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ABSTRACT 

This paper concerns likelihood fits to binned data in which the contents of 
the bins are simple counts of independent events. It addresses the case where 
the distribution to be fitted is the sum of distributions of events due to different 
physical processes, and the prediction of each one of these processes is given by 
a distribution of events generated by a Monte Carlo program, binned like the 
real events. This paper suggests a method to analyze the properties of these 
individual processes. 

1 The likelihood fit. 

An ordinary likelihood fit to binned data is one in which one can calculate 
exactly the probability Pj, as a function of some parameters, that an event falls 
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in bin j. The content of the bin j is nj. The log of the likelihood is 

Loa = L nj lnpj 
j 

(1) 

and, of course, E Pj = 1 for any values of the parameters. One estimates the 
parameters involved in the expression of the Pj by maximizing Loa with respect 
to variations in these parameters [1]. 

The extended likelihood is one where the content of each bin is considered to 
be the outcome of a Poisson process. In some cases, when the total sample size 
is fixed, the distribution is really a multinomial distribution to be fitted with 
a fixed normalization. However, if another variable parameter is added to the 
others in the expression of the expected number of events and if this additional 
parameter allows free normalization, the extended likelihood method will give 
that additional parameter a value that normalizes the fitted distribution to the 
total number of events and the other parameters will acquire the same values as 
in the ordinary likelihood method. For the extended likelihood, the probability 
to get nj events in bin j is 

P . - e-Aj ,njln" 
J - Aj J" 

where Aj is the expectation value of the content of the bin [1]: 

< nj > = Aj . 

Then the log likelihood takes the form 

La = L (nj In Aj - Aj) , 
j 

(2) 

(3) 

(4) 

where the nj! term has been dropped because it generates only a constant in 
the fit of the parameters in La ofEq. (4). In Eq. (4), nj InAj has to be taken to 
be zero if both nj and Aj are zero. In the fit the Aj are fit independently and 
are not constrained to sum up to the total number of entries. However, in many 
cases, the fit will adjust the normalization to be equal to the total number of 
real events. 

The maximum value that La could possibly have (for a fixed number of 
events) is when all Aj = nj. If we subtract this maximum value from the 
log-likelihood we get the form 

LotJeral/ = L(njlnAj -Aj -njlnnj +nj). (5) 

This is a convenient form because if one defines w = -2LotJerall, then this w 
becomes an overall X2 in the limit of large statistics [1]. In Eq. (5),.when nj is 
zero, one must evaluate nj In nj as zero. 
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2 Predictions given by Monte Carlo distribu
tions. 

In the case addressed by this paper, the distribution of the real events is the 
sum of contributions of N different processes, and the predictions for each of 
these processes are given in terms of a distribution of Monte Carlo events [2]. 
Let rnij be the number of Monte Carlo entries generated for process i in bin j. 
There is an expectation value hj for rnij. It is the average of rnij, if the same 
Monte Carlo generation were repeated an infinite Dumber of times: 

< rnij > = lij . (6) 

We assume that there is no analytic form for the lij. 
The expected number of real events in bin j, Aj is a sum of N contributions 

of the processes i: 

Aj = L: ai/ij . (7) 

The parameter ai expresses the relative importance of process i in the distribu
tion of the real events. One wants to obtain these parameters from the fit. 

The rnij are affected by Monte Carlo fluctuations but, within statistical error, 
they are equal to the hj's. We can treat the hj as if they were parameters to 
be determined from their estimate rnij in the same procedure that determines 
the ai's. For this purpose one can maximize 

(8) 

This problem now involves the determination of many parameters. Fortunately, 
these parameters do not need to be determined by the methods used by the 
standard maximizing programs. The problem can be broken down into several 
pieces. L of Eq. (8) can be maximized using a standard program while varying 
only the N values of ai's and, at each step of the procedure, computing the 
best values of Iii for the current set of ai. For this there is a straight-forward 
algorithm equivalent to a one parameter fit, which determines Aj and then the 
lij in one bin after the other. These best hj can then be introduced in the 
evaluation of L. 

