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ABSTRACT -

We consider the nonlinear coupling of three waves in a plasma.
One of the waves is assumed large and constant; its amplitude is the
parameter of the parametric instability. The spatial-temporal evolu-
tion of the other two waves 1s'treated theoretically, in one diménsion,
by analytic methods end by direct numerical integration of the basic
equations. Various monotonic forms of inhomogeneity are considered;
agreement with previous work is found and new results are established.
Nonmonotonic inhomogeneities are comsidered, in the form of turbulence
and, as a model problem, in the forﬁ of a simple sinusoidal modulation.
Relatively small amounts of nonmonotonic inhomogeneity, in the .
presencé of a linear density gfadient, are.found to destabilize the

well-known convective saturation, absolute growth occurring instead.

* This work was supported by the U. S. Energy Research and Development

Administration.
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I. GENERAL CONSIDERATIONS AND MONOTONIC INHOMOGENEITIES '
| | A, Introduction » S
The three wave ‘coupled mode equations are encountered in many
branches.éf physics.v In solid state phyéice, an electromagnetic
driver can couple an electronic disturbance and anofher electromagnetic

3

wave, the process being called Raman scatteringl- ; replace the

electronic disturbance by an ion lattice vibration and we have Brillouin

scattering4'7. In electrical engineering, a waveguide couples two

" electromagnetic waves to'produce parametric oscillators and parametric

amplifierss. A laser can be thought of as a coupled mode system, two

of the modes being the population densities of the higher energy level

and the lower energy level, the’third mode being the population density

9

of photons”. In plasma physics, an electromagnetic wave in an isotropic

plasma can decey into: an electron wave and an ion-accoustic wave, the

parametric decay 1nstability10'14; two electron waves, the 2w _ or

15,16 instability; an electron wave and another electro-

magnetic wave, called Raman scattering17-19; an lon-acoustic wave and

18,20-22

Goldman-Jackson
an electromagnetic wave, calied Brillouin scattering An
electromagnetic wave in an anisotropic plasma has additional three-wave
interactions=> 2. |

Each of these interactions can Pe described by a system of
three equations, each one a partial differential equation_in space
and time governing the evolution of one of the modes, including the.
effecﬁs due to the other twe modes. There are then two alternatives:
(a) Solve all three equations on the same footing. This has been done
by many worker826;33; we will not be concerned with-this procédure h;re.

(b) Assume that one wave, called the pump, is much larger‘than the two

others, and that over times of interest its magnitude does not change

-2-
appreciably. Then we can discard the equation for its evolution, and
we are left with two 1ineér coupled mode equations. The amplitude of
the pump appears as a parameter in these two equations. It is this
procedure which will be followed here.

The standard coupled mode equations, in one dimension, fér the

amplitudes of the waves of interest are

(3 *+ vy + 'Ylax) al(x,t_) Yo az(x,t)_

_ (1)
(8t * v, * Véax? a2(x,t) Y, al(x{t)
where V1 and V2

either sign; Vi and v, are the damping rates of waves 1 and 2 in

are the group velocities of waves 1 and 2, having
the absence of coupling; Y, (real and positive) represents the
coupling of the two waves due to the pfesence of the pump wave, assumed
constant over times of interest; al(x,t) and az(x,t) are the slowly
varying amplitudes of waves 1 and 2; i.e., Bt{ln al(x;tﬂ << Wy,
ax[ln al(x,t)] << ky, where (ml,kl) are the frequency and wave
number of wave 1; and likewisé for wave 2.

© Given suiteble initial conditions and boundary conditions, Egs.

(1) can be solved. Before doing so, we give two examples of the

derivation of Eqs., (1) from first principles.
First, suppose we have two normal mode oscillations 1n a
medium, in the absence of the third wave, described by the following

wave equations:

2 2 2, 2 _
(3t - 2Avyd, + 2" - v A ) ¢1(x,t) = 0
. : (2)
2 . 2 2, 2
(Bt - v, o+ a," - v, 3, ) ¢2(x,t) = Q



_3- .

Assumng solutions of the form ¢fx,t)~ exp(-imjt + ik, x), j=1,2,

we obtain the normal mode frequencies '
u” ey vy $=1.2 (3)°

where we have neglected vl,vz as small, As examples, consider:

- electromagnetic waves, with -g“j = wp,

vJ = ¢; Langmuir waves, with

}a‘j = mp, vJ = Bl’ve; and i@ acqgetic waves, with a, = O,

(sound speed).

VJ"'CS

In the presence of the third wave, Eqs. (2) are coupled
together as followsBl' (In RAman'scattering, EM » M + Langmuir, these

) eqpations are obtained from Maxwell's equations plus the Lorentz force

equation):
(3,2 - 21v,0, + a,° - v?3. %) 0. (x,8) = 8 d(x:t) 8, (x,)
(4)
' (atz‘ + 2tvya, + a22- - vzzaxz) ¢2*(x,t) = 8, ¢°*(-x,t) 6,(x,%)

where 8,,B, are real coupling constants, ¢o(x,t) is the third

: (pump)_ wave, and we have taken the complex conjugate of the second
equation. We now assume that each field quantity ¢ J(x,t) can be.
written as a slowly varying (in space and. time) amplitude times a
rapidly varying (in space and time) phase: |

q)j(x,t) = EJ(x,t) exp(-iwjt + iij), j =0,1,2. We further require

the three-wave metching conditions: wy = w k =k

l + wz) o . 1 + kz.
With these assumptions, and discarding terms in sza g 2 tza T
J = 1,2, Egs. (4) become

“hm

- - ¥
Bl ao(x,t) &, (x,t)

. 2 ~ )
[Ziwlat + 21\)1w1 + Zivl klax}al(x,t)

(5)

' % ¥ o _
[-21%3,0 - 21\)2(»2 i vy 28 ] &, (x t) 62 ao(x,t) al(x,t)

From Eq.(3), we obtt;in the group velocities V 'c)wj/ak 2]s /w

i
and defining Y, = (8162/4w1w2 )i a o(x,t) we have

1
i
¥

[at sy * vlax] g (x,1) Y (x,t) &, *x,t)

(6)

[a, + v, + V3 Jay(xt) = HET, Yo *(x,1) B(xt)

Defining al(x,t) El(x-,t);

find : ’

N [)‘at .

az(x,t') = -1(Byw,/Byuy )‘" 52*(x,t)' - we

v, + Vlax] al(x,t) = v, az(x,t)

(7)

‘ [at * Yo * _Vza.x] 32( x,t) Yo'al_-(x’t)":" *

When yé 1s real and constant in gpace and ‘time, these are just

' Eqs.(1).

In the presence of plasma spatial inhomogeneity, the derivation
of Egs. (1) must be modified. The inhomogeneity enters into Eqs.(4)
through the parameters el(x), Bz(x), vl(x), vz(x), wp(x), vl(x), and
v2(x). Fach field quantity’ 1s now assumed to vary in a WKBJ sense as

x
oi(x,t) = a,{x,t) expl-iw.t + 1 / k,(x') dx’J, j =0,1,2. That
J J J Je 4

is, we choose {wj}, and find {kj?x)} from the dispersion relation

Eq. (3).

-«

< %
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~ The freQuencies are required to matech, wy =W + w,;  We choose Xq

1

. to be the position where the wavenumber mismatch k(x) vanishes:

k(x) = ko(x) - kl(x) - kz(x), (x = xo) = 0, The derivation of
Eqs.(5) remains unchanged, except that now we do not have

, x
exp i(ko - kl - k2)x =1, but rather exp ijﬁ [ko(x') - kl(x') -

. X
kz(x')] dx' = exp iJ{ k(x') dx'. The other®steps remain unchanged,

and Eqs.(1) are replaled by

. v x
[at vyt vlax] al(x,t)- yo(x) a2<x,t) exp {/f k(x!) dx'
x

(o}

. (8)

. X
[31; *u,+ vzax] ax(x,t) = v (x) a;(x,t) exp -1[ k(x') ax'
' X

[o}

These equations were first introduced by Harker and Crawford35, and
much of the work on parametric ihstabilities in inhomogeneous

plasma34_75 is based on these equations. Despite the large smount of

4work,on fhese equations in.the years 1971-1975, new results .

are forthcoming, and much remains to be dbne. As evidence, of some

- glxty papers delivered at the Fifth Annual Anomalous Absorbtion

Cohference76, held in Los Angeles in April, 1975, three papers were

devoted entirely to solving these equations undér‘various circumstances.

77

We present now an alternative derivation’’ of Eqs.{(1), more

general then the one above, Cohsider the model field equations

—6-

. . - *
D (13,, -13 ) ¢, = T o, 0,

(9)

. . "
D,(1d,, ~13_) ¢, T'é, ¢

and D, are linear differential operators acting on the

1 2
wave amplitudes ¢1,¢2; élb and ¢2_ are coupled to the third wave

where D

b tﬁrdugh the coupling constant. I'. Assuming that each wave varies

as

-1y, t+1k  x

oyxt) = dyxt)e I (10)

where wy and w, are chosen to satisfy mo =Wyt oo, kj is
obtained from mj. through.the equation Re[DJ(wJ,kj)] =0, J§=1,2;
and again ko = kl + k2. (In general, of course, all of these
equalitiea= may not be self consistent; we assume here that they are.)
Equationsi(9) become , ‘ -

. ~ ~ . %
Dy(w, + 13, %, - 130§, = T § 3,
(11)

. o~ : - F .
D2(U)2 *»iat; k2 = iax) ¢2 =. T ¢O ¢1 .

Taylor expanding the operators Dl’DZ about (wl,kl), (wz,kz), we

find .
‘ aD, aD N
Re[Dl(‘*’l’kl)] +1 Im[Dl(“’l’kl)] * '3?1 ia, - ‘aicl' R
' wy Ky wy 5%y
~ ~ %
= r ¢O ¢2

Equation (12) continued next page
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Equation (12) continued

-

'] s 3D, 9D, N
Re[ofuyiy)) + 1 maoupi)] ¢ E . 1o - o 1o,
w,,k W,k
2’72 2272
~ o~ %
= T 0,

Dividing out the coefficient of at in each eQuation; recalling that

Re[Dj(wj,kJ)] =0, J =1,2; introducing the damping rates

v = j=12; (13)
we have from Eq. (12)
T é
. ~ - o ~‘*
[at vyt Vlax] % = 3D, %
Y,

(14)

-

8

then we find, assuming Yo real and positive,

Y

(3t *ug ot vlax) al(x,t) o

az(x,t)
(15)

(3t v, + vzax) az(x,t) <Y, al(x,t)

which are just Egs. (1).

‘These have been two different derivations of Egs. (1). The
rest of this report is devoted to the solution of Eqé.(I), and their
inhomogeneous counterpart Eqs.(8), in various sitgations. We will
find thﬁt different forms of the wavenumber mismatch ik(x) give very
different results for the evolution of a pulse, the main distinection
being between absolute ihstabilities, which grow in time at fixed
position for t -+ o, and convective instabilities, which aré bounded

in time at fixed position.

B. Parametric Instabilities in Homogeneous Plasma

In this section, we discuss solutions of Eqs. (1), the coupled
mode equations in a homogeneous medium. In subsection 1, the pump
extends over infinite distanée, ‘w0 < x < », and we conslder the
stability properties for various initisl conditions. In subsection. 2,
the pump is finite in extent, O < x < L, and the stability properties
are.found to depend on the length L. ‘

1. Pump Infinite in Extent ' » .

"In this subsection, the pump extenqs from x = « t0 x = o,
We first consider the response to a spatially uniform excitation.

Next, we use Bers-Briggs analysis78 to distinguish absolute and

-convective instabilities for the Green's function response. Finally,

we discuss the exact Green's function.
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.excitation as follows.

-

We treat the temporal response of the system to a Uniform
Ignoring spatial derivatives in Egs. (1), we

look for a solution ~exp(-iwt), and find

- 5
vyt v VA R
w = -if <L a ti‘%oz"b L2 . (16)
. 2 2

(Note that this w 1is a frequency associated with the siowly varying

amplitudes alﬁx,t), az(x,t), and has nothing to do with the original
frequencies of the three coupled modes.) For vy = u2i= 0, Eq.(16)

yields w = tiyo. For VsV, # 0 instability results when

> (ylvz)i E . (17)

Y e

(o}

L

In other words, there is instability when the pump strength exceeﬁs a
threshol? determined by the geometri¢ mean of the damping rates.

Next, we treat the tempégal response to an excitation at x = O:
initial conditions Al(x,t = 0) = §(x), az(x,t_='o) = 0; boundary '
conditions al(x = +o,t) = 0, a2(x = t#,t) = 0. As in Fried, Schmidt,
and Gou1d79, we pérform a Bers-Briggs analysis on Eq. (8); with

solution ~ exp(~iwt + ikx) we have the dispersion relation

. . ‘ 2 ' '
(0 +1v; - le)(w +dv, - kV,)) + Yo, = 0 . - (18)

" For V1V2 > 0 there is only convective'instability, with convective

% o
growth rate given by Eq.(18) with k = 0; thus the threshold is the

same as in Eq. (17) of the last paragraph, or

(19)

*® . .
The convective growth rate is that measured by an observer moving
with the pulse peak. The absolute growth rate is that measured at

fixed position.b

-10-

(19)

For V1V2v< 0, Eq.{19) again determines the threshold for convective

instability, but there is absolute Instability at a higher threshold:

v1|V2| + v2|Vl|
ZWIVEVZ

| =. é y P .
L = JVIYZ! /yo,_and‘the spatlal.damping

. (20)

<
v
<
)
|

In terms -of the basic length
rates Kk, = v1/|vl|, Ky = v2/|V2|, criterion (20) states

-1

Lo > %(”1 *xy) (21)

which says that the spatial growth rate must exceed the arithmetic
mean spatlal damping rate in order for sbsolute instability to occur.

