form 

exp( -kj 
2 Lr 2 

/2) cos[ 2TIj( X - x' )/1] whic.h is 

periodic in x with period L .. For distances of interest x « L, 

this correlation function is accurately given by Eq. (65). 
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where kj = 27fJ/L; L is an arbitrary basic length, much longer than 

any other length in the problem; {a.} is a set- of random phases, with 
J 

probability density uniform from zero to 27f; and the upper limit of 

summation is taken to be large, such that (kj!.rk-» 1. (or 

course, care was taken that all turbulent wavelengths be large with 

respect to the numerical grid spacing. The results are then insensitive 

to the numerical grid spacing.) For a given realization {aj }, and a 

particular set of parameters, the total mismatch gradient 

dK(x)/dx = K' + d6K/dx is illustrated in Fig. 13. 

Given this model, the coupled-mode equations (42) are inte­

grated numerically to de:term1ne the effect of the spatial turbulence on 

the response of the system to an initial perturbation. The main result 

of this study is that if 6. exceeds a threshold value (dependent -on 

I.r), the instability no longer saturates at a value -exp( l'A)~ but 

grows exponentially at fixed ~ for large time, at a growth rate -y' 

lower than that for a nontU1'f>ulent haDogeneous medium. In Fig. 14 we 

show the temporal development of a typical unstable case with initial 

conditions al(x,t = 0) = 6(x), a2(x,t = 0) = O. Fluctuations 

reminiscent of Rosenbluth, White, and Liu68 are observed,but with a 

less regular character. The most unstable part of the pulse has the 

behavior of a temporal normal mode, maintaining its shape while 

growing exponentially. 

In Fig. 15 we show the absolute growth rate Y/Yo vs 6./1
0 

for Vl /V2 = -1, A-I = K'L02 = 1, !.r/Lo = 1.27. The threshold 

_turbulence level is seen to occur at tJ./L -1 '" 0.1. The maximum 
o 

growth rate is Y/Yo '" 0.70, which is comparable to the homogeneous 

growth rate Yo' 
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The function dK(x)/dx shown in Fig. 13 corresponds to the 

threshold case of Fig. 15. This function is seen to lie in the range 

0.80 < L02 dK(x)/dx < 1.20. This shows that the coupled mode equations 

can produce absolute instability even if dK(x)/dx vanishes nowhere 

in the medium, in contrast to the result of Kaw69 et al. 

In Fig. 16 we show the growth rate y as a function of correla-

tion length Lr, for fixed fluctuation level tJ.. For this calculation 

we use the same realization of the set {aj } in Eq. (2), varying I.r 
-1 with tJ./L0 = 0.5. We see that the absolute growth rate decreases 

with increasing correlation length. 

It should be noted that in this work the turbulent Wavelengths 

are quite long, the shortest being equal to the standard length 

La = -VIVIV2Ilro' 

A further point is that for a given value of tJ., the absolute 

growth rate depends strongly on the realization of {aj } chosen in 

Eq.(66). The relative dispe'rsion of the growth rates is of the order 

of 30-40%. 

We interpret our results as fOllows. The convective saturation 

of the linearly inhomogeneous coupled mOde problem57 ,68,with opposite~ 

directed group velocities, seems to be due to destructive interferences 

between responses originating at large positive and negative positions. 

This interpretation is supported by the work of White 64 et al., who 

found that replacing the constant pump by a Gaussian in _ x resulted in 

absolute instability, as discussed in Section I-B-3; i.e., removiDg the 

responses at large x removed the destructive interference at x = o. 

The analogy in our work is that the turbulence upsets t~e destructive 

interferences, allowing the instability to grow absolutely. 
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We conclude that the presence of long-wave ,turbulence tends to 

,destabilize the convective saturation found57 ,68 for the coupled mode 

equations, with oppositely directed group velocities, in an inhomogen­

eous medium. This destabilization occurs at relatively small turbulence 

levels; so small that the condition dK(x)/dx is never satisfied. 

, 71-74 
At this time, there exist several analytic efforts which 

deal with situations closely related to this section. Much of this 

work involves approximations, an example being the Bourret closure 

approximation, the validity of which are at present being debated. 

B. Raman Backscattering in Laser Fusion Model 

In this section we apply the results of the previous Section 

II-A to the question of Raman scattering, in which an electromagrietic 

wave decays into another electromagnetic wave 'and a Langmuir oscilla-

tion. We consider an example from the parameter regime of laser 

f i 97-101 us on • 

I 17 18 First studied by Bloembergen and Shen , Volkov. , and 

Comisar19 , excellent derivations of the coupled mode equations (1) 

102 ' 
for Raman backscattering are given by Drake et al. and by Liu, 

Rosenbluth, and White34 • These derivations proceed from Maxwell's 

equations and the Lorentz force equation to our Eqs. (42), which are 

Yo ",(x,t) 'XP [i f K(x') dxJ 

1 dX'j 

( 67) 
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where ~ is now the scattered electromagnetic (EM) wave and a2 

is the electron plasma oscillation. 

The laser fusion geometry is depicted in Fig. 17, where we 

see the density rise from zero to above the critical density. Since 

both decay products have frequencies above the local plasma frequ~ncy, 
""I I 2 2 2 . r2 2- - 2 . 

~,= 'loop + kl c , 002 = \loop + 3~: ve ' thEl pump frequency must 

satisfy 00
0 

> 2wp' Thus, Raman scattering can occur only below the 

point xt where n = n/4, or wp= 00
0
/2; the critical density. nc 

is the density at which wp = 00
0

, Furthermore, Raman backscattering 

can occur only above a certain density, because for too low, a, deI.1si ty, 

the Langmuir decay product is strongly ,Landau damped. We can see this 

fact as follows. In the far underdense region, 00 (x) « 00 , the EM po, 

decay product will have a frequency about equal to 00, and thus a 
. 0 

wavenumber kl about equal in magnitude to ko' but opposite in 

direction, as shown in Fig. 17. Thus, the Langmuir wave has wavenumber 

k2 '" 2ko' For very low plasma frequency, the Langmuir.wave phase 

veloci ty V", - 00 /2k will ,be so small that k2AD - 2k v /00 -1, • P 0 0 e p 

producing large Landau damping. In this region, Raman backscatter 

is suppressed and is dominated by induced Thomson scatteringl03~ the 

difference frequency 00
0 

- 00
1 

' now corresponding to a beat dist~bance 

which is not a plasma normal mode in the absence of the pump; the 

three wave coupled mode equations no longer apply. 

We see therefore that Raman instability happens between a 

minimum density and a maximum density 4~ n , as shown schematically in , c 

Fig. 17. Our Eqs. (40) are valid over part of this region, but not all 

of it. Near the point xk' the EM wave is near its classical turning 

point (001 - wp ) and has kl '" 0; thus the wavelength Al is very, 

large and the approximation of slowly varying amplitude al (x, t) is na 
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longer valid; we cannot use Eqs.(42) in this region. We therefore 

restrict our study to "the region indicated schematically in Fig. 17 

(Note that we have also neglected damping in Eqs. (67). In practice, 

the EM wave is collisionally damped, and the Langmuir wave is 

collisionally and Landau damped. At the end of this section we 

briefly discuss the effects of damping.) 

