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Abstract 

Induced soft gluon bremsstrahlung associated with multiple collisions is cal

culated via perturbative QCD. We derive the non-abelian analog of the Landau

Pomeranchuk effect that suppresses induced soft radiation with formation times 

exceeding the mean free path, A. The dependence of the suppression effect on 

the S U (N) representation of the jet parton as well as the kinematic variables is 

expressed through a radiation formation factor. Unlike in QED, the finite con

tribution from the small x regime in QCD leads to an approximately constant 

radiative energy loss per unit length, dE / dz <X J.L2, in the high energy limit that 

is sensitive to. the infrared screening scale, J.L, of the medium. As a function of

the dimensionless parameter ( = A/1.2 / E, we show furthermore how the energy 

dependence of dE/dz evolves from the above constant for ( ~ 1 to the more 

familiar (Bethe-Heitler) linear dependence for ( ~ 1. 

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics 
of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract 
Nos. DE-AC03-76SF00098, DE-FG05-90ER40592, and DE-FG02-93ER40764. 
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1 Introduction 

Radiative energy loss of ultra-relativistic particles passing through dense matter is 

of interest not only because of its many practical applications, but also because it 

illustrates a characteristic destructive interference phenomenon caused by the finite 

formation time[l, 2], 

(1) 

of quanta with large four momentum, klL = (w, kz, k.L), emitted at small angles, 

() ~. kJ,.jw, relative to the incident particle. In effect, r(k), is the minimal time 

needed to resolve the transverse wavepacket of the quanta with, ~xJ,. '" hjkJ,., from 

the wavepacket ofits high energy (Eo ~ w) parent. Destructive interference between 

radiation amplitudes associated with multiple collisions can be expected when the 

mean free path, ,x, is short compared to the formation time. When r(k) ~ ,x, the 

emitted quanta cannot resolve different elastic scattering centers, and the assumption 

of independent contributions from each separate scattering in the medium breaks 

down. This effect,' first studied in QED and then in other field theories, is often 

referred to as the Landau-Pomeranchuck-Migdal (LPM) effect[l, 2]. 

Interest in analogous destructive interference phenomena in non-abelian theories 

is connected with attempts to understand the weak nuclear dependence of hard QeD 

processes and· the use of those dependencies as a probe of the space-time develop

ment of hadronization.A high energy quark or gluon passing through dense (QeD) 

matter of course suffers multiple interactions. However, in the Q -t 00 limit, QeD 

factorization theorems[3] apply that show that; as in the QED case, the soft radiation 

is emitted only from the external legs[4]. There are a large number of phenomena 

such as the very weak nuclear dependence of Drell-Yan yields[5, 6] and the apparent 

nuclear independence of very high energy quark fragmentation[7, 8], that confirms 

this basic factorization feature of asymptotic pQCD. As shown in Ref.[5], however, 

the assumptions leading to the factorization theorem break down for sub-asymptotic 

conditions. In the Drell-Yan process, for example, final state interaction corrections 
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become important for sufficiently large nuclei with, A2/3A~CD > M]JY. In deep in

elastic hadroporduction, nuclear dependence always exits in the XF < 0 region and 

disappears in the XF > 0 r~gion only when ",Rlv ---+ 0, where '" ~ 1 GeV/fm[7, 8]. 

In order to understand such nuclear effects more quantitatively, it is necessary to 

study induced radiation patterns associated with multiple collisi<)fls in QCD. Rough 

estimates for' the magnitude of the suppression of non-abelian induced radiation have 

been made ill [9, 11, 12,13, 10]. The estimates for dEjdiva,ry(h6wever, widely 

ranging from energy indep:endent [1O}, logarithmic energy dependent[9} to dEldz ()( E 
I 

[12, 13]. However, a detailed study of the LPM effect in QCD has not been performed 

to our knowledge in the context of multiple collision theory, taking into account 

essential non-abelian features of the problem. The aim of this paper' is to initiate 

such a study. 

While pQCD can serve only as a qualitative guide because the effective coupling, 

Ct's, is small only in extremely dense matter, e.g., a quark-gluon plasma at tempera

tures T ~ Tc ,...., AQCD , it is instructive to explore its consequences in situations where 

approximations to multiple scattering can be used to simplify the problem. Additional 

motivation for this work is to compare radiation patterns due to multiple collision 

physics in pQCD with those suggested by phenomenological string models[8, 14, 15] 

for high energy eA,pA, and AA reactions. We show, for example, that some features 

of the induced soft gluon rapidity distributions inpQCD are similar to the hadron 

distributions predicted by multi-string Lund type models utilizing string breaking and 

flip mechanisms [8]. In particular the effective string tension, K. '" 1 GeV Ifm in those 

models is analogous to constant radiative energy loss due to induced soft radiation in 

the x ~ 1 regime in non-abelian multiple collision theory. Furthermore, additivity of 

radiation from multiple scatterings is limited 'to a domain x < "'AI Eo, that shrinks 

as Eo increases, just as in string flip models for multiple interactions[8]. However, in 

pQCD, unlike in string models, '" = dE I dz ()( J.L2 '" g2T2, is found to be sensitive to 

the infrared screening scale, J.L, in the medium. Recall that other so called "string 

effects" were also found to arise naturally from interfering pQCD amplitudes for three 

jet events in e+ e- [3]. Finally, we note the importance of clarifying radiative energy 
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loss mechanisms and interference phenomena associated with formation zone physics 

for the further development of QeD transport theory and parton cascade models[16]. 
, 

Before turning to the non-abelian problem, we recall briefly how the destructive 

interference for induced radiation occurs in QED. The Fourier transform of the current 

of a classical particle undergoing m collisions at space-time points xf at which the 

four momenta change from Pf-l topf is 

J"(k) = ~Jf(k) = ie ~"i"; (~; - :;'~J (2) 

The resulting soft bremsstrahlung" spectrum is given by 

w d;
3

n
k
"r = L IEJ(k)j2/(2(27l'?) = -1J(k)1 2/(2(27l')3) 

( 

(3) 

The sum contains m diagonal terms, where the phase factors drop out, and m( m - 1) 

off diagonal terms involving phase factors, exp(ik(Xi - Xj)). Two extreme limits are 

obvious. One is the incoherent limit where k(Xi - Xj) ~ 1. In this case, the off 

diagonal phase factors tend to average to zero. This corresponds to the usual Bethe

Heitler limit, in which the radiated energy loss, dE/dz = -E/Lr , grows linearly with 

energy with Lr being the radiation length (the ratio of the mean free path to the 

average fraction of the energy radiated per collision). The other extreme limit, is the 

one corresponding to k(Xi - Xj) ~ 1 for all i,j. In this case; all the phase factors 

are approximately unity, and there is an exact cancellation between adjacent terms 

in eq. (2). Only the radiation from initial and final lines contributes. This is the 

so-called the "Factorization limit" since the amplitude for soft radiation factors into 

an amplitude for multiple collisions times a current element depending only on the 

momenta of the external lines entering and leaving the reaction. Because the radiation 

intensity in the high Q2 = - (p J - pd2 limit increases only as loge Q2), the radiated 

energy loss grows only logarithmically with the number, m, of elastic collisions in the 

medium. Therefore, for a random walk leading to Q2 ex m, the induced radiation 

energy loss per collision, dE/dm ex log(m)/m, becomes negligible for large m. In 

the general case, between these extreme limits, there is a" partial contribution from 

intermediate current elements. 
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The essential parameter controlling this interference effect is the ratio of the for

mation time (1) to the distance between multiple interactions. For an ultra-relativistic 

particle propagating in a straight line 

( 4) 

where Lij = Zi - Zj is the longitudinal distance (time}hetween scatteringafi and 

j ~ ForfiD.itedefi~c.ti()ila.ngles, ali additional phase, - kJ. . rij, app~ars tb:atdepetgt~< 
",":: .:", .. " .. ". '", .:".". . . ,"7.: .",. ":: .. "::.::.:" ":':". ":": ":":!:\ 

on the transverse separation of the scattering events. Interference between· c~m:~nt 

elements J i and J j occurs only if k(Xi - Xj) ~ 1. This requires r(k) ~ Lij and 

kJ. ~ Tij. The interference pattern depends alsoon the current correlation function, 

{Ji(k)Jj(-k)). The LPM effect in QED often refers to the specific destructive inter

ference pattern calculated by Migdal using the Fokker-Planck transport equation to 

solve for the probability distribution, W(x, p, p'), of scattering points and initiaf and 

final momenta. Monte Carlo methods have also been developed [17] to calculate the 

development of very high energy cosmic.ray air showers. The interference effect found 

in the limit that the scattering medium is much thicker than the radiation length is 

that the familiar soft 1/w bremsstrahlung frequency spectrum is transformed into 

a 1j.Jw form for w < E5/ ELPM ' Remarkably, because the characteristic energy, 

ELPM rv 3 TeV I'J .5 ergs, turns out to be so large, this interesting predictio·n has yet 

to be verified quantitatively experimentallY[18]. 