The growth rate vy of the absolute instability, with vl =V, = 0, is

3
’ lV1V2|

Yo T T

I [vy] = [V, we have the absolute growth rate y = Y,» which is the
same growth rate obtalned above for the uniform excitation in the
absence of damping. The feason is‘fhat ﬁhen 72 = ?vl, the peak of the
pﬁlse remains at x = 03 the.absolﬁte and convective growth rates are

then equal and are obtained from the dispersion relation (18) with

k = 0. .
Exact solutions to Egs. (1) (the Green's functions) giving the

response of the system to the initial conditions (23);
al(x,t = Q) = G(x), az(x,t = 0) = 0, can be obtained in a straight-
forward fashion by Laplace transforming in time. (t + w) and Fourier

transforming in space (x - k). The responses al(x,t) and a2(x,t)
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are then obtained as an inverse Fourier-Laplace transform. Cassedy
. and Evan380 first perform the inverse Laplaée transform, and then the
inverse Fourier transform, for Vv, > 0 and for Vv, < 0.
Bobroff and Haus81 pérform the inverse Fourier transform first, and
then the inverse Laplace transform, for the case V1V2 < 0. KI'0117
and Kelley82 have aiso treated this problem. We note that the sign of
V1V2 depends on the observer's frame of reference; in particular, it
is always possible to transform to a frame where V2 = -Vl; thus we
need only do this case. A

The nunber of independent parameters in Eqs. (1) can be made

explicit by defining the dimensionless variables:

A
T = ‘Yot; L =E; X

= X,
o - Yo ) Lo,
(%)
. ) v,
Dl = vl/YO; D2 = \)2/'Yo; 8 = VI e
Substituting these new variables into Eqs.(1), we find
1
9, + D, + == 3 ] a.(X,T) = a (X,T)
[ T 1 W/?f X} 1 2 v
. : (25)
[ 3.+ D, * \/e ax] az(X,T) = al(X,T)
where the top sign is for V2 > 0, the bottom sign is for V2 < 0,

and we always take V1 > 0.
In the form Eq. (25), the coupled mode equations have only

three independent parameters: Dl’ D2, B.

~12-

An example of the solution of Egs.(25), with the initial

conditions (23), is shown in Fig. 1, taken from Bobroff and Hausgl.
Here we see the temporal-spatial evolution of al(X,T), a2(X,T), for
D, = 0, D2 =0, V2/V1 = -1- (g =1). This is an example of an
absolute instability, where al(X = 0,T), aZ(X = 0,T) grow for all

time.

Equations (25) may be further‘simplified by the substitution81

D. - D D, -D
a,(X,T) = A,(X,T) exp -D1_+—1—7-3 T-'\/E(—l——i)x ;
i 3 178 178 .

J =1,2 . (26)

Then Eqs. (25) become

(aT+VL; 3g) A(X,1) = AYX,T)

(27)

(3p + VB 3 A (X,T) = A(XT) .

The effects of damping have now been formally removed, and the only
remaining explicit perameter is V2/Vi- (8 plus a sign). If we now
make & Galilean transformation to a frame where B8 =1 (V2 = -Vl),

we have no remaining parameters:

]
-

(p + 3) & 2

(28)

(3= ) 4,

-

Eliminating A2, we find

2

2 | -
(aT -ax —1)A1(X,T) = 0 (29)
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o,

~ -1 were reversed.

-13-

which would be the well-known Klein-Gordon equation83 if the sign of
The Green's function of (29) is a modified Bessel

function, ylelding the behavior shown in Fig. 1.

2. Pump Finite in Extent

We next congider the case where the pump, represented by Yo’

< L (see Fig. 2). We can

exists over only the finite range 0 < x

" regard this either as the case of Eqs. (1) with boundary conditions

at  x =0, = L; or as a special case of an inhomogeneous pump,

0 for -~ <x<0, L<x< +o: and Yo finite

with 'amplitude Y, =

for- 0 £ x £ L. The usual boundary ccnditions specify that a right

.~ going (Vi > 0) amplitgde &i(x,t)i vanish at the left boundary,

sy(x = 0,4) = 0; snd that & left going (Vy < 0) amplitude vanish
at the right boundary, aj(x =1,t) = 0.

The most importent quéstion we may ask is this: Given an

initial perturbaetion, is the fame-asymptotic (t + ») response
bounded, or does it grow wlthout bound? One way to answer this
question is to look for normal modes in time; that is, & response which

may depend on x but which has the time dependence

exp{yt): aJ(X,T) E‘aj(x) exp(yT). Implicit in the work of Bobroff and
Hausgl, this was carried out explicitly by’Pesme, Lavai,,and Pellat56.
Set Dl =YD2 = 0 in Egs. (25),and assume temporal dependence

exp(YT); then Egs. (25) become

2 )a(x) = a (X)

\ Ve & i (30)

( + Vé'ax)az(x) = a (x)

-14-

For V.V, > 0 +the boundary conditions are al(X = Q) = ﬁé(x = Q) =0,

12
Finding no solution with ¥ > 0 for these boundary conditions, we
conclude that no absolute instability exists for VlV2 > 0.

al@X = Q) =

0.) Solving

For Vlv2 < 0 the boundary conditions are

(We always teke V. > 0, so here V2

ay(X = L/L)) = 1
Eqs. (30) with these boundary conditions, we find unstable normsl

modes when
L > %L . ' ) (31)

We can understand this threshold heuristically as follows.
Consider Eqs. (1) with V1 = ¥V2 = V, and suppose that Ial(x;t)lz
represents an energy dengity. Suppose further that al(x,t) and
az(x,t) are equal and independent of x. Then from Egs. (1) with

v =V, Multiply by a,; then ignoring

2 2
factors of 2 we find atl§1| ~ yolall .

=0, 3:8) = Y85 ~ Y-

The time rate of increase of

energy in the system is then 3t[L|&i|2] ~ YOLIallz. The rate of loss

of energy through the sides is ~V|a1|2. For net energy gain, we need
(rate of energy increase) > (rate of energy loss), or

Y L|all2 > V]a | , or L> V/Y The latter,gqrréapdnds to Eq.

o‘
(29).
The temporal growth rate itself is given by the formula
y = Y& (32)
1+8 .
where
n = ¥ 2cosy (33)

‘and y 1is a solution of
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siny _ + Lo
A (34)

The top (bottom) sigps in Egs. (33) and (34) go together. (See Fig. 3.)
For 0% L/I.0 < 1 there is no reai golution to Eq. (32). For

1g L/L0 < /2, there is a solution y for the top sign in Eq. (34),
giving n < 0 and so a stable solution y < 0. For

(n + %)n < L/Lo < (n+ %)W,‘ n=1,2,3,.-+, there are 2n+l roots

tb Eq.(34), roughly half of which correspond to-unstgble ‘y's;"Thev
most unstable mode is always the one at the smallest value of Y.

81, shows the graphical solution

Figure 3, adapted from Bobroff and Haus
of Eq.(34) for L/Lo = (9/2)7; there are four stable roots and five
unstable roots.

For very large L/Lo, y=m n=+2, and vy = éBé/(i + B)
In dimensional units, this is
VXA

o ¥y * 1V

Yy ® 2y (35)

which is the same as Eq.(22) for the medium of infinite extent.

There is an alternative derivation of the threshold Eg. (31),

due to Liu and Nishikawa84, which uses the well-known properties of the -

Schrodinger equation. Consider Egs. (1) with v; = v, =0, and elim-

inate a2(x,t); we have

(3, + V3, )3, + V)3 ) e (x,) - yoz a(xt) = 0 . (36)

Laplace transform in time, neglect initial conditions, and divide by

V.V

1 2; then

~16-
tax2+ (%‘*%)ax*_ﬁ?& a(x,t) = 0 . (37)
172
Define
wWx,t) = a)(x,t) exp%(ﬂﬂ‘%)x (38)
and find -
2 2, 1y oy :
) -3 %Ly = -ZG_Y; %/ v (39)

This is Just.Schrédinger's equation for a square well potentisl:

-2 - yoz/}v V2| is finite, .0 < x'< L, and zero otherwise. If we

Lo 1 -

can find an unstable eigenvalue Re(y) > 0, with eigenfunction
wY(x) corresponding to A bound state, then we have an absolute
instebility. For V.V, >0 (top sign in Eq. (39)), there is a

potential hump, and thus no bound state. For V,V, <0 (bottom sign
in Eq. (39)), there is a potential well. Aﬁply the boundary conditions

Y(x = +=) = 0, and assume the solution

W(x) = exp(+k x) - < x <0
ael® g gy (40)
exp( ~k_x) V L<x<w
vV, -V ‘)
1 2 -2 2
where k = , k= L -k , V. >0, V, <0,
(¢} %' leZ y ] o] 1 2

Requiring the continuity of ¢ and %% at x =0 end x =1, we
find an eigenvalue condition which is equivalent to Eq.(31).
In a somewhat different approach, Kroll and Kelley82 con-

sidered the temporal evolution of a pulse in a finite, homogeneous

medium, with the further specification that the pump be square in time

x

-

L ¢l
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and in space. They found different qualitative behaviors in three

. temporal regimes: shert, intermediate, and long.

Gorbunov85 considei-ed the case V2 = 0, where we know there are
no temporally growiné solutions, Assuming V1 < 0, he applies a
constant level al( x =L,t) = Cl at the boundary. With initial
conditions al(x,t - 0) = Cyr a2(x,‘b = Q) = Cyo he fiﬁds that the
transient response at early times can be orders of magnitude greater
than the final steady state response. We have verifiéd'this_result

by direct numerical integration of the equations. _
There are several analy‘tic methods for obtaining exact Green's

functions for the finite, homogeneous system. The resulte of one of

“these, taken from Bobroff and Hausal, are shown in Fig. 4, for an

absolutely unstable case. A pﬁrticular]y interesting method, based

. on the concept of "reflections", is discussed in Appendix A.

C. The Effects of Inhomogeneity

So far we have discussed only a homogeneous medium in'the
presence of a homogeneous pump, of finite or infinite extent, repre- .
sented by Y o We now wish to discuss the possibiiity that the pump

and the medium are inhomogeneous. Pump inhomogeheity cah be intro-

duced by simply allowing

Yo = Yo(x) . (41)

Inhomogeneity of the medium is introduced through 't.he wave number

mismateh k(x), as discussed in Section I-A. With both types of

inhomogeneity, Eqs. (8) become
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. X
YO(X) exp if c(x') dx' a2(x,t) _
X

]

(42)

o |
Yo(x) e -i[ Kx') axt| ay(x,0)
X

(o}

[at .+ vy * V23x] az(x,t)

where we. again aseume YO(X) real. Taylor expanding the functiion

{x) about the point X, = 0, and keeping only the first term

xd, k(x) K'x, we have

x=0

"

(3 + vy + V2 ) ag(x,t) = v (0) empftr ¥P/2] ay(x,0)

(43)
(3, + vy + V2,) ayx,t) = y(x) exp[-t&" x2/2] ay(x,t) .

Ignoring vy and Vs which could be removed by the transformetion

Eq. (2_6), we define dimensionless variabies -

T = yo(x = 0)t

L, = WY1 x - 0)
X = x/Lo , (44)
B = |v,M|
k' =z E' Loz- ‘ -
i} L 2
RV N AN

and obtain from Egs. (43)
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Y (X) ~
= -Y_Zwyexp[iK' x2/2] a(X,T)

(45)

QT + \71? BX) al(X‘,T)
Y,(X)

QT + '\FB'BX)AZ(X,T) = %Fyexp{-ilc' X2/2} al(X,T) .

Note that inhomogeneity of the pump eﬁtere'as a real amplitude of X;
inhomogeneity of the plasma as a complex funcfion of X, with unit
absolute value; we might therefore suspect that tﬁe effects of these
-two types of inhomogeneities aré entirely different.

1. Inhomogeneous Plasma, Homogeneous Pump

In this section, we consider Egqs. (45) in their dimensioﬁless.

form, with «(X) = L, ¥(x), and with Yo(x) = constant, -« < x < «;

then

o - X
GT + ‘-'%_8-_39 8,(X,T) = ay(X,T)exp{1 | «(X')ax

L. /O -
(46)
( \/"ax/ 2(XT) a,(X,T) exp .
We ask the following question: Given an initial perturbation
8, (X,T=0) = 0 ; a,(X,T =0) = &X) (47)

-~

are there any solutions al(X,T) which remain unbounded as T + o,

This question was first answered by Piliya58 for the case V.V, > 0O,

12

for arbitrary ViVé, both for the case

In an elegant application of WKBJ theory e

and then by Rosenbluth57

K(X) = k'X. , Rosenbluth’’

Liu™.
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showed that for arbitrary vlv?, there is no absolute instability for
T + », but rather a saturation of the amplitudes !al(X,T)I and

1

at a value ~exp(mA) where A = k' T,

la,(x,T)| Note that this
does 1ot correspond to Briggs' usual definiton of convective instability
either, since the amplitude asymptotee to a certain level exp(mA)
(when vl =V, = 0) rather than falling to zero.

In the case (X) = - K" X2 with k" = constant, Rosenbluth
showed that for V1V2 < 0 'there can be an absolute instability for

sufficiently large Yo‘ In Appendix B we discuss these results in

‘relation to the general criterion for absolute instabilities in an

inhomogeneous medium proposed by Sudan87.

The exact soluticn of Egs. (46) with initial conditions (47),.

and with K(X) = K' X, was first worked out by Rosenbluth, White, and

60

of Roeenbluth57. Figure 5 shows the evolution of Ial(x,T)l for the

case V,V, <0, B=-0.2, x'=1, taken from Rosenbluth, White, and

Liuéo.
of Eqs. (46) for the same case. Figure 6 also shows the behavior of
[aZ(X,T)], which includes a pulse growing x»T.foilowingthe initial

delta-function. For we see the same behavior as in the

la,(x,T)]
work of Rosenbluth, White, and 1100

tion occurs at a value somewhat less than exp(mA). This is due to a

_ factor which was dropped in the last half of Ref. 60; for V, = -V

2 -1
this factor is [2(2")%]-1. With its inclusion, our results are in

exact agreement with Ref. 60.

