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ABSTRACT 

An analysis is made of the background level and counter efficiencies actually 

necessary to perform a loophole-free EPR-experiment. Both requirements 

are correlated. Photon counters do not absolutely have to have more than 

82.8% efficiency, if the signal-over-noise ratio is very high. 

·This work is supported by the Director, Office of Energy Research, Office of High 

Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of 

Energy under Contract DE-AC03-76SF00098 . 
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1 Introd llction. 

In this paper, limits are set for the amount of background that can be 

tolerated in a loophole-free EPR-experiment, [1] [2] [3], as a function of 1], the 

efficiency of the counters used. The experiment is assumed to be performed 

on entangled states of two photons and involve polarization measurements 

on them. It is possible to make a loophole-free experiment with 1] < 82.8%, 

but it requires the background level to be very low. 

The initial state is assumed to be prepared as a superposition of states 

of two photons, a and b, with correlated planes of polarization. One state 

is defined as I +-+! > ,i.e. photon a polarized horizontally and photon b 

vertically; and another state as I ! +-+ > ,i.e. a polarized vertically and b 

horizontally. For both photons, the polarization measurements are made 

with Nicol prisms set in such a way that the ordinary trajectory applies to a 

photon polarized in the horizontal plane and the extraordinary to a photon 

polarized vertically. In front of either Nicol, devices are disposed that rotate 

the plane of polarization of the photons. The angle by which the plane of 

polarization of a is rotated will be called a and, for b, (3. 

Demonstrations exist showing that the maximum violation by predic

tions of quantum mechanics of an inequality of the type Bell-CHSH for a 

two-particle system is 2( v'(2) - 1), [4] [5] [6]. That limit is reached in par

ticular if the initial state is described by a state vector 

(1) 

if the two values of a used in the relevant experimental setups are 

(2) 
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02 = 

and, if the two values of P are 

PI = 
P2 = 

-56.25° j 

11.25° , 

-33.75°. 

(3) 

(4) 

(5) 

These demonstrations make use of an operator called "Bell operator", B , 

which is related to the expectation value:/8 of a Bell inequality and any 

initial state .,p by the relation 

(6) 

In these demonstrations, the inequalitY:/8 and the operator B are written 

for the case of a 100% efficiency. It is possible to modify the inequality to 

take into account the case of a less than 100% efficiency. If this is done 

but the initial state .,p and the values of 01, 02, PI, and P2, are kept at the 

values of Eqs. (1), (2), (3), (4), and (5), i.e., if the optimization Of:/8 is 

made before setting 1] to a value less than 100%, it can be shown, [7], that 

Bell's inequality in these particular conditions requires an efficiency of the 

counters 

1] > 2 (v'2 - 1) ~ 82.8% . (7) 

However, if:/8 is optimized changing .,p, aI, 02, PI and P2 after intro-

. ducing the correction for 1] < 100%, a lower requirement for the efficiency 

may be expected. This is the subject of this paper. The Bell operator B 

is first modified to take into account values of 11 less than 100%. Then all 

parameters .,p, 01, 02, PI, and P2 are changed to optimize :/8 . 
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2 Bell Inequalities for TJ < 100%. 

Bell inequalities concern expectation values of quantities that can be mea

sured in four different experimental setups, defined by specific values all a2, 

(31, and (32 of a and (3. The setups will be referred to by the symbols (al,(31), 

(at, (32), (a2,(31), and (a2,(32), where the first index designates the value of a 

and the second index the value of (3. 

In any setup, the fate of the photon a and the fate of photon b is referred 

to by an index 

(0) == photon detected in the ordinary beam, or 

(e) == photon detected in the extraordinary beam, or 

( u) == photon undetected. 

There are nine types of events defined as (0,0), (o,u), (o,e), (u,o), (u,u), 

(u,e), (e,o), (e,u), and (e,e), where the first index designates the fate of 

photon a and the second the fate of photon b. Table 1 shows a display of 

boxes corresponding to the nine types of event in each setup. The value 

of a and the fate of photon a designate a row. The value of (3 and the fate 

of photon b designate a column. Any event obtained in one of the setups 

corresponds to one box in Table 1. 