Let us evaluate the parameters V l' V 2' Yo' and i« x) in the 

general vicinity of W (x) ::: W 13, or n( x) ::: nc/9, working to roughly 
p 0 

10% accuracy. We take fixed Wo and wl • For Vl , we have 

Vl = -CVl - W/lw/::: -CVl - ~ '" -c. We have V2 3V/k/W21 

where ve is the electron thermal speed; we find 

Ii 2 2 1+ 2 2 k = k + Ik I = - w - w + -c 1 - w ::: (2w IC)(l - w 12w ); 2 ole 0 p pop 0 

and w2 = Wo - wl ; thus 

( 68) 

For Yo we obtain from Drakel02 et al. 

v 
y =...2. ... f'W"'W' 

o " c V wowp (69 ) 

where Vo is the oscillation velocity of an electron in the field 

of the pump wave, related to the pump intensity I(W/cm2 ) by 

for a 15 -1 Nd:glass laser with Wo = 2·10 s • 

(70 ) 

Finally, we detennine i«x). At the point of exact matching 

xo ' we haveK( xo ) = O. At any other point, we have 

i«x) = ko(X) - kl(x) - k2(x); expanding about Xo we find 

i«x) W (x)-w (x) ~ 2 " 2 ~ 
p p 0 

For a nonrelativistic plasma, 

(71 

v Ie « 1, the Langmuir wave term in e 

Eq.(71) is much larger than the other two terms, yielding 

i«x) (72) 

where all quanti ties except wp 2( x) are evaluated locally at xo' In 

the far underdense region 

K<x) 
""iC o 

w «w 
p 0 

(73) 

For a linear density gradient with scale length Ln' and turbulent 

relative density fluctuation ~n(x), Eq. (70) becomes, with Xo = 0, 

i« x) (74 ) 

"We choose parameters characteristic of laser fusion97-101. 

The laser is Nd :"glass, W = 
o 

2.1015 s-l, A = 1 ~, intensity 
o 

-10" 5-= 10 s = 2·10 W 1. The 
o 

I = 1015 W/cm2, pulse length 100 psec 



-39-

At these values, collisional and Landau damping rates are lower than' 

Y = 0.02 W by a factor of 100. At the homogeneous growth rate, an 
o 0 

initial noise level would amplify by exp(y x pulse time) = 
o 

exp(0.02 Wo x 2.105 Wo-1) = exp(4000), a huge value which would mean 

serious attenuation of the incoming laser beam. Thus, it is important 

to study the inhomogeneous regime, to determine whether such growth 

rates are actually obtained. 

Choosing a density scale length Ln 100 ~m, we have from 

Eqs. (68) and (74) 

V2 = 0.03 c (75) 

K{X) 

Also of interest are the parameters L = 1.3 j.IIIl, o 

1.5. From these we note two important facts. First, we are pushing 

the WKBJ Eqs. (42) to the limits of their validity, since Lo = 1.3 ~m 

is only slightly larger than A '" A1 .. 1.0 j.IIIl; whereas we have o . 

assumed Lo - ax tnla1{x,t)1 »~,Al,A2' Secondly, the nonturbulent 

convective saturation at exp{1TA) :::'exp(5) is at a very low value for 

these parameters (for I = 1016 W/cm2, 1TA = 50; for I = 1014 W/cm2, 

1TA = 0.5); it is therefore 'crucial to determine whether turbulence 

destabilizes the convective saturation, allowing absolute growth. 

With LTlLo = 1.3, and a particular realization of {a. j} in 

Eq. (66), the results are as shown in Fig. 18. Although not shown in 

Fig. 18, the threshold for absolute instability occurs at a relative 

RMS density fluctuation !l. - 10-4 to 10-3, a very low value for real 
n 

plasmas. The absolute growth rate above threshold is y/y ::: 0.2, o 
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RMS 
falling off for large t. - 0.1. This growth rate should be compared n 

to the homogeneous absolute gl'owt.h rate, which from Eq. (22) is 

The effects of damping on the absolute growth rate have been 

studied. Results qualitatively similar to those in a homogeneous 

medium79 have been found; the growth rate is reduced when ~he Langmuir 

wave damping rate v2 - 1~IYo' 
Thus, we have found that the convective saturation of Raman 

backscattering in laser fusion geometry is destabilized by very low 

levels of turbulence, such that the relative RMS density fluctuation 

is t.- -10-4 to 10-3• 
n 

Let us depart from the abstract world of one dimensional theory 

to ask the question: What is the experimerita1 situation regarding 

Raman backscatter? Answer: There is no direct evidence for any Raman 

backscatter in any experiment, even though many laser-plasma experi­

mentsl04-l06 are in the intensity range (1014 - 1016 W/cm2 for 

Nd:g1ass) where theory predicts huge amounts of Raman scatter. 

Numerical simulations, however, do demonstrate Raman scattering which 

behaves as predicted by theory63,107,108 There is some indirect 

1 experimental evidence for Raman scatter near 4 nc ' in that scattered 

light of frequency ~ Wo has been observedl05 ,106. Of various 

theories109-112 accounting 'for light at ~ W , all make use of the 
2 0 

combination of pump light at wo ' with Raman or 2Wp instability~ 

generated radiation at wo/2; indeed, a paper by Langdon, Lasinsky, and 

shows that at ~ nc ' these two instabilities merge into 

a mixed electrostatic-electromagnetic instability. This is then the , 

indirect evidence for the existence of Raman scattering. 
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We offer two speculations for the absence of large amounts of 

Raman backscatter. First, the large turbulence limits of both Fig. 15 

and Fig. 18 show a decrease in growth rate for very large turbulence; 

perhaps such turbulence is experimentally present. Second, it has been 

shownl14 that magnetic fields associated with turbulence can inhibit 

Raman scattering; perhaps such magnetic fields are present. 

This discussion has been limited to one dimension. There has 

also been a considerable amount of work on Raman side­

scattering68,70,114-l18 , which is important since perpendicular to the 

density gradient the three wave matching conditions can be exactly 

satisfied over large distances. 

-42-

III. PARAMETRIC INSTABILITIES IN THE PRESENCE OF 

A NONMONOTONIC INHOMOGENEITY--A MODEL PROBLEM 

A. Theory of Homogeneous Plasma With Sinusoidal Density Modulation 

As discussed in part II above, it is very difficult to make 

analytic progress with our coupled mode equations when the inhomo-

geneities are nonmonotonic, or turbulent-like. For this reason, we 

cansiderthe tractable problem of a sinusoidal density inhomogeneity, 

expressed as a wave number mismatch in the form 

K(X) = L K sin(XL /L ), the subscript standing for modulation. o mom 

Thisprohlem is ~ the turbulent problem in two respects: the wave-

number mismatch is characterized by an amplitude Km and by a length 

Lm' just as turbulence has an amplitude t; and a correlation length 

~. This problem is ~ turbulence in one important respect; that 

is, K(X) is coherent in the sense that the value of the function at 

each point is given once Km and Lm are given. Thus, the solution 

of this problem will contain important simila.rities to the turbulent 

problem, as well as important differences. 