An alternative solution to Eqs. (46), with «(X) = k'X, was

62

provided by Laval, Pellat, and Pesmeél, and independently by Kaufman

78

57

‘Their exact results were in good agreement with the WKBJ results

Figure 6 shows the results of our direct numerical integeation

, (Fig. 5), except that the satura-

v
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By meking a transformation of varisbles, Egs. (43) can be put in the _  a potential hump, no bound eigenfunctions, and no unstable eigenvalues.
. form o . : » For V,V, >0, an infinite number of unstable modes are found, with
Zu() - £(T)B(T) = 0 . (48) threshold pump width L /L = (20 +1), n=0,1,2,%++, for onset of

the nth mode. With damping, and taking the vlimit’ 'LY +.0, the homo-

In this form vy = Vf(T) is found to be real and positive only for , ,
geneous medium threshold is regained (See Eq.(21)); when both the

- a finite time, implying no absolute instability. The form of f£(T) )
’ damping threshold and pump length threshold are _greatly exceeded the

also provides easy access to the result |aj(X,T -+ «}| ~'exp(1r)\).

~

modes grow at -;neai-ly the largest possible ’grovﬁth rate., . 7/1‘( -z 1

¥ We consider next the form «(X) = A tanh(BX), which is a
' From the form of the eigenfunction solution to the Schrodinger

possible model of the ,junctlon between two regions of homogeneous plssma §
equation, it can be seen that the absolutely growing modes are local-

with different densities. By direct numerical integration of'Eqs. (46) 3
ized with characteristic dimension "(L-YLO) .

we obtain the behavior shown in Fig. 7, for A = 10, B\ = ﬂl? and
A 3. Inhomogeneous Plasma and Pump

i VN = AL ‘With these para.mefers, dc/dX|y_y = 1, and the region of
. nearly constant -dx/dX is large enough to see the beginning ofv We turn now to the study of Eqs. (42) in their full complexity'
oy convective saturation. The pulse response to the ._initial conditions x
vy a,(X,T = 0) = §(X), ay(X,T = 0) = 0, grovs initially with the (ét M CRA S EHCEINEREACY apfxt) exprd [ x') axt
o homogeneous growth rate vy = 1 (see Eq. (22), which .in dimensiona'lﬁ o ‘ o ‘ 0 . : (49) -
~ units yields /Y, = 1}). The pulse begins to saturate at ~exp(m)), , o ’ L . X “r
= then feels the homogeneous regions and tekes off again at the hamo- @b * vyt Véax> az(x,t) = yo(x) ai(x,t) exp |-1 | ‘E(x') ax'y .
- ‘geneous growth rate y = - ' ) . .‘ | | o O. | |
o, 2. Homogeneous Plasma, Inhomogeneous Pump | . o ‘The ‘'simplest case, and the most enlightening, involves a pump elfisting
- We have already considered a special case of homogeneous » . over a finite region, Y, © constant, 0< x <1, and zero othe mse;
- N plasma,  inhomogeneous pump in Section I-B-2, where the pump was : and a linear inhomogeneity of the plasma, «k(x) = k'x. This config-
a2 constant over the region O ¢:x ¢ L, and zero otherwise. There we uration is sketched in Fig. 8. First considered by Forslund, Kindel,
2 found an absolute instability only for L/Lo > a/2. . a.m.i'L.’Lnd.mzm63 , and by Peéme, Laval, and'Pellat%, z‘additv'ions to the
When the pump has a parabolic shape, and the medium is theory .of this case have been made by: the present author, to be
homogeneous, we have Y (x) = Y (1 - 2R ana k(x) =0 in discussed below; Jha and Srivastava '; Dubols, Forslund, and Williams®?;
Fqs. (42). Following Liu and Nishikawas.l’, we again put .Egs. (42) and Chambers and Bers66
in the form of a Schrédinger equation. For V V2 > 0, we again find . | Recall first that when «x' = 0, this is just the case con-

sldered in Section I-B-2, the finite pump, homogeneous plasma case.
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There we found absolute instability for L/Lo > w/2; we expect that
: very small inhomogeneity &' will not change this qualitative
behavior.
Forslund, Kindel, and Lindman®? proceed as follows. With
R(x) = ®'x, assume a solution al(x,t) = al(x) exp(¥t),

az(x,t) = az(x)vexp(§t); then Egs. (42) become

(7o v o) = vy a0 )
(50)
ﬁ* v, - 1V, K(x)] gz(x) = ¥, ay(x)
- X
where az(x) =a (x) exp[?j‘ (x') dx’]. Define a new space seale .
~ o !
X= XY, /V ; then Egs. (50) are
(?/Yo + ai)aluc) = ayX)
. (51)
Th o i) i (%)
.+ 3 - X) = a(X

where «(X) = ®(x) V 1/ Aseumg now that |V2/V [ << 1, and define

a new temporal quantity vy = x—-vl then Eqs.(49) are
. , T Y, 2
(Y VN ¢ ai>a'1(X) = ay(X)
<Y + 3, - iK(i))Ez(f()
g X '

Since !VZ/VII << 1 we can neglect the first term in the first

(52)

a(X) .

equation, being left to solve
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Bi gl(x) = ag(X)
(53)
(Y v - 1.<(i)) B (%) = ay(h)
X

with «(X) = K'X. We wish to find the eigenvalue Y. With Vi >0,
V2 < 0 we have the boundary. conditions al(i_= 0) =0, _Ez(i‘= )=

where L = Ly /V We guesé a value for v, set a.(X=0)=0 and

1
Ez(i 0) = 1, and integrate the Eqs. (53) numerically from X=0

ol

to = T, where we desire gz(i‘= L) = 0. Adjust the guessed value
of vy until thié is so; vy 1s then the desired eigenvalue. The
results of thls procedure are shown in Fig. 9, for the case T =
Vl = 24, V2 = -1, Yo = 24. For small «', we find two rgal-
eigenvalues, in agreement with Seétion I-B-2 for the homogeneoﬁs
{(ct + 0) case. As k' increases, the eigen#alues move together; at
a'particuler value of k' the two real roots merge to become two
complex roots, complex conjugates. For very large k', the real
growth rate goes to zero and the instability disappears.

To verlfy these results, we have numerically integrated
Egs. (42) The large points in Fig. 9 are the eigenfrequencies
obtained from our numerical integration; we see exact agreement with
the results of Forslund, Kindel, and Lindman 63 within the accuracy

of our numerical calculation.

We can gein further understanding of this problem by calculating

the Green's function response of Eqs. (45) to the initial conditions

a (X, =0) = &) , a(X,T=0) = 0 . (54)

3
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Such a caleculation, by direct integration of the fundamental equations,

“is shown in Fig. 10, where we plot ]al(X,T)| and |a2(X,T)| vs. X

at different times T, for the‘parameters k' =1, Vi = 24, V2 = -1,
Yo © “424 , L = 5. (These parameters were chosen for easy comparison

with Fig.9 and Fig. 11.) Here we see qulte clearly the presence of -

.two normal modes; in particular, at the point X = 5, we seem to have

equal amounts of each normal mode, beceuseat T = 3.25,.
laj(X' = 5, T =32.5)| = 0. We interpret this behavior as being of the
form
Jay(x = 5,m)] [ {YHRIT (AN, vr 10T -1am)
~ eYTlcds(QT)I (55)

which varles between a maximum value ~exp(yT) and a minimum velue

zero, just as seen in Fig. 10 at the position X = 5. This oscillating

_behavior, on top of the exponential growth, occurs in the time

asymptotic response. This behavior differs from that of the finite,
homogeneous case, seen in Fig. 4, where the asymptotic behavior com-
sists of purely exponential growth at each position.

A further caleulation by Forslund, Kindel, and Lindman88

shown in Fig. 11. Here we see the behavior of the fastest growing
normal mode as a function of pump léngth- L, for fixed ' = 0.4

1= 24, V2 = -1, Y, = v24, V] TV, T 0). The real part of the
growth rate reaches a constant value for large pump length I, while

(v

the imaginary part of the growth rate is linearly proportional to L

for large L.

At this point, we must pause to consider an apparént contra-

vdiction. Figure 11 predicts an absolute instability for fixed ',
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L + », whereas the work of Rosenbluth57, discussed in Section I-C-1,
indicatéd no gbsolute instability. |

There are two poSsiBle resolutions to this apparent contradic-
tion. The first is that perhaps Rosenbluth57 should have found a foot

(y + 1Q) with finite growth rate vy and infinite imaginary part £,

‘as indicated in Fig. 11 for I # », It is possible that his WKBJ pro-

cedure could have missed such a root, since it would have an infinite

absolute value.

The second possible resolution lies in the limiting procedures
involved. Mathematically, Forslundot et al., take T + o first and
then L -+ «; Rosenbluth, on fhe other hand, tekes L + « and then
T + o, It is well known mathematically that changing the order of -
limits can completely change the result; witness, for example, '

Lim -—:rii-z , which ylelds either zero or infinity depending on the
a0 a” + b

- b0

order of the limits. Physically, Forslund88 et al. assume that each
wave has had the chance to "reflect" many times from boundary to

57

boundary, and vice versa. But Rosenbluth's”’ pulse never reaches the

boundaries, and never has time tobréflect; Thus, thé ébsolute'growth
.rate of Forslund88 et al: never makes its appearance.
» At this time, it is not clear whether one, or both, or neither,
of the sbove resolutions is the appropriate one.
The Green's functions shown in Fig. 10 can be obtained analyt-
ically, as well as by direct numerical integration of the coupled mode
equations. We have done this, and pfesent the calculation in

Appendix C. Due to the complexity of this solution, it is easier in

practice to numerically integrate the basic equations.
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Finally, let us briefly discuss three other contributions to

. this problem of finite pump, inhomogeneous plasma, Fig. 8. Jha and
Srivastavav5 obtain an analytic solution for the growth rate (y + iQ),
using perturbation'theory for small «k'. Dubois, Forslund, and

65

‘Williams™” use the WKBJ theory to obtain approximate results for the -

growth rate (y + i) vs. pump length L and.inﬁomogeneity k'. They
also conéidered the case yo(x) ~ sinZ(X/LY), —I.Y < X< Ly, as well
as other sﬁooth functions_for 'y°(x)f In all cases, results similar
to those of this section were found. Chambers and Bers66 solve Egs.
(42) in the same manner as we ao in‘Appendix C. However, they look .
for a special value of temporal variable vy, rather tbﬁn regarding

# as a Laplace transform variable to be integrated over. Applying
-boundary conditions at X =0 and X =1, tﬁey find the eigenfrequency
y + iR, which agrees ®xactly with those shown in Figs. 9 and 11. They
next obtain the full spatial solution to Egs. (42) in terms of para-
bolic cylinder functions. vThese sbiutions ﬁre found to hug the walls
as L + », thus leaving no effect in the middle of the system. This

phenomenon is claimed by Chambers and Bers66

to. provide yet a third
possible resolution to the Forslund-Rosembluth paradox. _

Angther interesting characteristic éf the finite pump case 1s -
the following. With Vl >0, ‘V2 <. 0, suppose the systeﬁ is too short

to be absolutely unstable. Then suppose we input a constant value

a)(X'= 0,T) = a, at the left-hand boundary. What will be the amplifi- .

cation al(X = L/LO,T)ao, measured at the right-hand boundary
after the steady state has been reached? For V2/V1 = -1, L/L° =1,
we determine the amplification A for various values of «', by

direct numerical integration. Figure 12 shows the results. We see
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that the greatest amplification is for the homogeneous case «' = 0,
and the amplification decreases for increasing inhomogeneity.