In the expression of L of Eq. (8), anyone of the hj is involved only in the 
term relative to the corresponding bin j. It follows that the derivative with 
respect to one hj does not contain any Iii' for any j' :# j: 

8L (nj ) rnij 
Uij = -- = - - 1 ai + - - 1 . 

8hj Aj hj 
(9) 

At the maximum of L, Uij = 0 for all i and j, except of course for those i and j 
with lij stuck against the boundary of the physical region. The physical region 
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is defined as 
(10) 

Thus, at the maximum of L in the physical region, Uij may not be zero if lij is. 

2.1 The general case, all mij :I O. 

If mij "10, lij cannot be zero without making L of Eq. (8) equal to -00. Then, 
for mij "I 0, Uij of Eq. (9) is zero at the maximum of L. Setting Uij = 0 and 
solving for lij, 

lij = ( ) . 
1- a· !!.i.-I • >0; 

(11) 

This is an implicit equation since )..j is bound to the lij's for the same j by 
Eq. (7). The only solutions that make sense are those for which 

nj 1 + ai -<--
)..j ai 

(12) 

for all i's with mij "10. Otherwise lij and mij could not both be positive. 
From Eq. (11) for all the lij for a given j where mij "10, and from Eq. (7), 

we get 

where 
ai 

c·---
'-I+ai' 

(14) 

2.1.1 Solving for )"j. 

Let aM be the largest of the ai's for which mij "I O. Multiplying both sides by 
1 ()..j - CMnj), we get 

J 

(15) 

(16) 

where 

(17) 

(18) 

4 



For ~ - 00, 
(19) 

Therefore, because F(~) is continuous, there is at least one value ~j of ~, be
tween ~ = CMnj and ~ = +00, that satisfies Eq. (16). 

From the expression of F(~) in Eq. (17), it is clear that the first derivative 
of F is always positive and the second derivative is always negative. F increases 
continuously from CMmMj to F(oo) as shown on Fig. 1. On that figure, we also 
show the straight line ~ - CMnj' The solution ~j is at the intersection of the 
line and the curve. There is only one solution. And it satisfies inequality (12). 

A procedure to reach the solution consists of taking any value of ~ > CMnj 

as a potential value for ~j, compute a new value of ~j using Eq. (16), and use 
this ~j again in Eq. (16); and so on in an iterative procedure. In Fig. I, one 
can see that this procedure is equivalent to taking a point on the curve, move 
horizontally till one reaches the straight line, then vertically till we reach the 
curve, and so on. The procedure obviously converges. 

As a convergence criterion, one can use the following recipe. Let l be the 
limit we tolerate for the difference between the true value of ~j and the value 
we are going to obtain. When any step makes a difference < l between two 
subsequent values of ~j, take a step of size l instead of the one computed. Then 
stop when the computed step changes sign. 

After obtaining a value for ~j, one can compute all values of lij for all i's 
using Eq. (11). 

2.2 Special cases: some mij = O. 

Special cases are cases where, for a bin j, there are some processes i for which 
mij = O. Then, for that i, 

Uij = aL = (7J~ -1) ai - 1 . alij A 
(20) 

Now lij may be zero at the maximum of L in the physical region defined by 
Eq. (10). The bE7st value of L corresponds to derivatives Uij equal to zero for 
the Iij =F 0 and negative for the lij = 0, i.e. at the edge of the physical region. 
This way all changes within the physical region result in L being decreased. 

2.2.1 Some mij = 0 but not for the largest ai. 

In this case, we also call aM the largest of the ai's. Then mij = 0 only for 
parameters ai < aM. The solution is to apply Eq. (11) to parameters ai for 
which mij > 0 and take Iij = 0 for the special ai's for which mij = O. That 
procedure insures Uij = 0 for mij #: 0 and condition (12) for aM as for the other 
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ai's. Thus for these special ai where mij = 0, using Eq. 20, 

Uij = (17 -1) ai -1::; (17 -1) aM - 1 < 1 + aM - aM - 1 = 0, (21) 

therefore Uij is negative when lij = O. 
Then L is maximum in the physical region. Note that hj becomes 0 anyway 

for mij = 0 when using Eq.(l1). Therefore Eq. (11) can be used for all the 
j's as in the general case of Sect. 2.1. This special case does not require special 
treatment. 