We b,egin with the coupled mode equations in the form 

(76 ) 

(aT + "2 ± -{ifaX).2(X,T) •• ,(X,T) exp [-1 IX K(X') dlt] 

where 8 = IV2/Vl'. Assuming a time dependence 

al(X,T) = aleX) exp(-iwT), and eliminating the factor 
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a2( x, T) e~ [ i LX K(X') dX'] as in section I-C-III above, we have 

{ 'x2 
• [ ± "* (-ioo • v2 ) " i<lX) • (-ioo • V, )-va.]ax 

+ [±(-ioo. v, )(-ioo' v2 ) - i-Va «X)(-ioo. v, )' ll} "l(X) = a . 

(77) 

Assuming that K(X) = L K sin(X L /L) and defining the new spatial 
• 0 mom 

variable Z:: (L /L )X = x/L , we obtain o m m 

+ (~)' [ ±(-ioo + v1 )(-ioo + v2 ) '1 - i-{8 (-i. • v, ) 

x Lo 'm "in('~} "1(2) ~ Q 

This equation has the simple form 

where . 

-i L K m m 

(78) 

(79 ) 

Equation (80) continued next page 
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Equation (80) continued 

AJ {~:) (-ioo. v, )(-ioo. v,) + G:) 
(80) 

and where the top sign·is for parallel group velocities and the bottom 

sign is for antiparallel group velocities. When w = 0, Eq. (79) is 

equivalent to Ince's equationI19 ,120. A siciple transformation could 

then remove the middle term, producing a Hill equationll9 ,120 of the 
• 2 . .' 

form az al{z) + [(cl + c2 cos{z) + c
3 

COS{2Z)] al{z) = O. Only the 

existence of the cos{2z) term makes this equation different from 

the well-known Mathieu equation. For our purposes, the present form 

Eq.(79) is more convenient. 

Equation (79) is periodic in Z with period 21T. Floquet 's 

theoremll9 ,120 states that there exists a solution of the form 



o. 
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exp(kz) ~(z) where ¢(z) is periodic in z with period 2TI. 

* Such a solution can be very helpful to us, as we shall see below. 

* 

The solution is expressed as 

(81 ) 

Usually, there will be two solutions of Floquet form to Eq. (79), 

fl(z) = ¢l(z) exp Itrz" f 2(z) = 4>2(z) exp k2z, where ¢l and 4>2 

are periodic in z with period 2TI. If kl 1 k2, or kl = k2 

but 4>l(z) is linearly independent of 4>2(z), then fl(z) ~d 

f2(z) are linearly independent. This is the case in Section 

III-A-l, where we find k2 = -kl • For a discrete set of values Km' 

if vl = v2 = 0, we find k2 = -~ = 0; in this case it can be 

shown1l9 that 4>1 (z) and 4>2( z) are indeed linearly inde~endent; 

f 1 ( i) and f 2( z ) are, therefore the complete solution set. In 

Section III-A-2, the basic Eq. (79) with nonzero W is more compli-

cated than in Section III-A-l with W = O. Here we force kl = 0 

and solve for ~; this is then one solution of Floquet form ¢l(z). 

We remain ignorant of the second solution; there are three 

possibilities: (i) it could be of ,Floquet form with different 

k2 1 0; (ii) it could be of Floquet form with k2 = 0 but 4>2(z) 

linearly independent of ¢l(z); (iii) it could be of completely 

different form: Whichever of these three possibilities occurs is 

not our concern; we are only interested in determining which values 

of Ware consistent with a Floquet solution exp(k1z) ¢l(z) 

having kl = 0; this we have done. 
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then Eq. (79) becomes 

(82 ) 

The coefficient of inz e must be zero for each n, ..... < n < ,co; 

thus we find for each n that 

{~Ik + l(n - I)J+ ~} 'n-1 + {(k + In)2 + .,(k + In) + "}'n 

+ f ~ It + l(n + 1) 1 -~ }'n+l • a 

n = ••• ,-2,-1,0,1,2,'" (83) 

Dividing out the middle coefficient gives us'a set of equations, which 

in matrix form would be convergentl19, 120. (An infinite matrix is 

convergent if (i) the product of the diagonal elements converges, and 

(ii) the sum of the off diagonal elements converges.) Defining 

-co<n<co • 

(84 ) 

Equations (83) becomes, on dividing out the middle coefficient and 

using (84), 

+ 
Yn cn_l + cn + Yn cn+l ° -<lO < n < co • (85) 

This set of equations is solved as follows. Defining 
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c n-l 
c n+l 

u - . ; v -n c n c 
n n 

Equations (85) become, on dividing through by cn' 

+ 
y u + 1 + Yn v n n n 

o 

This set Eqs. (87) can be solved for un and 

Appendix F. The result is 

v n 

+ - + - + 
_ Yn- l Yn- 1 Yn-2 Yn-2 Yn-J ••• 

1- 1- 1-

- + - + -
_ YD+l Yn+l Yn+2 Yn+2 Yn+J •.• 

1- 1- 1-

v , as shown in 
n 

(86 ) 

(87) 

( 88) 

where continued fraction notation has been used, meaning that each 

minus sign in the denominator acts on everything to the right of it. 

The solution (81) is now completely determined. The value of k is 

obtained by choosing a value for n, n = 0 let us say, in Eq. (87). 
+ 

Inserting Uo and Vo from (88), and Yn- from (84), and ~, A2, 

A
J

, A4 from (80), all into (87) for n = 0, we solve for k as a 

function of w, Km' and Lm' That is, 

a 

is a dispersion relation for k. It remains to evaluate 

...00 < n < 00, 

(89) 

The c are obtained by choosing a value for c, and noting 
n 0 

that from the definition (86), we have c = v vl"'v 2v. lC for n 0 n- n- 0 
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n > 0, and c = u u •. 'U U c n 0 -1 -n+2 -n+1 0 for n < O. Thus we have 

constructed the complete solution Eq.(81), aside from an arbitrary 

constant co' In this report we shall not evaluate {cn}, but rather 

obtain as much information as possible from the parameter k. 