We turn next to the work of White, Kaw, Pesme, Rosenbluth,

Laval, Huff, and Varma64, who considered the inhomogeneous pump,

inhomogeneous medium case. Starting with the equations

ifoxli(x')dx”

(3t *v ot Vlax)-al(x,t) = yo(x) e _ a2(x,t)

(56)

_ » -%j;xi(x')dx'
(3 + v, - vzax) az(x,t) = yo(x) e al(x,t)

with V ,V2 >0 (note the (-) sign in the second equation), Yo(x)

is then expressed in the form

x
' j; al x' )ax'
o

o

Y(x) = ¥ (57)
Laplace transform in time, f(p) E.]. e Pt f(t) dt, and define-
0
. yfp + v p+v .
-az(xip) = -F(x,’p) exp '5( A 1 + 7 2 X
1 2
X
1 .
+'3 [a(x') + iK(x')] dx' (58)
0 ' :
obtaining the equation for F(x,p)
dxz F(x,p) + f(x,p) F(x,p) = O : (59)
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where
1 ) p+\)1 p + \)2 2
f{x,p) = -7 ofx) - iK(x) - A + 7 +
X
2 2f ofx!)ax’
v 1o 0 = 19.4) + 9o e : (60) -
3 V¢ x° V1V2 . _

Choose 8 Gaussian profile for the pump, ofx) = a2x/LY2,

and let «(x) = k'x; we obtain

: 2
p+twv PtV .
1 iK' -1 1 2
f(x) = - |x _74-..5_ +§ + v )
L 1 2
Y
2 2,0 2
; =2 :
- 1 +£ +v.Y.0v_e x/L'Y . (61)
LYE 2 12

From this point, White64 et al. analyze Eq. (56) using WKBJ techniques

and looking for normal modes. For Vi and V2 .in the same direcficn,

there are no unstable normal modes. For Vl. and V2 in opposite
directions, there exists.an unstable normal mode provided three neces-
sary conditions for absolute instebility are satisfied, namely

(1) ‘the threshold for instebility in an infinite, homogeneous

.medium must be satisfied, {see Eq. (21)) namely

VilVol = %IVl (62)

> — 3

(ii) we require LY > Lo' This correspénds to the threshold

for absolute instability in a homogeneous plasma with finite length

pump, Section I-B-2. (See Eq. (29).)
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(iii) we require

- 2
> (1 + k'L . 6
L/Ly > ) (63)
Ir KfLYz >> 1, this becomes
L < —#L- .- (64)
Y k'L ‘

‘This upper bound on LY’ perhaps surprising, could have been predicﬁed

on the basis of Section I-B-2, the infinite pump, inhoﬁogeneous-medium
case, where we found no absolﬁxe instebility; there we had LY + ®,
White64 et al. interpret this upper bound on LY as being a
condition on the sharpness of the boundary 'Yo(x), a sufficient amouni
of éharpness'being necessary to cause the "reflections" needed to
pro&uce absolute instability. This interpretation is along the same
lines as the "reflections" of Bobroff and Hausal (Appendix A)., Another
way to discuss this ﬁhenpmenon is to say that in the infinite,
inhomogeneous case there are destructive_interferences; originating at
large x, which quench the absolute instability. Cutting.off the
pump at large x destroys the source of these destructive inter-
ferences, allowing the absélﬁte 1nst§bility'to exist, |
In this section, we héve been concerned with inhomogeneities
which vary monotonically. In the next section, we consider non-

monotonic inhomogeneities in the form of spatlal turbulence.
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II. PARAMETRIC INSTABILITIES IN THE PRESENCE

-OF LONG WAVELENGTH TURBULENCE

- A, General Resuits
In this séction, we diséuss the influence of irregular
inhomogeneities on parametric instabilities. First, we review pre-
vious work. Then we discuss our own work®” on long wavelength

turbulence, .in the presence of a linear denslty gradient, for anti-

'parallel group velocities.

There 1s a substantial body of work on parametric instabilities .

driven by a pump which hes finite bandwidth® 9%, the bandwidth being -

thought of as a random phase ¢(t) in the temporal bebavior of the
pump, which varies ‘~exw[- imot + ¢Ctﬂ. An important effect is found
- when the bandwidth is qf order Yo

The earliest treatment of three wave interactions in the
presence of spatial turbulence is due to Tamolkin and Fainshtein96,
who consider ali three equat;ons and find that the turbulence
suppresses the usual relaxation oscillations. There has also been
some work oﬁ all three waves in the bresence of a random phase, by

Wilhelmssonzsi

The case of spatial turbulence in a homogeneous plasma, using . .

Eqs. (42) with «k(x) a random -function characterized by amplitude

A= <[E(x))2>é’ and correlation length Ly, has been considered by
Kaw, White, Pesme, Rosenbluth, Laval, Varms, and Hure®? for the case
of parallel group veloqities. For _LOAZLT >> 1 >> LT/LO, they find an
increase in the growth length fram L (for A =0) to (LOAzLT)Lo.
69

Kaw ’ et al. have also considered, for parallel group veloci-
ties, the case of a linear density gradient in the presence of spatial

turbulence, Kk{x) = k'x + 8x(x), where &k(x) is the turbulent

. spatially at a level exp(mA), where A
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wavenumber mismateh with correlation length LT << Lo' We know that

in the absence of turbulence, & constant input at x = 0 saturates

yoz/(E'lvlvzl), In the
presence of turbulence, Kaw69 et al. find the same result, spatial
saturation at exp(mA), but with an increased growth length before
saturation. |

We wish to generalize the results of the 1ast paragraph in»
two way§67, by congidering.the space-time behavior for antigardllel
group velocities, and by considering correlation lengths Ly ~ LQ'
We do so by direct numerical integration of Egs. (42).

The. turbulent part of the wave number mismateh is characterized
by amplitude A and correlation length Lp. We take the correlation

function to be staﬁistically uniform and Gaussien,

(o(x) s(x)y = o exp[(x - x )2 ] . (65)

Since the spectral function S(k) = ery RS (Gn(x) S(x + y))
= (21:)é A2 Ly exp(—kZLTz/z), we take as a model’ for the random

function &8k(x) a sum of sine waves with random phases,

v T Neott ) . _ .
Sk(x) = (3?ﬂ)£ V 1§v A ;g;exp[aka LT2/4] sin(kdx + af) '(?6)

* ‘ '
The model mismatch Eq. (66) has a correlation function of the form
C (e x) sk(x')) - L exp(-kJ2 LT2/2)_cos[2nJ(x - x')/L] which is
j .
periodic' in x with peried L.. For distances of interest x << L,

this correlation function is accurately given by Eq. (65).
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where kj =27J/L; L 1s an arbitrary basic length, much longer than

-any other length in the problem; {aj} is a set of random phases, with

probability density uniform from zero to 2m; and the upper limit of

‘sumation is taken to be 1arge; such that (kJLT)MAxe>} 1. (of

course, care was taken that all turbulent wavelengthe be large with
respect to the numerical grid spacing. The results are theh 1nsensitive
to the numerical grid spacing.) For a given realization {“J}’ and a
particular set of parameters, the total mismatch gradient
dk(x)/dx = &' + dék/dx is illustrated in Fig. 13.

Given this model, the coupled-mode equations (42) are inte-

grated numerically to determine the effect of'the spatial turbulence on.

the response of the system to an initial perturbetion.' The main result

of this study is that if A exceeds a threshold value_(depegdent‘on
IT)’ the'instebilityrno longer saturates at a value sexp(nk){ but
growe'exponentiaily at fixed ; for large time,'at a growth rate .y°
lower than that for a nonturbulent homogeneous medium. In Fig. 14 we
show the temporal development of a typical unstable case with initial
cenditions al(x,t = 0) = &(x), az(x,t = 0) = 0. Fluctuatiohs
reminiscent of Rosenbluth, White, and L.iu68 are observed,‘but‘with a
less reéular character. The most unstable part of the §u1ee has the

behavior of a temporal normal mode, maintaining its shape while

.growing exponentially.

In Fig 15 we show the absolute growth rate Y/y ve A/L

-1. K’L°2 =1, L/L, =1.27. The threshold

for Vl/V2 =<1, A
turbulence level is seen to occur at A/Lo'1 = 0.1. The maximum
growth rate is y/yo = 0.70, which is comparable to the homogeneous

growth rate Yo

_of the linearxy 1nhomogeneous coupled mdde problem”

-3
The function dK(x)/dx shown in Fig. 13 corresponds to the
threshold case of Fig. 15. This function is seen to lie in the range

0.80 < L02 dk(x)/dx < 1.20. This shows that the coupled mode equations

can produce absolute instebility even if' de(x)/dx vanishes nowhere

in the medium, in contrast to the result of Kaw69 et al.
In Fig. 16 we show the growth rate Yy as a function of correla-

tion length LT’ for fixed fluctuation level A. For this calculation

_ We use ‘the same realization of the set {“J} in Eq (2), varying L

with A/L0 = 0.5. We see that the absolute growth rate decreases
with increasing correlation length.

It should be noted that in this work the turbulent ﬁavelengths

. are quite long, the shortest being equal to the standard length

Ly = S /Y

A further point is that for a given value of A, the absolute
growth rate depends strongly on the realization of {aj} chosen in
Eq.(66). The relative dispersion of the growth rates is of the order
of 30-40%.

We interpret our results as follows. The convective saturetion

57468, uitn oppositel.

directed group velocities, seems to be due to destructive interferences
between responses originating at large positive and negative positioms.

64 ot 1., who

This interpretation is supported by the work of White
feund that reélecing the‘constant pump by a Gaussian in x resglted in
absolute instability, es discussed in Section i~B-3; i.e., removiﬁg the
responses atllarge x removed the destructive interference at x = O.

The analogy in our work is that the turbulence upsets tHe destructive

interferences, allowing the instability to grow ebsolutely.
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We conclude that the presence of long-wave turbulence tends to

57,68

.destabilize the convective saturation found for the coupled mode

equations, with oppositely directed group velocitles, in an inhomogen-
" ‘eous medium. This deétabilization occurs at relatively small turbulence
levels; so small that the condition dw{x)/dx is never satisfied.

At this time, there exist 1 4

several analytic efforts which V
‘deal with situations closely related to this section. Much of this
work Involves approximations, an example being the Bourret closure

approximation, the valldity of which are at present being debated.

B. Raman Backscattering in Laser Fusion Model

In this éection we apply the results of the previous Section
II-A to the question of Raman scattering, in which an electromagnetic
wave decays into another electromasgnetic wave ‘and a Langmulr oscilla-

tion. We consider an example from the parameter regime of laser

fusion97-101.

First studied by Bloembergen afid Shen'’, Volkov®, and

Comisarlg, excellent derivations of the coupled mode equations (1)

for Raman backscattering are given by Drakelo2

et al, and by Liu,
Rosenbluth, and White34. These derivations proceed>from Maxwell's

equations and the Lorentz force equation to ouf Eqs. (42), which are

az(x,t) exp |1
0

(3, + V.3.) ay(x,) "(x') ax’

(67)

. X
al(x,t) exp { -1
0

| ]
(3t + vzax) az(x,t) = e(x") dx]

" where a8 is now the scattered electromagnetic (EM) wave and a

ifact as follows.
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2
is the electron plasma oscillation.

The laser fusion geometry is depicted in Fig. 17, where we
see the density rise from zero to above,the critical density. Since
both decay products have frequencies above the local plasma frequency,
R L

satisfy w, > Zmp. Thus,.Raman scattering can occur only below the

, the pump frequgncy ‘mst

P
is the density at which wp =W, Furthermore, Raman backscattering

point x* where n =n /4, or w_= mé/Z} the critical denaify n,

can occur only above a certain density, because for too low a density,.
the Langmuirdecay product is strongly landau demped. We can see’ this
In the fgr underdense region, wp(x) < Wy, thé.EM
decay product wil; have & frequency about equal to ©,» and thus a
wavenumber kl abopt equal in magnitude to ko, but opposite in
direction, as shown in Fig. 17.

k2 = 2'ko. For very low plasma frequency, the Langmuir wave phase

‘velocity V¢ ~‘wp/2k° will be so small that kZA ~ 2k v /w f ,

oep

producing large Landau damping.A In this region, Raman backscatter

is suppressed and is dominated by induced Thomscn scatteringlo3;xthe

difference frequency Wy =W now correspoﬁding to a beat distumbance B

which is not a plasma normal mode in the absence of the pump; the
thrée wave coupled mode equations no longer apply.

We see therefore that Raman instebility happens‘betWéen;a 7
minimum densipy and a maximum density % n,, as shown schematigélty ih
Fig. 17.
of it. Near the point xé, the EM wave is near its classical turning

point (wl ~ wp) and has k 0; thus the wavelength Al ig very

lz
large and the approximation of slowly varying amplitude al(x,t) i{s no

Thus, the Langmuir wave has wavenumber

Our Eqs. (40) are valid over part of this region, but not all ‘
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longer valid; we cannot use Eqs. (42) in this region. We therefore

restrict our study to the region indicated schematically in Fig. 17

(Note that we have also neglected damping in Eqs. (67). In practice,
the.EM wave is collisionaily dampéd, and the Langmuir wave is
collisionally and Landau damped. At the end of this section we
briefly discuss the effects of damping.) B

Let us evaluate.the parameters Vl’ V2, Yo’ and E(x) in the
general vicini;y of mp(x) % mo/z, or n(x) = nc/9; working to ?oughly
10% accuracy. We take fixed Wy and 0y - For Vl, we have
V., = -c}/& -w 2/w 2': —c‘V[V- % s -¢. - We have V 3v k2/ s

1
where v is the electron thermal speed, we find

2 = ko * Iy -%\j - 5 EWF; s (20 /e )1 - w/2u);

and w2 =W, - 1, thus

For Y, Ve obtain from Drake102 et al.

v

Y, = 5 \/mowp : (69)
where Vo is the oscillation velocity of an electron in the field

of the pump wave, related to the pump intensity I(W/cmz)b by

-

for a Nd:glass laser with = 2- 100% 71,

Finally, we determine «(x). At the point of exact matching
X, We have .E(xo) = At any other point, we have

k(x) = ko(x) - kl(x) - kz(x); expanding about x_ = we find

v 2 . “
"c?‘ = 3<Ve/c>?<7wp‘l; 1) . (68) -

v/e = 1079 I% o (70) '
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k(x)

<wp2(x) = wpz(xOD

_ 1 . 1 _ 1 ,
zdwz-mz(x) 2dq¢w2-w2(x) Ev;vvmz-wz(x)
(e} P o 1 P o e 2 p o

e (o
For a nonrelativistiec plasma, ve/c <1, the.Langﬁuir wave term in

Eq.(71) is much larger than the other two terms, yielding

2 2 2 2
) (x )- wy (x) @R}xo)-wp(x) (72)

k(x) = >
é\/F— V - wy (x ) 6v, "k,

-where all quantities except mp2(x) are evaluated locally at x . In

the far underdense region

H) w 2(x,) < w X(x)
k. 12(k0)\D52 wpz(xo)

x) _ 1

3wy <<u, . (73)-

For a linear density gradient with scale length Ln’ and turbulent

relative density fluctuation An(x), Eq. (70) becomes, with x, = o,

¢ - . k
‘(x) = 2 [.I.‘JE.-c--An(x) - (74)
6(kAp) U A
We choose parameters characteristic of laser fusion97_101.
The laser is Nd:glass, w, = 2-1015 s_l, Ao = 1 ym, intensity
I = 10" W/en®, pulse length 100 psec = 10720 & = 2.10° w 1. The

plasma has T, =1 KéV, wp(O) = wo/3, AD = 0.022 yum, k2 =1.,6 ko'
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At these values, collisional and Landau damping rates are lower than’
Y T 0.02 wy by‘a factor of 100. At the homogeneous growth rate, an
initial noise level would amplify by exp(Y0 x pulse time) =

exp(0.02 w, % 210 wo° = exp(4000), a huge value which would mean

gserious attenuation of the incoming laser beam. Thus, it is important
to study the inhomogeneous regime, to determine whether such growth

rates are actually obtained.