For a given theory, we consider all the possible sequences of N events 

that can occur in each setup. N is arbitrarily large. As in [8] and [9], a 

theory is defined as being "local" if it predicts that, among these possible 

sequences of events, one can find four sequences (one for each setup) where 

every event satisfies the following conditions : 
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{3t 

u o u II o e e 

0 • X X 

Ot u 

e 

0 X 

02 U X 

e X 

Table 1: Possible results expected in the four setups. 

(i) the fate of photon a is independent of the value of {3, i.e., is the same 

in event numbered k of the sequence corresponding to setup (017 (3t) 

as in event k for (at, (32); also same fate for a in (a2, (3t) and (a2, (32); 

this is true for all k's for these carefully selected sequences; 

(ii) the fate of photon b is independent of the value of a, i.e., is the same 

in event k of sequences (ot,{3t) and (02,{3t); also same fate for b in 

sequences (Ot,{32) and (a2,{32); 

(iii) all four sequences that one has been able to find with conditions (i) 

and (ii) are among those for which all averages and correlations differ 

from their expectation values given by the theory by less than, let us 

say, 10 standard deviations. 

These conditions are fulfilled by a deterministic local hidden-variable theory, 

i.e., one where the fate of photon a does not depend on {3 and the fate of b 

does not depend on a. For such a theory, these four sequences could be just 
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four of the most common sequences of events generated by the same values 

of the hidden variables in the different setups. Conditions (i), (ii), and (iii) 

are also fulfilled by probabilistic local theories, which assign probabilities 

to various outcomes in each of the four setups and assume no "influence" 

of the angle {J on what happens to a and no "influence" of a on b. With 

such theories, one can generate sequences of events as mentioned above by 

Monte Carlo, using an algorithm that decides the fate of a without using 

the value of {J and, for b, without using the value of a. H the same random 

numbers are used for the four different setups, the sequences of events will 

necessarily have properties (i) and (ii), and the vast majority of them will 

have property (iii). 

Let us follow an argument first used by Ref. [10]. The four events num

bered k in the four sequences correspond to four boxes in Table 1, one box 

in the set of nine corresponding to each setup. Because of condition (i), the 

two events corresponding to setups (al,{Jl) and (a},{J2) lay on the same 

row. Samething for (a2,{Jl) and (a2,{J2). Because of (ii), events for (al,{Jt} 

and (a2,{Jt) lay on the same column, as well as events for (al,{J2) and 

(a2,{J2). The four boxes corresponding to the four events numbered k lay 

at the corners of a rectangle on Table 1, each corner in the set of nine boxes 

reserved for the proper setup. It follows that, every time an event labeled 

k in setup (a},{Jl) falls into the (o,o)-box (the one marked with a e), in 

a local theory, it corresponds to the upper-left corner of a rectangle in Ta-

. ble 1. Then at least one of the other corners is in one of the boxes marked 

with an x on that Table, Le.: either event numbered k in sequence (al,{J2) 

lands in one of the boxes (o,e) or (o,u) in setup (al,{J2), and/or event k 

in sequence (a2,{Jl) is in box (e,o) or (u,o), or event k in sequence (a2,{J2) 
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lays in box (0,0). It follows that the number noo(ab.Bl) of events of type 

(0,0) in setup (al,.BI), i.e., in the box marked by a ., cannot be larger than 

the sum ofthe number noe(al,.B2), nou(aI,.B2), neo(a2,.Bd, nuo(a2,.BI), and 

noo( a2, .02) of events of types (0, e) and (0, u) in setup (aI, .02), oftypes (e, 0) 

and (u,o) in setup (a2,.BI), and type (0,0) in setup (a2,.B2), i.e., the boxes 

marked with an x. Thus, 

noe(ab.B2) + nou(al,.B2) + neo(a2,.BI) + nuo(a2,.BI) 

+ noo(a2,.B2) - noo(al,.BI) ~ 0 . (8) 

This inequality applies to the number of events of various types in the 

four sequences. It was arrived at using conditions (i) and (ii) above applied 

to the four carefully selected sequences. For condition (iii) to be true no 

matter how large the number of events N is, Ineq. (8) has also to apply to 

the expectation values of these numbers. It is the form of Bell inequality 

that will be used hereafter. 