In the following sections, we calculate the induced non-abelian radiation for a 

high energy parton passing through the random color field produced by a color neu

tral ensemble of static partons. This idealized system is chosen to minimize the 

complications of multiple scattering theory while illustrating the essential features of 

of the non-abelian LPM effect. In section 2, we first calculate the elastic multiple col

lision amplitude for a spinless high energy jet parton belonging to an arbitrary SU(N) 

representation. We show how classical multiple collision cascade theory emerges from 

pQCD in both the high and low momentum transfer regions in the limit where the 

mean free path is large compared to the range of the Debye screened potentials. In 

section 3, we calculate the soft gluon radiation amplitudes in the restricted kinematic 
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region range kl. <{:::: fl. This restriction limits the applicability of the results to "thin" 

plasmas, with the number of mean free paths m not large, or to very small x <{:::: 1/ Vm 
gluons. The extension of the results to thick plasmas, that would be necessary to make 

contact with the Migdal (R = 00, Eo -+ 00) limit [1 ], is not considered in this paper. 

The soft eikonal approximations used here are aimed, on the other hand, to the study 

of the breakdown offadorization in the opposite limit (Eo = 00, R -+ 00). For high 
. . 

energy reactions involving finite nuclei, this is in fact the only physically relevant limit 

for applications of pQCD in any case. Destructive interference between the radiation 

amplitudes from jet and exchanged gluon lines is shown to limit the transverse mo

mentum distributions, and the non-abelian generalization of (2) is derived. In section 

4, we introduce and calcula.te the "radiation formation factor" controlling the ma.gni

tude of the suppression of induced radiation in pQCD. We emphasize the role of color 

algebra on the destructive interference pattern. In section 5, the radiative energy loss, 

dEl dz, due to soft i~duced radiation is estimated. Finally, a. discussion of remaining 

open problems is presented in section 6. 

2 Multiple Elastic Scattering in a Color Neutral 
Ensemble 

2.1 The Model Potential 

Consider the sequential elastic scattering of a high energy (jet) parton in ,the random 

color· field pro duced by an ensemble of m static partons located at Xi = (Zi, Xl.;) such 

that Zi+l > Zi and (Zi+1 - Zi) ~ fl- 1
, where fl is the color screening mass in the 

medium .. As a simplified model of multiple scattering in a color neutral quark-gluon 

plasma, we assume a static Debye screened potential for each target parton: 

(5 ) 

where Tt is a di-dimensional generator of SU(N) corresponding to the representation 

of the target parton at Xi. The initial and final color indices, e, e' , refer to the 

target parton are averaged and summed over when computing the ensemble averaged 
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cross sections. With Via ex: Tt the ensemble averaged potential vanishes everywhere, 

(Via) ex: TrTt= O. However, since 

(6) 

the diagonal mean square fluctuations and the cross sectionsCl,re finite. Recall that 

for SU(N) the second orde~ Casimir, C2i = (N2 - 1)/2N' CF for quarks in the 
. . 

fllhdamental (d{;; N) representation, while C2i = N = C Aforgltl6ri:s in the adjoint 
. ... .. . . \. . 

(di :==:'>N2 - 1 = dA ) representation. 

In this potential, each scattering leads on the average to only a relatively small 

momentum transfer qf = (q?, qzi, qu) with each component being much less than the 

incident energy, Eo. The assumption that the potentials are static is approximately 

valid in a high temperature plasma of massless quarks and gluons in the following 
. . 

sense: As T -+ 00, the effective coupling 9 -+ 0 (albeit very slowly). The perturbative 

Debye screening mass {t "" gTlimits ql. ~ gT. The typical thermal energy ET "" 3T of 

the plasma constituents is therefore large compared to {t. Consequently, the average 
I 

energy loss per elastic collision, _qO :::::: _qZ :::::: qi/2ET ex: g2T, is "" 9 times smaller 

than the average transverse momentum transfer. 

Because weare interested in relatively low momentum t'ransfer scattering (AQC'D.~ 

ql. "" gT ~ T), the spin of the partons can be neglected. The jet parton is allowed, 

however, to be in an arbitrary d-dimensionall:epresentation of SU(N) with genera

tors, Ta, satisfying Tara = C21 d • 

The Born (color matrix) amplitude to scatter from an incident four momentum 

Pf-l to pf in the potential centered at Xi is then given by " 

(7) 

where qi = Pi - Pi-b and Ai is shorthand for 

(8) 

The differential cross section averaged over initia.l and summed over fina.l colors of 

both projectile and target partons reduces to the familiar form for low transverse 

6 

., 



" 

momentum transfers: 

(9) 

where the color factor is 

(10) 

For SU(3), 2Ci gives the usual color factors 4/9, 1,9/4 for qq, qg, ggscattering respec

tively. mour n()tation, the angular distribution is given by 

(11) 

2.2 Sequential Multiple Scattering 

Our main assumption for computing the multiple elastic scattering amplitude is that 

the scattering centers are well separated in the sense Li = Zi+1 -Zi :;:}> 11-1. In a quark

gluon plasma at very high temperature T, 1/11 rv 1/ gT and the effective qg scattering 

cross section from eq.(9) isu ":' 27r0'2 / 112 rv g2/87rT2. Given a Stefan-Boltzmann 

density of partons p rv 5T3 , the mean free path is A rv 5/ (g2T) :;:}> d rv 1/ gT for 

9 ~ 1. Hence, Li :;:}> d is satisfied at extreme temperatures at least. 

The dominant Born amplitude for coincident sequential scattering with target 

partons from i to j without radiation is then simply 

Mji(pj,Pi-l) = j (~;)i4'" ~:;;)41 Mj(Pj,Pj-l)iD..(pj-d·· ·iD..(Pi)Mi(Pi,Pi-d , (12) 

where D..(p) = (p2 - m2 + iE)-l is the intermediate jet parton propagator. Amplitudes 

inv?lving backscatteringare suppressed at high energies because of the limited mo

mentum transfer that each potential can impart. Because of the energy delta function 

in eq.(7), the integrations over the intermediate p? set all of them to Eo and lead to 

a conservation factor 

(13) 

Therefore, 
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where Po = (EJ - m 2)1/2 ~ Eo, and the product is path ordered from left to right 

with decreasing index k. Rearranging the phases in terms of the separation vectors 

(15) 

we can write 

(16) 

where the reduced amplitude is 

(17 ) 

Because of the assumed ordering, Lk > 0, and the integrals over pzk can be evaluated 

by closing the contour in the upper half plane, setting the intermediate jet legs on-shell 

with 

(P' 2 2 )1/2 ""' R 2 /2R pzk = 0 - P.1.k ""' 0 - P.1.k o· (IS) 

The singularities of the Ak at Pzk ~ Po + i( qik + fL2)1/2 can be neglected because they 

leave very small residues ex: exp( -fLLk) given the assumed large separation fLL k ~ 1 

between scattering centers. Therefore, 

(19) 

with Pzk given by eq.(IS). Note that in the high energy limit Iji survives in spite of 

the 1/ Po residues because Ak ex: Eo due to the vector nature of the coupling. Also 

the ordering of the potentials in eq.(14,19) in decreasing order of the index cannot 

be permuted in the non-abelian case because of the nori-commuting color matrices in 

the A. 
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From eq.(19) we can derive two interesting limits. One is the semi-classical (large 

angle) cascade limit, and the other is the eikonal (straight line) limit for multiple 

small momentum transfer scatterings. The first Case illustrates how the transverse 

momentum integrations can decouple resulting in a factorized form of the multiple 

collision amplitude and is discussed in AppendiX' A. The second limit is however 

physically more relevant and is considered below . 

2.3 Color Algebra 

To make explicit the color algebra we write 

M ( )M
a) •.. ai 

.. = a·· ··a· .. 
JI J 'J' , (20) 

in a shorthand notation where 

(21) 

and we adopt the usual summation convention over repeated indices. For the cofor 

neutral ensemble under consideration 

(22) 

Hence, 

(23) 

Given eq.(23), the color factor associated with the jet parton is given by 

(24) 

as obtained by repeated use of the basic (aa) = C21d relation. This is simply the 

product (i)f the color factors, C2 , occurring for each isolated collision as in eq.(lO). 