1. Parallel Group Velocities ' 

As we have seen before, when the group ve10citiesA1le parallel, 

V
1
V

2
> .A, . there is no possibility of absolute instability, and,we may 

consider the problem of the spatial response to a c~nstant source 

a1(X = 0) = 1, steady state in time. We do this by setting the 

temporal growth rate w = 0 in the definition below Eq. (76), and 

consider Eq. (89) as a dispersion relation for k. For zero modulation 

K , we know that the spatial response is ~exp( x/L ); for finite 
m . '0 

modulation we expect this spatia~ growth rate to be reduced. From 

Eqs. (80) 

-iL K mm 

A4 = -i\ll(L K )(VS L /L ) m m m 0 

Then from Eqs. (84) we have 

-(L K )[+k :; in - i :; \I "'8 L /L ] mm lVP m 0 

-oo<n<oo 

(90) 

(91 ) 



o 

o 
'::; 

o 
o 

For small 
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L K , we can approximate u, v m mo. 0 

- + + 
-Yo Y~l - Yo Y+l + 1 

in Eq. (89) by 

o (92) 

For heuristic clarity, set vI = v2 0, a 1. Then Eq. (92) is 

(K L )2 It(:1t - i) 
mm 

( KmLm)2 k(k + i) 
+ -4(-k"lll2-_-L-:21\""/L~2ii-)":'[(-k-.. -+-i-)"111'2-_-L-'2!"'"/L-. ~2~] + 1 

m om 0 

o (93) 

For fixed L, let K + O. Then Eq. (93) can be satisfied only if m m 
the denominator in one of 'the terms vanishes. Choosing 

l - L 2/L 2 = 0 yields k = ±T. /L , o~ . m 0 -m 0 

alex) - exp[±~ z] ~exp[±x 1 ... exp[±X/LoJ, the usual result for a 

homogeneous medium. The other zeros of the denominators yield 

k = Lm/Lo ± i; but this is the same as above since exp[±iz] is 

periodic with period 2n and so can be absorbed in $(z) in Eq. (81). 

In fact, a careful look at the full dispersion relation (89) shows 

that for K + 0, there are an infinite number of roots 
m, 

k = ±L /L + 19., -<Xl < 9. < <XJ, all of them equivalent to the 9. 0 m 0 

root. 

For small k ~ L /L , and solve Eq. m 0 

(93) for the small quantity (k - Lm/Lo); we find in physical uni ts 

-1 k the inverse growth length L = --, which is 
Lm 
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K L« 1 mm 

Thus, for small modulation amplitude K m the growth length is 

increased by a term proportional to 2 
K m The increase in growth 

length is most pronounced for large modulation wavelength Lm' 

For arbitrary Km, we can solve Eq. (89) numerically for the 

inverse growth length k, keeping as many terms as necessary in the 

continued fractions of Eq. (88) for Uo and. v o' The results are 

shown in Fig. 19 for L /L = 1, and in Fig. 20 for L /L = 0.5. mom 0 

The spatial growth rate, in units of the zero modulation spatial 

growth rate -1 Lo ,decreases with increasing modulation Km until a 

certain point, where it reaches zero and bounces up again. For. 

completeness, we have shown both the positive and the negative roots; 

both roots are purely real. We interpret the bouncing effect as being 

due to constructive and destructive interferences between the 

oppositely traveling solutions to our second order differential 

equation (77).· 

2. Antiparallel Group Velocities 

If' Vl V2 < 0, it is no longer appropriate to consider a steady 

state in time, so we consider a different, physically relevant 

problem. We ask the question: What is the temporal response of the 

system to the uniform initial conditions al(x,t = 0) = constant, 

a2(x,t= 0) = O? We expect to find a temporal growth rate Im(w) 

which in the limit Km + 0 reduces to the usual homogeneous result 

1m( w) = 1 (or in physical units, Im(w) = y). The basic equations 
o 

(76) are periodic, and the initial conditions are periodic; thus, 
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we may look for a periodic solution to Eqs. (79) which means setting 

k = 0 in Eq. (81). Then Eq. (89) becomes a dispersion relation for 

w, with k set equal to zero. 

In this case, we have from Eqs. ·(80) 

L 
-~ (-iw + v ) 

-V B L_ 2 

-iL K mm 

o 

WL 
+ --2!!... (-illi + v ) 

L. 1 
o 

-(L It )2(_iOO + v )(-iW + v ) + (L /L )2 
mol 2 m 0 

A4 = -i(1/1iL It )(-iw + Vl)L·K mom m 

Using (84) and (95) we have 

(95) 

(96 ) 

For small (KmLm)' we again choose only the first term in the expres­

sions (88) for uo' Vo and again obtain the simplified dispersion 

relation (92). For simplicity, set B = 1 (Vl = -V2 ), and 

v1 = v2 = O. Then we find, as expected, that for KmLm ~ 0 the 

temporal growth rate is !mew) = 1 (Im(w) = y in physical units 
o 

For small K L , we find mm 

!mew) = 1 -

K 2 L 2 
m m 

4 
K L «1 mm (97 ) 
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The decrease in temporal growth rate is proportional to 2 
Km ' and is 

most pronounced for large modulation wavelengths L . m 

Let us note that in addition to the root discussed in the 

previous paragraph, there are an infinite number of other roots. To 

see this, first consider the form of ± Yn in Eq. (96) when B = 1, 

V -V .=., 0, which is 1 - 2 

. + (L Ie /2 )[±in - i ± iwL /L ] . 
y- = mm m 0 

n n2 _ (L /L )2(w2 + 1) • 
m 0 

(98) 

Next, consider the form of the full dispersion relation (89) Which 

is, after inserting Uo 

+ 

and v from Eqs. (88), o 

o 

(99) 

Since each Yn- has Km in the numerator, the only way to satisry 

the dispersion relation (99) when Km ~ 0 is to make one of the 

denominators in (99) vanish also. This occurs for 

w = 
L K ~ 0 
mm 

n = 0,1,2,'" 

This infinite set of roots is reminiscent of the theory of wave 

(100) 

propagation in periodic media, where we find an infinite number of 

roots w( k = 0), one root per Brillouin zone121 .. For finite K, we m 

expect one branch of the graph w vs Km associated with each root 

(100). In the special case B 1, VI = v2 = 0, it is easy to show 

from Eqs. (98) and (99) that if w is a root of (99) for given 

then ~o is -~ and so is -w*. 
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o 
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In Fig. 21, we show the roots W vs K for L /L = 0.25, 

S 1, vI =' v2 = o. . From Eq. (100) we have 

W = ±i, ±;f15, ± -..[63, .... Figure 21 shows 

corresponding to n = 0, n = 1 in Eq. (100). 

m m 0 

at K +0 the roots m 

the behavior of the roots 

For increasing K, m 

the unstable root (at Km + 0) decreases, reaching zero eventually. 