2.2.2 mij = 0 for the largest of the ai's. 

In this case we call aM' the largest of the ai's and aM the largest of the ai's 
for which mij :I O. That definition of aM is consistent with the one used in 
the previous cases. One can use the standard procedure of Sect. 2.1 to solve 
Eqs. (16) and (17) with the present definition of aM introduced in both of them. 
Three cases may arise. 

(a) The standard procedure with the present definition of aM introduced in 
Eqs. (16) and (17), yields a value of >'j such that condition (12) is satisfied 
for i = M'. Then it is also satisfied for all i, as can be shown writing 
inequalities like (21) but where M -- M'. It follows that, for mij = 0, 
all Uij are negative for that value of >'j and the best values satisfying 
inequality (10) are lij = O. Then >'j has to be taken at the value obtained 
by the iteration procedure described above and, as in the case where all 
mij :I 0, all li;'s are finally given by Eq. (11). 

(b) The standard procedure with the present definition of aM yields a value 
>'j such that aM' violates condition (12). Then UM'j is positive for that 
value of >'j and L can be increased by taking IM'j positive rather than 
zero. A solution with derivatives equal to zero for hj :I 0 and negative 
for lij = 0 can be obtained by defining 

(22) 

writing 
>'j = >.j , (23) 

and computing all lij for i:l M' by Eq. (11). Then 

(24) 
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It is easy to check that ).j = ).j makes UM'j = 0 in Eq. (20). For all other 
i's with mij = 0, lij is zero and Uij given by Eq. (20) is negative, because 
they correspond to ai < aM" Eq. (11) also insures that all derivatives Uij 
are zero for mij #= O. Therefore we have a solution if 1M' > O. To verify 
that 1M' > 0, we use Eqs. (17), (11), and (24), to deduce 

F().J~) = ()" ) ~ Cimij 
j - CMnj ~).j _ Cinj (25) 

).'. - CMnj 
= J ).'. ~ ci(1 + ai)/ij 

J i¢,M' 

(26) 

).'. - CMnj 
= J ).'. ().j - aM' IM'j) . 

J 

(27) 

Since the solution of Eq. (16) violates condition (12), the solution of 
Eq. (16) is < ).j. Therefore, Fig. 1 shows that 

(28) 

Therefore we have indeed 

IM'j of Eq. (24) > 0 . (29) 

(c) The procedure spelled out above cannot be applied because all mij'S are 
zero. The solution is all lij's = 0, except 

n' 
IM'j = J 

1+aM' 
(30) 

Of course, if all mij and nj are zero, then ).j and all lij are zero. 

2.3 Normalization. 

Whatever the procedure to get ).j is, the condition of Uij = 0 except if lij is 
zero, and Eq. (9) imply 

lijuij = (~~ - 1) adij + mij - lij = 0 . (31) 

Therefore using Eq. (8), 

(32) 
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When L is maximum, 88L is zero for all ai except for those ai's at the edge of a, 
the physical boundary, i.e. those ai's equal to zero. Therefore 

aL 
ai!l' = 0 . 

Vai 

Therefore, at the maximum for /;;'s and ai's, 

~/i; = ~mi;' 
; ; 

(33) 

(34) 

the normalization of Ii; is the same as the ones of the Monte Carlo events. If 
Eq. (31) is summed over i, using Eq. (3) 

(nj - A;) + ~(mij - Ii;) = 0 . (35) 

Therefore, using Eq. (34), the sum of the fitted values Aj over all bins equal 
the number of real events, 

(36) 

3 Applications. 

Finding out the number of events due to each process is often not the only goal. 
Sometimes one has to find out also what kind of properties the events produced 
by each individual process have. 