Therefore, even though the amplitude eq.(20) does not factor in color space, the en

semble averaged coincidence cross section does factor for large angle elastic scattering 

in a locally color neutral ensemble as shown in appendix A. 
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2.4 Eikonal Limit 

For a high energy jet, the coincidence amplitude is dominated by small angle scat

tering_ In this case, we change variables to ql = PI - PI-l with PzI ~ 'Po ~ Eo 

approximately fixed, and write the total momentum transfer as 

j 

Qji=L;)<l(=Pi - Pi-l , (25) 
I=i .... 

The coincidence amplitude can then reduces to 

\ 

j 

X (27r)282(Q.Lji - Lq.LI) (26) 
I=i 

Note that the dependence of the phase on the Zk can be factored out with 

j . ' 

L qzkzk ~ (pzj - Po)Zj + (Po - Pz,i-dzi (27) 
k=i 

This phase is important only for off-shell amplitudes with Pzj f= Po or Pz,i-l f= Po-

To average over the transverse coordinates Xk, we employ the frozen target ap

proximation taking the initial and final wavefunction of target parton, k, to be tPki(Xk) 

and by 4>kJ(Xk) respectively. The amplitude to leave the target in a specific final state 

is obtained by replacing the phase factors by transition form factors 

(28) 

After squaring Mji , we must sum over all final states <PkJ _ For scattering in a chaotic 

or thermal bath we'must also average over an ensemble of initial 4>ki-

A simplification is possible in the high energy limit when the energy and longitu

dinal momentum transfers are small, and they can be neglected or replaced by their' 

average values in 8(ji) and Fi~ _ In that case, closure ( LJ 4>kJtPkJ = 1) can be applied 
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to the sum over final states. Averaging in addition over initial states with probability 
.. 

p(i), the average squared amplitude contains factors such as 

2:: p(i) 2:: Fi~( qJ.k)Fj;( ~q~k) = J d3xke-i(q.1k-q~k)·Xk Pk(Xk) = Tk( qJ.k - q~k) , 
if' 

(29) 

where P k (Xk) = Li· p( i) l4>ko (Xk) 12 is the ensemble average densitydistriblltipn of target 

parton k. Ineq,(29) note that n(q.L) is just the Fourier transform of the Glaub~~ 

thickness funCtion 

(30) 

which is the probability per unit area of finding parton k at a transverse coordinate 

XJ.k. For a broad z distribution, it would appear that we may have violated the 

a:ssumed J.lL ~ 1 assumption. However, in the m! different z orderings of the centers,' .. 

one of the previously neglected backscattering amplitudes becomes dominant and .

after relabelling the dummy indices the same result is recovered. The only essential 

assumption is that the mean free path is long compared to the range of the potential. 

With eq.(29), the ensemble average of the squared amplitude is proportional to 

j j 

x(27l")4b2(Q.Lji - Eq.Ldb2 (Q.Lji - Eq~l) (31) 
[=i I=i 

Only diagonal color components survive because of the color neutrality condition 

eq.(23). If the transverse coordinates are distributed over a radius, R ~ p-l, then the 

Fourier transform of the thickness function will limit the difference, IqJ.k - q~kl;Sl / R . 

. Because vtk 
( qk) varies slowly on a scale 1/ R ~ J.l, we can therefore approximate 

(V:k(q~))* ~ (V:k(qk))* in the integrand. The q~ integrals result ·therefore in a 
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multiplicative geometrical factor 

(32) 

With the above simplification, the ensemble averaged coincidence cross section to 
. . . 

scatter se9.ue~ti~llY with partons from i' t9j.\Teci.Jces to 

j j 

dCl'ji/d2Ql..ji = j d2b / IT {d2q-LkTk(b)duk/d2q-Lk} c52 (Q.Lji - L ~d (33) 
. k=i I=i 

This is recognized as the classical Glauber multiple collision limit, with Pk(b) = 

f Tk(b )dCl'k being the probability of scattering off center k on a classical trajectory at 

impact parameter b. 

3 Induced Soft Non-Abelian Radiation 

We turn next to the inelastic amplitudes for induced radiation of a gluon with color 

c and light cone momenta and polarization 

(34) 

Light cone coordinates are denoted here by square brackets, [k+, k-, k.L], with k± = 

W ± k~ = k'i) k'f. We chose the two physical polarization states for on shell (k2 = 0) . 
gluons to satisfy both tk = 0 and En = 0 with nl' = [0,2, O.L] in terms of two 

orthonormal fl..' Thus to = El.. . k.L/(w + kz ). In light cone coordinates, the incident 

jet parton has p~ = [P+, m2 
/ P+, 0] with P+ ~ 2Eo. We focus on the soft limit 

defined by x ~ 1. First we consider the amplitudesfor radiation from the high energy 

parton lines. Then we show that the three gluon amplitudes essentially cut off the 
, 

soft dkl../ kl.. spectrum at k.l rv J.L. 'Note that the induced bremsstrahlung associated 

with a single isolated collision was derived in pQCD in Ref. [19]. Our inter,.-est h~re is 

on the induced radiation pattern associated with multiple collisions. 

12 
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3.1 Radiation from Internal Jet lines 

The ~mplitude to emit a gluon with color c from the jth intermediate jet line during 

sequential scattering with target partons from 1 to m is 

J d4pj . 
M~l(k,Pm'Po) = (271")4 Mm,j+l(Pm, Pi - k) 

x {i~(pj - k)(-2ig€pjTC)i~(pj)}Mj,1(Pj,PO) (35) 
. "." . , 

The integ~alsoverjJ~.s~t their· values to· £;0 bedl.use of the 8(lj}in Nfj;l' However,. 

for all the subsequent intermediate lines in Mm,j+! the energy is shifted from Eo to 

Eo - w, and a new overall energy conservation factor arises 

~ 0 
8(rnl) ex 8(Pm - Eo + w) . (36) 

These shifted energies change the classical momenta in subsequent legs (k > j) to 

Pk = PwRk with 

(37) 

where Vo = Pol Eo is the speed of the incident parton. 

To perfor,ffi the Pzj integral, it is convenient to split the two propagators using 

E(Pi - k) EPj 
2EPi~(Pj - k)~(Pi) = kePi _ k) ~(Pi - k) - kp.Pj ~(Pi) , (38) 

which is valid for on shell radiation since P = 0 and Ek = O. The contour integral 

over Pzi can then be performed as discussed in Appendix B. 

With (123,124) from Appendix B, the radiation amplitude eq.(35) reduces in the 

kinematic region x ~ 1 and k.L ~ /l to 

M cj '" 
m! '" 

- . . . J d2p I' 1 i(P R ..!:2p2 ) C( 1) -lwtm -IPm,Xm +IPO,XI -'-J J" J-2P 1.j gv rn e e e ---e J 

(271")2 2Po 

X (EPie+ikx j _ EPi ~+ikxj+l) I . (p p·')TC], (p. p) 
k - k m,J+l m, J J,I J' 0 . 

Pj Pi 
(39) 

Note the appearance of the phases kXj and kXj+! where xj = (tj, Xj) and the inter-

action time, tj, is the classical transit time along the path from Xl to Xj as defined in 
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eq.( 121). In addition, the current element in the brackets involves on-shell momenta, 
\ 

p'j, p'j, defined by 

I-' _ (E (P'2 (p. .)2)1/2 p. .) Pj - 0, 0 - .L] + P.L] ,.LJ + P.L] (40) 

-I-' _ (E, _ {P2 _ (P . +. .)2)1/2 P . + . .). Pj - '. 0 w, w .L] P.L] ,.L]P.Lj (41 ) 

Note fiilally the order·.iJ:lWhi~h the color matrix Te. apB,~rsil;b()\Te. 

For radiation withAK~JL.,weca.n factor out oftlie;jnt~~*a.nd.a currentelemeIlt 

proportional to EPj / kPj • To see this, note first that for a high el1ergy on-shell parton 

with P = [(1 - h)P+, m}./{l - 8)P+, P.L] and radiation with kinematics (34), 

Ep = 2 E:L ·(k.L - xp.L/(l - 8» "-' ,;,Ei . k.L 
( ) / "-' ~ 2 for xmJ. .~ kJ.. (42) 

kp k.l - xP.l/(l - 8 )2 + x 2m 2 (1 - 8)2 . k.L 

This approximate independence of the current element on pI-' allows us to factor out 

(42) from the integrals for xm.L ~ k.L. However, a more general expression can 

be factored out that is valid also in the high momentum transfer limit. For fixed Xi 

and Eo -+ 00, the momenta pj and fi'j are approximately fixed by geometry to be 

Pj ~ Eo(l, Rj ), and therefore 

(43) 

Since this expression also reduces to (42) when Rj points along the jet direction, the 

final factorized form of the amplitude for intermediate line radiation becomes 

(44) 

In this expression, the j independent phase factor, exp( -iwtm ), was discarded. 