Before it reaches zero, however, the imaginary part of the stable root 

(at K + 0) 
m overtakes it and becO!!les the. most unstable root. It 

appears that this behavior will continue indefinitely, roots of higher 

n obtaining substantial imaginary parts with increasing K; further~ 
m 

more, the roots of lower n show a bouncing behavior as a function of 

~; thus, the most unstable temporal growth rate will never become 

exactly zero with increasing K, as did the spatial growth rate 
m 

considered in the previous section, but wi1l asymptote to zero with 

increasing K. 
m 

For arbitrary a, \)1' \)2' Lm' the fastest temporallY growing . 

mode for K + 0 is given by Eq. (96) for n = 0; requiring the m 

denominator to vanish yields 

(101 ) 

This is of course the same temporal growth rate that Eq. (76) would 

yield for the temporal response of a homogeneous medium (K(X) + 0) 
to a spatially uniform excitation. In addition, the value of W 

given by (101) is equal to the temporal growth rate79 of the peak of 

the pulse response to the initial conditions al(x,t = 0) = o(x), 

a2(x,t = 0) = 0, i.e., the Green's function problem. This value was 

obtained by Fried, Schinidt, and Gould79 by application of Bers-Briggs 

analysis
78 

to Eqs. (76). We ask the question: For finite Km' does 
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the fastest growing root of the dispersion relation (99) still 

correspond to the temporal growth rate of the Green's function 

pulse, as measured by an observer moving with the pulse? The answer 

is yes. In Fig. 21, the points are the pUlse growth rates as 

obtained by direct numerical integration of Eqs. (76) for finite Km. 

We see that they agree with the fastest growing root of the dispersion 

relation (101), within the accuracy of the numerical integration. 

Notet~t this agreement can not be predicted by Bers-Briggs 

analysis78 , since we are dealing with an inherently inhomogeneous 

system. 

What have we learned from this model of a homogeneous plasma 

with a superimpOsed density modulation? We have learned that the 

modulation tends to reduce growth rates, both spatial and temporal. 

The reduction is greatest for large modulation wavelengths; as we 

have seen earlier, inhomogeneities of size >Lo have the greatest 

effect on the coupled mode equations. We may· expect that these 

results apply also to the case of turbulent inhomogeneities. Further-

more, the regular nature of the sinusoidal modulation leads to 

features in the behavior of growth rate as a fUnction of modulation 

amplitude, such as the bouncing phenomena in Figs. 13 and 14, which we 

would not necessarily expect to find in the case of turbulent 

inhomogeneities. 

In the next section, we consider the simple model of a 

sinusoidal modulation superimposed on a linear density ramp. Once 

again, important similarities to the turbulent case are found. 
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B. Linear DenSity Gradient With Sinusoidal Density Modulation 

We consider next a sinusoidal density modulation in.the presence 

of a linear density gradient. We restrict ourselves to antiparallel 

group velocities, and take the wave number mismatch to be 

K(X) K'X + (L K ) s1n(XL IL ) om 0 m (102 ) 

For small Km' we expect to recover the usual exp( 1T/K') saturation 

discussed in Section I-'E. For larger Km' we might expect to destabi­

lize the convective saturation, Just as turbulence did in Section II. 

We numerically integrate the basic equations (76), with the 

form (102) for K(X) and with Green's function initial conditions. 

We indeed find exp(1T/K') saturation for small K, and we indeed m 

find absolute instability for·Km greater than an Lm-dependent 

threshold. In Fig. 22 we show the absolute growth rate, obtained with 

B = K' = 1, T. /L = O.B. Above threshold, the growth rate rises "1n', 0 

rapidly to nearly the homogeneous medium growth rate. 

In the example shown in Fig. 22, the threshold value of Km 

occurs at 

value of 

L K '" O.l. om As in the turbulent case of Section II, this 

L K is far below that required for the vanishing of the om 

derivative of the wave number mismatch K(X); I.e., 

dK(X)/dX = K' + (L 2K IL ) cos(XL IL ) = 0 implies o m mom (with K' = 1 

and L IL = 0.8) that L K = 0.8, a much higher value of LoKm moo m . 

than the observed threshold LoKm ~ 0.1. 

We next consider a shorter. wavelength modulation, L IL = 0.18, m 0 

in Fig. 23. Here we see a much less violent instability, the maximum 

growth rate being only Im(w)/y '" 0.2. 
o 

Furthermore, the threshold 

value of K is m 
L K '" 1.0, much higher than would be predicted by 

o m 

setting dK(x)/dx = 0, yielding here LoKm = 0.18. 
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Our conclusion from the last two paragraphs is that the,modula-

tion wavelength is the relevant. parameter in determining the tendency 

of the system toward absolute instability, rather than considerations 

of the vanishing of the derivative of the wave number mismatch K(X). 

This conclusion is emphasized in Fig. 24, where we hold the modulation 

amplitude fixed at a value L K = 2(a = K' = 1) arid vary the modula­om 

tion wavelength. We find that the absolute growth rate is substantial 

for Lm - L , falling off rapidly for L «L and for L »L. 
.0 m 0 .m 0 

In Fig. 25, we display the results of Figs. 22, 23, 24 as 

a three· dimensional, plot of absolute growth rate y vs Km and Lm' 

The dashed curve is schematic, showing the inferred threshold for 

absolute instability in the Km-Lm plane. For large Km' the 

threshold value of Lm approaches zero. For both large ~ small Lm' 

the threshold value of Km is large, demonstrating once again that 

the most effective inhomogeneities are those with scale length -Lo ' 

We again interpret these results in terms of the concept of 

mathematical reflections discussed in Appendix A. When the inhomo-

geneities are of a size near the all important length L, constructive , 0 

interferences between solutions of our second order system Eqs. (76) 

lead to instability. When the inhomogeneities are of a size much 

smaller or greater than Lo' the system feels only the monotonic 

part of K(X), given by K'X, and exhibits the .usual exp(1T/K') 

saturation. This saturation we interpret as a destructive inter­

ference between solutions of our second order set Eqs. (76). 

The detailed space-time response of the system, to the initial 

conditions 

'i ts own right. 

a2(X,T = 0) = 0, is of interest in 

For the parameters of Fig. 24 (LK = 2, 
o m 

a = K' 

we choose ~ value for the modulation wavelength, L IL = 0.16, m 0 

1) 
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which is just barely, above the threshold for absolute instability. 

Figure 26 shows the space-time behaviour of a2(X,T) at four different 

times, T = 7,13,16,20. At T = 7, the usual exp(n/K') saturation 

has set in. At the substantially later time T = 13, the exp(n/K'f 

behavior persists, but with many more fluctuations. The hint of 

things to come is shown by the enhanced fluctuation at X = 0, in the 

middle of the figure. At T = 16, this erihanced fluctuation has grown 

rapidly to tower over the rest of the pulse shape. After a period of 

rapid growth, the enhanced fluctuation at X == 0 itself saturates. 

This saturated state, shown at T = 20, has its own enhanced fluctua-

tions at the very center which foretell the outburst of yet a third 

period of rapid growth, and so on ad infinitum. 