Choosing a density scale length Ln = 100 um, we have from

Eqs. (68) and (74)

Vl = =
V, = 0.03c - - (75)
Wx) = 3.3:207 em® x + 2.8:10° cm + a(x) .

Also of interest are the parameters L, = 1.3 im, X = Y°2/|§1V21E' =
1.5. From these we note two important facts. First, we are pushing
the WKBJ Eqs. (42) to the 1limits of their validity, since Lo = 1.3 um
is only slightly larger than ko % Al = 1.0 um; whgreas we‘haye
assumed L ~ 3 Rnlal(x,t)|5> %4A1,A2. Secondly, thé nonturbulent
convective saturation at exp(wx)'é‘exp(5) is at a very low value for
) these parameters (for I = 1016 W/cmz, ™ =50; for I = 1014 W/cmz,
A = 0.5); it is therefore crucial to determine whether turbulence
destaﬁilizes the convective saturation, allowing absolute growth,
With 1,/L = 1.3, anda particular realization of fa) in
Eq. (66), the results are as shown in Fig. 18. Although not shown in
Fig. 18, the threshold for absolute instability occurs at a relative
RMS density fluctuation A =~ 107 t0 1077, a very low value for real

plasmas. The absolute growth rate above threshold is Y/Yo * 0.2,
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falling off for large AiMS ~ 0.1. This growth rate should be compared

to the homogeneous absolute growth rate, which from Eq.(22) is

\A é\/|vlv2l/(|vl| + V1) = 0.3.

The effects of damping on the absolute growth rate have been

studied. Results qualitatively similar to those in a homogeneous
medium79 have been found; the growth rate is reduced when the Langmuir

v

2
..wave damping rgte v, ~ VI Yo

Thus, we have found that'the coﬁvective safﬁration of Raman
backscattering in laser fusion geometry is destabilized by very low
levels of turbulence, such that the relative RMS density‘fluctuétion
is A~ 107 t0 1072,

Let us depart from the abstract world of one dimensional theory
to ask the question: What is the experimental situation regarding
Raman backscatter? Answer: There is no direct evidence for any Raman
backscattér in any experiment, even though many laser-plasma experi-

104-106

ments are in the intemsity range (1014 - 1016 W/cm2 for

Nd:glass) where theory predicts huge amounts of Raman scatter.

Numerical simulétions, however, do demonstrate Raman scattering which

63,107,108

behaves as predicted by theory There is some indirect

experimental evidence for Raman scatter near % n,, in that scattered
3 105,106

light of frequency 5 W, has been observed . Of various
theoriest??"112 accounting for light at % w , all make use of the

combination of pump light at W with Raman or 2mp instability-

generated radiation at w0/2; indeed, a papef by Langdon, Lasinsky, and

113

Kruer shows that at 1 n,, these two instabilities merge into

Z
a mixed electrostatic-electromagnetic instability. This is then the

N

indirect evidence for the existence of Raman scattering.

Yy
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Wé offer two speculations for the absence of large amounts of

_Raman backscatter. First, the large turbulence limits of both Fig. 15

and Fig. 18 show a decrease in growth rate for very large turbulence;
perhaps such turbuleﬁce is expérimentally present. Second, it has been
shown' 14 that magnetic fields associated with turbulence can inhibit
Raman scattering; perﬁaps such magnetic fields are present.

This discussion has been limited to one dimension. There has

' also been a considerable amount of work on Raman side=~

68’70’114'118, which is important since perpendicular to the

density gradient the three wave matching conditions can be exactly

satisfied over large distances.
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III. PARAMETRIC INSTABILITIES IN THE PRESENCE OF
A NONMONOTONIC INHOMOGENEITY--A MODEL PROBLEM

A. Theory of Homogeneous Plasma With Sinuscidal Density Modulation

As discussed in part II above, it is very difficult to make
analytic progress with our coupled mode equations when the inhomo-
geneities are nonmonotonic, or turbulent-like. For this reason, we
consider the tractable problem of a sinusoidal density inhémogeneity,
expressea as a wave number mismatch in the form
k(X) = LO K sin(XLo/Lm), the subscript standing for modulation:

This problemis ligg_the turbulent problem in two respects: the wave-
number mismatch is characterized by én amplitude ¥n and by a length
Lm, just as turbulence has an amplitude A and a correlation length

LT' This problem is unlike turbulence in one important respect; that
is, «(X) is coherent in the sense that the value of the function at
each point is given once Kn and Lm are given. Thus, the solution
of this problem will contain important similarities to the turbulent

problem, as well as important differences.

We begin with the coupled mode equations in the form

' : o . X
(3, + v + =0) a(X,1) = a XD exp[1] (x')ax
Ve .
. (76)
N . |
(3 + v, + VB 3y)al(X,T) = a(X,T) exp|-i VK(X') ax'|

where B = [V2/V1|. Assuming a time dependence-

al(X,T) = ai(x) exp{-iwT), and eliminating the factor
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. X - . .
aZ(X,T) exp [ 1 f k(X') dX“} as in section I-C-III sbove, we have Equation (80) continued
0o . ‘

. . L 2 : L 2
o A3 = t(f) (-iw+vl)(-iw+v2):<ff>
aXZ +[t v—1_8. (-iw + v2) < ik(X) + (-iw + vl)'ﬁs-.]ax ‘ _ » :
. 51
A, - <:?£;—JE:) (<o + )Lk (80)
0

and where the top sign-1s for parallel group velocities and the bobtom

+ [i(-iw + vl)(-iw + “2) - iﬁ k(XX ~iw + vl) ¥ 1] al(X) = 0 .

(77) sign is for antiparallel group velocities.  When o = 0, Eq. (79) is
Assuming tﬁaf k(X) =-Lo K gin( X Lo/Lm) and defining the new spatial équivalent to Ince's equationllg’lzo. A simple transformation could
variable Z = (Lo/Lm)X = x/Lm’ we obtain - ' ' ~ then remove the middle term, producing a Hill equation119’120 of the

j . | form 822 al(z) + [(cl *e, cos(z) + cg cos(2z)} al(z) = 0. Only the
2 m\l, 1 - ')

. 3Z +(r;>[t ﬁ (1w + vz) + -V'E (-iw + vl) 1L, K sin(@ )} 2 existence of the cos(2z) term makes this equation different fram

l the well-known Mathieu equation. For our purposes, the present form

. Eq.(79) is more convenient.

2
L . ‘ : . .
+ (.LE) {1(_10, + \,l)(-iu, + \,2) - 1V§ (-1ip + vl) _ Equation (79) is periodic in Z with period 2m. Floquet's "
o ' . _ '

119,120

theorem states that there exists a solution of the form

x L oky sin(?)] al(Z) =0 . (78)
This equation has the simple form

(o + G+ g snte « G+, st0z)] ) = 0

(79)
where . .
L ' \lg.lf£>
= 4 2 -iw + + (-1 + v,)
A —(:S/E L;:>( W+ v,) <1 T w vy
A2 = -1 Lm Km

Equation (80) continued next page
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exp(kz) #(z) where ¢(z) is periodic in z with period 2m,

. Such a-solution can be very helpful to us, as we shall see below.

The solutionis expressed as

e (z) = % 5(2) = ¥  ;€: e 2 (81)

n=~o0o

&

¥

1

Q00

Usually, there will be two solutions of Floquet form to Eq; (79),
fl(z) = ¢l(z) éxp k2, fz(z)‘i ¢2(z) exp k,z, where ¢1 and ¢2
-are periodiec in z with period 2m. If kl # k2, or kl = k2
but ¢1(z) is linearly 1ndépendent of ¢2(z),_then fl(z) and
f2(z) are linearly 1ndependeﬁt. This is.the case In SectionJ
III-A~1, where we find k, =--kl.

©Af Vl ='V2 = 0, we find ké = --k1 = 0; in this case it can be

showz%;g

that ¢1(z) and ¢2(z)' are indeed linearly independent;
fl(é) and f2(z) are_fherefo;e the complete solution set. In
Section III-A-2, the basic Eq. (79) with nonzéro w 1is more compli-
cated than in Section III-A-1 with ® = 0, Here we force k, = 0]
and solve for @; this is then one solution of Floquet form ¢1(z).
We remain ignorant of the second solution; there are three
possibilities: (i) it coﬁld be of:Flo§uet form with different

k, # 0; (11) 1t could be of Floquet form with X, = O but ¢2(z)

2
linearly independent of ¢1(z); (iii) it could be of completely
different form. Whichever of these three possibilities occurs is
not our concern; we are only interested in determining which values

of W are consistent with a Floquet solution exp(klz) ¢l(z)

.having kl = 0; thlis we have done.

For a discrete set of values 'Km,»

<46

" then Eq. (79) becomes.

- A A
Z (k + :’Ln)2 + (Al + %eiz - 5%- e_lz>(k + in)

N==00

A - A .
. <Aj +§li"eiz "'z'lf'e-iz> o inz ekz =0 . (82)

inz

The coefficient of e must be zéro for eagh n, —©<n <

thus we find for each n ‘that

A

A, ' 2 .
(s [k + 1(n - l)]+ 3T {1 + {(k + in) + Al(k +in) + A3 e

A . - A .
.2 4 -
Yo [k +i(n + 1)] 3T %1 - O

n=..,-2,-1,0,1,2,+- . (83)

Dividing out the middle coefficient gives us a set of equations, which
in matrix form would be convergentllg’lzo. (An infinite matrix is
convergent 1f (1) the product of the diagonal elements converges, and
(11) the sum of the off diagonal elements converges.) Defining
[Asz+in—i]+A4

-0 < n < ®

Yo 21k in)° + A (k + 1n) + AB] -

n

(84)
Equations (83) becomgs, on dividing out the middle coefficient and

using (84),

-0 < n < '(85)

‘This set of equations is solved as follows. Defining
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c c

-1 +
u = n-l 3 v. = LY . (86)
n ) n )

n n

Eqﬁations (85) become, on dividing through by c_,

Yn- u +1+ Yh+ v, =0 e <pn<® . (87)
This set Eqs. (87) can be solved for w, and Vs 8s shown in
Appéﬁdix F. The result is
+ - + -+
= - Yp-1 Yn-1 Yn-2 Yn-2 n-3 ..
n 1- 1- 1- -
- + - + -
v e - Yo+ Yn+1 Yne2 Yn+2‘Yn+3 . (88)

1- 1- 1-

-0 <IN < ®

.where continuéd fréction notation has been used, ﬁeanihg that éach-
minus sign in the denominator acts oﬁ everything to the fighﬁ of it.
The solution (81) is now completely detefmined. The value of k 1s
obteined by choosing a value for n, n =0 ilet us say, in Eq. (87).
Inserting. u, and v, from (88)f and Yn% from (84), ﬁnd Al, A2,
AB’ A4 from (80), all into (87) for n = 0, we'601ve'f§r k as a

function of  w, l(m., and Lm. That is,

Yo- u, + 1+ Yo+ v. = 0 (89)

o]

is a dispersion relation for k. It remains to evaluate c ,
0 < n < oo,
The c, are obtained by qhoosing a value for co,'and noting

that from the definition (86), we have e = Vvt

o1l n—2Vn-lco for
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n>0, and ¢_=u

U Leeeu
n o -1

_n+2u_n+lco for n < 0. Thus we have
constructed the complete solution Eq.(81), aside from an arbitrary
constant c_. In this report we shall not evaluate :{cn}, but rather

obtain as much information as possible from the parameter k.

1. Parallel Group Velocities °

As we have seen before, when the group velocitlesare parallel,
YIVé > 0, -there is no possibility of abso;ute instability, anqvwe may
consider the prbblem of the spatial respbnse to a cbnstant'éoufce
al(X = 0) = 1, steady state in time. We do this by setting the
temporal growth rate w = 0 in the definition below Eq. (76), ana
consider Eq. (89) as a‘dispersion relation for k. For zero modulation
K, We know that the spatial response is ~exp(x[Lo); for finite

modulation we expectvthié spatial growth rate to be reduced. ' From

Eqs. (80)

Al - V2 Lm . v11/§.Lm
wI-é-l‘o | Lo

A2, = LK
(90)

- 7 2
A3 = (v1v2 - 1)(Lm/L°)
A, = -1vy (LK VB L /L) .
Then from Eqs. (84) we have

, s '~.-(Lme)[zk *in-1 % v R Lm/LO] N
2[(k+in)2 + (krin)(L /L )v, VBr,/VB) + (L /L )2(\)1\)2-1)]

n

~w < < ® . (91)
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For small Lme’ we can approximate u Vo in Eq. (89) by

" the first term in thé'expressions (88), all other terms being

proportional to higher pdwers'of Lk, Then Eq. (89), our

dispersion relation, becomes

- + )

+ -
Yo Yi “ Yo Y *1 o . - (92)

'

For heuristic clariﬁy, set vy =V, = 0,-‘8 = 1. Then Eq. (92) is

2 .
(KmLm) ¥k - 1) | |
40 - Lmz/Loz)[(k' -1 -1 c]

L,
= ;Kng)’k(k+iT) ) S
W - L2 A+ 1 - A )

For fixed L, let k - 0. Then Eq. (93) can be satisfied only if

the denominator in one of the terms vanishes. Choosing
5

2, 2 _ ' - :
X - Lm /Lo =0 ylelds k tlm/Lo, or

L
a.(x) ~ explty= 2z ~exp[£K} ~ exp[tx/L J, the usual result for a
"1 T o
homogeneous medium. The other zeros of the denominators yield

k = Lm/Lo + 1; but this 1s the same as above since exp[iiz] is

periodic with period 2m and so can be absorbed in ¢(z) in Eq. (81).-

_ In fact, a careful look at the full dispersion relation (89) shows

that for Kn » 0, there are an infinite number of roots.
k= iLﬁ/Lo +1if, -»< 8 <=, gll of them equivalent to the £ =0

root.
~For small KmLm’ we expand about k = Lm/LO, and solve Eq.