We note several points in connection the amplitudes for induced radiation from 

the internal jet lines given by eq.(44). 

1. The approximate fadored expression holds both in the large angle cascade limit 

considered in Appendix A and straight line (Eikonal) limlts of Mml as long as 

x ~ 1 and k.l ~ /1-. 
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2. Just as in the QED case, these intermediate line amplitudes vanish for radi

ation with formation length significantly exceeding the separation of adjacent 

scattering centers. In particular; for fixed x = k+ I P+ :::::: wi Eo ~ 1 the phase 

factors cancel in the kl.. -:+ 0 limit: 

",i"· 

where+{k) is theformati:o~iime(length) from eq.{1}.·· 

(45) 

3. Unlike in momentum space, there is no factorization in color space. The color 

matrix for the amplitude without radiation is modified by radiating a gluon of 

color c after the jth interaction by the insertion of a TC matrix: 
1 

(46) 

4. Even for x ~ 1 the c;ondition leading to the approximate form in (42) breaks 

down for very large number of collisions since the random walk in transverse 

. m~mentum space leads to a growing (Pim) oc mJ.L2. Thus for large m the above 

approximation is only valid in a restricted x region 

.. 1 kl..· 1 
x~--.~-

Jm J.L Jm 
(47) 

5. We must also add the amplitudes for radiation from the initial and final lines 

to the above amplitudes for radiation from internal lines; These external line 

amplitudes are 

(48) 

where we defined Pi: = p~, P;:;' - p~ for notational convenience, and we again 

discarded the common phase factor, exp( -iwtm ), as in eq.(44). 
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The sum'of all the amplitudes (44,48) can then be written in a suggestive form 

(49) 

where the effective color current element analogous to (2) is 

[ J(k) lC . ;::.. ikx (di ( .) fPt-l ( . ).) 
f· ~·hi.;:';'."!i1 = zg L.J e I kP am'" cal' .. al - kP am ... alc ... a1. ' 

. 1=1 . I . 1-1 , . 
(50) 

",' .. . . 
. '~. '" . ." . 

In the ab~lian case, the matrices in ( ... ) are set to unity, and Eqs.(49,50) reduce to 

the soft radiation formulas of QED. In the abelian case the current actually vanishes 

as a power of x in the x --? 0 limit on account of (42). In the non-abelian case, the 

non-commutativity of th~ generators leads, however, to a non-vanishing current in 

(50) even for x = o. 
I 

We emphasize that the approximate form of the effective current in eq.(50) is valid 

only in a restricted kinematic domain (47). Gauge inva'riance requires the absence of 

induced radiation associated with collisions without momentum transfer[19J, i.e., for 

. PI = PI-I' On the other hand, the contribution from scattering at I in eq.(50) is non

vanishing if [e, a] =I O. To recover full gauge invatiance, of course all the amplitudes 

involving three and four gluon vertices as well must be added to the above result. 

However, since the domain of applicability, of eq.( 50) shrinks to zero as ql.j--? 0, it is 

consistent with the gauge invariance requil;ement in_the kinematic domain indicated. 

For the physically most interesting eikonallimit, the effective color current reduces 

for XVm ~ k1./ J1 ~ 1 to 

(51 ) 

The lower bound on the domain of applicability comes from (47). For k1. < XJ1vj, 

the effective current has components in the directions P 1.j that cannot be factorized 

out of the elastic amplitude. We note that (51) can also be derived directly from 

(35) using the eikonal form (26) for Mm,j+l and Mj,l~ The above derivation has the 

advantage that the connection to the familiar abelian case is made more transparent. 
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\ 

3.2 Radiation from Internal G luon Lines 

In the previous section we concentrated on the amplitudes for induced radiation· 

in which the gluon is radiated directly from the fast jet lines without final state 

interactions. Here we consider amplitudes involving one or more three or four gluon 

vertices in ,which the gluon scatters with one or more of the target partons before 

emerging with kinematics given by (34). In the high energy limit, the amplitudes 
, .': 

involving th~foUr gluonv~rticescan be generall)'neglettedbecause;those verti<:es art'i 

momentum independent and a contact interaction with two widely separated target 

partons is small. The amplitudes involving three gluon vertices can be classified by 

the number of such vertices and the indices of the scattering centers to which one 

of the gluon legs is attached. The simplest of such amplitudes, denoted by Gjm, 

corresponds to a (possibly virtual) gluon emitted by the jet between the Zj":1 and 

Zj+l with that gluon scattering off the target parton at Zj. For 1 < j < m, 

J 
dp~ dp4 

G~j = ' (271")4 (2~)~ Mm,j+l (Pm, Pj )ib.(pj )Gj (k, Pj, pj-dib.(pj-dMj-1,1 (Pj-l, PO) 

(52) 

where with qj = Pj - Pj-l the single three gluon amplitude in the Feynman gauge is 

Gj(k,pj,pj_d = (-ign(pj-l+Pit)(-ib.(qj)) 

X (-gjba)cAcx{3'"Y(qj, -qj - k,k))Aj)i3(qj + k)){'"Y(k) .' (53) 

The external field at j in our case is 

(54) 

and the three gluon tensor is 

The amplitudes with multiple three gluon vertices correspond to multiple final 

state interactions of the emitted gluon. Because the centers are assumed to be far 

apart, the intermediate gluon lines in those amplitudes are set on shell (by the cor

responding dpz contour integral). Those amplitudes therefore describe final state 
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cascading of the gluon in the medium. In QED these type of amplitudes are re

placed by higher order Compton like amplitudes~ For gluons, final state cascading 

will broaden their final k.l. distribution and induce further gluon showering. However, 

for the problem of the energy loss of the incident jet, which is our primary interest 

here, the final transverse momentum distribution of the rescattered gluons is not im

portant. In addition, in the soft limit k:.L <t:: p each . .triple gluon vertex gives rise to a 

faCtor O( kif p ) smaller thantJaecotr¢spoIidihg. iIiterIraljetlip.eradiatibnainplitude~ 

as we show below .. w~ therefore concentrate here oniyon the a~plitudes involvi~g 
one three gluon vertex given by (52). 

As these amplitudes only arise in the non-abelian case, we can simplify the deriva

tion by evaluating (52) in the eikonallimit. As shown in Appendix C, we find in this 

limit that 

Gc '" . '" Jm 

(56) 

We note that corrections to the effective current element in ,the {} brackets arise for 

large j in the regio~ k.l. < xpi.j rv xp.Jj from terms neglected in the vertex function 

in eq.(133) of Appendix C. In eq.(56), Q.l. = P.l.m is the final transverse momentum 

of the jet parton. 

Summing these three gluon amplitudes and adding the radiation amplitudes fro~ 

the jet lines in Eqs.( 49,51), we obtain the total amplitude for m-fold coincidence 

scatterings together with soft radiation in the eikonallimit: 

. m , 

X (21r?b(Q.l. - k.l. - Lq.l.k) {-i€l.. J~l, .. am(k; {q.Li})} 
k=l 
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.. 

(57) 

. where the effective color current is 

m 

J~l ... a,J kj {q.Ld) = L eizi/r(k) Ji( k)( am ... [c, ail ... a1) , (58) 
i=l 

/ 
and the elementary current elements are 

(59) 

The following points should be noted in connection with the above results: 

1. For the case m = 1, eq.(58) reduces to the result derived in [19]. 

2. For k.L ~ q.Li, the three gluon amplitudes can be neglected as noted before. 

Therefore, in this limit eq.(.58) reduces to eq.(51). 

3. However, for very small k.L < Xfl.Li corrections to eq.(59) arise as can be seen 

from eq.(42). In particular, the singularities at k.L = 0 is regulated on a scale 

XJ.l, where fl is the (dynamic) mass of the jet parton. 

4. The singularity at k.L = q.Li is a non-abelian feature due to induced radiation 

along the direction of the exchanged gluon. It is regulated by the gluon polar

ization tensor in the medium[20]. 