The configuration of an event are quantities such as number of tracks, par
ticle identities, angles and momenta. These quantities we will refer to by the 
symbol x. The bin j in which the event falls depends on the configuration x. 
Event number k has a configuration XI: and falls into bin il:. The properties 
of the processes are characterized by parameters bl's and by the probability 
distribution Pij (b l , x) of configuration x if the event is due to process i and if it 
falls into bin i. If events due to different processes were contained in different 
samples, one could estimate the bl's by varying them and maximizing 

Li = ~lnPi;(bl,xl:) , (37) 
I: 

with the sum extended to the events due to each process i separately. However, 
in general, samples contain events from several processes. In such a case, one 
can first determine the ai's and the /;;'s in a preliminary fit using the method 
of Sect. 2, then estimate the parameters bl'S by varying them and maximizing 

(38) 
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where ik is the bin that contains event k. In this second fit the ai's and the 
lij's are fixed at those values obtained in the preliminary fit. After that second 
fit, one may want still to improve the determination of the bl's and the ai's by 
letting both ai '8 and b!'s vary and maximizing 

Lo = Loo - ~adij = ~ln [~adijPij(bl'Zk)l- ~adij . (39) 
q •• q 

Of course the best accuracy would be obtained if one could then let all ai's, 
Iii's and bl's free and maximize 

L = Lo + ~)mij ln/ij - lij) . 
ij 

(40) 

However, the number of free parameters would usually be too large to be in
troduced in a maximizing routine. If, as in Sect. 2, one tries to write equations 
to maximize L as a function of the lij for each bin separately, one ends up 
with equations with more than one unknown for each bin. This was not the 
case in Sect. 2 because, there, the only unknown was Aj to be determined by 
Eq. (16). The existence of several unknowns may raise convergence problems 
much harder to control. Therefore, we recommend making the fit maximizing 
Lo varying only ai and bl at this point. The result will still be a consistent 
estimate of the parameters ai and bl , though not quite as accurate in principle 
as if one would vary all parameters including the lij together and maximize L 
of Eq. (40). 

3.1 Error matrix. 

If only the ai's are estimated and if the procedure of Sect. 2 is used, the esti
mation is made by maximizing the likelihood function L of Eq. (8) in the space 
of the ai's and of the lij's. Suppose the second derivative matrix in the space 
of only the ai's is evaluated numerically with the lij's adjusted according to 
the rules of Sect. 2, i.e. having the lij's constantly optimized for each set of 
value of ai. Then the Monte Carlo uncertainties are taken into account by that 
readjustment of the lij's for each set of ai. The error matrix is the inverse of 
the second derivative of L of Eq. (8) in the space of the ai's and it includes the 
Monte Carlo error. 

If other parameters bl's are estimated along with the ai's and if the procedure 
of Sect. 3 is used, the final fit involves maximizing Lo of Eq. (40) varying the ai's 
and the bl's but keeping the lij's constant. The inverse of the second derivative 
matrix of that Lo in the space of the ai's and bl's is an estimate of the error 
matrix on the ai's and bl's due to the statistical uncertainties of the real events, 
i.e. if there were no error on the Monte Carlo. Another error matrix due to 
Monte Carlo errors has to be added to it. That other error matrix can be 
estimated in the way that follows. 
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Suppose large numbers Ni
MC of Monte Carlo events have been generated for 

each process i and used in the fitting procedure. They can be divided in, let us 
N MC 

say, 10 samples of 40 events for each process. We number them by the index 
1/ running from 1 to 10. Then 10 fits of the type described as ''final'' fits in 
Sect. 3 can be made with the same real events but with the 10 different Monte 
Carlo samples. The fit with sample # 1/ will give results having values ai,lI and 
f3l,1I for ai and hl respectively. We can compute the matrix elements 