To conclude, we have seen that the behavior of the system of 

Eqs. (76) with the wave number mismatch K( X) = K' X + (L K ) sine XL /L ) om· olD' 

is qualitatively similar to the turbulent case of Section II. Abs'olute 

instability results for wavelengths Lm - Lo' and for modulation 

amplitudes one order of magnitude smaller than that required to make 

dK(X)/dX -+ O. The instability growth rate is very sensitive to 

modulationwavelength Lm' fal1ling off rapidly for Lm ~~ Lo' 
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APPENDICES 

A. The Concept of Reflections 

Bobroff and Raus have treated the case of homogeneous medium, 

finite pump length (Sec. I-B-2) in several different ways. One of 

them uses the eonaBpt,of "reflections". Consider Eqs. (25), with 

Using the method of characteristics we define new variables 

y _ T - X 

(A.2) 

z :: T + X 

Equations (A.l) become 

(A.]) 

Eliminating a2 from Eqs. (A.3) we have 

From the symmetry of Eq. (A.4) we see that if f(y,z) is a solution, 

then f(z,y) ,is also a solution. Referring to Fig. 2, we perturb the 

system at some point xo' o < x < L. Assume that the solution 
o 

f(y,z) has been excited by our perturbation; then the solution 

f( y, z ) wi 11 propagate ( in X and T ) as in an infini te medium until 



o 

o 

o 

" o 
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one edge reaches one of the boundaries X = 0 or X = L/L • Assume 
o 

it reaches X = 0 first. With VI > 0, we have the boundary condition 

al(X = O,T) = O. Nowat X = 0, y z = T, so that f(y,z) = f(z,y) 

at X = 0 for all T. Thus, after the pulse reaches the boundary, 

the solution al(X,T) = f(y,z) - f(z,y) satisfies the boundary condi­

tions; this solution looks like the original solution f(y,z) plus 

a reflected solution. This argument can be continued in time so that 

each time one solution reaches a boundary, a new solution is brought 

in; the response is thus seen as a sum of repeated reflections. 

B. Sudan's Criterion for Absolute Instability 

in Inhomogeneous Media 

In an early paper8?, Sudan proposed, without proof, a genera1i­

?8 zation to inhomogeneous media of the Bers-Briggs'criterion for 

absolute instability. In a hombgeneous medium, a necessary (not 

sufficient) condition for absolute instability is that there be a· 

saddle point of the phase i~t - k(W)X) in the complex w-p1ane, 

where k(w) is obtained from the dispersion relation D(k,w) = o. 

iw [wt .. k(W)X] 

For asymptotic time at a fixed position Xo 

Clk(w) 
aw .... 00 

the solution of which determines the unstable frequency wa' 

In an inhomogeneous medium, the phase has the form 

(A.5 ) 

, (A.6) 
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where k(w;x) is obtained from the dispersion relation 

D(k,w; x) o 

Then the saddle point condition at a point Xo becomes 

x 

f 0 Clk( W; x') d ' 
. Clw x 

o 
t .... 00. 

We determine D(k,w; X) from the- dimensionless Eqs.(43), taking 

V2/VI = -1; then 

o 

Fourier transforming locally (not affecting K(X») we find 

Solving Eq. (A.H) for k(w; X) and 

o 

Cl k(wj X) we find 
w 

(A.?) 

(A.8) 

(A.9 ) 

(A.10) 

(A.H) 

Cl k(w; X) 
w '(2 •• < {«'J) } · 1 •• 2 •• K(Xfl .(A.12) 

In order to have (Xo Cl k(w; x') dx' .... 00 , as required by Eq. (A.9), 
)0 w 

we must have Cl k(w; X)I ~ 00, since the lower limit cf integration 
w X=X 

o 

is arbitrary. We therefore require the denominator in Ec;.. (A.12) 

to vanish at X = Xo; taking X = Xo to be the point where K(X) 

vanishes (we can always add a constant to K( X) to make this be true}, 
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we find the unstable frequency w = i. In the neighborhood of 

X = X , Eq. (A.12) has 'the form 
o 

a k( W; X) ex: 
w 

1 

Assuming a power law form for K( X) 

we have near X=X o 

a k(w; x) - (x - X )N/2 w 0 

(A.l) ) 

(A.14 ) 

(A.15 ) 

Condition (A.9) then becomes JfoXo (X' - Xo )-N/2 dX' ~~, which will 

be true only for N ~ 2. This agrees precisely with the results of • 

Rosenbluth57, who found no absolute instability for K(X) - X; and 

an absolute instability with growth rate Yho::: I for K(X) - x2. 
However, this method does not agree with our results for the 

turbulent case, Sec. II, or for the case K(X) = K'X + L K sin(XL /L ), 
. 0 mom 

Sec. III. For these cases, absolute instability is found when 

dK(X)/dX vanishes nowhere in the system, and condition (A.9) is never 

satisfied. Thus, Sudan'S method works for monotonic inhomogeneities, 

but not for turbulent like inhomogeneities. 

C. Analytic Solution for the Case of Finite Pump, 

Inhomogeneous Plasma 

At some point it may prove useful to have an exact analytic 

solution for the case· of finite pump extent, inhomogeneous plasma. 

Referring to Fig. 8, we wish to solve Eqs. (43), which are 
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(A.16 ) 

for VI > 0, V2 < 0; with the boundary conditions alex = O,t) 

a2(x = L,t) 0; and with the initial conditions al(x,t = 0) = 0, 

ai x, t = 0) o( x - Xo )' 0 ~ Xo S' L. We follow Rosenbluth, White, 

and Liu
60

, who solved the infinite pump extent case. After a similar 

calculation, we find 

"l(x,t) • 2~ L ePt "l(X'P) dp 

where the integral is taken around the Laplace contour, and must 

satisfy causality: a1(x,t < 0) = O. al(x,p) is given by 

'[P+Vl P+V2] x 
_ -iK,x2/4 - VI + V2 (2) 

al(x,p) - a(x,Pl e e 

a( x,p) A rrA/2 in/4 -e e 
Yo 

x 

where A - Yo 
2 
/K' 1 VI V 21 ' 

{ 
1 x ~ 0 

e( x) . 
0 x < 0 

\ 

(A.17) 

(A.IS) 

( 

• 



o 

,0 

o 
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The functions a+, a_, F+, Fare defined by 

aJx,p) 

FJp) -D (_ I -in/4) 
U-l xoe 

where 

X' ==. * x -::k-(p; vI + p; V2) 
V K' \: 1 2 

x~ - (x' )x=O 

X' == (x') L x=L 

and where D (z) is the parabolic cylinder function122 . v 

Re(v) < 0 

D (z) v 

Izl » Ivl 
/z I » 1 

2 co 

e-z /4 ( dt e-t2/2-zt t-v-l 

r( -v) J 0 

(A.19) 

For 

(A.20) 
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It is clear that this solution must be evaluated numerica111' We 

have found it easier in practice to integrate Eqs. (43) directly to 

obtain the Green's function shown in Fig. 10. 

D.Nttmerical Integration Using the Method of Characteristics 

We discuss the details of the numerical integration of our 

coupled mode equations. 