,5. The approximate color current is strictly valid only for k.L ~ fl and x ~ 1. 

However, eq.(59) shows the general cancellation of amplitudes for. k.L ~ q.Li 

that limits the induced radiation from an isolated scattering to k.L ~ fl. 

6. For q.Li =0, the current elementJi vanishes in accordance with gauge invariance[19]. 

7. The phase factor in eq.(58) is independent of the transverse coordinates X.Li in 

the eikonallimit. The transverse phase factors, exp( -ik.L . X.Li), associated with, 

each isolated collision are spread over the net elastic phase factor exp( -i Lk q.Lk' 

X.Lk). 
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8. Finally, corrections to eq.(59) also appear in kinematic domains where ~ither the 

radiation formation time, r( k), or the intermediate jet lifetime, 2w / (ql.i - kJ..)2, 

is on the order of the mean free path due as shown by eq.(137) in Appendix C. 

Eqs.(58,59) are the main result of this paper from which we derive next the non

abelian LPM interference effect in theeikonallimit. 

4 . ··i"}je·ttad.iatioIlForm~t·ibhFactor·· . 
• • "." •• :" ",' ••••••• ',. • ••• •• C" •• ". "." • ".. " • 

. ~ '. 

The spectrum of soft induced .bremsstrahlungassociated with multiple scattering in 

a color neutral ensemble eq.(23) can be computed from eq.(58) using steps similar to 

those leading from eq.(26) to eq.(33). Analogous to eq.(3), we find that 

Recall that C;: is the color factor for the coincidence scattering cross section without 

radiation from eq.(24) with C2 and d being the second order Casimir and dimension 

of the SU(N) representation .of the jet parton. As in eq.(31) the.assumptions of 

color neutrality and that the transverse distribution of target partons is much wider 

than I1rl are essential to obtain the above diagonal form in color and ~lJ..i labels. 

Note that the squared current involves a sum over repeated color indices, c, ai, and 

the trace is over the resulting sum of products of color matrices that we consider in 

detail below. The average, denoted by large brackets, above is over the t~'ansverse 

momentum transfers, qJ..i, and given in our case by 

(61 ) 

We are mainly interested in comparing the induced spectrum for m > 1 to the 

radiation spectrum from a single isolated collision[19]: 

d3
n} (CisC A qi ) 

w d3k= ~ kl(kJ.. - qJ..)2 + 
(62) 
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The average in this case is over a single scattering as obtained from eq.(61) by setting 

m = 1. The + label on the average indicates that the infrared singularities are regu

lated in a quark-gluon plasma by the dynamically generated masses of the initial jet 

and radiated gluon as discussed in the previous section. Note that this mechanism 

i~ different from the regulation of infrared sing~lariti~s consider~d in Ref.[19] due to 

form factors arising in collisions of coIQrsingIeth~di-ons. In that case, interference 
", ",.,"' 

amplitudesasS6ciated :withradiation fl."om,.&if¢tentl1adronicc()nstituentsca;:[l~~lhqth 

the k.l = 0 andthel<:.l = q.l singularities. 'In a~li'~fk-ghion phlsma at the pehtit~ 
bative level the quasi-particles are color non-singlet partons, and the singularities 

are regulated by medium polarization effects[20]. Nevertheless, in both cases similar 

expressions arise at the end. 

With eqs.(60,62), we can define the "radiation or color formation factor", Cm(k) 

Via 

(63) 

The result can be expressed as 

1 m ( i-i. ) C (k) = '"" C·:+ 2Re '"" C,' 'e1
(Zi-

z))/"r(k) F,. ·(k) 
m cm C d L....J It L....J 1) .) 

2 A i=i 'j=1 ~ 
(64) 

in terms of color coefficients, 

(65) 

and current correlation functions 

(66) 

with Ji given by eq.(59). 

4.1 Color Coefficients 

The color coefficients in eq.(65) can be computed by repeated use of basic SU(N) 

relations for sums of products of generators: 

, CA aa = C21d , [a, b]a = -Tb , 
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(67) 

The diagonal coefficients can be seen to be identical to the normalization: factor in 

eq.(64): 

(68) 

The off diagonal j <ic()efficientsare, on the other hand, 
" : ", 

CijTr(C~-i[c,aAai_l .. . a jC4-;'1[aj;c}ajH ... ad 

C~ cm-i+j-1(C C A )i-j-1C d 
- -- 2 2 -- 2 
42· 

-r'2(1 - T2)i- j
- 1Cii/2 (69) 

where 
T2 _ C A _ {. N2/(N2 - 1 ) for quarks with C2 = CF 

- 2C2 - 1/2 for gluons with Cz = CA 
(70) 

The radiation formation factor is therefore 

(71 ) 

For a single isolated scattering, of course, 

(72) 

For multiple scattering in the Bethe-Heitler limit, corresponding to Lij ~ r(k), the 

phase factors average to zero, and the intensity of induced radiation is simply additive 

in the number of scatterings, i.e., 

Cm{k) ~ m if Lij ~ r(k) for all i > j . (73) 

In the deep LPM limit, where r(k) ~ L ij , the destructive interference pattern summa

rized .by the formation factor depends on the form of the current correlation functions. 

It is amusing to note that that the negative sign leading to destructive interference in 

eq.(71) arises in QeD from the color algebra, eq.(69), in contrast to qED where the 

destructive pattern in eq.(2) ari'ses from the opposite sign of contributing momentum 

space- amplitudes. 
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4.2 Current Correlation Function 

In order to investigate the formal structure ofthe current correlation function, eq. (66), 

we evaluate 

(Ji . jj) ex 

~ (1 + H(kl))2Iki (74) 

where in terms of the transverse vector, J = (qJ.. - kJ..)/lqJ.. - kJ..I2 

(75) 

The approximate independence of the current correlations on the indices, i, j, is only 

valid in a kinematic region kJ.. > XPJ..i recalling eqs.(42). In QED this restriction is 

severe because the leading term, 1:1.. • kJ../ki, from eq.(42) cancels, and the photon 

spectrum is peaked at x rv 1. In QeD, on the other hand, the radiated energy 

fraction, xdn/dxd2 kJ.., is approximately independent of x from eq.(62). Therefore, 

unlike in QED the regime x ~ 1 is relevant in the case of QeD. We find below that 

the induced radiation is indeed limited to x < Af-l2 / Eo ~ 1, and thus the above 

approximation is justified. This approximation cannot however be extended outside 

the soft eikonallimit. For moderate x < 1 it clearly breaks down especially because 

pL grows approximately linearly with i due to multiple scattering. For the general 

case, the .exact current element must be used and the correlation function must be 

computed from a solution of a transport equation, as first done by Migdal[I] for QED. 

We limit the discussion here to the soft eikonal regime. 

The diagonal correlator, in the same limit is proportional to the invariant gluon 

distribution from a single collision: 

(76) 
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which involves a second function 

(77) 

The approximate correlation function in the soft eikonallimit is therefore independent 

of i,j and given by 

Eij(k) ~J!(ki)·~':~~:~r. (78) 

Because (IJ - (ki . J) j k11 2
) ~ 0, note that H2 ~ H2 and consequently the curl:ent 

correlation function is bounded: 

• 
o :::; F( k) :::; 1 . (79) 

The upper bound is approached for ki ~ (qi) rv fl2. In that soft region both 

H ~ H2 ex kIj (ql) ~ 1, and 

(80) 

The lower bound is approached in the opposite limit, ki ~ (ql), Formally, H ~ 

-1 - (qi)jkl while H2 ~ 1 + 3(qi}jkl, and consequently in that limit 

(81) 

The exact form interpolating between these limits depends of course on the proper 

inclusion of polarization effects in the medium. 

4.3 The Factorization Limit 

For fixed x';::;:! wjEo ~ 1 and ki --t 0, Fij ~ 1, and the formation length, T(k) = 

xP+ /ki becomes' much longer than the separation of the scattering centers. In this 

case, the phase factors can be set to unity. With the help of 

(82) 
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the radiation formation factor reduces to 

( 
1 - 1/N2(1 - 1/(1- N2)m-l) for quarks 
2(1 - 112m

) for gluons 

. (83) 

Note also that for 'a given r2 = CA/2C2, C::' approaches 1/r2, independent of the 

number of collisions as m ---7 00. This is the Factorization limit, in contrast to the 

(additive Bethe-Heitler limit. The saturation value depends on the SU(N) represen

tation of the jet parton and causes the C A factor in eq. (62) to be replaced 'by 2C2 . 