A similar inequality to Ineq. (8) can be derived where all (o)'s are 

changed into (e),s and vice versa. In principle, one could average this new 

inequality with Ineq. (8) to improve statistics. (By doing so, one arrives di

rectly at an inequality almost identical to the Bell-CHSH inequality.) How

ever, optimizing the averaged inequality leads to the conditions of Eqs. (1), 

(2), (3), (4), and (5) regardless of the efficiency TJ. The minimum efficiency 

required is then 82.8%. The optimizing procedure of Sect. 3 actually makes 

. an improvement on only one of the inequality of the average, at the expense 

of the other inequality. 
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3 Predictions of Quantum Mechanics. 

The goal of a loophole-free experiment is to find results in a case where the 

predictions of quantum theory contradict the prediction of all local theories, 

i.e., where the predictions of quantum mechanics violate a form of Bell 

inequality. IT the predictions of quantum theory are upheld, the existence 

of non-local effects in nature will thus be proven. 

To compute the predictions of quantum mechanics, let us use a repre

sentation where the helicities of the two photons are diagonal operators. 

Given an initial state .,p, a value for fJ and a set of angles aI, a2, f3I, and 132, 

predictions for the number of events involved in Ineq. (8) can be computed. 

For N pairs of photon emitted in the superposition state and assuming an 

ideal case where there is no background, these predictions are 

2 
nideal(a 13) = N: .,pt(I+u(al)) (I+r(f31)).,p, (9) 00 1, 1 

2 
nideal( a 13) = N: .,pt (I + oo(a1)) (I - r(f32)).,p , (10) oe 1, 2 

nideal( a 13) ou I, 2 = NfJ(1; fJ).,pt (1 + oo(al)).,p, (11) 

2 
nideal( a 13) = N: .,pt (1 - oo(a2)) (1 + r(f31)).,p , (12) eo 2, 1 

nideal (a 13) uo 2, 1 = NfJ(1; fJ).,pt (1 + r(f31)).,p, (13) 

nideal(a 13) 
00 2, 2 = N: .,pt (1 + oo(a2)) (1 + r(f32)).,p ; (14) 

where, in our helicity representation, the phases are chosen in such a way 
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that the elements of 0'( a1) and of T(fJ1) are real : 

0 e-2i{a-crl) 0 0 

e2i{a-al) 0 0 0 
(15) O'(a) = 

e-2i{a-aJ) 0 0 0 

0 0 e2i{a-al) 0 

0 0 e-2i{!3-!31 ) 0 

0 0 0 e-2i(!3-!3J) 
T(fJ) = 

e2i{!3-!31 ) 
(16) 

0 0 0 

0 e2i{!3-!31 ) 0 0 

+ ideal( f.l ) ideal( f.l ) noo a2,fJ2 - noo a1,fJl' (17) 

The above computation assumes that only the N photons in the entan

gled state contribute to the counting rates and that the polarization ana

lyzers are perfect. A correction has to be made to formula (17) to take into 

account deviations from that ideal case. The sample of events of type (0, e), 

(0, u), (e, 0), and (u, 0) actually counted in the experiment and introduced in 

Ineq. (8) will include not only the n~~eal(abfJ2)' n~~eal(abfJ2)' n~~eal(a2,fJl)' 

and n~~eal(a2,fJl) events of Eqs. (10), (11), (12), and (13), but other events 

> with a less sharp dependence on a and fJ. It is a background. We will take 

that background into account by an a- and fJ independent term, N (, to be 

added to the n~~eal(abfJ2) + n~~eal(al,fJ2) events of Eqs. (10)and (11), and 

to the n~~eal(a2,fJl)+n~~eal(a2,fJl) events of Eqs. (12) and (13). In principle 
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there is also a background in samples of type (0,0) events in setup (aI, /31) 

and (0:2,/32). However, since we assume no dependence of the background 

on a and /3, the effect of the type (0, 0) background cancels in Ineq. (8). 