(93) for the emall quantity (k - Lm/Lo); we find in physical units

the inverse growth length rt- éi, which is
. _ -

o . (93)
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. 2 .
( L) .
o= X/L = L;l 1 - m m — \) KmLm'<< 1 . (94)
- 41+4Lm/Lo)

Thus, for small modulation amplitude K the growth length is

increased by a term proportional to Km2

The increase in growth
length 1s most pronounced for large modulation wavelength Lm.

| For arbitrﬁry Km’ we can solve Eq. (89) nﬁmerically for the
inverse.growth length k, keeping as many terms as necessary ih‘the

continued fractions of Eq. (88) for uy and Vg The results are

- shown in Fig. 19 for Lm/Lo =1, and in Fig. 20 for Lm/L0 =.0.5.

The spatial growth rate, in units of the zero modulation spatial
growth rate Lo-l, decreases with increasing modulation Km until a
cerfain point, where it reaches zero and bounces up again.: For..
completeness, we have shown both the positiVe and the negative roots;
both roots are purely real. We interpret the bouncing effect as being
due to constructive and destructive-inferferences between the
>opposite1y traveling solutions to our second order differential
equation (77).

2. Antiparallel Group Velocities

If vlvé < 0, it is no longer appropriate to consider a steady
state in time, so we consider a different, physically relevant
proﬁlem. We ask the question: What is the temporal response of the
system to the uniform initial conditions al(x,t = 0) = constant,
az(x,t'= 0) = 0? We expect to find a temporal growth rate Im(w)
which in the limit Kp 0 reduces to_the usual homogeneous fésult
Im(w) =1 [or in physical units, Im(w) = YO). The basic équations

(76) are periodic, and the initial conditions are pericdic; thus,
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we may look for a periodic solution to Egs. (79) which means setting

k = 0 in Eq. (8l). Then Eq. (89) becomes a dispersion relation for
w, with k set equal to zero.

In this case, we have from Eqs. (80)

L VL

= - D (-ip + Vv,) + o (-dw + v
A Ver, e 1)
A, = ~iL k
2 mm (95)
Ay = (1L 10 ¢ v )-tw v V)« (L/n )
8, = -AVEL /A N0+ Ve
Using (84) and (95) we have ,
e a2 |Gin-t) 3 (VB 1 /1 )-twi))]
n L
(nZ - m{_.—lﬁn_-(-iu»vz) + W—J(-iwvl)}
R \,ELO Lo . .
. 2 , 2 .
/L \ Hml) '
ol B (ot )-dutvy) - | 7= . (96
(o @}

For small (KmLm), we again choose only the first term in the expres-

sions (88) for u,, v

, end again obtaln the simplified dispersion

relation (92). For simplicity, set B =1 (Vl = -V2), and
Vl =V, = 0. Then we find, as expected, that for KmLm + 0 the
temporal growth rate is Im(w) = 1 (Imn(w) = yo_'in physical units .

For small « L , we find
; m m

- m m
Im(w) = 1 - Kplp << 1 - (97)

-52-

The decrease in temporal growth rate is proportional to sz, aﬁd is
most pronéunced for large modulation wavelengths Lm.

Let us note that in.addition to the root discussed in the
previoﬁs paragraph, there are an infinite number of other rooté. To
see this, first consider the form of yni in Eq. (96) when 8 =1,
V1

-

= v, =0, which is » e

. (Lme/Z)[tin -1 iumm/Lo] . E ( . '.
n° - (L /L) + 1)

Next, consider the form of the full dispersion relation (89) which

is, after inserting u, and v_ from Egs. (88),

YOy v Tyt vy T
o YaYaYe V) Ymue b

1 1 : 1 1

+

(99)
S . _

Since each Yn' has Km in the numerator, the only way to satisfy
the dispersion relation (99) when Km + 0 1is to make one of the
denominators in (99) vanish also. This occurs for

Lk *0
mm

(22,2 b
w o= £ (n°L /L " - 1) (;oo)

n = 0,1,2,"'
This infinite set of roots is reminiscent of the theory of wave
propagation in periodic media, whefe we find an infinite number of

121.‘ For finite Km,Awe

roots Q(k = 0), one root per Brillouin zone
éxpect one branch of the graph w vs K associated with each root

(1OQ). In>the special case B = 1, v, =V, =0, it is easy to show
from Eqs. (98) and (99) that if w is a root of (99) for given Ko

. *
then so is -w and so is -w .
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In Fig. 21, we show the roots w vs «, for L /L =0.25,

B=1, V. =v, =0. From Eq. (100) we have at kK, >0 the roots

1

-T2
i'i: tﬁ, ivg;’"°-

corresponding to n =0, n = 1 in Eq. (100). For increasing Kp?

W Figure 21 shows the behavior of the roots

the unstable root {(at K + 0) decreases, reaching zero eventuslly.

Before it reaches zero, however, the imaginary part of the stable root

~(at Kp ™ 0) overtakes it and becomes the most unstable root. It

appears that this behavior wili'continue indefinifely, roots of higher'

n obtaining substantial imaginary parts with increasing K further-
more, the‘roots of lower n show a bouncing behavior as a function of
Km; thus, the most unstable tempofal growth rate will never become
exactly zero with 1ncreésing Km, as did the spatial growth rate
considered in the previous section, but will ésymptote io zero with
increasing Km. '

For arbitrary B, vy Gé, L, the fasteettéhﬁoralLyérowing'
mode for Ky > 0. is given by Eq. (96) for n = 0; requiring the
denominator to vanish yields

3
2
+v,) : v, - Vv
2 1 2
o (e

This is of course the same temporal.growth rate that Eq.'(76) would

(vy

w = -1 (101)

yield for the temporal response of a homogeneous medium (;(x) -+ q>

to a spatially uniform excitation. In addition, the value of w

79

given by (101) is equal to the temporal growth rate'’ of the peak of

'therpulse response to the initial conditions al(x,t = 0) = §(x),

az(x,t = 0) = 0, i.e., the Green's function problem. This value was

obtained by Fried, Sehmidt, and Gould79 by application of Bers-Briggs

analysis78'to Eqs. (76). We ask the question: For finite km’ does

~

~54,-
the fastest growing root of the dispersion relafion (99) Still
correspond ‘to the temporal growth ratevof the Green's function
pulse, as measured by an observer moving with the pulse? The answer
is yes. In Fig. 21, the polnts are the pilse growth ratés as
obtained by direct numericel integration of Egs. (76) for finite Km.i
We see that they agree with the fastest growing root of the dispersion
relation (101), witﬁin the accuracy of the numerical integration.
Note,tha£ this agreement can not be predictediby‘Bers-Briégs
analysis78, since we are dealing with an inherently inhomogeneous .
system.

What have we learned from this model of a homogeneous plasma
with a superimposed density modulation? We have learned that the
modulation tends to reduce growth rates, bothvspétial and temporal.
The reduciion is greatest for large modulation wavelengths; as we
‘have seen earlier, inhomogenelties of size ;Lo have the greatest
effeét on the coupled mode equations. We may expect that these
results apply also to the case of turbulent inhomogeneities. Further-
more, the regular nature of the sinusoidal modulation leads to
features in the behavior of growth rate as a function of modulaﬁion
“amplitude, such as the bpuncing phenomena iniFigs. 13 and 14, which we
would not necessarily.expect to find in the case of turbulent
inhomogeneities. ’

In the next section, we consider the simpleimodél of a

sinusoidal modulation superimposed on a linear densify ramp. Once

again, important similarities to the tufbulent case are found.
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B. Linear Density Gradient With Sinusoidal Density Modulation

We consider next a sinusoidal density modulationin:the presence
of a linear density gradient. We restrict ourselves to antiparallel

group velocities, and take the wave number mismatch to be
= t %
k(X) K'X + (Loxm) sin(XLo/Lm) .. (102)

For small Kp» We expect to recover the usual exp(m/k') sajuration
discussed in Section I-E. Fér larger Kps We might expect to deét&bi-
1ize the convective saturation, just as turbulence did in Section II;

We numerically integrate the basic equations (76), with the
form (102) for «(X) and with Green's function initial conditions.

We indeed find exp(m/k') saturation for small Ky» and we indeed
find absolute instability for Xy greater then an Lm-dependent
threshold. In Fig. 22 we show the absolute growth rate, obtained with
B=«xk'=1, Ih/Lo = 0.8. _Above threshold, the growth rate rises :
rapidly to nearly the homogeneous medium growth rate.

In the exampie shown in Fig. 22, the threshold value of Km
occurs at LoKm = 0,1, As in the turbulent case of Section II, this
value of LoKm is far below that required for the vanishing of the
derivative of the wave number mismatch «k{X); i.e.,
ak(X)/dX = ' + (Loznm/Lm) cos(XLo/Lh) = 0 implies (with «' =1
and Lm/Lo = 0.8) that LKp = 0.8, a much higher value of L k.
than the observed threshold L kg = 0.1. ,

We next consider a shorter wavelength modulation, Lm/Lo = 0.18,
in Fig. 23. Here we see a much less violent instabllity, the maximum
growth rate being only Im(w)/yo » 0.2. Furthermore, the threshold

value of Kn is LoKm = 1,0, much higher than would be predicted by

setting dw(x)/dx = 0, ylelding here LKy = 0.18.
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Our conclusion from the last two paragraphs is thét the modula-~
tion wavelength is the relevant parameter in determining tﬁe tendency
of the system toward absolute instabillity, rather than considerations
of the vanishing of the derivative of the wave number mismateh K(X).
Tﬁis conclusion is emphasized in Fig. 24, where we hold the modulation
amplitude fixed at a value LoKm = 2(3 = k' = 1) and vary the modula-
tion wavelength. We find that the absolute growth rate is substantial
for Lh.~ Lo’ falling off rapidly fof Lm << Lo and for ,Lm >> Lo'

In Fig. 25, we display the results of Figs. 22, 23, 24 as

a three dimensional plot of absolute growth rate vy vs Km and Lm.

“The dashed curve is schematic, showing the Inferred threshold for

absolute instability in the Km-Lm plane. For large Kip? the
threshold value of Lm approaches zero. For both large and small Lm,
the threshold value of Kn is large, demonstrating once again that
the most effective inhomogeneities are those with scale léngtb ~Lo.

We again interpret these results in terms of the concept of
mathemat;cal reflections discussed in Appendix A. When the inhomo-
geneities are of a size near the all important length Lo, constructive
interferences between solutions of our second order system Eqs. (76) -
lead to instability. When the inhomogeneities are of a size much
smaller or greater than Lo’ the system feels only the monotonic
pgrf of k(X), given by k'X, and exhibits the usual exp{n/k')
saturation. This saturation we interpret as a destructive inter- -
ference between solutions of our second order set Egs. (76).

The detailed space-time response of the system, to the initial

conditions al(X,T = Q) = §(X), a2(X,T = 0) = 0, is of interest in

‘its own right. For the parameters of Fig. 24 (LéKm =2, B=xk'=1)

we choose a value for the modulation wavelength, Lm/LO = 0,16,
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which is just barely above the threshold for absclute instability.

" Figure 26 shows the space-time behaviour of az(X,T) at four different

times, T = 7,13,16,20. At T = 7, the usual exp(m/k') saturation
has set in. At the substantially later time T = 13, the exp(w/K'jv
behavior . persists, but with many more fluctuations.‘ The hint of

things to come>is shown by the énhanced fluctuation at X = 0, in the

middle of the figure. At T = 16, this enhanced fluctuation has grown

- rapidly to tower over the rest of the pulse shape. After a period of-

rapid growth, thé enhanced fluctuationat X = 0 itself saturates.
This saturated state, shown at T = 20, has its own enhanced fluctua-
tions at the very center which foretell the outburst of yet a third
peéiod of rapid growth, and so on ad infinitum. .

To conclude, we have seen that the behavior of the system of

Eqs. (76) with the wave number mismateh «k(X) = k'X + (LoKm)-Sin(XIb/qh) .

is qualitatively similar to the turbulent case of Section.II. Ab801u$e
instability reeplts for wavelengths Lm ~ Lo, and for modulation
amplitudes one order of magnitude smaller than that required to make
dk(X)/dX > 0. The instability growth rate is very sensitive to:

modulatidn‘wavelength Lh’ falgihg off rapidly for Lm $s Lo.

-58-
ACKNOWLEDGMENTS

Words are insufficient to express my gratitude to my adviscr,
Allan Nathan Kaufman. From my first day in Berkeley, his uncompromising
excellence in teaching and in research has been a constant inspiration.
To paraphrase the law professor in the movie "Paper Chase", he has
taken "the mush between my ears" and turned 1t into the mind of a
séientist.

To my lover Jane is due the credit for keeping me human, while
becoming a scientist. I am grateful fér her continuous encouragement
and patience.

Many thanks are due to my fellow graduate students Bruce Cohen,
Mike Mostrom, and Gary Smith,'for stimulating discussions and helpful
advice through these years. "

I em grateful to C. K. Birdsall for teaching me the art of
computer simuiation, and for advice and guidance in my early years of
research. |

I have greatly benefited from contact with our two postdocs,
Claire Mex and Shayne Johnston. Their professional competence waé
always a good example fpr my own work. |

Thisvthesis could not have been written without the gqodwill
and assistance of Georgella Perry and Christina Graham. Georgélla's
mastery of the laboratorybﬁreaucrécyis a great simplifier of life,
as her afternoon cookies are a great sustainer of life. To Chris go
the thanks for starting each morning with a few words of friendly
conversation, as well as a'cup of her good coffee, about 5000 cups of

which have gone into this thesis.