Interestingly, for quarks in the fundamental representation the destructive interfer

ence is so effective that for N = 3, the final radiation intensity in the kJ.. ~ (qJ..) 

region after many collisions is even slightly less, 1/r2 = 8/9, than fora single isolated 

collision. However, for incident gluon jets, the induced radiation' approaches twice 

that from a single collision. For exotic hybrid partons in very high dimensional rep

resentations of SU(N), the suppression effect ~n fact disappears altogether for fixed 

m as C A/mC2 ---7 O. This dependence of the LPM effect on the representation of the 

parton is a specific non-abelian effect in QeD. 

4.4 Ensemble Averaged Formation Factor 

For 0 < kJ. ~ p., we can write 

m i-I 

Cm(w, kJ..) = C~ + 1 :\ Re L 2)1 - r2)i-i(1- Fjj(k)ei(Zi-Zj)/r(k)) (84) 
2 t=lJ=l 

To see analytically how Cm interpolates between C~ and m as a function of the ratio 

of the mean free path to the formation time, we average now over the interaction 

Zj points according to linea~ kinetic theory. Because we restrict the discussion here 

to the eikonal case, the complication due to the full 3D transport evolution can be 

neglected. In linear kinetic theory the longitudinal separation between successive 
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scatterings, Li = Zi+l - Zi, is distributed simply as 

exp(-Ld)..)/).. , 

where).. = (O"OPVO)-l is the mean free path. Therefore, 

(e'f'; -'i )M,!) '" (1 -i~ m<,JXC; 
where r(k) = 2xEo/ki.· 

(85) 

: .. " .. " (86) 

The sum in eq.(71) can then be performed since in this soft eikonallimit Fij(k) ~ 

F(k) ~ 1 Ip that case eq.(82) can be used with the replacement 

1 - r2 
1 - r2 ~ 1 _ i)../ r( k) 

The resulting radiation formation factor reduces to 

where the dimensionless function controlling the non-abelian LPM effect is 

).. 
X ( k) = --,--,-~ 

r(k)r2 

)"kl ·C2 )"kl. 

2xr2EO C A cosh(y) 

(87) 

(89) 

" The last form is in terms of the rapidity, y of the radiated gluon (w = kl. coshy). 

Note that eq.(88) satisfies a.ll the previous limits considered (m = 1, kl. = 0, ).. = 00). 

For modera.te large m the term proportional to (1 - r2)m term can be neglected, 

and the formation factor simplifies to 

(90) 

This illustrates dearly how the radiation formation fador interpolat~s between the 

r = 0 and r = 00 limits as a function of the dimensionless variable X. However, it 

also shows that, through the dependence on the current correlation function, F(k), 

the radiation formation factor is actually a function of two dimensionless variables, 

X(k) = )../r2rand kl/p? Thus, both the range,j.t-l, as well as the separation, ).., of 

the interactions influences the final interference pattern. 
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For quarks, r2 ~ 1, while for gluons r2 = 1/2. In the collinear regime, k.l.. ~ J-l 

regime, F(k) ~ 1, and a further simplification occurs. The radiation formation factors 

for incident quarks and gluons reduce then to the following simple "pocket" formulas 

C~(k) 

(91) 

While the above interpolation formula for quarks can be extrapolated down to m = 1, 

the gluon one only applies for large m because of the extra factor of two radiation in 

that case for large m. We emphasize again the restriction xJ-lJm ~ k.l.. ~ J-l used in 

deriving the above expressions. 

5 Induced Soft Radiative Energy Loss 

An important application of the radiation formation factor is to the problem of cal

culation of the radiative energy loss per unit length, dE / dz, for a parton passing 

through dense, color neutral matter with a mean free path, A ~ J-l- 1
. We need 

only the incremental increase of the induced radiation going from m to m + 1. For 

moderately large m and k.l.. < f-L 

(92) 

with X(k) given by eq.(89). Increasing m -t m + 1, the average increase of the 

interaction length is A, and thus from eq.(62,63) 

The subscript "soft" is included to emphasize that the eikonal approximation, used 

in deriving eq.(92), restricts its applicability to the kinematic region xJ.LJm < k.l.. < 

J-l. The limits on the fractional energy loss are Xo ~ k.l../ Eo from kinematics, and 

Xl '" k.l../ J-l from the above restriction. Note that we neglect the 1/ \1m dependence 
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of Xl since the Factorization limit is found to be insensitive to this cutoff, while the 

Bethe:..Heitler limit must reduce in any case just the sum the radiation from isolated 

(m = 1) collisions. 

The kinematic restriction k~ < f1- 2 , also follows from the destructive interference 
'. . 

between three gluon vertex and jet line amplitudes. This point was already empha-

sized in [19] but was missed in ref.[13],wh~r~the domain of kJ. integ~a.tion was allowed 

to extend tip to thekhieinatic limit;.kiS;:5/4. Bom/2.T9:atl~(td·iotheerr9I1eotis 
". . ", ..".. . .... - , ", . ..... .... ". ," .. . . 

co~clusion thatdE(dz <X Eo, in viol~fi6n withth~f~~toriz~tibh t,hebr~rns .. 
The integral over x can be performed by changing variables to x, with the result 

(94) 

where A2 _ A/2r2' We see that in the Eo A> A2f1-2 limit, the second term is negligible. 

Furthermore, since All "'"' II 9 A> 1 is a basic assumption in our multiple collision 

analysis, the first term in the brackets is approximately 7r 12. 
The integral over kJ. is also analytic and illustrates how dEl dz interpolates be

tween the Factorization 'and Bethe-Heitler limits. We find that 

(95) 

where the interpol<l;tionfunction is 
i. 

(96) 

Note that for aA> 1, L[a] ~ 1 ~4/(7ra). For a <{:::: I, on the other hand, L[a} ~ 4XI37r. 

Since, A2f1- A> 1, the first term in the bra~kets is always close to unity. However, the 

second term depends on the dimensionless ratio, ( == AJL2 I Eo. This ratio is large in 

the additive Bethe-Heitler limit and small in the Factorization limit. 

To see how eq.(95) interpolates between those two limits consider first the ap

proximate Factorization limit. We fix A2J.l A> 1 and send Eo ~ 00. In that case, the 

second term in eq.(95) can be neglected a~d 

(97) 
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where we used J.L ~ gT to estimate the force range in a quark-gluon plasma at tem

perature T. The result is thus sensitive t~ the square of the radiated transverse 

momentum as suggested in [9]. Note that because we are only calculating the low 

k.L < J.L contribution, our derivation does not allow us to calculate logarithmic energy 
/ 

dependent factbrsas obtained qualitatively in [9]. However, up to such logarith- . 

mic factors eq.(97) demonstrates the approximate constant behavior of the induced 

radiatedeIiergy loss in.theFactorization limit~ '. 
", ,',. ".' . . 

In the other extreme limit, we fix Eo and send AJ.L --+ 00 so that <: ~ 1. This is 

the dilute limit where the mean free path exceeds the radiation formation length. In 

this case the arguments of both terms in eq.(95) are large, and the small difference 

leads to 
1 2 4Eo ' . Eo (2Q S CA) 

dEsofti dz "-' 2QsC2J.L1[" J.L2 ).2 "'T 1[" • 
(98) 

Note that in this limit we recover the linear dependence of dE I dz on the incident 

energy (modulo, logarithms), as in the Bethe-Heitler formula. 

It is interesting to note that in the additive regime the radiated energy loss is 

proportional t~ CA , as for a single scattering via eq.(62), However, in the approximate 

Factorization limit the induced radiated energy loss is proportional to the C2 of the 

jet parton. This means in practice that gluons radiate CAICF = 914 more gluons 

than quarks for 5U(3). Recall, that the energy loss due to elastic collisions for gluons 

is also enhanced relative to quarks by the same CAICF factor[21]. For comparison, 

the energy loss due to elastic collisions from [21] is 

(~9) 

Therefore, the total dE I dx simply scales with C2 • This scaling differs from the quali

tative estimates in [9] using the single scattering bremsstrahlung'cross sections of [19]. 

It is interesting to note that both the elastic and radiated energy loss is proportional 

to Q~ and are comparable in magnitude up to uncertain logrithmic factors. 

We emphasize that eq.(97) for the radiated energy loss is only an order of magni

tude estimate because we have not calculated the contributioidrom the non-factoring 
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kJ.. > J.L domain. In order to improve the estimate, all the multiple three g'luon ver

tex amplitudes added to those computed here. That moderate high kJ.. regime also 

requires a more careful treatment of the current correlation function as well as of the 

polarization mechanisms that regulate infrared singularities. A proper treatment of 

. the above problems remains a,n open theoretical challep.ge. 
~ ." 