EM,c -,- = 1 1 ~ ~ - a· a'l --- a· a'l 100 ~ _,II - ,II 1000 _,II - ,II 
(41) 

II II II 

E MC 
i,L = 1~0 ~ ai,lIf3l,1I - 1;00 ~ ai,lI ~ f3l,1I 

II II II 

(42) 

E MC 
l,l' 1~0 ~f3l'lIf3ll'lI - 1O~0 L:f3l,1I L:f3ll ;ll • 

(43) 
II II II 

The elements EtJ,c, EtJc, and Et)f are the matrix elements of the Monte 
Carlo error matrix E MC . They should be added to the inverse of the second 
derivative matrix of Lo of Eq. (39) to obtain the total error matrix, i.e. one 
that includes Monte Carlo errors too. 

4 An example of these methods. 

These methods are planned to be used in an analysis of jets produced by the 
creation of quark pairs of various flavors in e+ e- annihilation. The analysis has 
two parts: 

1. measure what fraction of the events produced at any given energy are 
light-, charm-, and bottom-quark events; and 

2. measure how many pions, koons, and protons are produced, as a function 
of momentum, for these three types of events. 

There is no analytic expression for the distribution of events in the space of 
measurable parameters. However, for each one of the three quark types, there 
are Monte Carlo algorithms to generate events having distributions expected 
from events due to that process. Therefore, one can generate specific distribu
tions of Monte Carlo events corresponding to each process, bin them in variables 
expected to show a large difference of behavior between the three processes, and 
apply the methods of this paper. 

Three samples of Monte Carlo events, each one composed entirely of events 
due to only one process, are generated by the program Jetset 6.3 [3] and used 
in both parts of the analysis. Our choice of variables to distinguish the three 
processes involves a neural network. From the kinematical data of a real or 
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a Monte Carlo event, a neural network computes quantities called "outputs" 
which it considers giving the best separation among the different distributions 
for different processes.1 The first part of the analysis consists of fitting the 
binned distribution of neural network outputs for data to a linear combination 
of the binned distributions of outputs for the Monte Carlo samples of light-, 
charm-, and bottom-quark jets, as described in Sect. 2. Following the notation 
of Sect. 2, mij is the number of Monte Carlo jets in bin j of quark type i, and 
nj is the number of jets from data in bin j. To optimize the log-likelihood L of 
Eq. (8) with respect to the three ai, the program MINUIT [4] is used. During 
each call to the user-supplied routine FCN, which computes the function that 
MINUIT minimizes, the lij for the current values of the ai are calculated, bin 
by bin, using the algorithm described in Sects. 2.1 and 2.2. 

The method has been tried with another set of Monte Carlo events replacing 
the experimental data. These other events were generated by the three processes 
at the same time, each in a known amount. In this trial, the fits of the aj easily 
converge to values consistent with the known amounts. The ai have reasonably 
parabolic one-sigma errors, and are highly correlated in this analysis, since the 
three Monte Carlo distributions (especially the light- and charm-quark ones) 
look quite similar. 

For the second part of the analysis, events are binned according to the char
acteristics of one jet (the tagging jet) and the number of tracks of all kinds 
is studied in the other (tagged) jet. The characteristics of the tagged jet are 
assumed to depend only on the quark flavor, not on any other quantity corre
lated with the variables of the tagging jet used to do the binning. Different bins 
are treated as samples of events with different proportions of each quark flavor. 
From the characteristics of particles in the tagged jet, i.e. from their momenta 
and dEJdx values, we determine the average charged hadron multiplicities and 
hadron spectra for the three types of events using the method of Sect. 3. 