-590.

For tenderly guiding me through the requirements of the
" Physics Department, thanks are due to Teri Doizaki, the best friend
a graduate student could have,

This work was supported by the U. S. Energy Research and

Development Administration.

=60~

APPENDICES

A. The Concept of Reflections

Bobroff and Haus have treated the case of homogeneous medium,
finite pump length (Sec} I—BFZ) in several different ways. One of

them uses the eoncepti.of "reflections". Consider Egs.. (25), with

1]

D = D2 = 0, V2/V1 -1? which are

(aT +:ax)‘§1(X’T) = 82(X,T)
: ~ (A)
(aT - ax) az(x}T) = al(x’T) .
Using the method of characteristics we define new va:iables_ ~
y = T - X
(A.2)
z = T+X .
Equations (A.1) become
aa(yz) La(y,2)
z 1'Y’ 2 T2\
: (A.3)
1
3y ay(y,z) =3 a,(y,2) .
Eliminating &, from Egs. (A.3) we have
2 _ 1
. 8, (y,2) = 7 a,(y,z) . v (A.4).

From the symmetry of Eq. (A.4) we see that if f(y,z) 1s a solution,
then f(z,y) is also a solution., Referring to Fig. 2, we perturb the
system at some point Xy 0 < Xy < L. Assume that the solution

f(y,z) has been excited by our perturbation; then the solution

f(y,z) will propagate (in X and T) as in an infinite medium until
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one edge reaches one of the boundaries X =0 or X = L/LO. :Agsume
it reaches X =0 first. With Vl > 0, we have the béundary condition
ial(x ='O,T) =0. Nowat X=0, y=12z=T, so that £(y,z) = f{z,y)
at X =0 for all T. Thus, after thevpulse reaches the bﬁundary;
the solution al(X,T) = f(y,z) - f(z,y) satisfies the boundary condi-
tions; this solution looks like the'original’solution f(y,z) plus

a reflected solution. ' This argument can be continued in time so that-

~each time one solution reaches a boundary, & new solution is brought

in; the response is thus seen as a sum of repeated reflections.

B. Sudan's Criterion for Absolute Instsbility

in Inhomggeneous Media

In an early paper87, Sudan proposed, without broof, a generali-
zation to inhomogeneous media of the Bers-Briggs-criterion78 for
absolute instability. In a homogeneous medium, a necessary (not

sufficient) condition for absolute instability.is that there be a.

- saddle point of the phase i(@t - k(w)%) in the complex w-plane,

where kK(w) is obtained from the dispersion relation D{k,w) = O.

%[wt '-_k(m)x] ‘= 0 % %u-)—)_x =t . (A.;5)_

For asymptotic time at a fixed position X,

?}é%’l—bw. ’ ' ' " (A.6)

the solution of which determines the unstable frequency Wg «

In an inhomogeneous medium, the phase has the form
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x
k(w; x') dx' (A7)
0

exp ijwt -

where k({w;x) is obtained from the dispersion relation
D(k,w; x) = 0 . (4A.8)

Then the saddle point condition at a point X, becomes

X
[¢]

ok(w; x')

— dx!' = t -+ oo, (4.9)

0

We determine D(k,w; X) from the dimensionless Egs.(43), taking

V2/V1 s -1; then
[ag - 9y + 1(0))[37 + 3] (X, T) - ay(X,T) = 0 . (n10)
Fourier trénsfo;udng locaiiy (not affecting «(X)) we find
[w +k + K(X)][w - k] +1 = 0 . (A.11)

Solving Eq. (A.11) for X(w; X) and aw k(w; X) we find

B @ -3
3, Kw; X) = #(2u + «) (K(ZX)) 1w+ w(x) (4.12)

X
o .
In order to have J' Bw k(w; x') dx' + = , as required by Eq. (4.9),
0 : :

‘we must have 3 k(w; X)l =+ «©, since the lower limit cf integration
X=X :

is arbitrary. We therefore require the denominator in Zq. (A.12)
to vanish at X = XO; taking X = Xo to be the point where «x(X)

yanishes Owe_can always add a constant to k(X) to make this be true))
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we find the unstable frequency @ = i.' In the neighborhood of

X = X, Eq. (A.12) has the form

3 Kuw; X) « 1 (A.13)
w . 2(x) 2
“g + 1¢(X)
Assuming a power law form for k(X)
«x) ~ @-x N ()
we have near X ='X°
2, Kuws X) ~ (x-x) V2 . (A.15)

-N/2

. Xo '
Condition (A.9) then becomes [ (xt - Xo) dX' > =, which will

be true only for N > 2. This ggrees precisely with the results of .,

Rosenbluth57, who found no absolute instability for k(X) ~ X; and

an absolute instability with growth rate y/y, = 1 for (X) ~ X°.
Howeoer, this method does not agree with our results for the

turbulent case, Sec. II, or for the case .K(X) = k'X + LoKm sin(XLo/Lm),

Sec. III. For these cases, .absolute instability is found when

dK(Xi/dX vanishes nowhere in‘the system, and condition (A.9) is_never

satisfied. Thus, Sudan's method works for monotonic inhomogeneities,

but not for turbulent like inhomogeneities.

C. Analytic Solution for the Case of Finite Pump,

Inhomogeneous Plasma

At some point it may prove useful to have an exact analytic
solution for the case.of finite pump extent, inhomogeneous plasma.

Referring to Fig. 8, we wish to solve Egs. (43), which are

64~
(8t + vl + vlax) al(X:t) Y, az(x,t) exp(iE}xz/Z)
(A.16)

(8t tv, + V23x) az(x,t) Yo al(x,t) exp(-iE'xZ/Z)

for Vl >0, V2 < 0; with the boundary conditions al(x

0,t) =

a2(x = L,t) = 0; and with the initial conditions al(x,t =0)=0,
a)(x,t = 0)=8x-x), 0<x <L Wefollow Rosenbluth, White,

60 : . A ’ ' : : '
and Liu~", who solved the infinite pump extent case. After a gimilar

calculation, we find

_ 1 t
al(x,t)‘ = == fep al(x,p) dp (A.17)
L

where the integral is taken around the Laplace contour, and must

satisfy causality: al(x,t <0)=0. al(x,p). is given by
e W]

-1k'x%/4 1 V2 J2

8,(x,p) = a(x,p)e e

(A.18)
a(x,p) = = ™2 In/4
Y
N a,(x,p) a (x,p) 8(x - x) + a,(x_,p) a_(x,p) 8(xy ~ x)
¥ (p) - F(p)
where A=y 2/E'IV v, |
o 127
1 x20
‘e(x) = .
0 x <0
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F_ are defined by

The functions a,, a_, F,

a+(x,p) = F,(p) D_ix(x'ein/4) + DiA-i('x'e—i“/4)

im =im
a_(x,p) = F_(p)D_j,(x'e 4y D;y_p(=x'e 174,
(4.19)
-~ /4y ave Vo 1T/ (a4
F(p) = L1R'LD_;y(xpe™ 77 + AV, VR 770D 4 (xfe’ /)
[ip tvpr(p+ \)2)V1/V2} Dy, _q(-x'e in/4
- e 1T/4 -1im/4
-V VKR e TN - 1) Dy (-xfe™ )
' -i
F(p) = =Dy, y(-xge™™4)
where .
- . P+tv P+ vV
TN (o (= P )
K' 1 2
x} = (xf)x=0 ;
xi' z (x')x=L
and where D\)(Z) is the parabolic cylinder functionlzz. For
Refv] <0 7 » ‘
- . _
2" /4 2 Lo
Dv(z) = £ at e”" /2-2% ;V-1
T(-v) 0
(A.20)

| zZ| >> lvl _ e-22/4 7V

2] > 1
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It is cleér that this solution must be evaluated numerically. We
have found it easier in practice to integrate Egs. (43) directly to

obtain the Green's function shown in Fig. 10.

D. 'Numerical Integration Usiqgﬁthe Method of Characteristics

‘We discuss the details of the numerical integration of our
coupled mode equations.
-Consider the most general coupled mode Eqs. (40), written in

the form

(2)t + vlax) al(x,t) fl(x,t)

(4.21)

(at + V2ax) az(x,t) f,2(x;t) '

wﬁere fl(x,t) f2(x,t) are functions éf (x,t) and functionals of
al(x,t),az(x,tl Yo(x),-and K(x). Equations (A.26) are an example of
a h&perbolic system of equations, so long as at least one of Vl,

V2 is different from zero. ﬁumerical gsolution of Egs. (A.21) is
facilitated by use of the method of characteristicslzz. Defining

the variables

X—Vit

]
n

(A.22)
gEx-Vzt ‘

Equations (A.21) become

\ fl(n,é)

a -

£l -
£,(n,6)

;2'51

(A.23)

Q2
w
N
1]
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Fach equation now has only one derivative. In the  x-t plane, the

situation is shown in Fig. 27. Starting at the point (x =0, t = 0)

i

we draw a line of constant n = x - V,t (0 =0 for this line)

1

X - V2t (£ =0 for this 1ine). The

slope of the first is At/Ax = ﬁLg the slope of the second is
) 1

it

and a line of constant &

At/Ax = 1/V2 {assume Vé <0). ‘Mhrking off the time axis at interval§
At, we define a grid point on each line of constant n or £, at
infervals At above the x akis, From each grid point comes a new
line of constant n or E; called characteristic lines.

Next we put Eqs. (A.28) in finite difference form

LA

(A.24)
A, f2(n,€)

Suppose we know all values al(n,g), az(n,g) on the horizontal line
at t = 3At, for example, and we wish to know the values of 81, 8,
along the horizontal line at 1t = 4At. At points a,8 in Fig. 27,
we know al(a), az(a),'ai(B), aé(B) and we desire al(y), az(y),
where al(a) = al(n‘ at point o, £ at point a), etc. We use a
predictor-corrector methodlzB, accurate to first order in At.
Working from Eq. (A4.29), we predict a value 'al(Y)p for al(Y) as

follows:

ai(Y)p a,(a) + 4 £(a)/(V, - Yz)
(A.25)

ay(¥)y = ay(8) + on LBV, - V)
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Note that we are integrating along characteristics, and that only

information at «,B 1is necessary to predict a value at Y.

We now correct our predicted values, defining corrected

values for al(y)c, az(y)c as follows:

= + 1 Ag +
al(Y)c = '31(0!-) émé‘l(a) fl<Y)I)

| (.26) |

. 1__ My '
a(v), = a2<e>+5WQ~2<s>+rzcy>p) :
We define ¢ = [al(y)c - al(y)p]/al(y)p; if € 1is small enough we are

done, setting al(Y) = al(Y)c, 82(7) - az(Y)c’ If € is not yet
small epough, we set al(y)p = al(Y)c" a2(Y)p = aZ(Y)c; insert the
" new predicted values into (A.26); obtain a new al(Y)c, az(Y)c; test
€ again; and so on until € 1is small enough. .
In practice this technique works well and economically. For
the dimensionless Eqs.(30), with B8 = 1, theory predicts y = 1;

numerically the relative error in y 1is approximately equal to At.

E. An Example Where WKBJ Theory Is No Better

Than It Should Be

WKBJ theory86 has a reputation for having, in many instances,

a much wider range of validity than its derivation would indicate.
Here we demonstrate a situation where the WKBJ solution has only the
minimum range of validity.

In Séction III-A~1, we considered the steady state, spatial

growth rate when
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“(X) = LK sin(XL /L) o (A.27)

for which Eqs. (III-1) are (taking B = 1)

X .
’ = . . 1
98y - a, exp i L Kn 81n(X'L0/Lm) dx

(A.28)
X .
3 '
LOKm 31§(X LO/Lm) ax
0

B3y = 2 e -1

In certain limits it is not necessary to use the complicated analysis
of* Section III-A to find the growth length. We can instead use the

WKBJ solution of Eqs. (A.28). Putting (4.28) in the form

" 2

5 &(X) + a(X) a(X) = 0 | (4.29)
, . . ,
where a(X) = al(X) exp {-%] LKy sin(X'Lo/Lm) axt ] we find
(0]
“for q(X),

q('X) = -1+-L K/L cos(——) +-(Lt<) ( )

(A.30)
WKBJ theory86'assigns two approximate solutions to (4.29), which are

X
£(X) = —Z=—exp|dl | Va(X') ax' (4.31)
4Va(X) o
valid if q(X) is not close to zero. Expanding Vq(X) for small
(LoKm), and integration over a distance large compared to Lm’ we

find a growth length
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Ly/Ly ( )( > ( ) | (4.32)

which is incorrect for arbitrary Lo/Lm; it reduces to the correct

value Eq. (III-19) only in the 1imit Lo/Lm << 1, where we find

(L Kn )
L/L

- (A.33)
T HIy/T, )2)

Why is it necessary to go to the Lo/Lm << 1 1limit to get the correct
growth length? The answer lies in the position of the zeros of q(X),
which for small (LoKm) ocecur at

TR ONED

n=121,5,9,°-- .

(A.34)

Thus, the zeros of q(X) are for from the real X axis only when
Lm/Lo >> 1 (because of the log dependence on LoKm, it is not
sufficient to have L i << 1); the WKBJ solutions (A.31) are thus
valid on the real axis, only for Lm/Lo » 1, wheﬂ the roots of q(X)
are far from the real axis. For Lm/LO < 1, the roots of q(X) are
near the real axis and the WKBJ solution (A.31) is incorrect. This
is an examble where WKBJ theory works only where it shculd, that is,-

in regions of the complex X-plane far from zeros of q(Z).