Finally, we cOmment onthe comparison of eq;{97) to the bound On dE /dx derived 

··byBrodskyandHoY~~[lOl·hase,d·6n the uIicehciiiltYRr.~ri8iple.FOr:atadiatedgil.loh.· 

carrying a~ay a fr~ctionx of the incident energy, Eo, wftIi'a giveIlkJ.., th~ uncertainty" .' 

in its formationjength is r(k ).£rom eq.(1), The induced energy loss for radiating one 

gluon is therefore bounded by 

dE / dx < (xE /r(k)) = (k~) /2 '" J.L2/2 (100) 

Our estimate satisfies this bound because as ~ 1 was assumed throughout our per

turbative analysis. In fact, we may interpret Cias roughly the probability of ra

diating one gluon with r(k) < A between multiple collisions. That gluon is radi

ated in a cylindrical phase space with approximate uniform rapidity density between 

o < y < log(J.L>..jr2) and limited kJ.. < J.L. 

6 ' Summary and Discussion 

In this paper, we initiated a study of multiple collision theory in pQCD concentrating 

on the eikonallimit. We calculated elastic and inelastic multiple collision amplitudes 

for a high energy parton propagating though a "plasma" of static target partons. 

We showed that the assumption of color neutrality was vital to recover the classical 

parton cascade picture in both large and small angle scattering. Our main simplifying 

assumption was that the mean free path (A '" 1/ g2T) in the'target was large compared 

to the range of the interactions (J.L- 1 
'" 1/ gT). In particular, we showed how the 

classical Glauber scattering cross section eq.(33) emerges after ensemble averaging. 

The main focus of the paper was to derive eq.(57), which shows how the sum of 

the induced gluon radiation amplitudes can be expressed as a convolution of elastic 

multiple scattering amplitudes and an effective color current, eq.(58). This result was 
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derived for the soft radiation (x <t:: land k.l.. <t:: /-l) regime. The limitations of the 

approxima.tions leading to that result were also carefully analyzed. We showed that 

the triple gluon diagrams can be neglected in the sloft limit but are important to cut 

off the k.l.. distributions on the scale /-l. Only when k.l.. -+ 0 can the effective current 

be pulled out of the multiple collision integral, and the radiation. amplitude factored 

~n momentum space as in eq;(49). There is never a factorization of amplitudes in 

color space. ·However,thecolorneutralitycondition,.eq.{23},gfeatlysimplHies tp:e 

ensemble average ofthe squared amplitude. In addition, the off diagonal contributions 

in momentum space from J~l ... am {k; {ql.i} )~l ... am (kj {q~J) drop out, as shown below 

eq.(31), if the transverse width of the target is large compared to the interaction 

range. Under these conditions, it was possible to calculate the induced radiation 

spectrum from eq.(60). 

We defined the radiation formation factor, eq.(64), as the ratio of the induced 

radiation spectrum to the spectrum from an isolated collision. That factor measures 

the suppression of induced radiation with formation length, r(k) > A, and reveals 

the non-abelian analog of the LPM effect. The novel role of the color algebra that 

leads to this destructive interference pattern in QeD was shown in Eqs. (69,71). We 

showed how this factor interpolates between the saturated Factorization limit and the 

additive Bethe-Heitler limit. A compact "pocket" formula for the formation faCtor 

was derived in eq.(91). illustrating the essential features of that interpolation. 

Finally, we applied the formation factor to estimate the contribution of soft in

duced gluon radiation to the energy loss per unit length, eq.(95). The result in the 

Factorization limit, eq.(97), was shown to be consistent with the 'uncertai~ty prin

ciple bound of [10] with a numerical coefficient, C2a~, that had a simple physical 

interpretation as the number of induced gluons radiated in the limited phase space 

with rapidity between zero and log(/-lA/1'2) and with k.l.. < /-l. Up to un-calculated 

logarithmic factors the radiative energy loss was found to be comparable to the elas

tic energy 10ss[21). We also showed how the linear energy dependence of dE / dz IS 

recovered in the opposite (Bethe-Heitler) limit when A ~ E//-l2. 

Naturally, many problems need further study. Especially important will be to ex-
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tend the derivation of radiative cross sections to the moderate kl.. > !-L regime to cover 

the non.;.fadorizable "semi.;.hard" regime for induced radiation. We concentrated on 

the soft regime here to simplify our task. The "semi-hard" regime is however also 

complicated by the riecessity of having to consider in detail the polarization effects 

that regulate ql.. = kl.. singularities~nd also the necessity of COIIwuting the current 

correlation. functions diScussed in seCtion 4.2. The opell theoretical question in this 
." . . 

connectio±tisfowh'at extent, if'imy;, coo , ~cl(J,ssitalParton .:casca,de transpott/model ... 

be const~ucted 'that correctlY ~iIIlulatestheIIla~y subtle. interfe~ence ~lieIlorrtena of 

pQCD in the multiple collision domain. 
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Appendix A: Large Angle Elastic Cascade Limit 

We consider here the elastic coincidence scattering in the special idealized case that 

the coordinates Xi are fixed and the energy is large to see how the classical billiard 

ball formula emerges. We rewrite the phases in eq.(19) as 

P · R Lk ·C.··· p)2 
::::: k· k ~ 2P

o
,'Plk -J..k (lo!) 

...... , .... 

with P k PORk /Ri. .. Jld 
PH = POrH/ Rk ::::: POrH/ Lk . (102) 

Note that PH . rH = 2PH . P l.dLk/2Po) and PoLk::::: P k . Rk - P'idLk/2PO). 

Substituting eq.(101} into eq.(19) and shifting the PH integration, we find that 

(103) 

where the intermediate classical momentum transfers, denoted by 

(104) 

have dominantly transverse components. The endpoint momentum transfers are given 

Qj = Pj - Pj - 1 and Qi = Pi - Pi-h and the ex.ternal phase is 

j-l j 

<Pj; = L PI· RI = L QI . XI + ipj . Xj - iPi-l . Xi-'-1 (105) 
I=i I=i 

A simplification occurs in the high energy when the Xi are fixed because the Q H 

increase linearly with Eo, while the transverse momentum integrals are limited by 

the oscillating phase factors to PJ..k~(PO/Lk)1/2. Hence QH ~ PH for high enough 
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energIes, and we can expand the potentials around Q.Lk. This is equivalent to the 

stationary phase approximation; The region of validity of that approximation can be 

clarified by writing 

(106) 

The condition that Ql.k ~ (PO/Lk )1/2 is thus equivalent to requiring that the trans

verserriorhentum ttans£~J:"be htrgeenough to resolve thetraIl~verse 'separation of the 

scattering centers: 

(107) 

For fixed r.lk this condition is always satisfied for sufficiently large energies, and thus 

the stationary phase integrals can then be evaluated using 

(108) 

In this limit Mji reduces to the simple factorized form 

j-I 

Mji(pj,Pi-l) ~ 8(ji)e+iQi,XiAj(Qj) II {eill'/2e+iQk'XkAk(Qk)/(47rRk)} .(109) 
k=i 

Note again that in the non-Abelian case the matrix ordering from j to i is essential. 