Consider the most general coupled mode Eqs. (40), written in 

the form 

(A.2l) 

where fl(x,t) f 2(x,t) are functions of (x,t) and functionals of 

al(x,t), a2(x,t~ Yo(x), ·and R(x). Equations (A.26) are an example of 

a hyperbolic system of equations, so long as at least one of VI' 

V2 is different from zero. Numerical solution of Eqs. (A.2l) is 

facilitated by use of the method of characteristics123• Defining 

the variables 

Equations (A.2l) become 

di; al 

fl(T),!;) 

Vl - V2 

d 
f i il,~!;) 

T) a2 V2 - Vl 

(A.22 ) 

(A.23 ) 
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Each equation now has only one derivative. In the x-t plane, the 

si~uation is shown in Fig. 27. Starting at the point (x = 0, t.= 0) 

we draw a line of constant n = x - Vlt (n = 0 for this line) 

and a line of constant ~ - x - V2t (~= 0 for this line). The 

slope of the first is ~t/~x = ~; the slope of the second is 
1 

M/ ~ = l/V 2 ( assume V 2 < 0). Marking off the time axis at intervals 

6t, we define a grid point on each line of constant n or ~,at 

intervals 6t ~bove the x axis. From each grid point comes a new 

line of constant n or ~,called characteristic lines. 

Next we put Eqs. (A.28) in finite difference form 

t.a1 fl(n,O 

6~ VI - V2 
(A.24 ) 

~a2 f 2(n,O 

Tn"' V2 - VI 

Suppose we know all values al (n,~), a2( n,l;) on the horizontal line 

at t = 36t, for example, and we wish to know the values of aI' a2 

along the horizontal line at t = ~t. At points a,S in Fig. 27, 

we ~ow al(a), a2(a), a,.(B), a2(B) and we desire al(y), a2(y), 

where al(a) = al(n at point a, ~ at point a), etc. We use a 

123 predictor-corrector method ,accurate to first order in t.t. 

Working from Eq. (A.29), we predict a value al(y)p for a1(Y) as 

follows: 

(A.25 ) 
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Note that we are integrating along characteristics, and that only 

information at a,B is necessary to predict a value at Y. 

We now correct our predicted values, defining corrected 

(A.26 ) 

We define € = [al(y)c - a1(Y)pl/al(y)p; if € is small enough we are 

done, setting a1(y) = al(y)c' a2(y) = a2(Y)c' If € is not yet 

small enough, we set al(y)p = al(y)c' a2(y)p = a2(y)c; insert the 

• new predicted values into (A.26); obtain a new al(y)c' a2(y)c; test 

€ again; and so on until € is small enough. 

In practic~ this technique works well and economically. For 

the dimensionless Eqs.(30), with B = 1, theory predicts y = 1; 

numerically the relative error in y is approximately equal to ~t. 

E. An Example Where WKBJ Theory Is No Better 

Than It Should Be 

86 
WKBJ theory has a reputation for having, in many instances, 

a much wider range of validity than its derivation would indicate. 

Here we demonstrate a situation where the WKBJ Solution has only the 

minimum range of validity. 

In Section III-A-l, we considered the steady state, spatial 

growth rate when 



o 

o 
.~ 

o. 
o 
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K(X) = L K sin(XL /L ) om 0 m 

for which Eqs. (III-I) are (taking B = 1) 

exp i LX L K sin(X'L' /L ) dX' om 0 m 
o 

al exp -i IX L K sin(X'L /L ) dX' o mom 
o 

(A.27 ) 

(A.28 ) 

In certain limits it is not necessary to use, the complicated analysis 

o~ Section III-A to find the growth length. We can instead use the 

WKBJ solution of Eqs. (A.28). Putting (A.28) in the form 

a/ a(X) + q(X) a(X) =., 0 (A.29) 

where a(X):: aleX) exp [-~ foX Lo'<m sin(X'Lo/Lm) dX' J 
for q(X), 

we find 

q(X) = -1 + - L K /L cos ~ 1 2 ,(XL ) 
20m m Lm 

1 2 2(XL) 
+ 4 (Lo~) sin t: 

(A.30) 

86 WKBJ theory assigns two approximate solutions 'to (A.29), which are 

f(X) = ~exp (±l (X -Jq(X') dX'] 
4 q(X) Jo 

(A.3l) 

valid if q(X) is not close to zero. Expanding ~ for small 

(Lo'<m)' and integration over a distance large compared to Lm' we 

find a growth length 

L /L o g 
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(A.32 ) 

which is incorrect for arbitrary L /L ; it reduces to the correct o m 

value Eq. (III-19) only in the limit L /L «1, where we find o m 

(L K )2 
L/1 =1- mm 

o "g . 4{2. + 4(Iro/Lo)2) 
(A.J3) 

Why is it necessary to go to the L /L «1 limit to get the correct o m 

growth length? The answer lies in the position of the zeros of q(X), 

which for small (L K) occur at om 

X 
n 

+ Lm (mT) 
- L 2 

± i (Lm) in [ 4Lm/Lo 1 
'L L K 

n = 1,5,9,'" 
o o 0 m 

(A.J4 ) 

Thus, the zeros of q(X) are for from the real X axis only when 

L /L »1 (because of the log dependence on L K , it is not moo m 

sufficient to have L K «1); the WKBJ solutions (A.3l) are thus 
o m 

valid on the real axis, only for L /L »1, when the roots of q(X) , m 0 -are far from the real axis. For L /L < m 0 
1, the roots of q(X) are 

near the real axis and the WKBJ solution (A.3l) is incorrect. This 

is an example where WKBJ theory works only where it shculd, that is, 

in regions of the complex X-plane far from zeros of q(Z). 

F. The Solution of an Infinite Set of Algebraic Equations 

We wish to solve the infinte set of coupled ~s.(87), which 

are 

+ 
Yn cn_l + cn + Yn cn+l (A. 35 ) o 
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Define 

u 
n -

and divide (A.35) by cn; then 

- + 
y u + 1 + Y v = 0 . n n n n 

Now divide (A.50) by c 1 to obtain n-

y - + v + Y +(v /u) = 0 
n n-l n n n 

c . 
n+l 
cn 

Solve (A.37) for ~ and insert un into Eq. (A.38), obtaining 

o • 

Solve Eq.(A.39) for vn_1 and shift the index up by one; then 

v n 

In continued fraction form, Eq. (A.40) is 

(A.36 ) 

. (A.37) 

(A.38) 

(A.39 ) 

(A.40) 

-00 < n < co • (A.41) 

where each minus sign in the denominator acts on everythipg to the • 

right of it. .. 
To find un' we divide Eq.(A.35) by cn+1 instead of cn_1; 

the remaining steps are analagous. The result is 

u n 

+. 
Yn",l - - --.:;;;,;.=---
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+ - + - + 
Yn-1 Yn-1 Yn-2 Yn-2 Yn- 3 --- ... 
1- 1- 1-

Equations (A.41) and (A.42) are the desired Eqs. (87). 