After correction for background, we write 

.Js = .Jsideal + N ( . 

Eq. (8) stipulates that local theories predict 

.Js ~ 0 , 

while quantum theory predicts 

where 

2-17+e 1-17 1-17 

B 17 1-17 2-17+e AB* -17 
=N-

2 1-17 A*B -17 2-17+e 

AB-17 1-17 1-17 

and 

A = ~ (e2i(a2-a1) -1) , 

B = ~ (e2i(1J2-lJtl - 1) , 

e 4( 
= 

17 

A*B* -17 

1-17 

1-17 

2-17+e 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

To perform a loophole-free experiment, we need experimental conditions 

in which the prediction for.Js of Eq. (20) is negative. That is possible as 
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long as the operator B has a negative eigenvalue. That is impossible if all 

eigenvalues are positive, even if one uses incoherent mixtures of pure states. 

The maximum amount of background that can be tolerated corresponds to 

that value of ( that makes the last negative eigenvalue of B turn from 

negative to positive, i.e. when the determinant of B of Eq. (21) ceases to 

be negative to become zero. 

A computer program was written to compute the determinant of B of 

Eq. (21), for any given value of the efficiency 1]. The program varied 02 -011 

/h - (31, and ( to find the maximum value of the background ( that kept 

the determinant negative. For 1] < ~, there is none. For 1] > ~ there are 

negative values of the determinant for small values of (, increasing from 0 

to ~-1 as 1] increases from ~ to 1. The maximum value of ( as a function 

of 1] is given in Table 2. It is plotted on Fig. 1, as well as the maximum 

affordable value of ( if the conditions were not the optimum ones, but these 

of Eqs. (1), (2), (3), (4), and (5) instead. 

The program also recorded the values of 02-01 and (32-/h and computed 

the relevant eigenvector "p, i.e. the conditions that makes.JB of Eq. (20) 

equal to zero for the maximum (. There were degeneracies in the solutions. 

The two angles 02 - 01 and (32 - (31 could always be taken to be the same, 

or the opposite of one another, as can be understood from an analytic study 

of Eqs. (6) and (21). The vector "p turned out to be of the form 

(1 + r)e-iw 

"p= 
-(1- r) 

(25) 
-(1- r) 

(1 + r)eiw 

which can be reached in the two-photon experiment considered in this paper 

10 
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Figure 1: Maximum affordable background versus efficiency; .: optimized 

conditions; 0: conditions of Eqs. (1) to (5). 
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1](%) (%) r w (0) a2 - al (0) 

66.7 0.00 0.001 0.0 2.2 

70 0.02 0.136 3.4 21.4 

75 0.31 0.311 9.7 32.0 

80 1.10 0.465 14.9 37.9 

85 2.48 0.608 18.6 41.5 

90 4.50 0.141 20.9 43.6 

95 1.12 0.811 22.1 44.1 

100 10.36 1.000 22.5 45.0 

Table 2: Extreme Conditions for a Loophole-Free Experiment. 

by first superposing states 1 ~! > and 1 ! ~ > in unequal amounts, 

1/10 = 4~ (I~! > + rl! ~> ) i (26) 

then rotating the planes of polarization of a and of b in setup (al,,8d by 

the angles 

(21) 

(28) 

respectively, with the values of r, w and a2 - al (=,81 - ,82) given in 

Table 2. 

In conclusion, it is possible to perform a loophole-free experiment if the 

efficiency 1] of the photon counters is higher than 66.1% and the background 

is less than the value indicated on Fig. 1 for that value of 1]. For small 

background levels, it is possible to perform a loophole-free EPR-experiment 

with less than 82.8% counter efficiency. 
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