After squaring and integrating over the magnitude of the final momentum, aver

, aging over initial colors and summing over final, the above factorized form leads via 

eq,( 11) to the classical billiard ball formula 

(llO) 

We emphasize that color neutrality of the medium and large tri=msverse mo~entum 

transfers are essential to recover'this simple cascade limit ih which the direction of 

all intermediate momenta are fixed by geometry. 
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Appendix B: Derivation of Eq.(39) 

Technical details of the derivation of the radiation amplitude from intermediate jet 

lines are given here. The integration over pzj in eq.(35) can be expressed as a sum of 

two terms using eq.(38). The term containing,the.6.(pj- k) propagator leads to \ 

€(Pj - k) -
x k(pj _ k/m,j+l(Pm,Pj - k)Tchl(PhPo) . (' (111) 

The term containing the .6.(Pj) propagator leads to 

M;; 

Ep' 
x-

k 
J Im,j+l(Pm,Pj - k)TJj,i(pj,Po) 

Pj ," 
(112) 

In M~ the contour integral over Pzj sets pj - k on shell with 

pzj ~ kz + Pw - (p l.j - kl.)2 /2Pw 

~ Po - (Pl.j - kl.)2/2Po + (kz - w/vo) (113) 

while in M;j it sets Pj ,on shell with Pzj ~ Po - p'i)2Po. In both cases the residue 

of the propagator can be well approximated by 1/2Po in the high energy limit when 

x <t: 1. However, it is essential to keep track of the difference, Po - Pw = w/vo in 

computing the phases. The phase in the integrand of M~ is given by 

(Pj - k)Rj - k . Xj 

L j 
( )2 / k , ) ~ P,·R,--'-p,,-k,-Pl., -wR'vo- ,x, 114 

J J 2Po .J..) .J.. J J _ J 

Note that the replacement w L j / v j --+ w Rj / v j above is valid either when r.Lj '" d <t: L j 

or Po --+ CX). The phase in M;; is, on the other hand, 

, L j 2 ) 

P ,· R- - k· X-+l ~ p-. R' - -(Pol' - Pl.') - k· X'+l (11.5 J' J J J J 2Po - J J J 

36 



Shifting the Pl.j integration to Pl.j + kl. + P l.j and Pl.j + P l.j in M~ respectively, 

M + "-' 
cj "-' 

~ 0 0 Jd2po l 0 °.!:i...2 g8( m1 )e-'PmoXme+'POoXl ~_e·PjoRJ e -' 2Po P 1.J 

(2'11-)2 2Po 

(
t pj 

-i(wR ·/tI +k·x .») ·1 ( ~ )T I ( ) x -e J J J 0+1 p.. p.' 01 po Po 
k ~ . m,} .m,} C}, J' , Pi ... 

(116) 

. .... ,. 

( 
t]Jj -ik.XJ+I) 1 0 ( 0 k)T 10 (0 ) x k. e m.J + 1 Pm, p) - C J.J P J , Po . 

}J,J 
(117) 

Note that in M;j, the on-shell Pj and Pi are given by Eqs.(40,41). Therefore both the 

off-shell amplitude Im,j+!(Pm, Pi - k) and the on-shell amplitude Im,i+l(Pm,Pi) in the 

integrands above are evaluated with the same shifted incident energy, Eo - w, and 

approximately the same shifted incident longitudinal momentum, Pw ~ Po - w/vo. 

The energy shift of Im,j+! above leads in the high energy limit to a phase shift of 

those amplitudes relative to the case without radiation. To see this, note from eq.(17) 

that 

( 118) 

The contour integrals over the pzk then fix the phases to be 

(119) 

Therefore, there is an additional phase shift wLk/vo ~ wRk/vo for each intermediate 

line. This phase shift has a simple physical interpretation. Noting that the classical 

transit time between centers at Xk and Xk+! is 

(120) 
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the additional phase shift is due to the time delay of a wavefront propagating with a 

frequency reduced by w. Defining the classical interaction time at center, k, as 

k-l 

tk = L .6.ti , (121) 
i=l 

with tl = 0, the net extra phase can be factored out from eq.(llS) as 

where <Pm,j+l is the phase without radiation given via eq.(105). In eq.(122) we again 

used the condition x ~ 1 in replacing the residue 1/ Pw by 1/ Po. 

Note that the longitudinal momentum transfer in all the potential is still small 

since all the intermediate longitudin~.l momenta are shifted by approximately kz.If 

in addition to x ~ 1, we consider radiation with kJ.. ~ Il, then the arguments of all 

the potentials inside the integrand can be approximated by those in.eq.(I9). Only 

the extra w dependent phase must be kept. Therefore, in this soft limit 

1 . ( . k)""" -iw(tm-tj+dl . ( .) m,3+1 Pm, P3 - ,...., e m,3+1 Pm, P3 , (123) 

where the right hand side is to be evaluated ignoring the soft radiation via eq.(19). 

Similarly, it follows that for soft radiation 

1 ( - ),...., -iw(tm-tj+dj ( ) 
m,j+l Pm, pj ,...., e m,j+1 pm, Pj , ( 124) 

involving the same phase shift as in eq.(123). Combining these results we obtain 

eq.(39). 

Appendix C: Derivation of Eq.(56) 

M j - 1,1(Pi-l,PO) 
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(125 ) 

Mm,j+1(Pin,Pj) = 21l"6(p~ ~ pJ)(am ··· aj+l)( ..... ig)m:...j(2Eo)e-i(P.m-P"')zme-i(P"'-p~~)z;+1 

X¥k~l(~;):e-; .. '.x<.V:.(qlk») (21r )l6(p im- pi; - k~L~h) 

We have utilized above that Pzo = Po:::::; Eo and that the energy of internal lines k < j 

. is Eo, while for k 2:: j it is Eo - w with Pzk = Pw = Po - w/vo on those lines. Note 

that the amplitude M m ,j+l differs from the case of no radiation eq.(26) by only a z 

dependent phase· obtained by replacing Po with Pw in eq.(27). In the eikonal limit 

eq.(53) can be expressed as 

(127) 

where we used -iTdbajc = [c, aj) and note that the vertex function is 

r(k,pi>Pj-d = 4Eo(Pi - Pi-l)t(k) + 4wPi t (k) 

-(Pj + Pj-d(Pi - pj-l + 2k)to(k) (128) 

Inserting these expressions into eq.(52), the integrals over the pJ-l' pJ variables 

give rise again to an overall b(rn1 r fac~or eq.(36) and set pJ-l = Eo and pJ = Ew = 

Eo - w. Then as in eq.(111) we integrate the contour over pzj and pz(j-l} keeping 

only the residues at the poles of the propagators since Lj ~ d. Because of thf' thref' 
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propagators involved, b..(pj)b..(pj - Pj-I)b..(Pi-l), those integrals give rise to three 

cOIitributions corresponding to forward scattering with two of the three internal lines 

set on shell. A fourth contribution corresponding to backscattering of the gluon near 

Zj is suppressed in the kinematic range Eo ~ w ~ max(kl.' ql.j) of, interest here. 

Tht:'!kinematic variables of the three forward amplitudes after the contour integration 

arethenasfollows: Incas~J, pJ = pJ-l ~ 0, (Pi - pj""lH;~-(ql.; - kl.}2, with 
. '. " .. :. "~ 

pj-l -(Eo, Eo - P'i.u_l)/2Eo, Pl.U-l)) 

Pj (129) 

Pj (130) 

\ 

pj-l (Eo, Eo - (ql.j - kl.)2/2w,pl.U_l)) 

Pj - (Eo - w, Eo - w - pL/2Eo, Pl.j) . (131 ) 

We assume that w 2 ~ (ql.j - kl.)2. It is remarkable that the residue of the product 

of propagators is approximately same up to a sign in all three case with 

with + for cases 1 and 2 and - for case 3. Also the vertex factor turns out to be 

approximately the same in all three cases 

( 133) 

For a jet parton with mass, /1, the singularity in eq.(132) at ql.j = k.L is automatically 

regulated as in eq.( 42) by 

(134) 
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In higher order, the inclusion of the gluon proper self energy tensor in the medium 

would replace this infrared regulator by the effective dynamic mass of the gluons. 

Only the z dependent phase, 

is found to be case dependent. Evaluating with eq.(129,130,131), we find that 

case 1 
case 2 
case 3 

(136) 

where Tj = 2w / (qJ..j - kJ..)2 is the lifetime of the virtual jet line in cases 2 and 3, 

and Lj = Zj+l - Zj is the longitudinal distance between adjacent scattering centers. 

Together with the relative signs in eq.( 132), the phase factors in the three cases sum 

to 

(137) 

We therefore find a .new interference form factor, fj , that involves the separation 

distances between adjacent centers and the lifetime of the virtual jet state, Tj. For 

well separated centers, in'the sense that the mean free path>' = ((Zi+l - Zi)}. ~ Tj, 

the extra phases in fj average to zero and jj ~ 1. Also in the extrerile opposite 

limit, >. ~ Tj, extra terms tend to cancel again leading to Ii ~ 1. In particular, for 

kJ.. = ~j, h = 1. As a Tough form illustrating these limits, 

(138) 

In the general case, fj =I 1 reflects the effects of final state cascading of the emitted 

gluon. Another important limit is qj = 0 9r k.L ~ qJ..j. In this limit, Tj ~ T(k) = 

l/(w - kz), and fj reduces to 

(139) 
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· For radiation with formation tim~ much less or much longer than the meanfree path, 

1i :::8 ·1. Therefore,· except· in the restricted kinematic domain where TJ· or T (k) is on 

the order of the mean free path, this extra interference effect can be neglected, and 

fj can be set to unity. Combining these results, we obtain eq.(56). 

, " 
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