Again, the neural network is used to determine the variables of the tagging 
jet used for the binning labeled j in this paper. The charged hadron multiplicity 
of each particle type r in each jet flavor i is assumed to be Poisson distributed; 
the corresponding expectation values bir are the parameters to be fitted. Thus 
Pij(bt , Xl:) in Eq. (37) is 

(44) 

1 The neural network is used as follows: using only tw~jet events, the track information in 
a jet is used to compute a set of inputs to a feed-forwMd neural network that was trained to 
distinguish, as far as possible, light-, charm-, and bottom-quark jets. For each set of inputs, 

. the neural network produces a set of two independent outputs that indicate the likelihood 
that the jet used to compute the inputs originated from a light-, a chMm-, or a bottom-quark. 
We use a neural network only because it is a particularly effective method of achieving ftavor 
separation. One can apply the methods described in this paper regardless of the variables 
used to differentiate the different processes. 
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where r is the particle type (e, 11', K, or p), tl: is the index of tracks in jet k, R 
is dE/dx, and Gr(R) is a Gaussian-distributed probability density that a track 
of type r has dE/dx R. Note that this probability is independent of the bin 
number j, since correlations between tagging jet and track information of the 
opposite jet, except for flavor tagging of course, are neglected. 

For the charged hadron spectrum, the same approach is taken. We assume 
the number of particles of each type in each jet in different momentum bins s 
is Poisson distributed. The expected number of particles of type r in bin s 
produced in jets of flavor i are the parameters bir. to be fitted. Thus, the 
function Pij(bt,zl:) in Eq. (37) is 

exp(- Lbir.)II [Lbir.Gr(RtJ.)6.(tl:)] 
r, 'J. r. 

(45) 

where 6,(t) is 1 if track t falls in momentum bin sand ° otherwise. 

5 Summary. 

To take all cases into account we recommend the following procedure: 

5.1 Preliminary fit. 

Maximize L of Eq. (8) changing the ai's only. For each set of ai's, the value 
of all J;j'S in all bin j's, should be determined, bin by bin, using the following 
procedure: 

1. If mM'j ::I 0, (aM' is the largest of the ai'S), solve for >"j using Eq. (16) 
iteratively, starting with any value of >"j ;::: CMnj. Note that, in this case, 
our definitions imply M = M'. Then compute all J;j using Eq. (11). 

2. If mM'j = 0, start the procedure of solving for >"j as above starting at 
the value >"j = >"i given by Eq. (22) (Note that in this case, >"i > CMnj). 

The first step of iteration and the possibility to compute it will indicate if 
we deal with case (a), (b) or (c) of Sect. 2.2.2. Indeed, as can be seen on 
Fig. 1, the 'first step is in the same direction as the solution >"j of Eq. (16) 
thus, at>.. = >"i it tells us if condition (12) is satisfied for aM" Therefore: 

(a) If the first step of iteration leads to a value < >"i, continue iteration 
and pro'ceed as in item 1 where mM'j was not zero. 

(b) If the first step gives a value < >"i, stop iterating. Make >"j = >"i and 
compute lij for i::l M' using Eq. (11) and IM'j using Eq. (24). 

(c) If all the mij = 0, all J;j should be set to zero except IM'j, which 
should have the value given by Eq. (30). 
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5.2 Fit of the bi's. 

Maximize L of Eq. (40) changing only the bi's and using the values of ai and 
lij obtained in the preliminary fit of Sect. 5.1. 

5.3 Fit of the ai's and of the bt's. 

Maximize L of Eq. (40) changing both the ai's and the bi's. The li;'s have still 
the values determined by the preliminary fit of Sect. 5.1. 

5.4 The error matrix. 

Divide the sample of Monte Carlo events in 10 (for instance) samples of equal 
numbers of events, so that, for each process, the number of events be 10 times 
less than what it is in the original sample. Repeat the fit described just above in 
Sect. 5.3 with each one of these 10 samples. For the fit obtained with sample #v, 
the results are ai = Qi,,, and bl = Pl,,,. Elements of a matrix EMC are obtained 
using Eqs. (41), (42), and (43). That matrix represents the contribution of the 
Monte Carlo error to the uncertainty of the results. The contribution of the 
statistical error on the real events is the inverse of the second derivative matrix 
of Lo of Eq. (39), maximized in the procedure of Sect. 5.3. The two matrices 
should be added to get the total error matrix. 
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