(A.42 ) 

t 

.' 



o 

o 

o. 
0:· 
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FIGURE CAPTIONS 

Fig. 1. The space-time response of Eqs. (25) in an infinite, homo-

geneous medium, with the initial conditons al(X,T = 0) = e(x), 

ai X, T = 0) = O. (Dl = D2 = 0, V2/Vl = -1 ~ From Bobroff 

and Haus81 • 

Fig. 2. The configuration for the finite pump extent, homogeneous 

medium case. Boundary conditions: If Vj > 0, 

a}X = O,T) = 0; if Vj < 0, aj(X = LILo,T) = 0; i = 1,2. 

Fig. 3. Graphical solution of Eq. (34) for the temporal growth rate 

in the finite pump extent, homogeneous medium case. 

(L/Lo = 9~/2) .. !rom Bobroff and Haus81 • 

Fig. 4. The space-time response of the finite pump, homogeneous medium 

case, to the initial conditions al(X,T = 0) = e(X), 

a2(X,T = 0) = O. (L/Lo = 2, 

81 From Bobroff and Raus • 

Fig. 5. Analytic pulse response of the infinite pump extent, inhomo .... 

geneous plasma case, Eqs. (46) with K(X) = K'X, for the 

initial conditions al(x,T = 0) = 0, a2(X,T = 0) = e(X). 

(K' = 1.25, V2/Vl = -0.2). From Rosenbluth, White, and 

L. 60 
lU • 

Fig. 6. Pulse response of the infinite, inhomogeneous system, Eqs. 

(46) with K( X) = K' X, by direct numerical integration, with 

the initial conditions a];(X,T = 0) = 0, a2(X,T = 0) = e(X) .. 

(K' = 1.25, V2/Vl = -0.2; compare Fig. 5). 

Fig. 7. Wavenumber'mismatch K(X) = 10 tanh(X/IO); and space-time 

response of Eqs. (46) with initial conditons 
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Fig. 8. Wavenumber mismatch K(X) = K'X and spatial pump variation 

y (X) for the case of finite pump extent, inhomogeneous 
o 

plasma. The equations are solved with the initial conditions 

al(X,T = 0) = e(X), a2(X,T = 0) = 0, and the boundary 

conditions aleX = O,T) = 0, a2(X = L/L ,T) = o. 
. ,0 

Fig. 9. Real and imaginary parts of the complex eigenfrequency for 

the case of finite pump extent, inhomogeneous plasma 

K(X) = K'X. The solid lines are from Forslund, Kindel, and 

Lindman63 ; the points are measured from our numerical 

integration of Eqs. (42). (VI = 24, V2 = -1, VI = v2 0, 

Y =, 24, E = 5). See Fig. 8 for configuration. 
o 

Fig. 10. al(X,T) vs X for 0.25 _ T _ 4.25, obtained by numerical 

integration of Eqs. (42). The parameters are those of Fig. 9, 

withK' = 1. (VI = 24, V2 = -1, VI = v2 = 0, 

E = 5). See Fig. 8 for configuration. 

y = o 24, 

Fig. 11. Complex growth rate y + in VB length [ of finite pump. 

From Forslund, Kindel, and Lindman63 . (K' = 0.4, VI = 24, 

V2 = -1, VI = v2 = 0, Yo = V24). See Fig. 8 for 

configuration. 

Fig. 12. Amplification A = lal(X = L/L ,T)I/a ,where a a o 0 0 

ao = aleX = O,T) is the constant input, VB inhomogeneity 

K'. From numerical integration of Eqs. (46) with 

K(X) = K'X. (V2/Vl = -1, L/Lo = 1). 

Fig. 13. The function L 2 dK(x)/dx vs x/L at the ~~~eshcld value 
o 0 

-1 MLO ::: 0.1 in Fig. 15. (LriLo = 1.27 '121"11 = -1, 

A-I = K'L 2 = 1, L/L = 400; a particular ~~a:ization of the o 0 

set {u j } is used. ) 
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Fig. 14. The temporal evolution of la2(x,t)1 vs xlLo for the initial 

conditions al(x,t = 0) = o(x), a
2
(x,t = 0) = O. 

Fig. 15. 

Fig. 16. 

(~/L -1 = 0.5, otherwise as in Fig. 13.) 
o 

The absolute growth rate y/y vs the RMS mismatch function 
o 

~/L -1 (parameters as in Fig. 13). o 

The absolute. growth rate y/y vs the correlation leng~h , 0 

LTILo (parameters as in Fig. 13). 

Fig. 17. A schematic diagram of Raman backscattering in laser fusion 

Fig. 18. 

geometry. 

Absoiute growth rate l/y vs turbulent density fluctuation 
o 

level ~n for the laser fusion situation of Section II-B. 

K'L 2 
o 

realization of the set 

0.67, LTlLo = 1.3; a particular 

{n.} was used.) 
1 

Fig. 19. Spatial growth rate vs modulation amplitude. (V2/Vl 1). 

For eac h root k shown, k + in is also a root, 

_00 < n< 00 • The roots shown are purely real. 

K(X) = L K sin(XLo/L ). om m 

Fig. 20. Spatial growth rate vs modulation amplitude. (V2/Vl 1). 

For each root k shown, k + in is also a root, 

_00 < n < 00. The roots shows are purely real. 

K(X) = L K sin(XL IL ). om 0 m 

Fig. 21. Temporal growth rate vs modulation amplitude. (V2/Vl = 1). 

The roots which have solid lines in the Im( w) graph have 

zero real frequency. There are four roots corresponding to 

the four possible combinations of dashed lines in the 

Re(w) and in the Im(w) graph. The dots are growth rates 

of a pulse response to the initial conditions 
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al(X,T = 0) = 6(X), a2(X,T 0) O. 

K(X) = L K sln(XL IL ). 
om 0 m 

Fig. 22. Temporal growth rate vs modulation am:r;litutie. 

Fig. 23. 

Fig. 24. 

K(X) = K'X + L K sin(Y~ IL ). 
om 0 m 

Temporal growth rate vs modulation amplitude. 

K' = 1). K(X) = K'X + LK sin(XL IL ). om 0 m 

Temporal growth rate vs modulation wavelength. 

K(X) = K'X + L K sin(XL IL ). 
o mom 

Fig. 25. Absolute growth rate y/yo vs modulation wavelength Lm/Lo 

and modulation amplitude L K , combi~ir~ the results of 
- om 

Figs. 22, 23, and 24. The dashed curve is a schematic curve 

representing the threshold curve in the L -K plane. m m 

(V2/Vl = -1, K' = 1). K(X) = K'X + L K sin(XL IL ). om 0 m 

Fig. 26. Space-time response to the initial conditions 

K(X) = K'X + L K sin(XL IL ). om 0 m 

V2/Vl = -1, K' = 1). 

(L K 
oIl. 

2, L IL m 0 
0.16, 

Fig. 27. The method of characteristics, discl1ssed in Appendix D. 
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