F. The Solution of an Infinite Set of Algebraic Zquations

We wish to solve the infinte set of coupled Zqs.(27), which

are

0 < T < @ . (A.35)
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Define

B -
n-1 n+l
woz g Voo (Af%)

and divide (A.35) by e ; then
“w o +l+y v =0 : (4.37)
Yn w Yy . .3
* Now divide (A4.50) by c_, to obtain

Yo *Van *Yp (pfu) = 0 L (a38)

Solve (A.37) for w and insert u into Eq. (A.38), obtaining

v

. Y, ot
Yy o+v oty v 1 =0 . (4.39)
n n-1 n n -1 - +
YH n

Solve Eq.(4.39) for v, @and shift the index up by one; then

Yn+1

voos o m—2bi _ (A.40)

L+ Yn+l Vn+1

In continued fraction form, Eq. (A.40)‘is

- .+ - + -
_ Yn+1'Yn+1 Yn+2 Yne2 Yn*}".

L S 17

o <n<w . (A.41)

where each minus sign in the denominator acts on everything to the

right of it.

y

To find u , we divide Eq.(A.35) by e instead of ¢

n+l n-l;

the remaining steps are analagous. The result is

72~
+. . _ + _ . -
0 = e e "n-1 . 'n-1 Yae1 Yoo Yoo Ypo3
n - p - - oo
l + Yn_l un_l 1 1 1
- . w0 < n< oo

Equations (A.41) and (A.42) are the desired Eqs. (87).

(A.42)

fad
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Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

. Fig. 6.

Fig. 7.
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FIGURE CAPTIONS
The space-time response of Eqs. (25) in an infinite, homo-
geneous medium, with the initial conditons al(X,T =0) = §(X),
az(X,T =0) = 0. (D1 =D, =0, V2/V1 = -1). From Bobroff
81

and Haus .

The configuration‘fbr the finite pump extent, homogeneous

medium case. ~ Boundary conditions: If Vj > 0,

a(X=0,1) = 0; if V, <0, aj(x = L/L,T) = 0; 1=1,2
Graphical solution of Eq. (34) for the temporal growth rate

in the finlte pump extent, homogeneous medium case.

(L/Lo = 9w/2).-/FTom Bobroff and Haus81. _

The space-time response of the finite pump, homogeneous medium

case, to the initial conditions al(X,T = 0) = §(X),

1 2

From Bobroff and Hausg;. '

a2(X,T-= 0) = 0. (L/LQ =2, V2/V1 =+-1, D, =D, =0).

Analytice pulse response of the infinite pump extent, inhomo-
geneous plasma case, Eqs.'(46).with k(X) = k'X, for the .
initial conditions al(X,T =0) =0, az(X,T = 0) = §(X).
(k' =1.25, V2/V1 = 40.2). From Rosenb;uth, White, and
.Liuéo.

Pulse response of the infinite, inhomogeneous.system, Egs.
(46) with K(X) = K'X, by direct numerical integration, with
the initial conditions a1(X,T = 0) =0, a2(X,T = 0) = &(X).
(k' =1.25, V2/Vl'= ~0.2; compare Fig. 5).

Wavenumber mismatch «(X) = 10 tanh(X/10); and space-time
response of Egs. (46) with initial conditons

al(X,T = 0) = 8(X), aZ(X,T =0)=0. (VZ/VI ='-1).

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

-82-

Wavenumber mismatch k(X) = k'X and spatial pump variation
YO(X) for the case of finite pump extent, inhomogeneous
plasma. The equations are solved with the initial conditions
al(X,T = 0) = &X), az(X,T = 0) = 0, and the boundary
conditions a.(X=0,T)=0, a(X=L/L,T)= 0.

. 1 .2 ©
Real and imaginary parts of the complex eigenfrequency for
the case of finite pump extent, inhomogeneous plasma

k{X) = «'X. The solid lines are from Forslund, Kindel, and

63

Lindman™; the points are measured from our numerical

v, = v, =0,

integration of Egs. (42). (V 1 5

1= 2% V=1,

y = 24, L =5). See Fig. 8 for configuration.

o
al(X,T) ve X for 0.25 _ T _ 4.25, obtained by numerical

integration of Eqs. (42). The parameters are those of Fig. 9,

with k' = 1. (V1 = 24, V2 = -1, v, SV

See Fig. 8 for configuration.

2 = Ol YO = 24)

L=5).

Y + iQ vs length I of finite pump.

From Forslund, Kindel, and Lindmanég.

Complex growth rate
(k' = 0.4, v, =2,
Vy= -1, v =V, =0, ?yd = V24). See Fig. 8 for

configuration.

" Amplification A = |al(X ='L/LO,T)|/aO, vhere a . a

8, = al(X = 0,T) is the constant input, vs inhomogeneity

k', From numerical integration of Eqs. (46)'with
- ! E - =
k(X) = k'X. (V2/v1 1, L/Lo 1).

The function L02 dr(x)/dx vs x/LO at the *hreshcld value

-1
0

a7tz E'LOZ =1, L/Lo = 400; a particular rezlization of the

b/L = 0.1 in Fig. 15. (LT/Lo = 1.27 vz/v? = -1,

set {aj} is used.)



Fig.

Fig,

Fig.

. Fig,

Fig.

Fig.

Fig.

Fig.

14.

16.

19.

20.

Fig. 22.
The absolute growth rate Y/Y0 vs the EMS mismatch function
A/Lo-l (parameters as in Fig. 13). Fig. 23.
The absolute, growth rate Y/Y0 vs the correlation length
L,/L, (parameters as in Fig. 13). Fig. 24.
. A schemafic diagram of Ramaq backscattering in laser fusion
geometry. Fig. 25.
Absolute growth rate Y/Y0 vs turbulent depsity fluctuation.
level An for the laser fusion situation of Section II-B.
(V,/¥, = -0.03, .E'Loz = 0.67, Ly/L, = 1.3; a particular
 realization of the set {ai} was used.)
Spatial growth rate vs modulation amplitude. (V,/v, = 1) Fig. 26.
. For eac h root k shown, k + in is also a root,
o < n< «» . The roots shown are purely real,
k(X) = LoKm sin(XLo/Lm).
Spatial groﬁth rate vs modulation amplitude. (V2/V1 =1). Fig. 27.
For each root k shown, k + in 1is also a root; ' g '

21.

_...oo<n<oo.

-83-
The temporal evolution of [az(x,t)lvs x/LO for the initial
conditions al(x,t = 0) = 6(x), a2(x,t = 0) =0,

(A/LQ-'l = 0.5, otherwise as in Fig. 13.)

The roots shows are purely real.

k(X) = L Kn sin(XLo/Lm).

Temporal growth rate vs modulation amplitude. (V2/Vl = 1).
The roots which have solid linés in the Im{w) graph have
zero real frequency. Thereiare four roots corresponding‘to
the four possible combinations of dashed lines in the

Re(w) and in the Im(w) graph. The dots are growth rates -

of a pulse response to the initial conditlons

-84~

a,(X,T = 0) = 8(x), a,(X,T = 0) = 0.

k(X) = LOKm sin(XLo/Lm).

Temporal growth rate vs modulation amplitude.
T - t = = ' a )
(V2/V1 = -1, K 1). «(X) =«k'X + Loxm oin(XLo/Lm).
Temporal growth rate vs modulation amplitude.
= - = = ! B
(Vo/Vy = -1, &' =1). k(X)=«'X+Lx sin(XLo/Lm).
Temporal growth rate vs modulation wavelength. .
. = 231! '. = = ' i =21
(V2/Vl 1L, « ;)., K(X) = «'X + LoKp ,1n(XL°/Lm).
Absolute growth rate y/yo vs modulation wavelength Lm/Lo

and modulation hmplitude LoKm, combiring the results of

Figs. 22, 23, and 24. The dashed curve is a2 schematic curve .

representing ihe threshold curve in the Lm-xm plane. -

(VZ/V1 =21, k' =1). «k(X)=«k'X+ L <y sin(XLo/Hm).

Space-time response to the initial conditions

_ al(X,T = 0) = §(X), a2(X,T = 0) = 0.

k(X) = k'X + LoKm sin(XLo/Lm). (LOKE =2, Lm/Lo = 0.16,

v2/v1 = -1, «' =1),

The method of characteristics, discussed in Appendix D.



T *311

boge-26.18X

X 9dupysig

lsoeczronog



69€€-26218X

X

/7

~-86-




o A £ 314
99€¢€-.62718X ,

=87~

crorcozronoo



a,(X,T) - a(X,T)
2{ T : ] T 1
 T=0 T=1 — '

111

[
g
T

IV

| S T O

O | 20 |
Distance X

Fig. 4

XBL757-3363

- =88-



¢ 314

ann.-\.,mb._,mx |
) | X 9ouDysiq |
OGS Oy O0¢ 02 Ol Ol-
l. | i
B
op=L  Se=l
| 1 | 1
= -
| a2
ONN.._. {
_ | _ |

‘X)'D. :

(L



G9¢€€-26218X

0g

Ob

o

Ol-

«90-

X4

ov

| (LX) %0 |

| (L*X)'o |



COU04205034

<(X)=10 tanh (X/10)

101

-Fé-

IS

" XBL757-3367



~-92

: ‘ 8 "314
0lee-2G62718X

_ o) |
5 < 4\..__ o o)

(X)>



N mv .m,.n.m

12€€-262718X
> Kysusbowoyul
[4 | , | s o
|
[L(s174)]d% o 3SNOdSIY
| [ | N

Aouanbau 4

Sf0eO0ZEPO0OO



0.22

1.23
(a) 23119)
T=0.25 : ;r=2.75
0 0
0.67 1.27
(b)
T T T=100
0 : o)
1.26 1.45
(¢)
= ' T=1.75
x OF 0
~ 1.42F 1.70
Tl |
) A
: T=2.00 T=3.50
0O . (o)
1.50 3.39
(e) (k)
T1=2.25 T=3.75
0 0
1.46 9.39
(f) )
0 T=2.50 ‘ T=4.25
o 5 9 5
Distance X :

Fig. 10

XBL757-3351

-vé-



Frequency

-95.

|

-

I T

RESPONSE « exp[(y +iQ)T]

—
] 1 |
2 4 6 - 8 o) 12 14
| Spatial pump extent L

Fig. 11

XBL757-3372



-96-

2T 314
89€€-26.18X |
, Kpisusabowoyug
O°¢ o'l

L
Q

- e
<
Ql

x)'o|

%y | (17



-97-

- (x)ypP 2

20

|
16
XBL748-3843

|
4

: "Fig. .13

Distance

| .
4V ,AM: @® ©
Xp

°9 c_o,-_cEm_E_

|DJO} 4O SAI}DA1IDP
|o14ods

L e 0esnzZEonQ0 Nu -



-98-

7T T T T 1

%t=20

77T

T llllll§—

S SRS O O SR S (T W O A N N O
o o o
apnjduy

| (4x)%0|

15

10

..ES .
Distance

-10

X4/ L;()

=13

XBL748-3841

Fig. 14



pb8e-8+219 X : 6T *814

09/V HOLVINSIN SINY
0l - o0l -0l

| N/

00

~99..

|
<.
O

9404 Yimoub aynjosqy

1
o
o

|
«©
@

22191 /47

o
N
@)

1 ]

g e nepnZr0cO0DN

% 7 %



9T ‘314

2b8e -8HL18X

Oq/49 f.u:o_ Uo1D|8410)

-100-

/

c

e

0

o

-1 €0

9°0

8injosqy

9)Di _qmojb

%%



n(x)

=101~

| ouR |
~EQUATIONS
o~ RAMAN >
Wy T W, + W,
ko = |k||+ Ky
- —_—> ko
K ~——

e

Fig. 17

XBL757-3373



-102-~

09€€-462 18X _
Uy :o:oz__u:: Kitsuap swa aayolay
¢-0Ol -0l

-0l

o]

8T 314

o
o

o
N
o

0g¢0

_,(/,( 9404 Yimoub agnjosqy

o



2 030 9

0000

Spatial growth rate Lok
O O

L
O

-10.3-.

Modulation amplitude Lokm™

. Fig. 19 XBL757-3357



Spatial growth rate Lok

o

O

L
o

«104-

Modulation amplitude Lokn "

e XBL757-3358
Fig. 20 | |



o 12 814
6S€€-252 18X

<Wx°q apnyyidwp uoypInpop

Ol 8 9 14 2
L ] ] L |
_ 1 T 1 U

105«

A

ChPOoCcorp0Onn

4

5

AL

0]
-

(m) 8y

)

o)
.-
9404 yjmouab |psodwa |

(M) w]



106-

22 '8

GGEE-2G2 18X

Wy 0q ou_.::__an uoILD|NPON
U | "0
0°2 | o_._ [
— 2’0
— 170
— 8°0
o

(m) wI?.z(‘a-;m' ysmousb |DJOdUJGJ_.I |



0 0

- Temporal growfh_ ?

rate ylIm (w)

;_();ES

-107-

| s I
L
T -=0.18
0.2 ° e
o _
o - B R
o 1.0 2.0 3.0

~ Modulation amplitude L, kp,

.- Fig. 23 XBL757-3356



o

Temporal growth rate y-"Im'(w')

-108~

. Lm
Modulation wavelength —

Fig. 24

L

-0

- XBL757-3354



¢e *81g

26€€-262 18X

-109-’




4.9

L-,z(x,f=|3)

i
Qz(x yf:7)

J _
+13

a,(x,t=20)

oz(x'f=|6)

W

=0T~

+20

716 220

x———>

Fig. 26

.....

XBL757-3361



-111~

.2 s T

AE Y\ An | €5

fant K B
Line of constant & 7_ . Line of constant =

T | has slope I/V, 53 | has slope 1/V,
~ "Afﬁ. ¢
= z ’ 2
a A€ -
N8, |
| | XBL757-3353



LEGAH NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
~ owned rights. ‘
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